1
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
3
|
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS OMEGA 2024; 9:6184-6218. [PMID: 38371801 PMCID: PMC10870307 DOI: 10.1021/acsomega.3c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Extracellular vesicles have emerged as promising tools in regenerative medicine due to their inherent ability to facilitate intercellular communication and modulate cellular functions. These nanosized vesicles transport bioactive molecules, such as proteins, lipids, and nucleic acids, which can affect the behavior of recipient cells and promote tissue regeneration. However, the therapeutic application of these vesicles is frequently constrained by their rapid clearance from the body and inability to maintain a sustained presence at the injury site. In order to overcome these obstacles, hydrogels have been used as extracellular vesicle delivery vehicles, providing a localized and controlled release system that improves their therapeutic efficacy. This Review will examine the role of extracellular vesicle-loaded hydrogels in tissue regeneration, discussing potential applications, current challenges, and future directions. We will investigate the origins, composition, and characterization techniques of extracellular vesicles, focusing on recent advances in exosome profiling and the role of machine learning in this field. In addition, we will investigate the properties of hydrogels that make them ideal extracellular vesicle carriers. Recent studies utilizing this combination for tissue regeneration will be highlighted, providing a comprehensive overview of the current research landscape and potential future directions.
Collapse
Affiliation(s)
- Amir Hashemi
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Masoumeh Ezati
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Minoo Partovi Nasr
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Inna Zumberg
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| | - Valentine Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic
| |
Collapse
|
4
|
Wu Y, Dong HR, Liu LT, Peng ML, Su XL. Advances in the study of exosome-derived miRNAs in the pathogenesis, diagnosis, and treatment of systemic lupus erythematosus. Lupus 2023; 32:1475-1485. [PMID: 37906972 PMCID: PMC10666474 DOI: 10.1177/09612033231212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disease caused by autoantibodies, with high morbidity and mortality. It involves multiple systems, particularly the renal, which can lead to lupus nephritis (LN); its multi-system effects have a significant impact on the physical and mental health of patients. Exosomes are vesicles that are secreted during cell activity and carry a variety of nucleic acids, proteins, and lipids. They are distributed through body fluids for cellular communication. MicroRNAs (miRNAs) are nucleic acids that are packaged within the exosome that are taken up and released in response to changes in plasma membrane structure. MiRNAs are potential participants in immune and inflammatory responses, which are transported to target cells and can inhibit gene expression in receptor cells. It has been suggested that exosomal miRNA can regulate the pathogenesis of SLE and, as such, they are of value in diagnosis and treatment. In this paper, we focus on the research progress into exosomal miRNA in SLE and inspire new directions for SLE related research.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Li Tin Liu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei Lin Peng
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiu Lan Su
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Lin Z, Wu Y, Xu Y, Li G, Li Z, Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer 2022; 21:179. [PMID: 36100944 PMCID: PMC9468526 DOI: 10.1186/s12943-022-01650-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be obtained from various human tissues and organs. They can differentiate into a wide range of cell types, including osteoblasts, adipocytes and chondrocytes, thus exhibiting great potential in regenerative medicine. Numerous studies have indicated that MSCs play critical roles in cancer biology. The crosstalk between tumour cells and MSCs has been found to regulate many tumour behaviours, such as proliferation, metastasis and epithelial-mesenchymal transition (EMT). Multiple lines of evidence have demonstrated that MSCs can secrete exosomes that can modulate the tumour microenvironment and play important roles in tumour development. Notably, very recent works have shown that mesenchymal stem cell-derived exosomes (MSC-derived exosomes) are critically involved in cancer resistance to chemotherapy agents, targeted-therapy drugs, radiotherapy and immunotherapy. In this review, we systematically summarized the emerging roles and detailed molecular mechanisms of MSC-derived exosomes in mediating cancer therapy resistance, thus providing novel insights into the clinical applications of MSC-derived exosomes in cancer management.
Collapse
|
6
|
Hade MD, Suire CN, Mossell J, Suo Z. Extracellular vesicles: Emerging frontiers in wound healing. Med Res Rev 2022; 42:2102-2125. [PMID: 35757979 DOI: 10.1002/med.21918] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/10/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles are membranous particles, ranging from 30 nm to 10 µm in diameter, which are released by nearly all cell types to aid in intercellular communication. These complex vesicles carry a multitude of signaling moieties from their cell of origin, such as proteins, lipids, cell surface receptors, enzymes, cytokines, metabolites, and nucleic acids. A growing body of evidence suggests that in addition to delivering cargos into target cells to facilitate intercellular communication, extracellular vesicles may also play roles in such processes as cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. As these vesicles have natural biocompatibility, stability in circulation, low toxicity, and low immunogenicity, and serve as efficient carriers of molecular cargos, these nanoparticles are ideal therapeutic candidates for regenerative medicine. Exploring and identifying the homeostatic functions of extracellular vesicles may facilitate the development of new regenerative therapies. In this review, we summarize the wound healing process, difficulties in stem cell therapies for regenerative medicine, and the applications of mesenchymal stromal cell-derived extracellular vesicles in improving and accelerating the wound healing process.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - James Mossell
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
7
|
Wang R, Wang X, Zhang Y, Zhao H, Cui J, Li J, Di L. Emerging prospects of extracellular vesicles for brain disease theranostics. J Control Release 2022; 341:844-868. [DOI: 10.1016/j.jconrel.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
|
8
|
Exosomes and COVID-19: challenges and opportunities. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:347-354. [PMID: 35039753 PMCID: PMC8754531 DOI: 10.1007/s00580-021-03311-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 or COVID-19, starting from Wuhan, China, in December 2019, is a pandemic situation affecting millions worldwide and has exerted a huge burden on healthcare infrastructure. Therefore, there is an urgent need to understand the molecular mechanisms underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and design novel effective therapeutic strategies for combating this pandemic. In this regard, special attention has been paid to the exosomes. These nanoparticles are extracellular vesicles with critical function in the pathogenesis of several diseases including viral sepsis. Therefore, they may be involved in the pathogenesis of COVID-19 infection and also may be a way for transferring viral components and infecting other neighbor cells. Exosomes also can be considered as a therapeutic strategy for treating COVID-19 patients or used as a carrier for delivering effective therapeutic agents. Therefore, in this review, we discussed the biogenesis and contents of exosomes, their function in viral infection, and their potential as a therapeutic candidate in treating COVID-19.
