1
|
Wen MH, Barbosa Triana H, Butler R, Hu HW, Dai YH, Lawrence N, Hong JJ, Garrett N, Jones-Green R, Rawlins EL, Dong Z, Koziol MJ, Gurdon JB. Deterministic nuclear reprogramming of mammalian nuclei to a totipotency-like state by Amphibian meiotic oocytes for stem cell therapy in humans. Biol Open 2024; 13:bio060011. [PMID: 37982514 PMCID: PMC10924218 DOI: 10.1242/bio.060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The ultimate aim of nuclear reprogramming is to provide stem cells or differentiated cells from unrelated cell types as a cell source for regenerative medicine. A popular route towards this is transcription factor induction, and an alternative way is an original procedure of transplanting a single somatic cell nucleus to an unfertilized egg. A third route is to transplant hundreds of cell nuclei into the germinal vesicle (GV) of a non-dividing Amphibian meiotic oocyte, which leads to the activation of silent genes in 24 h and robustly induces a totipotency-like state in almost all transplanted cells. We apply this third route for potential therapeutic use and describe a procedure by which the differentiated states of cells can be reversed so that totipotency and pluripotency gene expression are regained. Differentiated cells are exposed to GV extracts and are reprogrammed to form embryoid bodies, which shows the maintenance of stemness and could be induced to follow new directions of differentiation. We conclude that much of the reprogramming effect of eggs is already present in meiotic oocytes and does not require cell division or selection of dividing cells. Reprogrammed cells by oocytes could serve as replacements for defective adult cells in humans.
Collapse
Affiliation(s)
- Ming-Hsuan Wen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB3 3EJ, UK
| | - Hector Barbosa Triana
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Hsiang-Wei Hu
- Department of Artificial Intelligence in Healthcare, International Academia of Biomedical Innovation Technology, Taipei 10488, Taiwan
- Department of Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Yang-Hong Dai
- Department of Artificial Intelligence in Healthcare, International Academia of Biomedical Innovation Technology, Taipei 10488, Taiwan
- Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Nicola Lawrence
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Jun-Jie Hong
- Scientific Research Services, Phalanx Biotech Group, Hsinchu 30077, Taiwan
| | - Nigel Garrett
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Rue Jones-Green
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ziqi Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Magdalena J. Koziol
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Chinese Institute for Brain Research, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences Beijing 102206, China
| | - J. B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB3 3EJ, UK
| |
Collapse
|
2
|
Ruan GP, Yao X, Lin QK, Li ZA, Cai XM, Pang RQ, Pan XH. Transplantation of chicken egg white extract-induced rabbit PBMCs as a treatment for renal ischemia-reperfusion injury in rabbits. PLoS One 2020; 15:e0244160. [PMID: 33370374 PMCID: PMC7769466 DOI: 10.1371/journal.pone.0244160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
Ischemia-reperfusion injury is an important contributor to acute kidney injury and a major factor affecting early functional recovery after kidney transplantation. We conducted this experiment to investigate the protective effect of induced multipotent stem cell transplantation on renal ischemia-reperfusion injury. Forty rabbits were divided into four groups of 10 rabbits each. Thirty rabbits were used to establish the renal ischemia-reperfusion injury model, and ten rabbits served as the model group and were not treated. Among the 30 rabbits with renal ischemia-reperfusion injury, 10 rabbits were treated with induced peripheral blood mononuclear cells (PBMCs), and 10 other rabbits were treated with noninduced PBMCs. After three weekly treatments, the serum creatinine levels, urea nitrogen levels and urine protein concentrations were quantified. The kidneys were stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS) and Masson’s trichrome and then sent for commercial metabolomic testing. The kidneys of the rabbits in the model group showed different degrees of pathological changes, and the recovery of renal function was observed in the group treated with induced cells. The results indicate that PBMCs differentiate into multipotent stem cells after induction and exert a therapeutic effect on renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Guang-ping Ruan
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
- * E-mail: (GR); (XP)
| | - Xiang Yao
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Qing-keng Lin
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Zi-an Li
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xue-min Cai
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Rong-qing Pang
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xing-hua Pan
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
- * E-mail: (GR); (XP)
| |
Collapse
|
3
|
Sneider A, Hah J, Wirtz D, Kim DH. Recapitulation of molecular regulators of nuclear motion during cell migration. Cell Adh Migr 2019; 13:50-62. [PMID: 30261154 PMCID: PMC6527386 DOI: 10.1080/19336918.2018.1506654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
Cell migration is a highly orchestrated cellular event that involves physical interactions of diverse subcellular components. The nucleus as the largest and stiffest organelle in the cell not only maintains genetic functionality, but also actively changes its morphology and translocates through dynamic formation of nucleus-bound contractile stress fibers. Nuclear motion is an active and essential process for successful cell migration and nucleus self-repairs in response to compression and extension forces in complex cell microenvironment. This review recapitulates molecular regulators that are crucial for nuclear motility during cell migration and highlights recent advances in nuclear deformation-mediated rupture and repair processes in a migrating cell.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
The effect of Xenopus laevis egg extracts with/without BRG1 on the development of preimplantation cloned mouse embryos. ZYGOTE 2019; 27:143-152. [PMID: 31182178 DOI: 10.1017/s0967199419000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryMuch effort has been devoted to improving the efficiency of animal cloning. The aim of this study was to investigate the effect of BRG1 contained in Xenopus egg extracts on the development of cloned mouse embryos. The results showed that mouse NIH/3T3 cells were able to express pluripotent genes after treatment with egg extracts, indicating that the egg extracts contained reprogramming factors. After co-injection of Xenopus egg extracts and single mouse cumulus cells into enucleated mouse oocytes, statistically higher pronucleus formation and development rates were observed in the egg Extract- co-injected group compared with those in the no egg extract-injected (NT) group (38-66% vs 18-34%, P<0.001). Removal of BRG1 protein from Xenopus egg extracts was conducted, and the BRG1-depleted extracts were co-injected with single donor cells into recipient oocytes. The results showed that the percentages of pronucleus formation were significantly higher in both BRG1-depleted and BRG1-intact groups than that in the nuclear transfer (NT) group (94, 64% vs 50%, P<0.05). Furthermore, percentages in the BRG1-depleted group were even higher than in the BRG1-intact group (94% vs 64%). More confined expression of Oct4 in the inner cell mass (ICM) was observed in the blastocyst derived from the egg extract-injected groups. However, Nanog expression was more contracted in the ICM of cloned blastocysts in the BRG1-depleted group than in the BGR1-intact group. Based on the present study, BRG1 might not play an essential role in reprogramming, but the factors enhancing pronucleus formation and development of cloned mouse embryos are contained in Xenopus egg extracts.
Collapse
|
5
|
Chênais N, Lorca T, Morin N, Guillet B, Rime H, Le Bail PY, Labbé C. Nuclear import of Xenopus egg extract components into cultured cells for reprogramming purposes: a case study on goldfish fin cells. Sci Rep 2019; 9:2861. [PMID: 30814557 PMCID: PMC6393519 DOI: 10.1038/s41598-019-39500-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
Reprogramming of cultured cells using Xenopus egg extract involves controlling four major steps: plasma membrane permeabilization, egg factors import into the nucleus, membrane resealing, and cell proliferation. Using propidium iodide to assess plasma membrane permeability, we established that 90% of the cultured fin cells were permeabilized by digitonin without any cell losses. We showed that egg extract at metaphase II stage was essential to maintain nuclear import function in the permeabilized cells, as assessed with a fusion GFP protein carrying the nuclear import signal NLS. Moreover, the Xenopus-egg-specific Lamin B3 was detected in 87% of the cell nuclei, suggesting that other egg extract reprogramming factors of similar size could successfully enter the nucleus. Lamin B3 labelling was maintained in most cells recovered 24 h after membrane resealing with calcium, and cells successfully resumed cell cycle in culture. In contrast, permeabilized cells that were not treated with egg extract failed to proliferate in culture and died, implying that egg extract provided factor essential to the survival of those cells. To conclude, fish fin cells were successfully primed for treatment with reprogramming factors, and egg extract was shown to play a major role in their survival and recovery after permeabilization.
