1
|
Majidi M, Pakzad S, Salimi M, Azadbakht A, Hajighasemlou S, Amoupour M, Nokhbedehghan Z, Bonakdar S, Sineh Sepehr K, Pal Singh Chauhan N, Gholipourmalekabadi M. Macrophage cell morphology-imprinted substrates can modulate mesenchymal stem cell behaviors and macrophage M1/M2 polarization for wound healing applications. Biotechnol Bioeng 2023; 120:3638-3654. [PMID: 37668186 DOI: 10.1002/bit.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.
Collapse
Affiliation(s)
- Mohammad Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeedreza Pakzad
- Food and Drug Laboratory Research Center, Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolnaser Azadbakht
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saieh Hajighasemlou
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gapeeva A, Qiu H, Cojocaru A, Arndt C, Riaz T, Schütt F, Selhuber-Unkel C, Mishra YK, Tura A, Sonntag S, Gniesmer S, Grisanti S, Kaps S, Adelung R. Tetrapodal ZnO-Based Composite Stents for Minimally Invasive Glaucoma Surgery. ACS Biomater Sci Eng 2023; 9:1352-1361. [PMID: 36776118 DOI: 10.1021/acsbiomaterials.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The glaucoma burden increases continuously and is estimated to affect more than 100 million people by 2040. As there is currently no cure to restore the optic nerve damage caused by glaucoma, the only controllable parameter is the intraocular pressure (IOP). In recent years, minimally invasive glaucoma surgery (MIGS) has emerged as an alternative to traditional treatments. It uses micro-sized drainage stents that are inserted through a small incision, minimizing the trauma to the tissue and reducing surgical and postoperative recovery time. However, a major challenge for MIGS devices is foreign body reaction and fibrosis, which can lead to a complete failure of the device. In this work, the antifibrotic potential of tetrapodal ZnO (t-ZnO) microparticles used as an additive is elucidated by using rat embryonic fibroblasts as a model. A simple, direct solvent-free process for the fabrication of stents with an outer diameter of 200-400 μm is presented, in which a high amount of t-ZnO particles (45-75 wt %) is mixed into polydimethylsiloxane (PDMS) and a highly viscous polymer/particle mixture is extruded. The fabricated stents possess increased elastic modulus compared to pure PDMS while remaining flexible to adapt to the curvature of an eye. In vitro experiments showed that the fibroblast cell viability was inhibited to 43 ± 3% when stents with 75 wt % t-ZnO were used. The results indicate that cell inhibiting properties can be attributed to an increased amount of protruding t-ZnO particles on the stent surface, leading to an increase in local contacts with cells and a disruption of the cell membrane. As a secondary mechanism, the released Zn ions could also contribute to the cell-inhibiting properties in the close vicinity of the stent surface. Overall, the fabrication method and the antifibrotic and mechanical properties of developed stents make them promising for application in MIGS.
Collapse
Affiliation(s)
- Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Haoyi Qiu
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Ala Cojocaru
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Phi-Stone AG, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Arndt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Tehseen Riaz
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, INF 225, D-69120 Heidelberg, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, DK-6400 Sønderborg, Denmark
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Svenja Sonntag
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, University Clinic Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sören Kaps
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
3
|
Lee A, Sousa de Almeida M, Milinkovic D, Septiadi D, Taladriz-Blanco P, Loussert-Fonta C, Balog S, Bazzoni A, Rothen-Rutishauser B, Petri-Fink A. Substrate stiffness reduces particle uptake by epithelial cells and macrophages in a size-dependent manner through mechanoregulation. NANOSCALE 2022; 14:15141-15155. [PMID: 36205559 PMCID: PMC9585528 DOI: 10.1039/d2nr03792k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 05/23/2023]
Abstract
Cells continuously exert forces on their environment and respond to changes in mechanical forces by altering their behaviour. Many pathologies such as cancer and fibrosis are hallmarked by dysregulation in the extracellular matrix, driving aberrant behaviour through mechanotransduction pathways. We demonstrate that substrate stiffness can be used to regulate cellular endocytosis of particles in a size-dependent fashion. Culture of A549 epithelial cells and J774A.1 macrophages on polystyrene/glass (stiff) and polydimethylsiloxane (soft) substrates indicated that particle uptake is increased up to six times for A549 and two times for macrophages when cells are grown in softer environments. Furthermore, we altered surface characteristics through the attachment of submicron-sized particles as a method to locally engineer substrate stiffness and topography to investigate the biomechanical changes which occurred within adherent epithelial cells, i.e. characterization of A549 cell spreading and focal adhesion maturation. Consequently, decreasing substrate rigidity and particle-based topography led to a reduction of focal adhesion size. Moreover, expression levels of Yes-associated protein were found to correlate with the degree of particle endocytosis. A thorough appreciation of the mechanical cues may lead to improved solutions to optimize nanomedicine approaches for treatment of cancer and other diseases with abnormal mechanosignalling.