Collapse
|
9
|
Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:cells10081959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
|
10
|
Kadbhane A, Patel M, Srivastava S, Singh PK, Madan J, Singh SB, Khatri DK. Perspective insights and application of exosomes as a novel tool against neurodegenerative disorders: An expository appraisal. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Song H, Liu B, Dong B, Xu J, Zhou H, Na S, Liu Y, Pan Y, Chen F, Li L, Wang J. Exosome-Based Delivery of Natural Products in Cancer Therapy. Front Cell Dev Biol 2021; 9:650426. [PMID: 33738290 PMCID: PMC7960777 DOI: 10.3389/fcell.2021.650426] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
A rapidly growing research evidence has begun to shed light on the potential application of exosome, which modulates intercellular communications. As donor cell released vesicles, exosomes could play roles as a regulator of cellular behaviors in up-taken cells, as well as a delivery carrier of drugs for targeted cells. Natural product is an invaluable drug resources and it is used widely as therapeutic agents in cancers. This review summarizes the most recent advances in exosomes as natural product delivery carriers in cancer therapy from the following aspects: composition of exosomes, biogenesis of exosomes, and its functions in cancers. The main focus is the advantages and applications of exosomes for drug delivery in cancer therapy. This review also summarizes the isolation and application of exosomes as delivery carriers of natural products in cancer therapy. The recent progress and challenges of using exosomes as drug delivery vehicles for five representative anti-cancer natural products including paclitaxel, curcumin, doxorubicin, celastrol, and β-Elemene. Based on the discussion on the current knowledge about exosomes as delivery vehicles for drugs and natural compounds to the targeted site, this review delineates the landscape of the recent research, challenges, trends and prospects in exosomes as delivery vehicles for drugs and natural compounds for cancer treatment.
Collapse
Affiliation(s)
- Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bin Dong
- Neurology Department, The Hefei First People's Hospital, Hefei, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yunxia Pan
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Fengyuan Chen
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
12
|
Nicolini A, Ferrari P, Biava PM. Exosomes and Cell Communication: From Tumour-Derived Exosomes and Their Role in Tumour Progression to the Use of Exosomal Cargo for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13040822. [PMID: 33669294 PMCID: PMC7920050 DOI: 10.3390/cancers13040822] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, within the research community, exosomes, transporters of bioactive molecules involved in many signalling pathways and cell-to-cell communication with the capacity to alter the tumour microenvironment, have been attracting increasing interest among oncologists. These molecules can play multiple roles, e.g., as useful biomarkers in diagnosis, modulators of the immune system, promoters of the formation of the pre-metastatic niches and cancer metastasis and carriers of substances or factors with anticancer properties. This review focuses on the use of exosomes as a novel therapeutic strategy for cancer treatment. Particularly, it highlights the potential of exosomes as carriers of stem cell differentiation stage factors (SCDSFs) for “cell reprogramming” therapy, a promising research field on which we have reported previously. Here, the main characteristics of this treatment and the advantages that can be obtained using mesenchymal stem cell-derived exosomes up-loaded with the SCDSFs as carriers of these factors are also discussed. Abstract Exosomes are nano-vesicle-shaped particles secreted by various cells, including cancer cells. Recently, the interest in exosomes among cancer researchers has grown enormously for their many potential roles, and many studies have focused on the bioactive molecules that they export as exosomal cargo. These molecules can function as biomarkers in diagnosis or play a relevant role in modulating the immune system and in promoting apoptosis, cancer development and progression. Others, considering exosomes potentially helpful for cancer treatment, have started to investigate them in experimental therapeutic trials. In this review, first, the biogenesis of exosomes and their main characteristics was briefly described. Then, the capability of tumour-derived exosomes and oncosomes in tumour microenvironments (TMEs) remodelling and pre-metastatic niche formation, as well as their interference with the immune system during cancer development, was examined. Finally, the potential role of exosomes for cancer therapy was discussed. Particularly, in addition, their use as carriers of natural substances and drugs with anticancer properties or carriers of boron neutron capture therapy (BNCT) and anticancer vaccines for immunotherapy, exosomes as biological reprogrammers of cancer cells have gained increased consensus. The principal aspects and the rationale of this intriguing therapeutic proposal are briefly considered.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology 1, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20099 Milan, Italy;
| |
Collapse
|
13
|
Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, Xu W, Mao F. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc 2020; 95:1287-1307. [PMID: 32410383 PMCID: PMC7540363 DOI: 10.1111/brv.12608] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Gut mucosal barriers, including chemical and physical barriers, spatially separate the gut microbiota from the host immune system to prevent unwanted immune responses that could lead to intestinal inflammation. In inflammatory bowel disease (IBD), there is mucosal barrier dysfunction coupled with immune dysregulation and dysbiosis. The discovery of exosomes as regulators of vital functions in both physiological and pathological processes has generated much research interest. Interestingly, exosomes not only serve as natural nanocarriers for the delivery of functional RNAs, proteins, and synthetic drugs or molecules, but also show potential for clinical applications in tissue repair and regeneration as well as disease diagnosis and prognosis. Biological or chemical modification of exosomes can broaden, change and enhance their therapeutic capability. We review the modulatory effects of exosomal proteins, RNAs and lipids on IBD components such as immune cells, the gut microbiota and the intestinal mucosal barrier. Mechanisms involved in regulating these factors towards attenuating IBD have been explored in several studies employing exosomes derived from different sources. We discuss the potential utility of exosomes as diagnostic markers and drug delivery systems, as well as the application of modified exosomes in IBD.