Collapse
Affiliation(s)
- Nathalie Chênais
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France.
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Nathalie Morin
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Brigitte Guillet
- Centre de Ressources Biologique Xenope, CNRS Université Rennes 1, Campus de Beaulieu, F-35000, Rennes, France
| | - Hélène Rime
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Pierre-Yves Le Bail
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Catherine Labbé
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| |
Collapse
|
6
|
Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy. Oncotarget 2018; 9:16008-16027. [PMID: 29662623 PMCID: PMC5882314 DOI: 10.18632/oncotarget.24664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/27/2018] [Indexed: 11/25/2022] Open
Abstract
Inducing stable control of tumour growth by tumour reversion is an alternative approach to cancer treatment when eradication of the disease cannot be achieved. The process requires re-establishment of normal control mechanisms that are lost in cancer cells so that abnormal proliferation can be halted. Embryonic environments can reset cellular programmes and we previously showed that axolotl oocyte extracts can reprogram breast cancer cells and reverse their tumorigenicity. In this study, we analysed the gene expression profiles of oocyte extract-treated tumour xenografts to show that tumour reprogramming involves cell cycle arrest and acquisition of a quiescent state. Tumour dormancy is associated with increased P27 expression, restoration of RB function and downregulation of mitogen-activated signalling pathways. We also show that the quiescent state is associated with increased levels of H4K20me3 and decreased H4K20me1, an epigenetic profile leading to chromatin compaction. The epigenetic reprogramming induced by oocyte extracts is required for RB hypophosphorylation and induction of P27 expression, both occurring during exposure to the extracts and stably maintained in reprogrammed tumour xenografts. Therefore, this study demonstrates the value of oocyte molecules for inducing tumour reversion and for the development of new chemoquiescence-based therapies.
Collapse
|
7
|
Sadeesh EM, Fozia S, Meena K. Combined positive effect of oocyte extracts and brilliant cresyl blue stained recipient cytoplasts on epigenetic reprogramming and gene expression in buffalo nuclear transfer embryos. Cytotechnology 2017; 69:289-305. [PMID: 28070808 DOI: 10.1007/s10616-016-0057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
This study examined the effects of buffalo oocyte extracts (BOE) on donor cells reprogramming and molecular characterisation of oocytes screened via brilliant cresyl blue (BCB) staining and comparison of gene expression profiles of developmentally important genes in blastocysts from IVF and cloned derived from BOE treated donor cells with BCB selected recipient cytoplasts. Relative abundance (RA) of OCT4 and NANOG was increased (P < 0.05) and HDAC-1, DNMT-1, and DNMT-3A decreased (P < 0.05) in extract treated cells (ETCs). This ETCs dedifferentiated into neuron-like lineage under appropriate induction condition. The RA of NASP, EEF1A1, DNMT1, ODC1 and RPS27A was increased (P < 0.05) in BCB+ oocytes, whereas ATP5A1 and S100A10 increased (P < 0.05) in BCB- oocytes. Total cell number and RA of OCT4, NANOG, SOX2, DNMT1, IGF2, IGF2R, MNSOD, GLUT1, BAX and BCL2 in cloned blastocysts derived from BCB+ oocytes with ETC more closely followed that of IVF counterparts compared to BCB+ oocytes with extract untreated cell and BCB- oocytes with ETC derived blastocysts. In conclusion, BOE influenced epigenetic reprogramming of buffalo fibroblasts making them suitable donors for nuclear transfer (NT). BCB staining can be effectively used for selection of developmentally competent oocytes for NT. The combined effects of epigenetic reprogramming of donor nuclei by BOE and higher nuclear reprogramming capacity of BCB+ oocytes improve developmentally important gene expression in cloned blastocysts. Whether these improvements have long-term effects on buffalo calves born following embryo transfer remains unknown.
Collapse
Affiliation(s)
- E M Sadeesh
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| | - Shah Fozia
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.,Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190001, India
| | - Kataria Meena
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, 243122, India
| |
Collapse
|
8
|
Zhao Q, Wu Y, Shan Z, Bai G, Wang Z, Hu J, Liu L, Li T, Shen J, Lei L. Serum starvation-induced cell cycle synchronization stimulated mouse rDNA transcription reactivation during somatic cell reprogramming into iPSCs. Stem Cell Res Ther 2016; 7:112. [PMID: 27515169 PMCID: PMC4981958 DOI: 10.1186/s13287-016-0369-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND rDNA, the genes encoding ribosomal RNA (rRNA), is highly demanded for ribosome production and protein synthesis in growing cells such as pluripotent stem cells. rDNA transcription activity varies between cell types, metabolism conditions, and specific environmental challenges. Embryonic stem cells (ESCs), partially reprogrammed cells, and somatic cells reveal different epigenetic signatures, including rDNA epigenetic marks. rDNA epigenetic characteristic resetting is not quite clear during induced pluripotent stem cell (iPSC) generation. Little is known that whether the different rDNA epigenetic status in donor cells will result in different rDNA transcription activities, and furthermore affect reprogramming efficiency. METHODS We utilized serum starvation-synchronized mouse embryonic fibroblasts (MEFs) to generate S-iPSCs. Both MEFs and serum-refeeding MEFs (S-MEFs) were reprogrammed to a pluripotent state. rDNA-related genes, UBF proteins, and rDNA methylation levels were detected during the MEF and S-MEF cell reprogramming process. RESULTS We demonstrated that, after transient inhibition, retroviral induced rRNA transcriptional activity was reprogrammed towards a pluripotent state. Serum starvation would stimulate rDNA transcription reactivation during somatic cell reprogramming. Serum starvation improved the methylation status of donor cells at rRNA gene promoter regions. CONCLUSIONS Our results provide insight into regulation of rDNA transcriptional activity during somatic cell reprogramming and allow for comparison of rDNA regulation patterns between iPSCs and S-iPSCs. Eventually, regulation of rDNA transcriptional activity will benefit partially reprogrammed cells to overcome the epigenetic barrier to pluripotency.
Collapse
Affiliation(s)
- Qiaoshi Zhao
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Guangyu Bai
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Zhendong Wang
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Jing Hu
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Li Liu
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Tong Li
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Xuefu Road 194#, Nangang District, Harbin, 150081, China.
| |
Collapse
|
9
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
10
|
Bell ES, Lammerding J. Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol 2016; 95:449-464. [PMID: 27397692 DOI: 10.1016/j.ejcb.2016.06.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Morphological changes in the size and shape of the nucleus are highly prevalent in cancer, but the underlying molecular mechanisms and the functional relevance remain poorly understood. Nuclear envelope proteins, which can modulate nuclear shape and organization, have emerged as key components in a variety of signalling pathways long implicated in tumourigenesis and metastasis. The expression of nuclear envelope proteins is altered in many cancers, and changes in levels of nuclear envelope proteins lamins A and C are associated with poor prognosis in multiple human cancers. In this review we highlight the role of the nuclear envelope in different processes important for tumour initiation and cancer progression, with a focus on lamins A and C. Lamin A/C controls many cellular processes with key roles in cancer, including cell invasion, stemness, genomic stability, signal transduction, transcriptional regulation, and resistance to mechanical stress. In addition, we discuss potential mechanisms mediating the changes in lamin levels observed in many cancers. A better understanding of cause-and-effect relationships between lamin expression and tumour progression could reveal important mechanisms for coordinated regulation of oncogenic processes, and indicate therapeutic vulnerabilities that could be exploited for improved patient outcome.