Collapse
Affiliation(s)
- Aaron Lee
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Daela Milinkovic
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Céline Loussert-Fonta
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Amelie Bazzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
5
|
Di Natale C, Natale CF, Florio D, Netti PA, Morelli G, Ventre M, Marasco D. Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids Surf B Biointerfaces 2020; 197:111439. [PMID: 33137636 DOI: 10.1016/j.colsurfb.2020.111439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
The mechanical interpretation of the plethora of factors that governs cellular localization of amyloid aggregates is crucial for planning novel therapeutical interventions in neurodegenerative diseases since these aggregates exert a primary role in the proteostasis machinery. The uptake of Cell Penetrating Peptides (CPPs) conjugated with different amyloid polypeptides occurs via different endocytic processes regulated by cytoskeleton organization and cell morphology. Herein, we deepened the internalization of an amyloid system in cells cultured on nanopatterned surfaces that represent a powerful tool to shape cell and regulate its contractility. We analyzed the behavior of an amyloid model system, employing NPM1264-277 sequence, covalently conjugated to Tat fragment 48-60 as CPP. To investigate its internalization mechanism, we followed the formation of aggregates on two kinds of substrates: a flat and a nanopatterned surface. Herein, investigations during time were carried out by employing both confocal and second harmonic generation (SHG) microscopies. We showed that modifications of cellular environment affect peptide localization, its cytoplasmic translocation and the size of amyloid aggregates.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | - Maurizio Ventre
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy
| |
Collapse
|
6
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Wu Y, Chen H, Guo L. Opportunities and dilemmas of in vitro nano neural electrodes. RSC Adv 2020; 10:187-200. [PMID: 35492533 PMCID: PMC9047985 DOI: 10.1039/c9ra08917a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Developing electrophysiological platforms to capture electrical activities of neurons and exert modulatory stimuli lays the foundation for many neuroscience-related disciplines, including the neuron–machine interface, neuroprosthesis, and mapping of brain circuitry.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| | - Haowen Chen
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| | - Liang Guo
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
8
|
Gopal S, Chiappini C, Penders J, Leonardo V, Seong H, Rothery S, Korchev Y, Shevchuk A, Stevens MM. Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806788. [PMID: 30680803 PMCID: PMC6606440 DOI: 10.1002/adma.201806788] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles, are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane-nanoneedle interface. In particular, the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largely unexplored. Here, combining state-of-the-art electron and scanning ion conductance microscopy with molecular biology techniques, it is shown that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin-coated pits and caveolae. Nanoneedles enhance the internalization of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae- and clathrin-mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle-mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell-manipulation technologies.
Collapse
Affiliation(s)
- Sahana Gopal
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Ciro Chiappini
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Jelle Penders
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Stephen Rothery
- Facility for Imaging by Light Microscopy, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London, SW7 2BB, UK
| | - Yuri Korchev
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Molly M Stevens
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
- Department of Bioengineering, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| |
Collapse
|
9
|
Li Z, Kamlund S, Ryser T, Lard M, Oredsson S, Prinz CN. Single cell analysis of proliferation and movement of cancer and normal-like cells on nanowire array substrates. J Mater Chem B 2018; 6:7042-7049. [PMID: 32254587 DOI: 10.1039/c8tb02049c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanowires are presently investigated in the context of various biological and medical applications. In general, these studies are population-based, which results in sub-populations being overlooked. Here, we present a single cell analysis of cell cycle and cell movement parameters of cells seeded on nanowires using digital holographic microscopy for time-lapse imaging. MCF10A normal-like human breast epithelial cells and JIMT-1 breast cancer cells were seeded on glass, flat gallium phosphide (GaP), and on vertical GaP nanowire arrays. The cells were monitored individually using digital holographic microscopy for 48 h. The data show that cell division is affected in cells seeded on flat GaP and nanowires compared to glass, with much fewer cells dividing on the former two substrates compared to the latter. However, MCF10 cells that are dividing on glass and flat GaP substrates have similar cell cycle time, suggesting that distinct cell subpopulations are affected differently by the substrates. Altogether, the data highlight the importance of performing single cell analysis to increase our understanding of the versatility of cell behavior on different substrates, which is relevant in the design of nanowire applications.
Collapse
Affiliation(s)
- Zhen Li
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
10
|
Lou HY, Zhao W, Zeng Y, Cui B. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Acc Chem Res 2018; 51:1046-1053. [PMID: 29648779 DOI: 10.1021/acs.accounts.7b00594] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
Collapse
Affiliation(s)
- Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Aravamudhan A, Ramos DM, Nip J, Kalajzic I, Kumbar SG. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing. Macromol Biosci 2018; 18:10.1002/mabi.201700263. [PMID: 29178402 PMCID: PMC5835266 DOI: 10.1002/mabi.201700263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
| | - Daisy M. Ramos
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Jonathan Nip
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT-06030, US
| | - Sangamesh G. Kumbar
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Orthopaedics, UConn Health, Farmington, CT-06030, US
| |
Collapse
|
12
|
Moerke C, Mueller P, Nebe JB. Sensing of micropillars by osteoblasts involves complex intracellular signaling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:171. [PMID: 28956212 PMCID: PMC5617863 DOI: 10.1007/s10856-017-5982-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Topographical material surface features are sensed by cells and provoke a large range of cellular responses. We recognized earlier, that at micropillar topographies in the range of 5 µm, the osteoblasts attempt to phagocytize the pillars resulted in increased energy requirements and reduced osteoblast marker expression, e.g., collagen type I and osteocalcin. However, the precise cellular signaling transducing the topographic information into the cell and evoking phagocytic processes remained unknown. Here, we could show that the RhoA/ROCK signaling is involved in the transduction of the topography-mediated cellular reactions. After inhibition of ROCK-2 with Y27632 for 24 h, no caveolae-mediated micropillar assembly of the cell membrane domain component caveolin-1 (Cav-1) was found. ROCK inhibition was also able to attenuate the pillar-induced decrease in β-actin. Interestingly, phosphatidylinositol 3-kinase (PI3K) inhibition with LY294002 for 24 h did not influence the Cav-1 clustering on micropillars. Our results illustrate the importance of the integrin down-stream signaling of RhoA/ROCK in the recognition of and adaption to surface microtopographies by osteoblasts and extend our understanding about the complex mechanism of action inside the cells.