Collapse
Affiliation(s)
- Dickson K. W. Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
- Directorate of University Health Services, University of Cape Coast, PMBCape CoastGhana
| | - Li Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
- Nanjing Lishui People's Hospital, Zhongda Hospital Lishui BranchSoutheast UniversityNanjingJiangsu211200China
| | - Yifei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of MedicineJiangsu University301 Xuefu RoadZhenjiangJiangsu212013China
| |
Collapse
|
14
|
Exosomes in multidrug-resistant cancer. Curr Opin Pharmacol 2020; 54:109-120. [DOI: 10.1016/j.coph.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
15
|
Lee JU, Kim S, Sim SJ. SERS-based Nanoplasmonic Exosome Analysis: Enabling Liquid Biopsy for Cancer Diagnosis and Monitoring Progression. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4301-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Ivanova MV, Chekanova EO, Belugin BV, Tutykhina IL, Dolzhikova IV, Zakroishchikova IV, Vasil’ev AV, Zakharova MN. Exosomal Transport and Progression of Neurodegeneration in Amyotrophic Lateral Sclerosis. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019; 18:75. [PMID: 30940145 PMCID: PMC6444571 DOI: 10.1186/s12943-019-0991-5] [Citation(s) in RCA: 944] [Impact Index Per Article: 157.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-derived exosomes (TDEs) participate in formation and progression of different cancer processes, including tumor microenvironment (TME) remodeling, angiogenesis, invasion, metastasis and drug-resistance. Exosomes initiate or suppress various signaling pathways in the recipient cells via transmitting heterogeneous cargoes. In this review we discuss exosome biogenesis, exosome mediated metastasis and chemoresistance. Furthermore, tumor derived exosomes role in tumor microenvironment remodeling, and angiogenesis is reviewed. Also, exosome induction of epithelial mesenchymal transition (EMT) is highlighted. More importantly, we discuss extensively how exosomes regulate drug resistance in several cancers. Thus, understanding exosome biogenesis, their contents and the molecular mechanisms and signaling pathways that are responsible for metastasis and drug-resistance mediated by TDEs may help to devise novel therapeutic approaches for cancer progression particularly to overcome therapy-resistance and preventing metastasis as major factors of cancer mortality.
Collapse
Affiliation(s)
- Ladan Mashouri
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA.
| |
Collapse
|
18
|
Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM. Exosomes, new biomarkers in early cancer detection. Anal Biochem 2019; 571:1-13. [PMID: 30776327 DOI: 10.1016/j.ab.2019.02.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Exosomes are endosomal-derived vesicles, playing a major role in cell-to-cell communication. Multiple cells secret these vesicles to induce and inhibit different cellular and molecular pathways. Cancer-derived exosomes have been shown to affect development of cancer in different stages and contribute to the recruitment and reprogramming of both proximal and distal tissues. The growing interest in defining the clinical relevance of these nano-sized particles in cancers, has led to the identification of either tissue- or disease-specific exosomal contents, such as nucleic acids, proteins and lipids as a source of new biomarkers which propose the diagnostic potentials of exosomes in early detection of cancers. In this review, we have discussed some aspects of exosomes including their contents, applications and isolation techniques in the field of early cancer detection. Although, exosomes are considered as ideal biomarkers in cancer diagnosis, due to their unique characteristics, there is still a long way in the development of exosome-based assays.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Jalalian
- Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Teyton L. Role of lipid transfer proteins in loading CD1 antigen-presenting molecules. J Lipid Res 2018; 59:1367-1373. [PMID: 29559523 PMCID: PMC6071766 DOI: 10.1194/jlr.r083212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/18/2018] [Indexed: 11/20/2022] Open
Abstract
Research to connect lipids with immunology is growing, but details about the specific roles of lipid transfer proteins (LTPs) in antigen presentation remain unclear. A single class of major histocompatibility class-like molecules, called CD1 molecules, can present lipids and glycolipids to the immune system. These molecules all have a common hydrophobic antigen-binding groove. The loading of this groove with various lipids throughout the life of a CD1 molecule defines the immune recognition of lipids by T cells. At each location of residence, CD1 molecules are exposed to particular physicochemical conditions, particular collections of lipids, and unique combinations of LTPs that will define which lipids bind to CD1 and which do not. The lipid transfer machinery that is used by CD1 molecules is entirely hijacked from the normal synthetic and catalytic pathways of lipids. The precise determinants that regulate the presentation of certain lipids over others with respect to chemistry, solubility, and abundance are still poorly defined and require investigation to allow the use of lipids as regular antigenic targets of immunotherapy and vaccine.