Collapse
Affiliation(s)
- Emily S Bell
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
11
|
Glanzner WG, Komninou ER, Mahendran A, Rissi VB, Gutierrez K, Bohrer RC, Collares T, Gonçalves PBD, Bordignon V. Exposure of Somatic Cells to Cytoplasm Extracts of Porcine Oocytes Induces Stem Cell-Like Colony Formation and Alters Expression of Pluripotency and Chromatin-Modifying Genes. Cell Reprogram 2016; 18:137-46. [PMID: 27253625 DOI: 10.1089/cell.2016.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell permeabilization followed by exposure to cytoplasmic extracts of oocytes has been proposed as an alternative to transduction of transcription factors for inducing pluripotency in cultured somatic cells. The main goal in this study was to investigate the effect of treating porcine fibroblast cells with cytoplasmic extracts of GV-stage oocyte (OEx) followed by inhibition of histone deacetylases with Scriptaid (Scrip) on the formation of stem cell-like colonies and expression of genes encoding pluripotency and chromatin-modifying enzymes. Stem cell-like colonies start developing ∼2 weeks after treatment in cells exposed to OEx or OEx + Scrip. The number of cell colonies at the first day of appearance and 48 hours later was also similar between OEx and OEx + Scrip treatments. Transcripts for Nanog, Rex1, and c-Myc genes were detected in most cell samples that were analyzed on different days after OEx treatment. However, Sox2 transcripts were not detected and only a small proportion of samples had detectable levels of Oct4 mRNA after OEx treatment. A similar pattern of transcripts for pluripotency genes was observed in cells treated with OEx alone or OEx + Scrip. Transcript levels for Dnmt1 and Ezh2 were reduced at Day 3 after treatment in cells exposed to OEx. These findings revealed that: (a) exposure to OEx can induce a partial reprogramming of fibroblast cells toward pluripotency, characterized by colony formation and activation of pluripotency genes; and (b) inhibition of histone deacetylases does not improve the reprogramming effect of OEx treatment.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Eliza R Komninou
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Ashwini Mahendran
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Karina Gutierrez
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Rodrigo C Bohrer
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Tiago Collares
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Vilceu Bordignon
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| |
Collapse
|
12
|
Liu Y, Ostrup O, Li R, Li J, Vajta G, Kragh PM, Schmidt M, Purup S, Hyttel P, Klærke D, Callesen H. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig. Reprod Fertil Dev 2015; 26:1017-31. [PMID: 25145414 DOI: 10.1071/rd13147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022] Open
Abstract
In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Olga Ostrup
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Juan Li
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Gábor Vajta
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Peter M Kragh
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Dan Klærke
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|
13
|
No JG, Choi MK, Kwon DJ, Yoo JG, Yang BC, Park JK, Kim DH. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming. J Reprod Dev 2015; 61:90-8. [PMID: 25736622 PMCID: PMC4410095 DOI: 10.1262/jrd.2014-078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.
Collapse
Affiliation(s)
- Jin-Gu No
- Animal Biotechnology Division; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Recipient of the 2015 IETS Pioneer Award: Keith Henry Stockman Campbell, PhD. Reprod Fertil Dev 2014; 27:xxvi-xxviii. [PMID: 25472414 DOI: 10.1071/rdv27n1_pa2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocytes extract and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized embryos. J Assist Reprod Genet 2014; 31:1541-52. [PMID: 25141841 DOI: 10.1007/s10815-014-0316-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/07/2014] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To compare the expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocyte extracts and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized (IVF) embryos. METHODS Hand-made cloned embryos were produced using oocyte extracts treated donor cells and brilliant cresyl blue (BCB) stained recipient cytoplasts. IVF embryos were produced by culturing 15-20 COCs in BO capacitated sperms from frozen thawed buffalo semen and the mRNA expression patterns of genes implicated in metabolism (GLUT1), pluripotency (OCT4), DNA methylation (DNMT1), pro- apoptosis (BAX) and anti-apoptosis (BCL2) were evaluated at 8- to16- cell stage embryos. RESULTS A significantly (P < 0.05) higher number of 8- to16- cell and blastocyst stages (73.9 %, 32.8 %, respectively) were reported in hand-made cloning (HMC) as compared to in vitro fertilization (49.2 %, 24.2 %, respectively). The amount of RNA recovered from 8- to 16- cell embryos of HMC and in vitro fertilization did not appear to be influenced by the method of embryo generation (3.76 ± 0.61 and 3.82 ± 0.62 ng/μl for HMC and in vitro fertilization embryos, respectively). There were no differences in the expression of the mRNA transcripts of genes (GLUT1, OCT4, DNMT1, BAX and BCL2) were analysed by real-time PCR between hand-made cloned and IVF embryos. CONCLUSIONS Pre-treatment of donor cells with oocyte extracts and selection of developmentally competent oocytes through BCB staining for recipient cytoplast preparations may enhance expression of developmentally important genes GLUT1, OCT4, DNMT1, BAX, and BCL2 in hand-made cloned embryos at levels similar to IVF counterparts. These results also support the notion that if developmental differences observed in HMC and in vitro fertilization produced foetuses and neonates are the results of aberrant gene expression during the pre-implantation stage, those differences in expression are subtle or appear after the maternal to zygotic transition stage of development.
Collapse
|
16
|
Kim SY, Kim TS, Park SH, Lee MR, Eun HJ, Baek SK, Ko YG, Kim SW, Seong HH, Campbell KHS, Lee JH. Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:266-77. [PMID: 25049951 PMCID: PMC4093206 DOI: 10.5713/ajas.2013.13699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/29/2013] [Accepted: 11/25/2013] [Indexed: 11/27/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with 4 μg/mL of digitonin for 2 min at 4°C in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at 18°C was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sang-Hoon Park
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Mi-Ran Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hye-Ju Eun
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Yeoung-Gyu Ko
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Sung-Woo Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hwan-Hoo Seong
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Keith H S Campbell
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| |
Collapse
|
17
|
Kong PC, Zhu Y, Wang MS, Li HP, Chen XJ, Jiang MX. Reprogramming of round spermatids by the germinal vesicle cytoplasm in mice. PLoS One 2013; 8:e78437. [PMID: 24167624 PMCID: PMC3805568 DOI: 10.1371/journal.pone.0078437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022] Open
Abstract
The birthrate following round spermatid injection (ROSI) remains low in current and evidence suggests that factors in the germinal vesicle (GV) cytoplasm and certain substances in the GV such as the nucleolus might be responsible for genomic reprogramming and embryonic development. However, little is known whether the reprogramming factors in GV oocyte cytoplasm and/or nucleolus in GV are beneficial to the reprogramming of round spermatids and development of ROSI embryos. Here, round spermatids were treated with GV cytolysates and injected this round spermatid alone or co-injected with GV oocyte nucleolus into mature metaphase II oocytes. Subsequent embryonic development was assessed morphologically and by Oct4 expression in blastocysts. There was no significant difference between experimental groups at the zygote to four-cell development stages. Blastocysts derived from oocytes which were injected with cytolysate treated-round spermatid alone or co-injected with nucleoli injection yielded 63.6% and 70.3% high quality embryos, respectively; comparable to blastocysts derived by intracytoplasmic sperm injection (ICSI), but higher than these oocytes which were co-injected with lysis buffer-treated round spermatids and nucleoli or injected with the lysis buffer-treated round spermatids alone. Furthermore, the proportion of live offspring resulting from oocytes which were co-injected with cytolysate treated-round spermatids and nucleoli or injected with cytolysate treated-round spermatids alone was higher than those were injected with lysis buffer treated-round spermaids, but comparable with the ICSI group. Our results demonstrate that factors from the GV cytoplasm improve round spermatid reprogramming, and while injection of the extra nucleolus does not obviously improve reprogramming its potential contribution, although which cannot be definitively excluded. Thus, some reprogramming factors are evidently present in GV oocyte cytoplasm and could significantly facilitate ROSI technology, while the nucleolus in GV seems also having a potential to improve reprogramming of round spermatids.