Collapse
Affiliation(s)
- Caroline Moerke
- Department of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Petra Mueller
- Department of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - J Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
13
|
Aminuddin NI, Ahmad R, Akbar SA, Pingguan-Murphy B. Osteoblast and stem cell response to nanoscale topographies: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:698-714. [PMID: 27933112 PMCID: PMC5127258 DOI: 10.1080/14686996.2016.1242999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
To understand how cells respond to the nanoscale extracellular environment in vivo, cells from various sources have been cultured on nanoscale patterns fabricated using bottom-up and top-down techniques. Human fetal osteoblasts (hFOBs) and stem cells are some of them and they are known to be overtly responsive to nanoscale topographies - allowing us to investigate the hows and whys of the response in vitro. Information gathered from these in vitro studies could be used to control the cells, i.e. make the stem cells differentiate or retain their characteristics without the use of medium supplements. In this review, hFOB and stem cell responses to nanotopographies are summarized and discussed to shed some light on the influence of patterns on the reactions. Although both types of cells are responsive to nanoscale topographies, the responses are found to be unique to topographical dimension, shape, orientation and the types of cells used. This implies that cellular responses are influenced by multitude of factors and that if done right, cheaper self-assembled nanotopographies can be tailored to control the cells. A new self-assembly, powder-based technique is also included to provide an insight into the future of nanofabrication.
Collapse
Affiliation(s)
- Nur Izzati Aminuddin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Roslina Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheikh Ali Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Ngandu Mpoyi E, Cantini M, Reynolds PM, Gadegaard N, Dalby M, Salmerón-Sánchez M. Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS NANO 2016; 10:6638-47. [PMID: 27391047 PMCID: PMC4980054 DOI: 10.1021/acsnano.6b01649] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Surface nanotopography is widely employed to control cell behavior and in particular controlled disorder has been shown to be important in cell differentiation/maturation. However, extracellular matrix proteins, such as fibronectin (FN), initially adsorbed on a biomaterial surface are known to mediate the interaction of synthetic materials with cells. In this work, we examine the effect of nanotopography on cell behavior through this adsorbed layer of adhesive proteins using a nanostructured polycarbonate surface comprising 150 nm-diameter pits originally defined using electron beam lithography. We address the effect of this nanopitted surface on FN adsorption and subsequently on cell morphology and behavior using C2C12 myoblasts. Wettability measurements and atomic force microscopy imaging showed that protein is adsorbed both within the interpits spaces and inside the nanopits. Cells responded to this coated nanotopography with the formation of fewer but larger focal adhesions and by mimicking the pit patterns within their cytoskeleton, nanoimprinting, ultimately achieving higher levels of myogenic differentiation compared to a flat control. Both focal adhesion assembly and nanoimprinting were found to be dependent on cell contractility and are adversely affected by the use of blebbistatin. Our results demonstrate the central role of the nanoscale protein interface in mediating cell-nanotopographical interactions and implicate this interface as helping control the mechanotransductive cascade.
Collapse
Affiliation(s)
- Elie Ngandu Mpoyi
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Marco Cantini
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Paul M. Reynolds
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Nikolaj Gadegaard
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Matthew
J. Dalby
- Center
for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Manuel Salmerón-Sánchez
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| |
Collapse
|
15
|
Moerke C, Mueller P, Nebe B. Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts. Biomaterials 2015; 76:102-14. [PMID: 26519652 DOI: 10.1016/j.biomaterials.2015.10.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
Cells are sensitive to their underlying micro- and nano-topography, but the complex interplay is not completely understood especially if sharp edges and ridges of stochastically modified surfaces interfere with an attached cell body. Micro-topography offers cues that evoke a large range of cell responses e.g. altered adhesion behavior and integrin expression resulting in disturbed cell functions. In this study, we analyzed why osteoblastic cells mimic the underlying geometrical micro-pillar structure (5 × 5 × 5 μm, spacing of 5 μm) with their actin cytoskeleton. Interestingly, we discovered an attempted caveolae-mediated phagocytosis of each micro-pillar beneath the cells, which was accompanied by increased intracellular reactive oxygen species (ROS) production and reduced intracellular ATP levels. This energy consuming process hampered the cells in their function as osteoblasts at the interface. The raft-dependent/caveolae-mediated phagocytic pathway is regulated by diverse cellular components including caveolin-1 (Cav-1), cholesterol, actin cytoskeleton as well as actin-binding proteins like annexin A2 (AnxA2). Our results show a new aspect of osteoblast-material interaction and give insight into how cells behave on extraordinary micro-structures. We conclude that stochastically structured implants used in orthopedic surgery should avoid any topographical heights which induce phagocytosis to prevent their successful ingrowth.