Collapse
Affiliation(s)
- Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
20
|
Erazo-Oliveras A, Najjar K, Truong D, Wang TY, Brock DJ, Prater AR, Pellois JP. The Late Endosome and Its Lipid BMP Act as Gateways for Efficient Cytosolic Access of the Delivery Agent dfTAT and Its Macromolecular Cargos. Cell Chem Biol 2016; 23:598-607. [PMID: 27161484 DOI: 10.1016/j.chembiol.2016.03.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 01/02/2023]
Abstract
Endosomal entrapment is a severely limiting bottleneck in the delivery of biologics into cells. The compound dfTAT was recently found to circumvent this problem by mediating endosomal leakage efficiently and without toxicity. Herein, we report on the mechanism of endosomal escape of this cell-penetrating peptide. By modulating the trafficking of the peptide within the endocytic pathway, we identify late endosomes as the organelles rendered leaky by dfTAT. We establish that dfTAT binds bis(monoacylglycero)phosphate (BMP), a lipid found in late endosomes, and that the peptide causes the fusion and leakage of bilayers containing BMP. Together, these data identify late endosomes as desirable gateways for cell penetration and BMP as a cellular factor that can be exploited for the development of future delivery agents.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Kristina Najjar
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Dat Truong
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Ting-Yi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Dakota J Brock
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Austin R Prater
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Castellanos-Castro S, Cerda-García-Rojas CM, Javier-Reyna R, Pais-Morales J, Chávez-Munguía B, Orozco E. Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: An active molecule in endocytosis. Biochem Biophys Rep 2015; 5:224-236. [PMID: 28955828 PMCID: PMC5600446 DOI: 10.1016/j.bbrep.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/25/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Phospholipids are essential for vesicle fusion and fission and both are fundamental events for Entamoeba histolytica phagocytosis. Our aim was to identify the lysobisphosphatidic acid (LBPA) in trophozoites and investigate its cellular fate during endocytosis. LBPA was detected by TLC in a 0.5 Rf spot of total lipids, which co-migrated with the LBPA standard. The 6C4 antibody, against LBPA recognized phospholipids extracted from this spot. Reverse phase LC-ESI-MS and MS/MS mass spectrometry revealed six LBPA species of m/z 772.58–802.68. LBPA was associated to pinosomes and phagosomes. Intriguingly, during pinocytosis, whole cell fluorescence quantification showed that LBPA dropped 84% after 15 min incubation with FITC-Dextran, and after 60 min, it increased at levels close to steady state conditions. Similarly, during erythrophagocytosis, after 15 min, LBPA also dropped in 36% and increased after 60 and 90 min. EhRab7A protein appeared in some vesicles with LBPA in steady state conditions, but after phagocytosis co-localization of both molecules increased and in late phases of erythrophagocytosis they were found in huge phagosomes or multivesicular bodies with many intraluminal vacuoles, and surrounding ingested erythrocytes and phagosomes. The 6C4 and anti-EhADH (EhADH is an ALIX family protein) antibodies and Lysotracker merged in about 50% of the vesicles in steady state conditions and throughout phagocytosis. LBPA and EhADH were also inside huge phagosomes. These results demonstrated that E. histolytica LBPA is associated to pinosomes and phagosomes during endocytosis and suggested differences of LBPA requirements during pinocytosis and phagocytosis. LBPA is identified for the first time in the protozoan Entamoeba histolytica. LBPA is found in pinosomes and in 10–20 µm diameter phagosomes or multivesicular bodies. LBPA appeared associated with EhRab7A protein, a late endosomes marker. LBPA interacts with EhADH (an ALIX family protein) during phagocytosis.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- Departamento de Infectómica y Patogénesis Molecular, Mexico.,Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Dr. García Diego 168, CP 06720, D.F. México, México
| | - Carlos M Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Avenue IPN, 2508, CP 07360, D.F. México, México
| | | | | | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Mexico
| |
Collapse
|
22
|
Mahmoodzadeh Hosseini H, Halabian R, Amin M, Imani Fooladi AA. Texosome-based drug delivery system for cancer therapy: from past to present. Cancer Biol Med 2015; 12:150-62. [PMID: 26487960 PMCID: PMC4607826 DOI: 10.7497/j.issn.2095-3941.2015.0045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomes, which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes' ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history of texosome-based delivery systems and discuss the advantages and disadvantages of each system.
Collapse
Affiliation(s)
- Hamideh Mahmoodzadeh Hosseini
- 1 Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran ; 2 Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417653861, Iran
| | - Raheleh Halabian
- 1 Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran ; 2 Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417653861, Iran
| | - Mohsen Amin
- 1 Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran ; 2 Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417653861, Iran
| | - Abbas Ali Imani Fooladi
- 1 Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran ; 2 Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417653861, Iran
| |
Collapse
|
23
|
Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation. Proc Natl Acad Sci U S A 2013; 110:E4753-61. [PMID: 24248359 DOI: 10.1073/pnas.1310050110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a "lipid editor," capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity.
