1
|
Hebchen DM, Schröder K. Redox Signaling in Endosomes Using the Example of EGF Receptors: A Graphical Review. Antioxidants (Basel) 2024; 13:1215. [PMID: 39456468 PMCID: PMC11504029 DOI: 10.3390/antiox13101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Early endosomes represent first-line sorting compartments or even organelles for internalized molecules. They enable the transport of molecules or ligands to other compartments of the cell, such as lysosomes, for degradation or recycle them back to the membrane by various mechanisms. Moreover, early endosomes function as signaling and scaffolding platforms to initiate or prolong distinct signaling pathways. Accordingly, early endosomes have to be recognized as either part of a degradation or recycling pathway. The physical proximity of many ligand-binding receptors with other membrane-bound proteins or complexes such as NADPH oxidases may result in an interaction of second messengers, like reactive oxygen species (ROS) and early endosomes, that promote the correct recognition of individual early endosomes. In fact, redoxosomes comprise an endosomal subsection of signaling endosomes. One example of such potential interaction is epidermal growth factor receptor (EGFR) signaling. Here we summarize recent findings on EGFR signaling as a well-studied example for receptor trafficking and trans-activation and illustrate the interplay between cellular and endosomal ROS.
Collapse
Affiliation(s)
| | - Katrin Schröder
- Institute of Physiology, Medical Faculty, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
2
|
Kang CJ, Guzmán-Clavel LE, Lei K, Koo M, To S, Roche JP. The exocyst subunit Sec15 is critical for proper synaptic development and function at the Drosophila NMJ. Mol Cell Neurosci 2024; 128:103914. [PMID: 38086519 DOI: 10.1016/j.mcn.2023.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The exocyst protein complex is important for targeted vesicle fusion in a variety of cell types, however, its function in neurons is still not entirely known. We found that presynaptic knockdown (KD) of the exocyst component sec15 by transgenic RNAi expression caused a number of unexpected morphological and physiological defects in the synapse. These include the development of active zones (AZ) devoid of essential presynaptic proteins, an increase in the branching of the presynaptic arbor, the appearance of satellite boutons, and a decrease in the amplitude of stimulated postsynaptic currents as well as a decrease in the frequency of spontaneous synaptic vesicle release. We also found the release of extracellular vesicles from the presynaptic neuron was greatly diminished in the Sec15 KDs. These effects were mimicked by presynaptic knockdown of Rab11, a protein known to interact with the exocyst. sec15 RNAi expression caused an increase in phosphorylated Mothers against decapentaplegic (pMad) in the presynaptic terminal, an indication of enhanced bone morphogenic protein (BMP) signaling. Some morphological phenotypes caused by Sec15 knockdown were reduced by attenuation of BMP signaling through knockdown of wishful thinking (Wit), while other phenotypes were unaffected. Individual knockdown of multiple proteins of the exocyst complex also displayed a morphological phenotype similar to Sec15 KD. We conclude that Sec15, functioning as part of the exocyst complex, is critically important for proper formation and function of neuronal synapses. We propose a model in which Sec15 is involved in the trafficking of vesicles from the recycling endosome to the cell membrane as well as possibly trafficking extracellular vesicles for presynaptic release and these processes are necessary for the correct structure and function of the synapse.
Collapse
Affiliation(s)
- Chris J Kang
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Luis E Guzmán-Clavel
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Katherine Lei
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Martin Koo
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Steven To
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - John P Roche
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America; Department of Biology, Amherst College, Amherst, MA 01002, United States of America.
| |
Collapse
|
3
|
Sarabipour S, Kinghorn K, Quigley KM, Kovacs-Kasa A, Annex BH, Bautch VL, Mac Gabhann F. Trafficking dynamics of VEGFR1, VEGFR2, and NRP1 in human endothelial cells. PLoS Comput Biol 2024; 20:e1011798. [PMID: 38324585 PMCID: PMC10878527 DOI: 10.1371/journal.pcbi.1011798] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 02/20/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kaitlyn M. Quigley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Anita Kovacs-Kasa
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Brian H. Annex
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States of America
| | - Victoria L. Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Leblanc JA, Sugiyama MG, Antonescu CN, Brown AI. Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading. Phys Biol 2023; 20:056008. [PMID: 37557183 DOI: 10.1088/1478-3975/aceecd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.
Collapse
Affiliation(s)
- Jaleesa A Leblanc
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Mosher BS, Kowalik TF, Yurochko AD. Overview of how HCMV manipulation of host cell intracellular trafficking networks can promote productive infection. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1026452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in the immunocompromised and developing fetuses. Infection has also been linked to chronic inflammatory diseases, cardiovascular disease, and the development of certain cancers. The wide range of pathologies associated with HCMV infection is attributable to the broad cellular tropism of the virus where infection affects every organ system. Like other viruses, HCMV must tailor host cells to support productive infection. In particular, HCMV dedicates many resources and various strategies to manipulate host intracellular trafficking networks to facilitate various aspects of infection across all infected cell types. The dysregulation of host intracellular trafficking networks allows the virus to translocate to the host cell nucleus for genome replication, facilitate nuclear import/export of viral proteins and immature virions, subvert the host immune response, form new organelles for progeny virion assembly, maturation and egress, and promote cellular migration and viral spread. However, due to their complex nature, many aspects of these processes are not well-studied. New research and omics-based technologies have recently begun to elucidate the extent to which HCMV dysregulates host cell trafficking machinery. Here we review the variety of strategies HCMV utilizes to dysregulate intracellular trafficking networks to promote productive infection.