Collapse
Affiliation(s)
- Caroline Moerke
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany
| | - Petra Mueller
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany
| | - Barbara Nebe
- University Medical Center Rostock, Dept. of Cell Biology, Rostock, Germany.
| |
Collapse
|
16
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
17
|
Walsh L, Ryu J, Bock S, Koval M, Mauro T, Ross R, Desai T. Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. NANO LETTERS 2015; 15:2434-41. [PMID: 25790174 PMCID: PMC4478088 DOI: 10.1021/nl504829f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Transdermal delivery of therapeutics is restricted by narrow limitations on size and hydrophobicity. Nanotopography has been shown to significantly enhance high molecular weight paracellular transport in vitro. Herein, we demonstrate for the first time that nanotopography applied to microneedles significantly enhances transdermal delivery of etanercept, a 150 kD therapeutic, in both rats and rabbits. We further show that this effect is mediated by remodeling of the tight junction proteins initiated via integrin binding to the nanotopography, followed by phosphorylation of myosin light chain (MLC) and activation of the actomyosin complex, which in turn increase paracellular permeability.
Collapse
Affiliation(s)
- Laura Walsh
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, 1700 Fourth Street, Room 204, San Francisco, California 94158-2330, United States
| | - Jubin Ryu
- Department of Dermatology, University of California-San Francisco, 1701 Divisadero Street, San Francisco, California 94115, United States
| | - Suzanne Bock
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Suite 205, Atlanta, Georgia 30322, United States
| | - Theodora Mauro
- Department of Dermatology, University of California-San Francisco, 1701 Divisadero Street, San Francisco, California 94115, United States
- Department of Dermatology, San Francisco Veterans Affairs Hospital, 4150 Clement Street, San Francisco, California 94121, United States
| | - Russell Ross
- Kimberly-Clark Corporation, 8601 Dunwoody Place, Suite 580, Atlanta, Georgia 30350, United States
| | - Tejal Desai
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, 1700 Fourth Street, Room 204, San Francisco, California 94158-2330, United States
| |
Collapse
|
18
|
Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. NANO TODAY 2014; 9:759-784. [PMID: 25883674 PMCID: PMC4394389 DOI: 10.1016/j.nantod.2014.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Miller DC, Webster TJ, Haberstroh KM. Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design. Expert Rev Med Devices 2014; 1:259-68. [PMID: 16293046 DOI: 10.1586/17434440.1.2.259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, autologous veins are the first choice for patients in need of bypass grafting materials. However, due to either pre-existing conditions or previous bypass surgery, some patients lack the necessary amount of host tissue for such procedures. Unfortunately, current synthetic vascular grafts of less than 6 mm in diameter have been plagued by a variety of problems. For this reason, there has been significant research aimed at finding more suitable small-diameter vascular graft materials. In order to improve vascular cell functions on such synthetic materials, several techniques are currently under development that attempt to mimic the natural nanometer architecture of the vascular basement membrane. This review presents several processes including colloidal lithography, chemical etching, electrospinning and solid free-form fabrication that could play a role in the future of vascular nanostructured biomaterial development.
Collapse
Affiliation(s)
- Derick C Miller
- Purdue University, Department of Biomedical Engineering, 500 Central Drive, West Lafayette, IN 47907-2022, USA
| | | | | |
Collapse
|
20
|
Harvey AG, Hill EW, Bayat A. Designing implant surface topography for improved biocompatibility. Expert Rev Med Devices 2014; 10:257-67. [DOI: 10.1586/erd.12.82] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Chen Y, Sun Z, Li Y, Hong Y. Rapid osteogenic differentiation of mesenchymal stem cells on hydroxyapatite nanocrystal clusters-oriented nanotopography. RSC Adv 2014. [DOI: 10.1039/c4ra10027a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The randomly-oriented HAP nanocrystal clusters-constructed nanotopography, prepared via a nucleation-oriented aggregation–recrystallization process from the HAP slices, can dictate BM-MSCs to differentiate into osteogenic lineages rapidly.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu, P. R. China
| | - Zhihui Sun
- Department of Pharmacy of the First Hospital
- Jilin University
- Changchun 130012, P. R. China
| | - Yanyan Li
- Department of Pharmacy of the First Hospital
- Jilin University
- Changchun 130012, P. R. China
| | - Youliang Hong
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu, P. R. China
| |
Collapse
|
22
|
Choi JI, Cho HT, Jee MK, Kang SK. Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy. Biomaterials 2013; 34:4956-70. [PMID: 23582861 DOI: 10.1016/j.biomaterials.2013.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/13/2013] [Indexed: 01/08/2023]
Abstract
A stem cell-based strategy for tissue engineering in regenerative medicine is crucial to produce and effective therapeutic replacement of injured or damaged tissues. This type of therapeutic replacement requires interaction with the cells and tissues via the incorporation of a beneficial physical microenvironment and cellular biochemical signals. Recently, we studied a cell-function modifying factor, core-shell nanoparticles consisting of an SPIO (superparamagnetic iron oxide) core covered with a photonic ZnO shell for human adipose tissue-derived stem cells (hATSCs) that regulate various cellular functions: self-renewal, neurogenesis, and dedifferentiation. We proposed an alternative method of stem cell culture that focuses on the use of Zn++ Finger nanoparticles for stem cell expansion and transdifferentiation modulation in vitro and in in vivo spinal cord injury models. Our study showed that treating hATSC cultures with nanoscale particles could lead to active cell proliferation and self-renewal and could promote nuclear Dicer-regulation of several functional molecules, Oct4 and Glutathione peroxidase 3 (GPx3), and the abundance of specific functional proteins that have been observed using biochemical analysis. These biochemical changes in hATSCs induced the functional development of multiple differentiation potencies such as β-cells and neural cells; specifically, the ability to differentiation into GABA-secreting cells was significantly improved in in vitro- and in vivo-induced animal lesions with significantly improved therapeutic modality.