Collapse
|
24
|
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 2013; 49:590-600. [PMID: 23999871 DOI: 10.1007/s12035-013-8544-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Exosomes have emerged as prominent mediators of neurodegenerative diseases where they have been shown to carry disease particles such as beta amyloid and prions from their cells of origin to other cells. Their simple structure and ability to cross the blood-brain barrier allow great opportunity to design a "makeup" with drugs and genetic elements, such as siRNA or miRNA, and use them as delivery vehicles for neurotherapeutics. Their role in neuroprotection is evident by the fact that they are involved in the regeneration of peripheral nerves and repair of neuronal injuries. This review is focused on the role of exosomes in mediating neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, 500 South Preston Street, Louisville, KY, 40202, USA
| | | | | |
Collapse
|
25
|
Signaling pathways in exosomes biogenesis, secretion and fate. Genes (Basel) 2013; 4:152-70. [PMID: 24705158 PMCID: PMC3899971 DOI: 10.3390/genes4020152] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small extracellular vesicles (30–100 nm) derived from the endosomal system, which have raised considerable interest in the last decade. Several studies have shown that they mediate cell-to-cell communication in a variety of biological processes. Thus, in addition to cell-to-cell direct interaction or secretion of active molecules, they are now considered another class of signal mediators. Exosomes can be secreted by several cell types and retrieved in many body fluids, such as blood, urine, saliva and cerebrospinal fluid. In addition to proteins and lipids, they also contain nucleic acids, namely mRNA and miRNA. These features have prompted extensive research to exploit them as a source of biomarkers for several pathologies, such as cancer and neurodegenerative disorders. In this context, exosomes also appear attractive as gene delivery vehicles. Furthermore, exosome immunomodulatory and regenerative properties are also encouraging their application for further therapeutic purposes. Nevertheless, several issues remain to be addressed: exosome biogenesis and secretion mechanisms have not been clearly understood, and physiological functions, as well as pathological roles, are far from being satisfactorily elucidated.
Collapse
|
26
|
Lai CPK, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012; 3:228. [PMID: 22754538 PMCID: PMC3384085 DOI: 10.3389/fphys.2012.00228] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins, and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function, and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.
Collapse
Affiliation(s)
- Charles Pin-Kuang Lai
- Department of Neurology, Neuroscience Center, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
27
|
Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. MASS SPECTROMETRY REVIEWS 2011; 30:1185-1202. [PMID: 21544848 DOI: 10.1002/mas.20319] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 2011; 40:D1241-4. [PMID: 21989406 PMCID: PMC3245025 DOI: 10.1093/nar/gkr828] [Citation(s) in RCA: 812] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membraneous nanovesicles of endocytic origin released by most cell types from diverse organisms; they play a critical role in cell-cell communication. ExoCarta (http://www.exocarta.org) is a manually curated database of exosomal proteins, RNA and lipids. The database catalogs information from both published and unpublished exosomal studies. The mode of exosomal purification and characterization, the biophysical and molecular properties are listed in the database aiding biomedical scientists in assessing the quality of the exosomal preparation and the corresponding data obtained. Currently, ExoCarta (Version 3.1) contains information on 11,261 protein entries, 2375 mRNA entries and 764 miRNA entries that were obtained from 134 exosomal studies. In addition to the data update, as a new feature, lipids identified in exosomes are added to ExoCarta. We believe that this free web-based community resource will aid researchers in identifying molecular signatures (proteins/RNA/lipids) that are specific to certain tissue/cell type derived exosomes and trigger new exosomal studies.
Collapse
Affiliation(s)
- Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
29
|
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73:1907-20. [PMID: 20601276 DOI: 10.1016/j.jprot.2010.06.006] [Citation(s) in RCA: 1912] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/26/2010] [Accepted: 06/18/2010] [Indexed: 12/12/2022]
Abstract
In addition to intracellular organelles, eukaryotic cells also contain extracellular organelles that are released, or shed, into the microenvironment. These membranous extracellular organelles include exosomes, shedding microvesicles (SMVs) and apoptotic blebs (ABs), many of which exhibit pleiotropic biological functions. Because extracellular organelle terminology is often confounding, with many preparations reported in the literature being mixtures of extracellular vesicles, there is a growing need to clarify nomenclature and to improve purification strategies in order to discriminate the biochemical and functional activities of these moieties. Exosomes are formed by the inward budding of multivesicular bodies (MVBs) and are released from the cell into the microenvironment following the fusion of MVBs with the plasma membrane (PM). In this review we focus on various strategies for purifying exosomes and discuss their biophysical and biochemical properties. An update on proteomic analysis of exosomes from various cell types and body fluids is provided and host-cell specific proteomic signatures are also discussed. Because the ectodomain of ~42% of exosomal integral membrane proteins are also found in the secretome, these vesicles provide a potential source of serum-based membrane protein biomarkers that are reflective of the host cell. ExoCarta, an exosomal protein and RNA database (http://exocarta.ludwig.edu.au), is described.
Collapse
Affiliation(s)
- Suresh Mathivanan
- Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
30
|
Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, Sandhoff K. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J Lipid Res 2010; 51:1747-60. [PMID: 20179319 PMCID: PMC2882726 DOI: 10.1194/jlr.m003822] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.