Collapse
Affiliation(s)
- Peng-Cheng Kong
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhu
- Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Mei-Shan Wang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He-Ping Li
- College of Wildlife Resource, Northeast Forestry University, Harbin, China
| | - Xue-Jin Chen
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (MXJ); (XJC)
| | - Man-Xi Jiang
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (MXJ); (XJC)
| |
Collapse
|
18
|
Reprogramming of fetal cells by avian EE for generation of pluripotent stem cell like cells in caprine. Res Vet Sci 2013; 95:638-43. [PMID: 23830780 DOI: 10.1016/j.rvsc.2013.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/11/2013] [Accepted: 06/18/2013] [Indexed: 11/23/2022]
Abstract
The present work was carried out to study the ability of avian "Extract Egg" (EE) for reprogramming caprine fetal cells. The isolated caprine fetal cells were cultured in stem cell media supplemented with different percentages of either EE or FBS. The results indicated that the supplementation of 2-4% EE formed lesser but larger size stem cell like cell colonies as compared to 6% or 10% EE. The expression of pluripotent genes were comparatively higher in colonies developed in 2% or 4% as compared to 6% or 10% EE. Further, immunocytochemistry revealed that the colonies developed in all percentage of EE expressed pluripotent markers like Oct4, Nanog, TRA-1-60 and TRA-1-81. Our findings indicated that avian EE has the potentiality to reprogram caprine fetal cells into embryonic state which may help in generation of pluripotent stem cells without using viral vector.
Collapse
|
19
|
Rathbone AJ, Liddell S, Campbell KHS. Proteomic analysis of early reprogramming events in murine somatic cells incubated with Xenopus laevis oocyte extracts demonstrates network associations with induced pluripotency markers. Cell Reprogram 2013; 15:269-80. [PMID: 23768116 DOI: 10.1089/cell.2012.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reprogramming of somatic cells into a pluripotent/embryonic-like state holds great potential for regenerative medicine, bypassing ethical issues associated with embryonic stem cells (ESCs). Numerous methods, including somatic cell nuclear transfer (SCNT), fusion to pluripotent cells, the use of cell extracts, and expression of transcription factors, have been used to reprogram cells into ES-like cells [termed induced pluripotent stem cells (iPSCs)]. This study investigated early events in the nuclei of permeabilized murine somatic cells incubated in cytoplasmic extract prepared from Xenopus laevis germinal vesicle-stage oocytes by identifying proteins that showed significant quantitative changes using proteomic techniques. A total of 69 protein spots from two-dimensional electrophoresis were identified as being significantly altered in expression after treatment, and 38 proteins were identified by tandem mass spectrometry. Network analysis was used to highlight pathway connections and interactions between these identified proteins, which were found to be involved in many functions--primarily nuclear structure and dynamics, transcription, and translation. The pluripotency markers Klf4, c-Myc, Nanog, and POU5F1 were highlighted by the interaction network analysis, as well as other compounds/proteins known to be repressed in pluripotent cells [e.g., protein kinase C (PRKC)] or enhanced during differentiation of ESCs (e.g., retinoic acid). The network analysis also indicated additional proteins and pathways potentially involved in early reprogramming events.
Collapse
Affiliation(s)
- Alex J Rathbone
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | | | | |
Collapse
|
20
|
Reprogrammed peripheral blood mononuclear cells are able to survive longer in irradiated female mice. Mol Biotechnol 2013; 55:111-9. [PMID: 23636934 DOI: 10.1007/s12033-013-9661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Induced multipotent stem (iMS) cells are originated from somatic cells and become multipotent by genetic and/or epigenetic modifications. Previous studies have shown that the fish oocytes extracts (FOE) can induce skin fibroblast cells into iMS cells. In this study, we aim to determine whether FOE can similarly induce mouse peripheral blood mononuclear cells (PBMCs) into the iMS state and if so, whether they can survive longer when they are transplanted into the irradiation female mice. PBMCs of GFP-transgenic male mice were cultured and transiently reprogrammed by FOE. They were deemed reaching the iMS state after detection of expression of stem cell markers. The iMS-like PBMCs were transplanted into female C57BL mice by tail vein injection. The spleen wet weights as well as numbers of colonies of the recipient mice were examined. The results showed the spleen wet weights and numbers of spleen colonies of FOE-induced group were all significantly higher than those of the non-induced group and negative control group. On day 90 after transplantation, FISH analysis detected the presence of Y chromosome in the induced group, but not of the other groups. The current findings demonstrate that FOE-induced PBMCs are able to survive longer in irradiated female mice.
Collapse
|
21
|
Yang X, Mao J, Walters EM, Zhao MT, Teson J, Lee K, Prather RS. Xenopus egg extract treatment reduced global DNA methylation of donor cells and enhanced somatic cell nuclear transfer embryo development in pigs. Biores Open Access 2013; 1:79-87. [PMID: 23515109 PMCID: PMC3559225 DOI: 10.1089/biores.2012.0214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The efficiency to produce offspring by somatic cell nuclear transfer (SCNT) is low. It has been showed that treatment of donor cells with Xenopus oocyte extract increased live births in ovine and handmade cloned embryo development in pigs. Scriptaid treatment after oocyte activation is another approach to improve SCNT efficiency. The present study was carried out to investigate (a) the effects of treatment of donor cells with Xenopus egg extract on donor cell DNA methylation at days 0 and 4 with two digitonin permeabilization concentrations (10 and 15 μg/mL), (b) the effects of treatment of donor cells with Xenopus egg extract on early development of cloned embryos, and (c) the effects of combined treatments, treating donor cells with extract before nuclear transfer and treatment of cloned embryos with scriptaid after oocyte activation, on embryo development. Compared to the control, a decrease of DNA methylation in donor cells was observed at 2.5 h after extract treatment. However, this effect was not observed after the cells were cultured for four more days. More embryos developed into blastocysts in the Xenopus egg extract-treated group than in the control (13.4±1.9% vs. 9.1±1.9%, p=0.01). Furthermore, scriptaid treatment of cloned embryos further increased the frequency of development to blastocyst, compared to the control reconstructed with the same extract-treated cells (22.5±0.9% vs. 15.3±0.9%, p<0.01). In addition, egg extract treatments increased the cell number in the blastocysts. This study demonstrated that Xenopus egg extract treatment reduced donor cell DNA methylation and enhanced the SCNT embryo development. Moreover, the combined treatments of donor cells with egg extract before nuclear transfer and of cloned embryos with scriptaid could improve cloned embryo development additively.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Division of Animal Sciences, University of Missouri , Columbia, Missouri. ; Key Laboratory of Stem Cell and Regenerative Medicine, Center of Cell Developmental Biology, College of Preclinical Medicine, Fujian Medical University , Fuzhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
22
|
Bui HT, Kwon DN, Kang MH, Oh MH, Park MR, Park WJ, Paik SS, Van Thuan N, Kim JH. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development 2012; 139:4330-40. [PMID: 23132243 DOI: 10.1242/dev.086116] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Min-Hui Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Hye Oh
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Ryung Park
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Woo-Jin Park
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Seung-Sam Paik
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Nguyen Van Thuan
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
23
|
Epigenetic reprogramming of Yak iSCNT embryos after donor cell pre-treatment with oocyte extracts. Anim Reprod Sci 2012; 133:229-36. [DOI: 10.1016/j.anireprosci.2012.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
|
24
|
Ambady S, Wu Z, Dominko T. Identification of novel microRNAs in Xenopus laevis metaphase II arrested eggs. Genesis 2012; 50:286-99. [PMID: 22223599 DOI: 10.1002/dvg.22010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/26/2011] [Accepted: 12/29/2011] [Indexed: 12/21/2022]
Abstract
Using a combination of deep sequencing and bioinformatics approach, we for the first time identify miRNAs and their relative abundance in mature, metaphase II arrested eggs in Xenopus laevis. We characterize 115 miRNAs that have been described either in Xenopus tropicalis (85), X. laevis (9), or other vertebrate species (21) that also map to known Xenopus pre-miRNAs and to the X. tropicalis genome. In addition, 72 new X. laevis putative candidate miRNAs are identified based on mapping to X. tropicalis genome within regions that have the propensity to form hairpin loops. These data expand on the availability of genetic information in X. laevis and identify target miRNAs for future functional studies.