Collapse
Affiliation(s)
- Jee In Choi
- Laboratory of Stem Cell Biology, Department of Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 2012; 64:1820-39. [PMID: 22705547 DOI: 10.1016/j.addr.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.
Collapse
Affiliation(s)
- Peter Koegler
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
24
|
Amorosi C, Ball V, Bour J, Bertani P, Toniazzo V, Ruch D, Averous L, Michel M. One step preparation of plasma based polymer films for drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2103-2108. [DOI: 10.1016/j.msec.2012.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/29/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Affiliation(s)
- Cédric Amorosi
- Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 rue de Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vincent Ball
- Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 rue de Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Jérôme Bour
- Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 rue de Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philippe Bertani
- Laboratoire de RMN et Biophysique des Membranes, UMR 7177 LC3 Chimie Université de Strasbourg. 8 allée G. Monge, 67083 Strasbourg, France
| | - Valérie Toniazzo
- Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 rue de Luxembourg, Esch-sur-Alzette, Luxembourg
| | - David Ruch
- Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 rue de Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Luc Averous
- LIPHT-ECPM, Laboratoire d'Ingénierie des Polymères pour les Hautes Technologies, EAc(CNRS), 4379, Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg Cedex 2 France
| | - Marc Michel
- Department of Advanced Materials and Structures, Centre de Recherche Public Henri Tudor, 66 rue de Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
25
|
Nazneen F, Herzog G, Arrigan DW, Caplice N, Benvenuto P, Galvin P, Thompson M. Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. J Biomed Mater Res B Appl Biomater 2012; 100:1989-2014. [DOI: 10.1002/jbm.b.32772] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/20/2012] [Indexed: 12/12/2022]
|
26
|
Domanski M, Winnubst L, Luttge R, Lamers E, Walboomers XF, Jansen J, Gardeniers H. Production and characterization of miro- and nano-features in biomedical alumina and zirconia ceramics using a tape casting route. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1637-1644. [PMID: 22528070 PMCID: PMC3382287 DOI: 10.1007/s10856-012-4635-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/27/2012] [Indexed: 05/31/2023]
Abstract
A process of micromolding, delivering micro- and nanopatterned ceramic surfaces for biomaterial applications is described in this work. To create the desired structures, tape casting of ceramic slurries on microfabricated silicon mold was used. Several tape casting slurry compositions were tested to evaluate the feasibility of transferring micro- and nano-features from silicon molds. Used ceramics were alumina (α-Al(2)O(3)) and yttria stabilized zirconia. Three types of polymeric binders for the green tape (PVB, PES, and PVP) were investigated using three different solvents (ethanol, n-methyl-pyrrolidone, water). Well-defined features in shapes of wells with diameters down to 2.4 μm and a depth of 10 μm and pillars with diameters down to 1.7 μm and a height of 3 μm were obtained. Morphology, grain size and porosity of the sintered bodies were characterized. Finally fibroblast cells were cultured on the surfaces in order to observe their morphology under influence of the microstructured surfaces.
Collapse
Affiliation(s)
- Maciej Domanski
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Nanostructured material surfaces--preparation, effect on cellular behavior, and potential biomedical applications: a review. Int J Artif Organs 2012; 34:963-85. [PMID: 22161281 DOI: 10.5301/ijao.5000012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 12/14/2022]
Abstract
Nanostructures play important roles in vivo, where nanoscaled features of extracellular matrix (ECM) components influence cell behavior and resultant tissue formation. This review summarizes some of the recent developments in fostering new concepts and approaches to nanofabrication, such as top-down and bottom-up and combinations of the two. As in vitro investigations demonstrate that man-made nanotopography can be used to control cell reactions to a material surface, its potential application in implant design and tissue engineering becomes increasingly evident. Therefore, we present recent progress in directing cell fate in the field of cell mechanics, which has grown rapidly over the last few years, and in various tissue-engineering applications. The main focus is on the initial responses of cells to nanostructured surfaces and subsequent influences on cellular functions. Specific examples are also given to illustrate the potential nanostructures may have for biomedical applications and regenerative medicine.
Collapse
|
28
|
Demirel GB, Buyukserin F, Morris MA, Demirel G. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers. ACS APPLIED MATERIALS & INTERFACES 2012; 4:280-285. [PMID: 22107361 DOI: 10.1021/am201331b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation.