Collapse
Affiliation(s)
- Misbaudeen Abdul-Hammed
- Membrane Biology and Biochemistry Unit, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Program in Cellular and Molecular Medicine at Children's Hospital, Immune Disease Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
32
|
Sun Y, Ran H, Zamzow M, Kitatani K, Skelton MR, Williams MT, Vorhees CV, Witte DP, Hannun YA, Grabowski GA. Specific saposin C deficiency: CNS impairment and acid beta-glucosidase effects in the mouse. Hum Mol Genet 2009; 19:634-47. [PMID: 20015957 PMCID: PMC2807372 DOI: 10.1093/hmg/ddp531] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid β-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C−/−) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C−/− mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C−/− mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: Implications in pathology. Prostaglandins Leukot Essent Fatty Acids 2009; 81:313-24. [PMID: 19857945 DOI: 10.1016/j.plefa.2009.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 12/15/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) is a structural isomer of phosphatidylglycerol that exhibits an unusual sn1:sn1' stereoconfiguration, based on the position of the phosphate moiety on its two glycerol units. Early works have underlined the high concentration of BMP in the lysosomal compartment, especially during some lysosomal storage disorders and drug-induced phospholipidosis. Despite numerous studies, both biosynthetic and degradative pathways of BMP remained not completely elucidated. More recently, BMP has been localized in the internal membranes of late endosomes where it forms specialized lipid domains. Its involvement in both dynamics and lipid/protein sorting functions of late endosomes has started to be documented, especially in the control of cellular cholesterol distribution. BMP also plays an important role in the late endosomal/lysosomal degradative pathway. Another peculiarity of BMP is to be naturally enriched in docosahexaenoic acid and/or to specifically incorporate this fatty acid compared to other polyunsaturated fatty acids, which may confer specific biophysical and functional properties to this phospholipid. This review summarizes and updates our knowledge on BMP with an emphasis on its possible implication in human health and diseases, especially in relation to cholesterol homeostasis.
Collapse
Affiliation(s)
- F Hullin-Matsuda
- Université de Lyon, UMR 870 Inserm, Insa-Lyon, UMR 1135 Inra, Univ Lyon 1, Hospices Civils de Lyon, IMBL, 20 Ave A. Einstein, 69621 Villeurbanne, France
| | | | | | | |
Collapse
|
34
|
CHU ZHENGTAO, SUN YING, KUAN CHIAYI, GRABOWSKI GREGORYA, QI XIAOYANG. Saposin C: Neuronal Effect and CNS Delivery by Liposomes. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00031.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Abstract
Exosomes are the newest family member of ‘bioactive vesicles’ that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non‐hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell‐to‐cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
36
|
Lackman RL, Jamieson AM, Griffith JM, Geuze H, Cresswell P. Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 2007; 8:1179-89. [PMID: 17555533 DOI: 10.1111/j.1600-0854.2007.00600.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma interferon-induced lysosomal thiolreductase (GILT) is expressed constitutively in antigen-presenting cells, where it reduces disulfide bonds to facilitate antigen presentation. GILT is synthesized as an enzymatically active precursor protein and is processed in early endosomes to yield the mature enzyme. The exposure of the promonocytic cell line THP-1 to Escherichia coli causes a differentiation-dependent induction of GILT expression in which the majority of precursor GILT is secreted as active enzyme. We confirm this result in cultured primary monocytes and macrophages, and demonstrate, as an in vivo correlate of the phenomenon, upregulation of precursor GILT levels in the serum of mice injected with lipopolysaccharide. We show that macrophage differentiation is accompanied by a transcriptional downregulation of mannose-6-phosphorylation, which likely prevents the recognition and proper sorting of soluble lysosomal enzymes by the mannose-6-phosphate receptors. We provide evidence for a mechanism of generalized soluble lysosomal enzyme secretion through the constitutive secretory pathway.
Collapse
Affiliation(s)
- Rebecca L Lackman
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
37
|
Yuan W, Qi X, Tsang P, Kang SJ, Illarionov PA, Besra GS, Gumperz J, Cresswell P. Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Natl Acad Sci U S A 2007; 104:5551-6. [PMID: 17372201 PMCID: PMC1838443 DOI: 10.1073/pnas.0700617104] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD1d molecules bind lipid antigens in the endocytic pathway, and access to the pathway is important for the development of CD1d-restricted natural killer T (NKT) cells. Saposins, derived from a common precursor, prosaposin, are small, heat-stable lysosomal glycoproteins required for lysosomal degradation of sphingolipids. Expression of prosaposin is required for efficient lipid binding and recognition of human CD1d molecules by NKT cells. Despite high sequence homology among the four saposins, they have different specificities for lipid substrates and different mechanisms of action. To determine the saposins involved in promoting lipid binding to CD1d, we expressed prosaposin deletion mutants lacking individual saposins in prosaposin-negative, CD1d-positive cells. No individual saposin proved to be absolutely essential, but the absence of saposin B resulted in the lowest recognition of alpha-galactosylceramide by NKT cells. When recombinant exogenous saposins were added to the prosaposin-negative cells, saposin B was the most efficient in restoring CD1d recognition. Saposin B was also the most efficient in mediating alpha-galactosylceramide binding to recombinant plate-bound CD1d and facilitating NKT cell activation. Saposin B could also mediate lipid binding to soluble CD1d molecules in a T cell-independent assay. The optimal pH for saposin B-mediated lipid binding to CD1d, pH 6, is higher than that of lysosomes, suggesting that saposin B may facilitate lipid binding to CD1d molecules throughout the endocytic pathway.