Collapse
Affiliation(s)
- Sakthikumar Ambady
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | |
Collapse
|
25
|
Ruan GP, Wang JX, Pang RQ, Yao X, Cai XM, Wang Q, Ma LH, Zhu XQ, Pan XH. Treatment with chicken-egg-white or whole-egg extracts maintains and enhances the survival and differentiation of spleen cells. Cytotechnology 2012; 64:541-51. [PMID: 22350684 DOI: 10.1007/s10616-012-9431-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/18/2012] [Indexed: 12/26/2022] Open
Abstract
The identification of egg extracts with the ability to maintain and enhance the survival and differentiation of cells would be widely useful in cellular biology research. In this study, we compared the different abilities of spleen cells to survive and differentiate in vivo after permeabilization by five different types of egg extracts. Five types of egg extracts were prepared. The spleen cells from male GFP-transgenic mice were permeabilized by the extracts for 30 min, cultured for 12 days, and then transfused into irradiated female mice. At varying days after transplantation, the percentage of GFP-expressing surviving spleen cells was detected in the peripheral blood by flow cytometry. At 120 days after transplantation, bone marrow cells from the female mice were analyzed for the presence of cells containing the Y chromosome. Surviving GFP-positive spleen cells that had been permeabilized with either chicken-egg-white or whole-egg extracts could be detected in the female mice after transplantation. A lower percentage of GFP-positive cells was also detected after permeabilization by the other extracts tested, and no GFP-positive cells were found in the female mouse transfused with spleen cells permeabilized with Hank's Buffered Salt Solution (HBSS) as a control. At 120 days after transplantation, the percentage of cells containing a Y chromosome in the bone marrow positively correlated with the percentage of GFP-positive cells in the peripheral blood. After permeabilization by chicken-egg-white or whole-egg extracts, spleen cells demonstrated significantly enhanced survival and differentiation functions compared with the spleen cells treated with the other egg extracts tested. These results show that chicken-egg-white and whole-egg extracts have roles in maintaining and enhancing the survival and differentiation of spleen cells. Therefore, these two types of extracts may be of future use in maintaining the function of stem cells.
Collapse
Affiliation(s)
- Guang-Ping Ruan
- Research Center of Stem Cell, Tissue and Organ Engineering, Kunming General Hospital of PLA, Kunming, 650032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Østrup O, Li J, Vajta G, Kragh PM, Purup S, Callesen H. Cell Colony Formation Induced by Xenopus Egg Extract as a Marker for Improvement of Cloned Blastocyst Formation in the Pig. Cell Reprogram 2011; 13:521-6. [DOI: 10.1089/cell.2011.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ying Liu
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark
| | - Olga Østrup
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan Li
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark
| | - Gábor Vajta
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark
| | - Peter M. Kragh
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark
| | - Stig Purup
- Department of Animal Health and Bioscience, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Callesen
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Hasebe T, Kajita M, Iwabuchi M, Ohsumi K, Ishizuya-Oka A. Thyroid hormone-regulated expression of nuclear lamins correlates with dedifferentiation of intestinal epithelial cells during Xenopus laevis metamorphosis. Dev Genes Evol 2011; 221:199-208. [PMID: 21866414 DOI: 10.1007/s00427-011-0371-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022]
Abstract
In the Xenopus laevis intestine during metamorphosis, which is triggered by thyroid hormone (TH), the adult epithelium develops and replaces the larval one undergoing apoptosis. We have previously shown that progenitor/stem cells of the adult epithelium originate from some differentiated larval epithelial cells. To investigate molecular mechanisms underlying larval epithelial dedifferentiation into the adult progenitor/stem cells, we here focused on nuclear lamin A (LA) and lamin LIII (LIII), whose expression is generally known to be correlated with the state of cell differentiation. We analyzed the spatiotemporal expression of LA and LIII during X. laevis intestinal remodeling by reverse transcription PCR, Western blotting, and immunohistochemistry. At the onset of natural metamorphosis, when the adult epithelial progenitor cells appear as small islets, the expression of LA is down-regulated, but that of LIII is up-regulated only in the islets. Then, as the adult progenitor cells differentiate, the expression of LA is up-regulated, whereas that of LIII is down-regulated in the adult cells. As multiple intestinal folds form, adult epithelial cells positive for LIII become restricted only to the troughs of the folds. In addition, we have shown that TH up- or down-regulates the expression of these lamins in the premetamorphic intestine as during natural metamorphosis. These results indicate that TH-regulated expression of LA and LIII closely correlates with dedifferentiation of the epithelial cells in the X. laevis intestine, suggesting the involvement of the lamins in the process of dedifferentiation during amphibian metamorphosis.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-0063, Japan
| | | | | | | | | |
Collapse
|
28
|
Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors. Proc Natl Acad Sci U S A 2011; 108:17331-6. [PMID: 21908712 DOI: 10.1073/pnas.1100733108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transfer of somatic cell nuclei to enucleated eggs and ectopic expression of specific transcription factors are two different reprogramming strategies used to generate pluripotent cells from differentiated cells. However, these methods are poorly efficient, and other unknown factors might be required to increase their success rate. Here we show that Xenopus egg extracts at the metaphase stage (M phase) have a strong reprogramming activity on mouse embryonic fibroblasts (MEFs). First, they reset replication properties of MEF nuclei toward a replication profile characteristic of early development, and they erase several epigenetic marks, such as trimethylation of H3K9, H3K4, and H4K20. Second, when MEFs are reversibly permeabilized in the presence of M-phase Xenopus egg extracts, they show a transient increase in cell proliferation, form colonies, and start to express specific pluripotency markers. Finally, transient exposure of MEF nuclei to M-phase Xenopus egg extracts increases the success of nuclear transfer to enucleated mouse oocytes and strongly synergizes with the production of pluripotent stem cells by ectopic expression of transcription factors. The mitotic stage of the egg extract is crucial, because none of these effects is detected when using interphasic Xenopus egg extracts. Our data demonstrate that mitosis is essential to make mammalian somatic nuclei prone to reprogramming and that, surprisingly, the heterologous Xenopus system has features that are conserved enough to remodel mammalian nuclei.
Collapse
|
29
|
Østrup O, Hyttel P, Klærke DA, Collas P. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract. Biochem Biophys Res Commun 2011; 412:487-93. [PMID: 21843509 DOI: 10.1016/j.bbrc.2011.07.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 02/08/2023]
Abstract
Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.
Collapse
Affiliation(s)
- Olga Østrup
- Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
30
|
Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:474-497. [PMID: 21682936 DOI: 10.1017/s1431927611000080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
| | | | | | | |
Collapse
|
31
|
Abstract
We review experiments in which somatic cell nuclei are transplanted singly to enucleated eggs (metaphase II) in amphibia and mammals and as multiple nuclei to the germinal vesicle of amphibian oocytes (prophase I). These experiments have shown the totipotency of some somatic cell nuclei, as well as switches in cell type and changes in gene expression. Abnormalities of nuclear transplant embryo development increase greatly as nuclei are taken from progressively more differentiated donor cells. The molecular changes that accompany the reprogramming of transplanted nuclei help to indicate the mechanisms used by eggs and oocytes to reprogram gene expression. We discuss the importance of chromosomal protein exchange, of transcription factor supply, and of chromatin access in reprogramming.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust Cancer Research UK Gurdon Institute, Cambridge, United Kingdom.
| | | |
Collapse
|
32
|
Han J, Sidhu K. Embryonic stem cell extracts: use in differentiation and reprogramming. Regen Med 2011; 6:215-27. [DOI: 10.2217/rme.11.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cells have been studied extensively for decades and they have the inherent capacity to self-renew as well as to generate one or more types of specialized cells. The current focus of research on stem cells, particularly on embryonic stem cells, is on directed differentiation of these cells into specific cell types for future regenerative medicine. For the past few years, the process of reprogramming, which mediates convertion of somatic cells to their pluripotent state, has been given much attention, as it provides a possible source of autologous stem cells. In addition, understanding the molecular mechanism of differentiation and reprogramming has long been a subject of interest. In this article, we have briefly introduced stem cells and discussed the use of embryonic stem cells in reprogramming of somatic cells and differentiation to different lineages. The application of embryonic stem cells extracts in inducing reprogramming and transdifferentiation has also been described and discussed. Should this approach be successful, patient-specific cells will be produced safely and the likelihood of rejection will be decreased when used in cell therapy for many debilitating human diseases for which there is no cure such as Parkinson’s disease, Alzheimer’s disease, diabetes and others.