Collapse
Affiliation(s)
- Gokcen B Demirel
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Turkey
| | | | | | | |
Collapse
|
29
|
Dalby MJ, Macintyre A, Roberts JN, Yang J, Lee LCY, Tsimbouri PM, McNamara LE. 3D patterned agarose hydrogels for investigation of precursor cells in differentiation and chemoattraction. Nanomedicine (Lond) 2011; 7:17. [PMID: 22191776 DOI: 10.2217/nnm.11.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Faculty of Biomedical & Life Sciences, Joseph Black Building, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Teo BK, Goh SH, Kustandi TS, Loh WW, Low HY, Yim EK. The effect of micro and nanotopography on endocytosis in drug and gene delivery systems. Biomaterials 2011; 32:9866-75. [DOI: 10.1016/j.biomaterials.2011.08.088] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
31
|
Lundgren A, Hed Y, Öberg K, Sellborn A, Fink H, Löwenhielm P, Kelly J, Malkoch M, Berglin M. Self-Assembled Arrays of Dendrimer-Gold-Nanoparticle Hybrids for Functional Cell Studies. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Lundgren A, Hed Y, Öberg K, Sellborn A, Fink H, Löwenhielm P, Kelly J, Malkoch M, Berglin M. Self-Assembled Arrays of Dendrimer-Gold-Nanoparticle Hybrids for Functional Cell Studies. Angew Chem Int Ed Engl 2011; 50:3450-3. [DOI: 10.1002/anie.201006544] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/20/2011] [Indexed: 11/07/2022]
|
33
|
Berthing T, Bonde S, Sørensen CB, Utko P, Nygård J, Martinez KL. Intact mammalian cell function on semiconductor nanowire arrays: new perspectives for cell-based biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:640-647. [PMID: 21290597 DOI: 10.1002/smll.201001642] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Nanowires (NWs) are attracting more and more interest due to their potential cellular applications, such as delivery of compounds or sensing platforms. Arrays of vertical indium-arsenide (InAs) NWs are interfaced with human embryonic kidney cells and rat embryonic dorsal root ganglion neurons. A selection of critical cell functions and pathways are shown not to be impaired, including cell adhesion, membrane integrity, intracellular enzyme activity, DNA uptake, cytosolic and membrane protein expression, and the neuronal maturation pathway. The results demonstrate the low invasiveness of InAs NW arrays, which, combined with the unique physical properties of InAs, open up their potential for cellular investigations.
Collapse
Affiliation(s)
- Trine Berthing
- Bionanotechnology and Nanomedicine Laboratory, Department of Neuroscience and Pharmacology & Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Csaderova L, Martines E, Seunarine K, Gadegaard N, Wilkinson CDW, Riehle MO. A biodegradable and biocompatible regular nanopattern for large-scale selective cell growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2755-2761. [PMID: 21069889 DOI: 10.1002/smll.201000193] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A biodegradable substrate with a regular array of nanopillars fabricated by electron-beam lithography and hot embossing is used to address the mechanisms of nanotopographical control of cell behavior. Two different cell lines cultured on the nanopillars show striking differences in cell coverage. These changes are topography- and cell-dependent, and are not mediated by air bubbles trapped on the nanopattern. For the first time, a strong cell-selective effect of the same nanotopography has been clearly demonstrated on a large area; while fibroblast proliferation is inhibited, endothelial cell spreading is visibly enhanced. The reduced fibroblast proliferation indicates that a reduction of available surface area induced by nanotopography might be the main factor affecting cell growth on nanopatterns. The results presented herein pave the way towards the development of permanent vascular replacements, where non-adhesive, inert, surfaces will induce rapid in situ endothelialization to reduce thrombosis and occlusion.
Collapse
Affiliation(s)
- Lucia Csaderova
- Centre for Cell Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
36
|
Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. NANO TODAY 2010; 5:553-569. [PMID: 21383869 PMCID: PMC3048656 DOI: 10.1016/j.nantod.2010.10.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant effort continues to be exerted toward the improvement of transfection mediated by nonviral vectors. These endeavors are often focused on the design of particulate carriers with properties that encourage efficient accumulation at the membrane surface, particle uptake, and endosomal escape. Despite its demonstrated importance in successful nonviral transfection, relatively little investigation has been done to understand the pressures driving internalized vectors into favorable nondegradative endocytic pathways. Improvements in transfection efficiency have been noted for complexes delivered with a substrate-mediated approach, but the reasons behind such enhancements remain unclear. The phenotypic changes exhibited by cells interacting with nano- and micro-featured substrates offer hints that may explain these effects. This review describes nanoscale particulate and substrate parameters that influence both the uptake of nonviral gene carriers and the endocytic phenotype of interacting cells, and explores the molecular links that may mediate these interactions. Substrate-mediated control of endocytosis represents an exciting new design parameter that will guide the creation of efficient transgene carriers.