Collapse
Affiliation(s)
- Weiming Yuan
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Xiaoyang Qi
- Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Pansy Tsang
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Suk-Jo Kang
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
| | - Petr A. Illarionov
- Department of Microbial Physiology and Chemistry, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Gurdyal S. Besra
- Department of Microbial Physiology and Chemistry, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706
| | - Peter Cresswell
- *Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011
- To whom correspondence should be addressed at:
Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, P.O. Box 208011, New Haven, CT 06520-8011. E-mail:
| |
Collapse
|
38
|
Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2006; 89:205-12. [PMID: 17157973 DOI: 10.1016/j.biochi.2006.10.014] [Citation(s) in RCA: 440] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 10/20/2006] [Indexed: 11/21/2022]
Abstract
Exosomes are part of the family of "bioactive vesicles" and appear to be involved in distal communications between cells. They vehiculate bioactive lipids and lipolytic enzymes and their biogenesis require specific lipids and a membrane reorganisation. Their biogenesis pathway could be a way to secrete enzymes involved in lipid signalling and to generate "particulate agonists". However, this pathway seems also to be used by pathogens such as HIV. This review will consider several aspects of lipidomics studies which might help to understand the fate and role of these fascinating vesicles.
Collapse
Affiliation(s)
- Caroline Subra
- INSERM U563, Département Lipoprotéines et Médiateurs Lipidiques, CPTP, CHU Purpan, Place Baylac, BP 3028, 31024 Toulouse Cedex3, France
| | | | | | | |
Collapse
|
39
|
Locatelli-Hoops S, Remmel N, Klingenstein R, Breiden B, Rossocha M, Schoeniger M, Koenigs C, Saenger W, Sandhoff K. Saposin A Mobilizes Lipids from Low Cholesterol and High Bis(monoacylglycerol)phosphate-containing Membranes. J Biol Chem 2006; 281:32451-60. [PMID: 16905746 DOI: 10.1074/jbc.m607281200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saposin A (Sap-A) is one of five known sphingolipid activator proteins required for the lysosomal degradation of sphingolipids and for the loading of lipid antigens onto antigen-presenting molecules of the CD1 type. Sap-A assists in the degradation of galactosylceramide by galactosylceramide-beta-galactosidase in vivo, which takes place at the surface of intraendosomal/intralysosomal vesicles. Sap-A is believed to mediate the interaction between the enzyme and its membrane-bound substrate. Its dysfunction causes a variant form of Krabbe disease. In the present study we prepared glycosylated Sap-A free of other Saps, taking advantage of the Pichia pastoris expression system. Using liposomes and surface plasmon resonance spectroscopy, we tested the binding and lipid mobilization capacity of Sap-A under different conditions. Along the endocytic pathway, the pH value decreases, and the lipid composition of intraendosomal and intralysosomal membranes changes drastically. In the inner membranes the cholesterol concentration decreases, and that of the anionic phospholipid bis(monoacylglycero)phosphate increases. Here, we show that Sap-A is able to bind to liposomes and to mobilize lipids out of them at acidic pH values below pH 4.7. Low cholesterol levels and increasing concentrations of bis(monoacylglycero)phosphate favor lipid extraction significantly. Galactosylceramide as a bilayer component is not essential for lipid mobilization by Sap-A, which requires intact disulfide bridges for activity. We also show for the first time that glycosylation of Sap-A is essential for its lipid extraction activity. Variant Sap-A proteins, which cause storage of galactosylceramide in humans (Krabbe disease, Spiegel, R., Bach, G., Sury, V., Mengistu, G., Meidan, B., Shalev, S., Shneor, Y., Mandel, H., and Zeigler, M. (2005) Mol. Genet. Metab. 84, 160-166) and in mutant mice (Matsuda, J., Vanier, M. T., Saito, Y., Tohyama, J., and Suzuki, K. (2001) Hum. Mol. Genet. 10, 1191-1199) are deficient in lipid extraction capacity.
Collapse
Affiliation(s)
- Silvia Locatelli-Hoops
- Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Winkelmann J, Leippe M, Bruhn H. A novel saposin-like protein of Entamoeba histolytica with membrane-fusogenic activity. Mol Biochem Parasitol 2006; 147:85-94. [PMID: 16529828 DOI: 10.1016/j.molbiopara.2006.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/20/2006] [Accepted: 01/24/2006] [Indexed: 02/04/2023]
Abstract
Amoebapores, the pore-forming proteins of Entamoeba histolytica, are major pathogenicity factors of the parasite. Upon a comprehensive survey in the recently completed genome data sets for the protozoon, we identified in addition to the three amoebapore genes, 16 genes which are constitutively expressed and code for structurally similar proteins, all belonging to the family of saposin-like proteins. Here, we recombinantly expressed in bacteria a defined single entity of this expansive amoebic protein family, namely SAPLIP 3. The protein consists of the saposin-like domain only, comparable to amoebapores, and we characterized its interactions with membranes using different assays. In contrast to amoebapores, SAPLIP 3 neither forms pores in liposomes nor permeabilizes bacterial membranes. However, SAPLIP 3 induces leaky fusion of lipid vesicles as evidenced by fluorescence microscopic analysis and by using a fusion assay that monitors the dequenching of a lipophilic dye. The membrane-fusogenic activity of SAPLIP 3 which is dependent on the presence of negatively charged lipids and on acidic pH resembles in combination with the negative surface charge of the protein characteristics of human saposin C. Beside its function as a cofactor of sphingolipid hydrolysing enzymes, the human protein is considered to be involved in the reorganization of lysosomal compartments due to its fusogenic activity. We hypothesize that in the amoeba, SAPLIP 3 fulfils a similar function in the multifarious endo- and exocytotic transport processes.