Collapse
Affiliation(s)
- Jinnuo Han
- Stem Cell Laboratory, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Kuldip Sidhu
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
33
|
Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin. ZYGOTE 2011; 20:61-6. [PMID: 21303584 DOI: 10.1017/s096719941000064x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-treating donor cells before somatic cell nuclear transfer (SCNT, 'cloning') may improve the efficiency of the technology. The aim of this study was to evaluate the early development of cloned embryos produced with porcine fibroblasts pre-treated with a permeabilizing agent and extract from Xenopus laevis eggs. In Experiment 1, fetal fibroblasts were permeabilized by digitonin, incubated in egg extract and, after re-sealing of cell membranes, cultured for 3 or 5 days before use as donor cells in handmade cloning (HMC). Controls were produced by HMC with non-treated donor cells. The blastocyst rate for reconstructed embryos increased significantly when digitonin-permeabilized, extract-treated cells were used after 5 days of culture after re-sealing. In Experiment 2, fetal and adult fibroblasts were treated with digitonin alone before re-sealing the cell membranes, then cultured for 3 or 5 days and used as donor cells in HMC. Treatment with digitonin alone increased the blastocyst rate, but only when fetal, and not adult fibroblasts, were used as donor cells, and only after 3 days of culture. In conclusion, we find a time window for increased efficiency of porcine SCNT using donor cells after pre-treatment with permeabilization/re-sealing and Xenopus egg extract. Interestingly, we observe a similar increase in cloning efficiency by permeabilization/re-sealing of donor cells without extract treatment that seems to depend on choice of donor cell type. Thus, pre-treatment of donor cells using permeabilizing treatment followed by re-sealing and in vitro culture for few days could be a simple way to improve the efficiency of porcine cloning.
Collapse
|
34
|
Rathbone AJ, Fisher PA, Lee JH, Craigon J, Campbell KHS. Reprogramming of ovine somatic cells with Xenopus laevis oocyte extract prior to SCNT improves live birth rate. Cell Reprogram 2011; 12:609-16. [PMID: 20936909 DOI: 10.1089/cell.2010.0015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The birth of live animals following somatic cell nuclear transfer (SCNT) has demonstrated that oocytes can reprogram the genome of differentiated cells. However, in all species the frequency of development of healthy offspring is low; for example, in sheep, approximately only 5% of blastocysts transferred develop to term, and less than 3% develop to adulthood. Such low efficiencies, coupled with the occurrence of developmental abnormalities, have been attributed to incomplete or incorrect reprogramming. Cytoplasmic extracts from both mammalian and amphibian oocytes can alter the epigenetic state of mammalian somatic nuclei and reprogram gene expression to more resemble that of pluripotent cells. Therefore, it may be possible to increase the frequency or success of normal development by pretreating somatic cells to be used as nuclear donors prior to SCNT. In the present study, permeabilized ovine fetal fibroblasts were pretreated with a cytoplasmic extract produced from germinal vesicle (GV) stage Xenopus laevis oocytes. No increase in the frequency of development to blastocyst stage or pregnancy rate was observed; however, live birth and survival rates were significantly improved. Development to term of blastocysts transferred increased from 3.1% in the control group, to 14.7% in the treated group (a 4.7-fold increase), and even though the subsequent survival of lambs produced from treated cells was reduced by 60%, the percentage of lambs surviving to adulthood of blastocysts transferred (5.9%) increased 1.9-fold compared to controls. This study is the first to report the birth of live offspring and an increase in cloning efficiency, after crossspecies pre-reprogramming using Xenopus GV stage oocyte extract.
Collapse
|
35
|
Allegrucci C, Rushton MD, Dixon JE, Sottile V, Shah M, Kumari R, Watson S, Alberio R, Johnson AD. Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol Cancer 2011; 10:7. [PMID: 21232089 PMCID: PMC3034708 DOI: 10.1186/1476-4598-10-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 01/13/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. RESULTS We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. CONCLUSIONS This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.
Collapse
Affiliation(s)
- Cinzia Allegrucci
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fisher D. Control of DNA replication by cyclin-dependent kinases in development. Results Probl Cell Differ 2011; 53:201-17. [PMID: 21630147 DOI: 10.1007/978-3-642-19065-0_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent kinases (CDKs) are required for initiation of DNA replication in all eukaryotes, and appear to act at multiple levels to control replication origin firing, depending on the cell type and stage of development. In early development of many animals, both invertebrate and vertebrate, rapid cell cycling is coupled with transcriptional repression, and replication initiates at closely spaced replication origins with little or no sequence specificity. This organisation of DNA replication is modified during development as cell proliferation becomes more controlled and defined. In all eukaryotic cells, CDKs promote conversion of "licensed" pre-replication complexes (pre-RC) to active initiation complexes. In certain circumstances, CDKs may also control pre-RC formation, transcription of replication factor genes, chromatin remodelling, origin spacing, and organisation of replication origin clusters and replication foci within the nucleus. Although CDK1 and CDK2 have overlapping roles, there is a limit to their functional redundancy. Here, I review these findings and their implications for development.
Collapse
Affiliation(s)
- Daniel Fisher
- IGMM, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier, France.
| |
Collapse
|
37
|
Han J, Sachdev PS, Sidhu KS. A combined epigenetic and non-genetic approach for reprogramming human somatic cells. PLoS One 2010; 5:e12297. [PMID: 20808872 PMCID: PMC2924394 DOI: 10.1371/journal.pone.0012297] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/27/2010] [Indexed: 12/20/2022] Open
Abstract
Reprogramming of somatic cells to different extents has been reported using different methods. However, this is normally accompanied by the use of exogenous materials, and the overall reprogramming efficiency has been low. Chemicals and small molecules have been used to improve the reprogramming process during somatic cell nuclear transfer (SCNT) and induced pluripotent stem (iPS) cell generation. We report here the first application of a combined epigenetic and non-genetic approach for reprogramming somatic cells, i.e., DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and human embryonic stem cell (hESC) extracts. When somatic cells were pretreated with these inhibitors before exposure to hESC (MEL1) extracts, morphological analysis revealed a higher rate of hESC-like colony formation than without pretreatment. Quantitative PCR (qPCR) demonstrated that pluripotency genes were upregulated when compared to those of somatic cells or treated with hESC extracts alone. Overall changes in methylation and acetylation levels of pretreated somatic cells suggests that epigenetic states of the cells have an effect on reprogramming efficiency induced by hESC extracts. KnockOutserum replacement (KOSR™) medium (KO-SR) played a positive role in inducing expression of the pluripotency genes. hESC extracts could be an alternative approach to reprogram somatic cells without introducing exogenous materials. The epigenetic pre-treatment of somatic cells could be used to improve the efficiency of reprogramming process. Under differentiation conditions, the reprogrammed cells exhibited differentiation ability into neurons suggesting that, although fully reprogramming was not achieved, the cells could be transdifferentiated after reprogramming.