Collapse
Affiliation(s)
- Andrew F. Adler
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|
37
|
Anselme K, Davidson P, Popa A, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 2010; 6:3824-46. [PMID: 20371386 DOI: 10.1016/j.actbio.2010.04.001] [Citation(s) in RCA: 467] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/22/2022]
Abstract
The current development of nanobiotechnologies requires a better understanding of cell-surface interactions on the nanometre scale. Recently, advances in nanoscale patterning and detection have allowed the fabrication of appropriate substrates and the study of cell-substrate interactions. In this review we discuss the methods currently available for nanoscale patterning and their merits, as well as techniques for controlling the surface chemistry of materials at the nanoscale without changing the nanotopography and the possibility of truly characterizing the surface chemistry at the nanoscale. We then discuss the current knowledge of how a cell can interact with a substrate at the nanoscale and the effect of size, morphology, organization and separation of nanofeatures on cell response. Moreover, cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids on the substrate. Many questions remain on the effect of nanotopography on protein adsorption. We review papers related to this point. As all these parameters have an influence on cell response, it is important to develop specific studies to point out their relative influence, as well as the biological mechanisms underlying cell responses to nanotopography. This will be the basis for future research in this field. An important topic in tissue engineering is the effect of nanoscale topography on bacteria, since cells have to compete with bacteria in many environments. The limited current knowledge of this topic is also discussed in the light of using topography to encourage cell adhesion while limiting bacterial adhesion. We also discuss current and prospective applications of cell-surface interactions on the nanoscale. Finally, based on questions raised previously that remain to be solved in the field, we propose future directions of research in materials science to help elucidate the relative influence of the physical and chemical aspects of nanotopography on bacteria and cell response with the aim of contributing to the development of nanobiotechnologies.
Collapse
|
38
|
Cells preferentially grow on rough substrates. Biomaterials 2010; 31:7205-12. [DOI: 10.1016/j.biomaterials.2010.06.016] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/04/2010] [Indexed: 11/17/2022]
|
39
|
McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng 2010; 2010:120623. [PMID: 21350640 PMCID: PMC3042612 DOI: 10.4061/2010/120623] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.
Collapse
Affiliation(s)
- Laura E McNamara
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | | | | | | | | | | |
Collapse
|
40
|
Dolatshahi-Pirouz A, Jensen T, Kraft DC, Foss M, Kingshott P, Hansen JL, Larsen AN, Chevallier J, Besenbacher F. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS NANO 2010; 4:2874-82. [PMID: 20443575 DOI: 10.1021/nn9017872] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures.
Collapse
Affiliation(s)
- A Dolatshahi-Pirouz
- Department of Physics and Astronomy, Aarhus University, Interdisciplinary Nanoscience Center, Aarhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chalut KJ, Kulangara K, Giacomelli MG, Wax A, Leong KW. Deformation of stem cell nuclei by nanotopographical cues. SOFT MATTER 2010; 6:1675-1681. [PMID: 21297875 PMCID: PMC3032404 DOI: 10.1039/b921206j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cells sense cues in their surrounding microenvironment. These cues are converted into intracellular signals and transduced to the nucleus in order for the cell to respond and adapt its function. Within the nucleus, structural changes occur that ultimately lead to changes in the gene expression. In this study, we explore the structural changes of the nucleus of human mesenchymal stem cells as an effect of topographical cues. We use a controlled nanotopography to drive shape changes to the cell nucleus, and measure the changes with both fluorescence microscopy and a novel light scattering technique. The nucleus changes shape dramatically in response to the nanotopography, and in a manner dependent on the mechanical properties of the substrate. The kinetics of the nuclear deformation follows an unexpected trajectory. As opposed to a gradual shape change in response to the topography, once the cytoskeleton attains an aligned and elongation morphology on the time scale of several hours, the nucleus changes shape rapidly and intensely.
Collapse
Affiliation(s)
- Kevin J Chalut
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | | | | | | | | |
Collapse
|
42
|
Cell culture and motility study on a polymer surface with a nanometer-scaled stripe structure. Biosci Biotechnol Biochem 2010; 74:569-72. [PMID: 20208350 DOI: 10.1271/bbb.90771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We developed a large cell culture surface with a nanostripe structure by paving polydimethylsiloxane (PDMS) replicas of a glass mold. The stripe structure has a height of 180 nm and top width of 500 nm with 400-nm intervals between stripes. Human stomach cancer SH-10-TC cells cultured on the surface changed their morphology to elongated shapes parallel to the nanostripes. In addition, cell motility parallel to the stripes was greatly enhanced. These findings strongly suggest that the nanostripe structure affected the cell physiology.
Collapse
|
43
|
Chung K, DeQUACH JA, Christman KL. NANOPATTERNED INTERFACES FOR CONTROLLING CELL BEHAVIOR. NANO LIFE 2010; 1:63-77. [PMID: 25383101 PMCID: PMC4221096 DOI: 10.1142/s1793984410000055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many studies have demonstrated that microscale changes to surface chemistry and topography affect cell adhesion, proliferation, differentiation, and gene expression. More recently, studies have begun to examine cell behavior interactions with structures on the nanoscale since in vivo, cells recognize and adhere to cell adhesion receptors that are spatially organized on this scale. These studies have been enabled through various fabrication methods, many of which were initially developed for the semiconductor industry. This review explores cell responses to a variety of controlled topographical and biochemical cues using an assortment of nanoscale fabrication methods in order to elucidate which pattern dimensions are beneficial for controlling cell adhesion and differentiation.
Collapse
Affiliation(s)
- Kevin Chung
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0412, USA
| | - Jessica A DeQUACH
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0412, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0412, USA
| |
Collapse
|
44
|
Sato K, Kitamori T. Development of fundamental technologies for micro bioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 119:251-265. [PMID: 19343306 DOI: 10.1007/10_2008_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.