Collapse
Affiliation(s)
- Julia Winkelmann
- Research Center for Infectious Diseases, University of Wuerzburg, Roentgenring 11, D-97070 Wuerzburg, Germany
| | | | | |
Collapse
|
41
|
Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G, Marks MS. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 2006; 10:343-54. [PMID: 16516837 PMCID: PMC1773005 DOI: 10.1016/j.devcel.2006.01.012] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/19/2005] [Accepted: 01/11/2006] [Indexed: 11/21/2022]
Abstract
Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation.
Collapse
Affiliation(s)
- Alexander C. Theos
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Steven T. Truschel
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | | | - Ilse Hurbain
- Institut Curie, CNRS-UMR144, Paris, Cedex 75005,
France
| | - Dawn C. Harper
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Joanne F. Berson
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Penelope C. Thomas
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
| | - Graça Raposo
- Institut Curie, CNRS-UMR144, Paris, Cedex 75005,
France
| | - Michael S. Marks
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania,
Philadelphia, PA 19104-6082, USA and
- ‡To whom correspondence should be addressed: Dept. of
Pathology and Laboratory Medicine, Univ. of Pennsylvania School of Medicine, 513
Stellar Chance Labs/6100, Philadelphia, PA 19104-6100, Phone: 215-898-3204, FAX:
215-573-4345,
| |
Collapse
|
42
|
Liu A, Wenzel N, Qi X. Role of lysine residues in membrane anchoring of saposin C. Arch Biochem Biophys 2006; 443:101-12. [PMID: 16256068 DOI: 10.1016/j.abb.2005.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/02/2005] [Accepted: 09/03/2005] [Indexed: 02/04/2023]
Abstract
Molecular dynamics (MD) simulations of the N-terminal region of saposin C, containing amino acid residues 4-20 (saposin C4-20), were performed over 2.5 ns in 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers. The simulations revealed several strong specific interactions of lysine 13 (Lys13) and lysine 17 (Lys17) in saposin C4-20 with the anionic phospholipids, which are required for membrane anchoring of the peptide. Membrane anchoring of saposin C4-20 facilitates saposin C-induced liposomal membrane fusion. Substitutions of Lys13 or Lys17 with alanine or glutamic acid led to a substantial loss of saposin C's fusogenicity. However, arginine replacement of Lys13 or Lys17 caused a partial loss of saposin C's fusogenic activity. The membrane anchoring of saposin C was altered in the presence of 0.4 M sodium chloride. Differential salt effects on Lys-mutant saposin Cs were observed using Trp fluorescence analysis. Low salt concentration had a more significant impact on Lys-mutant saposin C with a negatively charged amino acid residue replacement than those mutants with a positively charged or neutral residue replacement. These results indicate that positively charged amino acids at positions 13 and 17 are required for the fusogenic function of saposin C. In addition, the side-chain structure of lysine is crucial to the precise membrane anchoring which is necessary for the total fusion activity of saposin C. The MD simulations and vesicle size measurements of lysine-mutant saposins confirm the importance of the two lysine residues in saposin C4-20 for saposin C-induced fusion of negatively charged phospholipid membranes.
Collapse
Affiliation(s)
- Anping Liu
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | | | | |
Collapse
|
43
|
Abu-Baker S, Qi X, Newstadt J, Lorigan GA. Structural changes in a binary mixed phospholipid bilayer of DOPG and DOPS upon saposin C interaction at acidic pH utilizing 31P and 2H solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:58-66. [PMID: 16289479 DOI: 10.1016/j.bbamem.2005.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/07/2005] [Accepted: 09/12/2005] [Indexed: 12/15/2022]
Abstract
Saposin C (Sap C) is known to stimulate the catalytic activity of the lysosomal enzyme glucosylceramidase (GCase) that facilitates the hydrolysis of glucosylceramide to ceramide and glucose. Both Sap C and acidic phospholipids are required for full activity of GCase. In order to better understand this interaction, mixed bilayer samples prepared from dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylserine (DOPS) (5:3 ratio) and Sap C were investigated using (2)H and (31)P solid-state NMR spectroscopy at temperatures ranging from 25 to 50 degrees C at pH 4.7. The Sap C concentrations used to carry out these experiments were 0 mol%, 1 mol% and 3 mol% with respect to the phospholipids. The molecular order parameters (S(CD)) were calculated from the dePaked (2)H solid-state NMR spectra of Distearoyl-d70-phosphatidylglycerol (DSPG-d70) incorporated with DOPG and DOPS binary mixed bilayers. The S(CD) profiles indicate that the addition of Sap C to the negatively charged phospholipids is concentration dependent. S(CD) profiles of 1 mol% of the Sap C protein show only a very slight decrease in the acyl chain order. However, the S(CD) profiles of the 3 mol% of Sap C protein indicate that the interaction is predominantly increasing the disorder in the first half of the acyl chain near the head group (C1-C8) indicating that the amino and the carboxyl termini of Sap C are not inserting deep into the DOPG and DOPS mixed bilayers. The (31)P solid-state NMR spectra show that the chemical shift anisotropy (CSA) for both phospholipids decrease and the spectral broadening increases upon addition of Sap C to the mixed bilayers. The data indicate that Sap C interacts similarly with the head groups of both acidic phospholipids and that Sap C has no preference to DOPS over DOPG. Moreover, our solid-state NMR spectroscopic data agree with the structural model previously proposed in the literature [X. Qi, G.A. Grabowski, Differential membrane interactions of saposins A and C. Implication for the functional specificity, J. Biol. Chem. 276 (2001) 27010-27017] [1].
Collapse
Affiliation(s)
- Shadi Abu-Baker
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|