Collapse
Affiliation(s)
- Jinnuo Han
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | - Kuldip S. Sidhu
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
38
|
Effect of cryopreservation and in vitro culture of bovine fibroblasts on histone acetylation levels and in vitro development of hand-made cloned embryos. ZYGOTE 2010; 19:255-64. [DOI: 10.1017/s0967199410000316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryIn this study, the relative acetylation levels of histone 3 in lysine 9 (H3K9ac) in cultured and cryopreserved bovine fibroblasts was measured and we determined the influence of the epigenetic status of three cultured (C1, C2 and C3) donor cell lines on the in vitro development of reconstructed bovine embryos. Results showed that cryopreservation did not alter the overall acetylation levels of H3K9 in bovine fibroblasts analysed immediately after thawing (frozen/thawed) compared with fibroblasts cultured for a period of time after thawing. However, reduced cleavage rates were noted in embryos reconstructed with fibroblasts used immediately after thawing. Cell passage affects the levels of H3K9ac in bovine fibroblasts, decreasing after P1 and donor cells with lower H3K9ac produced a greater frequency of embryo development to the blastocyst stage. Cryopreservation did not influence the total cell and ICM numbers, or the ICM/TPD ratios of reconstructed embryos. However, the genetic source of donor cells did influence the total number of cells and the trophectoderm cell numbers, and the cell passage influenced the total ICM cell numbers.
Collapse
|
39
|
Murata K, Kouzarides T, Bannister AJ, Gurdon JB. Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics Chromatin 2010; 3:4. [PMID: 20181087 PMCID: PMC2829560 DOI: 10.1186/1756-8935-3-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 02/04/2010] [Indexed: 01/05/2023] Open
Abstract
Background When the nuclei of mammalian somatic cells are transplanted to amphibian oocytes in the first meiotic prophase, they are rapidly induced to begin transcribing several pluripotency genes, including Sox2 and Oct4. The more differentiated the donor cells of the nuclei, the longer it takes for the pluripotency genes to be activated after the nuclear transfer to oocytes. We have used this effect in order to investigate the role of histone modifications in this example of nuclear reprogramming. Results Reverse transcription polymerase chain reaction analysis shows that the transcriptional reprogramming of pluripotency genes, such as Sox2 and Oct4, takes place in transplanted nuclei from C3H10T1/2 cells and from newly differentiated mouse embryonic stem cells. We find that the reprogramming of 10T1/2 nuclei is accompanied by an increased phosphorylation, an increased methylation and a rapidly reduced acetylation of several amino acids in H3 and other histones. These results are obtained by the immunofluorescent staining of transplanted nuclei and by Western blot analysis. We have also used chromatin immunoprecipitation analysis to define histone modifications associated with the regulatory or coding regions of pluripotency genes in transplanted nuclei. Histone phosphorylation is increased and histone acetylation is decreased in several regulatory and gene coding regions. An increase of histone H3 lysine 4 dimethylation (H3K4 me2) is seen in the regulatory regions and gene coding region of pluripotency genes in reprogrammed nuclei. Furthermore, histone H3 lysine 4 trimethylation (H3K4 me3) is observed more strongly in the regulatory regions of pluripotency genes in transplanted nuclei that are rapidly reprogrammed than in nuclei that are reprogrammed slowly and are not seen in β-globin, a gene that is not reprogrammed. When 10T1/2 nuclei are incubated in Xenopus oocyte extracts, histone H3 serine 10 (H3S10) is strongly phosphorylated within a few hours. Immunodepletion of Aurora B prevents this phosphorylation. Conclusion We conclude that H3K4 me2 and me3 are likely to be important for the efficient reprogramming of pluripotency genes in somatic nuclei by amphibian oocytes and that Aurora B kinase is required for H3S10 phosphorylation which is induced in transplanted somatic cell nuclei.
Collapse
Affiliation(s)
- Kazutaka Murata
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | | | |
Collapse
|
40
|
Peter A, Stick R. Ectopic expression of prelamin A in early Xenopus embryos induces apoptosis. Eur J Cell Biol 2009; 87:879-91. [PMID: 18675490 DOI: 10.1016/j.ejcb.2008.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/23/2008] [Accepted: 06/11/2008] [Indexed: 01/24/2023] Open
Abstract
Lamin proteins are components of metazoan cell nuclei. During evolution, two classes of lamin proteins evolved, A- and B-type lamins. B-type lamins are expressed in nearly all cell types and in all developmental stages and are thought to be indispensable for cellular survival. In contrast, A-type lamins have a more restricted expression pattern. They are expressed in differentiated cells and appear late in embryogenesis. In the earliest steps of mammalian development, A-type lamins are present in oocytes, pronuclei and during the first cleavage stages of the developing embryo. But latest after the 16-cell stage, A-type lamin proteins are not any longer detectable in embryonic cells. Amphibian oocytes and early embryos do not express lamin A. Moreover, extracts of Xenopus oocytes and eggs have the ability to selectively remove A-type lamins from somatic nuclei. This observation and the restricted expression pattern suggest that the presence of lamin A might interfere with developmental processes in the early phase of embryogenesis. To test this, we ectopically expressed lamin A during early embryonic development of Xenopus laevis by microinjection of synthetic mRNA. Here, we show that introducing mature lamin A does not interfere with normal development. However, expression of prelamin A or lamin A variants that cannot be fully processed cause severe disturbances and lead to apoptosis during gastrulation. The toxic effect is due to lack of the conversion of prenylated prelamin A to its mature form. Remarkably, even a cytoplasmic prelamin A variant that is excluded from the nucleus drives embryos into apoptosis.
Collapse
Affiliation(s)
- Annette Peter
- Department of Cell Biology, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany
| | | |
Collapse
|
41
|
Wilmut I, Sullivan G, Taylor J. A decade of progress since the birth of Dolly. Reprod Fertil Dev 2009; 21:95-100. [PMID: 19152750 DOI: 10.1071/rd08216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The greatest effect of the birth Dolly, the first cloned animal derived from an adult, has been in prompting biologists to consider ways of reprogramming adult nuclei to a pluripotent state directly. The first procedure depends upon use of viral vectors to introduce selected transcription factors, but this procedure is slow and very inefficient. Research in our laboratory has demonstrated that exposure of differentiated nuclei to an extract of embryo stem cells induces expression of key pluripotency genes within 8 h, suggesting that it may be possible to identify and use other factors to enhance direct reprogramming. A study of mechanisms that bring about changes in DNA methylation in early sheep embryos identified a developmental isoform of Dnmt1, the expression of which was limited to early stages of pregnancy. Reduction in the level of transcript of this isoform at the time of fertilisation caused sheep embryo development to cease at the early morula stage, revealing a key role for the isoform that remains to be characterised. The ability to obtain pluripotent cells from specific patients is providing important new opportunities to study inherited diseases when the causative mutation is not known. The initial objective of this research is not cell therapy, but to use cells with the characteristics of those in a patient who has inherited the disease to establish a high-throughput screen to identify drugs that are able to prevent progression of the symptoms of the disease. Research is in progress with cells from patients with amyotropic lateral sclerosis.
Collapse
Affiliation(s)
- Ian Wilmut
- MRC Centre for Regenerative Medicine, University of Edinburgh, Chancellors Building, 49, Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | |
Collapse
|
42
|
Luo D, Hu W, Chen S, Xiao Y, Sun Y, Zhu Z. Identification of Differentially Expressed Genes Between Cloned and Zygote-Developing Zebrafish (Danio rerio) Embryos at the Dome Stage Using Suppression Subtractive Hybridization1. Biol Reprod 2009; 80:674-84. [DOI: 10.1095/biolreprod.108.074203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Miyamoto K, Tsukiyama T, Yang Y, Li N, Minami N, Yamada M, Imai H. Cell-free extracts from mammalian oocytes partially induce nuclear reprogramming in somatic cells. Biol Reprod 2009; 80:935-43. [PMID: 19164171 DOI: 10.1095/biolreprod.108.073676] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nuclear transfer has been regarded as the only reliable tool for studying nuclear reprogramming of mammalian somatic cells by oocytes. However, nuclear transfer is not well suited for biochemical analyses of the molecular mechanisms of reprogramming. A cell-free system from oocytes is an attractive alternative way to mimic reprogramming in vitro, since a large number of cells can be treated and analyzed. Nevertheless, a cell-free system using oocytes has not been developed in mammals. Here, cell extracts from porcine oocytes were prepared and their ability to induce nuclear reprogramming was evaluated. Extracts from metaphase II (MII) oocytes erased the machinery for regulating gene expression in reversibly permeabilized somatic cells. For example, the extracts caused histone deacetylation and the disappearance of TATA box-binding protein from the nuclei. However, MII-extract-treated cells did not show any obvious changes after cell culture. In contrast, extracts from germinal vesicle (GV) oocytes activated pluripotent marker genes, especially NANOG, and induced partial dedifferentiation after cell culture. The activation of pluripotent marker genes by GV extracts was associated with histone acetylation that was induced during extract treatment. These results indicate that GV- and MII-oocyte extracts have different roles on nuclear reprogramming. Furthermore, both oocyte extracts induced site-specific demethylation in the upstream region of NANOG. These results indicate that cell-free extracts derived from GV- and MII-oocytes could be useful for studying the mechanisms involved in nuclear reprogramming.