Collapse
Affiliation(s)
- Kiichi Sato
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan,
| | | |
Collapse
|
45
|
Ravichandran R, Liao S, Ng CC, Chan CK, Raghunath M, Ramakrishna S. Effects of nanotopography on stem cell phenotypes. World J Stem Cells 2009; 1:55-66. [PMID: 21607108 PMCID: PMC3097915 DOI: 10.4252/wjsc.v1.i1.55] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/30/2009] [Accepted: 11/06/2009] [Indexed: 02/06/2023] Open
Abstract
Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes.
Collapse
Affiliation(s)
- Rajeswari Ravichandran
- Rajeswari Ravichandran, Casey K Chan, Michael Raghunath, Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 117574, Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Growing cells on surfaces bearing nanotopography signals makes many changes in cell gene expression and downstream changes in phenotype but the mechanisms for this have, so far, been obscure. We consider the question of whether the topography directly nanoimprints onto the cell as a component of the signal transduction system. Evidence we present from SEM, TEM and fluorescence detection of the arrangements of cytoskeletal components is consistent with the possibility that cells are nanoimprinted by the substrate. The nanoprinting does not interfere with integrin-mediated adhesion processes and may perhaps work through them. Time-lapse video studies of cells moving from areas bearing nanotopography to flat areas and vice versa suggests that the nanoimprinting takes 1-6h to appear on the cell and a similar time to disappear when the cell moves from a flat surface to a nanotopographic one and back. This nanoprinting of cells would appear to be a novel type of cell signalling.
Collapse
Affiliation(s)
- Adam S G Curtis
- Department of Electronics & Electrical Engineering, Centre for Cell Engineering, IBLS, University of Glasgow, Glasgow, Scotland, UK.
| | | | | |
Collapse
|
47
|
Choi CH, Heydarkhan-Hagvall S, Wu BM, Dunn JCY, Beygui RE, Kim CJ. Cell growth as a sheet on three-dimensional sharp-tip nanostructures. J Biomed Mater Res A 2009; 89:804-17. [PMID: 18523950 DOI: 10.1002/jbm.a.32101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cells in vivo encounter with and react to the extracellular matrix materials on a nanometer scale. Recent advances in nanofabrication technologies allowing the precise control of a nanostructure's pattern, periodicity, shape, and height have enabled a systematic study of cell interactions with three-dimensional nanotopographies. In this report, we examined the behavior of human foreskin fibroblasts on well-ordered dense arrays (post and grate patterns with a 230-nm pitch) of sharp-tip nanostructures with varying three-dimensionalities (from 50 to 600 nm in structural height) over time-until a cell sheet was formed. Although cells started out smaller and proliferated slower on tall nanostructures (both posts and grates) than on smooth surfaces, they became confluent to form a sheet in 3 weeks. On grate patterns, significant cell elongation in alignment with the underlying pattern was observed and maintained over time. On tall nanostructures, cells grew while raised on sharp tips, resulting in a weak total adherence to the solid surface. A sheet of cells was easily peeled off from such surfaces, suggesting that nanoscale topographies can be used as the basis for cell-sheet tissue engineering.
Collapse
Affiliation(s)
- Chang-Hwan Choi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, 90095, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Differential in-gel electrophoresis (DIGE) analysis of human bone marrow osteoprogenitor cell contact guidance. Acta Biomater 2009; 5:1137-46. [PMID: 19103513 DOI: 10.1016/j.actbio.2008.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 12/29/2022]
Abstract
We have used a recent comparative proteomics technique, differential in-gel electrophoresis (DIGE), to study osteoprogenitor cell response to contact guidance in grooves. In order to increase protein output from small sample sizes, we used bioreactor culture before protein extraction and gel electrophoresis. Mass spectroscopy was used for protein identification. A number of distinct proteins were observed to exhibit significant changes in expression. These changes in protein expression suggest that the cells respond to tailored grooved topographies, with alterations in their proteome concurrent with changes in osteoprogenitor phenotype.
Collapse
|
49
|
Variola F, Vetrone F, Richert L, Jedrzejowski P, Yi JH, Zalzal S, Clair S, Sarkissian A, Perepichka DF, Wuest JD, Rosei F, Nanci A. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:996-1006. [PMID: 19360718 DOI: 10.1002/smll.200801186] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The human body is an intricate biochemical-mechanical system, with an exceedingly precise hierarchical organization in which all components work together in harmony across a wide range of dimensions. Many fundamental biological processes take place at surfaces and interfaces (e.g., cell-matrix interactions), and these occur on the nanoscale. For this reason, current health-related research is actively following a biomimetic approach in learning how to create new biocompatible materials with nanostructured features. The ultimate aim is to reproduce and enhance the natural nanoscale elements present in the human body and to thereby develop new materials with improved biological activities. Progress in this area requires a multidisciplinary effort at the interface of biology, physics, and chemistry. In this Review, the major techniques that have been adopted to yield novel nanostructured versions of familiar biomaterials, focusing particularly on metals, are presented and the way in which nanometric surface cues can beneficially guide biological processes, exerting influence on cellular behavior, is illustrated.
Collapse
Affiliation(s)
- Fabio Variola
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gristina R, D'Aloia E, Senesi GS, Milella A, Nardulli M, Sardella E, Favia P, d'Agostino R. Increasing cell adhesion on plasma deposited fluorocarbon coatings by changing the surface topography. J Biomed Mater Res B Appl Biomater 2009; 88:139-49. [DOI: 10.1002/jbm.b.31160] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|