Collapse
Affiliation(s)
- Kei Miyamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Miyamoto K, Yamashita T, Tsukiyama T, Kitamura N, Minami N, Yamada M, Imai H. Reversible Membrane Permeabilization of Mammalian Cells Treated with Digitonin and Its Use for Inducing Nuclear Reprogramming by Xenopus Egg Extracts. CLONING AND STEM CELLS 2008; 10:535-42. [DOI: 10.1089/clo.2008.0020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kei Miyamoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Teruyoshi Yamashita
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Tomoyuki Tsukiyama
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Naoya Kitamura
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Masayasu Yamada
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Tang S, Wang Y, Zhang D, Gao Y, Ma Y, Yin B, Sun J, Liu J, Zhang Y. Reprogramming donor cells with oocyte extracts improves in vitro development of nuclear transfer embryos. Anim Reprod Sci 2008; 115:1-9. [PMID: 19081212 DOI: 10.1016/j.anireprosci.2008.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 10/14/2008] [Accepted: 10/24/2008] [Indexed: 11/19/2022]
Abstract
This study investigated the effects of donor cells pretreated with oocyte extracts on in vitro development of cloned embryos. Bovine fibroblasts were exposed to immature, mature and parthenogenetic oocyte extracts respectively before nuclear transfer. The detectable expression of Oct4 and global deacetylation in the treated cells showed that extracts could reprogram fibroblasts. Although all three groups of extracts exhibited reprogramming capacity, embryo development was not compliant with reprogramming effect. Improved quality and development of blastocysts were observed only in the mature extract treated group. We demonstrated that pretreatment of donor cells with mature oocyte extract improved in vitro development of cloned embryos. Our results suggested that reprogramming donor nuclei to a state synchronized with recipient cytoplasm before nuclear transfer would be beneficial for the development of cloned embryos.
Collapse
Affiliation(s)
- Shuang Tang
- Institute of Biotechnology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Stem cell-based regenerative medicine holds great promise for repair of diseased tissue. Modern directions in the field of epigenetic research aimed to decipher the epigenetic signals that give stem cells their unique ability to self-renew and differentiate into different cell types. However, this research is only the tip of the iceberg when it comes to writing an 'epigenetic instruction manual' for the ramification of molecular details of cell commitment and differentiation. In this review, we discuss the impact of the epigenetic research on our understanding of stem cell biology.
Collapse
Affiliation(s)
- Victoria V Lunyak
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | | |
Collapse
|
47
|
Bru T, Clarke C, McGrew MJ, Sang HM, Wilmut I, Blow JJ. Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res 2008; 314:2634-42. [PMID: 18571647 DOI: 10.1016/j.yexcr.2008.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/14/2008] [Accepted: 05/19/2008] [Indexed: 11/18/2022]
Abstract
The expression of 4 pluripotency genes (Oct4, Sox2, c-Myc and Klf4) in mouse embryonic fibroblasts can reprogramme them to a pluripotent state. We have investigated the expression of these pluripotency genes when human somatic 293T cells are permeabilized and incubated in extracts of mouse embryonic stem (ES) cells. Expression of all 4 genes was induced over 1-8 h. Gene expression was associated with loss of repressive histone H3 modifications and increased recruitment of RNA polymerase II at the promoters. Lamin A/C, which is typically found only in differentiated cells, was also removed from the nuclei. When 293T cells were returned to culture after exposure to ES cell extract, the expression of the pluripotency genes continued to rise over the following 48 h of culture, suggesting that long-term reprogramming of gene expression had been induced. This provides a methodology for studying the de-differentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells to a pluripotent state without genetically altering them.
Collapse
Affiliation(s)
- Thierry Bru
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
48
|
Niemann H, Tian XC, King WA, Lee RSF. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 2008; 135:151-63. [DOI: 10.1530/rep-07-0397] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The birth of ‘Dolly’, the first mammal cloned from an adult donor cell, has sparked a flurry of research activities to improve cloning technology and to understand the underlying mechanism of epigenetic reprogramming of the transferred somatic cell nucleus. Especially in ruminants, somatic cell nuclear transfer (SCNT) is frequently associated with pathological changes in the foetal and placental phenotype and has significant consequences for development both before and after birth. The most critical factor is epigenetic reprogramming of the transferred somatic cell nucleus from its differentiated status into the totipotent state of the early embryo. This involves an erasure of the gene expression program of the respective donor cell and the establishment of the well-orchestrated sequence of expression of an estimated number of 10 000–12 000 genes regulating embryonic and foetal development. The following article reviews the present knowledge on the epigenetic reprogramming of the transferred somatic cell nucleus, with emphasis on DNA methylation, imprinting, X-chromosome inactivation and telomere length restoration in bovine development. Additionally, we briefly discuss other approaches towards epigenetic nuclear reprogramming, including the fusion of somatic and embryonic stem cells and the overexpression of genes crucial in the formation and maintenance of the pluripotent status. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realising the great potential of SCNT for basic biological research and for various agricultural and biomedical applications.
Collapse
|
49
|
Campbell KHS, Fisher P, Chen WC, Choi I, Kelly RDW, Lee JH, Xhu J. Somatic cell nuclear transfer: Past, present and future perspectives. Theriogenology 2007; 68 Suppl 1:S214-31. [PMID: 17610946 DOI: 10.1016/j.theriogenology.2007.05.059] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is now over a decade since the birth, in 1996, of Dolly the first animal to be produced by nuclear transfer using an adult derived somatic cell as nuclear donor. Since this time similar techniques have been successfully applied to a range of species producing live offspring and allowing the development of transgenic technologies for agricultural, biotechnological and medical uses. However, though applicable to a range of species, overall, the efficiencies of development of healthy offspring remain low. The low frequency of successful development has been attributed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Many studies have demonstrated that such reprogramming occurs by epigenetic mechanisms not involving alterations in DNA sequence, however, at present the molecular mechanisms underlying reprogramming are poorly defined. Since the birth of Dolly many studies have attempted to improve the frequency of development, this review will discuss the process of animal production by nuclear transfer and in particular changes in the methodology which have increased development and survival, simplified or increased robustness of the technique. Although much of the discussion is applicable across species, for simplicity we will concentrate primarily on published data for cattle, sheep, pigs and mice.
Collapse
Affiliation(s)
- K H S Campbell
- Animal Development and Biotechnology Group, School of Biosciences, University of Nottingham, Sutton Bonnington, Loughborough LE12 5RD, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Recent scientific achievements in cell and developmental biology have provided unprecedented opportunities for advances in biomedical research. The demonstration that fully differentiated cells can reverse their gene expression profile to that of a pluripotent cell, and the successful derivation and culture of human embryonic stem cells (ESCs) have fuelled hopes for applications in regenerative medicine. These advances have been put to public scrutiny raising legal, moral and ethical issues which have resulted in different levels of acceptance. Ethical issues concerning the use of cloned human embryos for the derivation of stem cells have stimulated the search for alternative methods for reversing differentiated cells into multi/pluripotent cells. In this article, we will review the present state of these reprogramming technologies and discuss their relative success. We also overview reprogramming events after somatic cell nuclear transfer (SCNT), as they may further instruct ex ovo strategies for cellular manipulation.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences. University of Nottingham, Loughborough, NG2 5RD, UK.
| | | | | |
Collapse
|