Collapse
|
6
|
Zhang Y, Chen R, Dong Y, Zhu J, Su K, Liu J, Xu J. Structural Studies Reveal Unique Non-canonical Regulators of G Protein Signaling Homology (RH) Domains in Sorting Nexins. J Mol Biol 2022; 434:167823. [PMID: 36103920 DOI: 10.1016/j.jmb.2022.167823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
As a subgroup of sorting nexins (SNXs) that contain regulator of G protein signaling homology (RH) domain, SNX-RH proteins, including SNX13, SNX14 and SNX25, were proposed to play bifunctional roles in protein sorting and GPCR signaling regulation. However, mechanistic details of SNX-RH proteins functioning via RH domain remain to be illustrated. Here, we delineate crystal structures of the RH domains of SNX13 and SNX25, revealing a homodimer of SNX13 RH domain mediated by unique extended α4 and α5 helices, and a thiol modulated homodimer of SNX25-RH triggered by a unique cysteine on α6 helix. Further studies showed that RH domains of SNX-RH do not possess binding capacity toward Gα subunits, owing to the lack of critical residues for interaction. Thus, this study identifies a group of novel non-canonical RH domains that can act as a dimerization module in sorting nexins, which provides structural basis for mechanism studies on SNX-RH protein functions.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiabin Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kai Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
7
|
Lee EY, Kim SM, Hwang JH, Jang SY, Park S, Choi S, Lee GS, Hwang J, Moon JH, Fox PL, Kim S, Lee CH, Kim MH. Glutamyl-prolyl-tRNA synthetase 1 coordinates early endosomal anti-inflammatory AKT signaling. Nat Commun 2022; 13:6455. [PMID: 36309524 PMCID: PMC9617928 DOI: 10.1038/s41467-022-34226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
The AKT signaling pathway plays critical roles in the resolution of inflammation. However, the underlying mechanisms of anti-inflammatory regulation and signal coordination remain unclear. Here, we report that anti-inflammatory AKT signaling is coordinated by glutamyl-prolyl-tRNA synthetase 1 (EPRS1). Upon inflammatory activation, AKT specifically phosphorylates Ser999 of EPRS1 in the cytoplasmic multi-tRNA synthetase complex, inducing release of EPRS1. EPRS1 compartmentalizes AKT to early endosomes via selective binding to the endosomal membrane lipid phosphatidylinositol 3-phosphate and assembles an AKT signaling complex specific for anti-inflammatory activity. These events promote AKT activation-mediated GSK3β phosphorylation, which increase anti-inflammatory cytokine production. EPRS1-deficient macrophages do not assemble the early endosomal complex and consequently exacerbate inflammation, decreasing the survival of EPRS1-deficient mice undergoing septic shock and ulcerative colitis. Collectively, our findings show that the housekeeping protein EPRS1 acts as a mediator of inflammatory homeostasis by coordinating compartment-specific AKT signaling.
Collapse
Affiliation(s)
- Eun-Young Lee
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
| | - Su-Man Kim
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
| | - Jung Hwan Hwang
- grid.249967.70000 0004 0636 3099Laboratory Animal Resource Center, KRIBB, Daejeon, 34141 Korea
| | - Song Yee Jang
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea ,grid.249967.70000 0004 0636 3099Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141 Korea
| | - Shinhye Park
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
| | - Sanghyeon Choi
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
| | - Ga Seul Lee
- grid.249967.70000 0004 0636 3099Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141 Korea
| | - Jungwon Hwang
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
| | - Jeong Hee Moon
- grid.249967.70000 0004 0636 3099Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141 Korea
| | - Paul L. Fox
- grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 USA
| | - Sunghoon Kim
- grid.15444.300000 0004 0470 5454Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, 21983 Korea
| | - Chul-Ho Lee
- grid.249967.70000 0004 0636 3099Laboratory Animal Resource Center, KRIBB, Daejeon, 34141 Korea
| | - Myung Hee Kim
- grid.249967.70000 0004 0636 3099Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
| |
Collapse
|
8
|
ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection. PLoS Biol 2022; 20:e3001754. [PMID: 36099266 PMCID: PMC9469972 DOI: 10.1371/journal.pbio.3001754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection. Autophagy proteins mediate the production of extracellular vesicles termed defensosomes in response to innate immune ligands. This study reveals that ACE2-containing defensosomes bind and inhibit SARS-CoV-2 infection, and are associated with reduced length of hospital stay for patients with COVID-19.
Collapse
|
9
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
10
|
Endocytosis at the Crossroad of Polarity and Signaling Regulation: Learning from Drosophila melanogaster and Beyond. Int J Mol Sci 2022; 23:ijms23094684. [PMID: 35563080 PMCID: PMC9101507 DOI: 10.3390/ijms23094684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular trafficking through the endosomal–lysosomal system is essential for the transport of cargo proteins, receptors and lipids from the plasma membrane inside the cells and across membranous organelles. By acting as sorting stations, vesicle compartments direct the fate of their content for degradation, recycling to the membrane or transport to the trans-Golgi network. To effectively communicate with their neighbors, cells need to regulate their compartmentation and guide their signaling machineries to cortical membranes underlying these contact sites. Endosomal trafficking is indispensable for the polarized distribution of fate determinants, adaptors and junctional proteins. Conversely, endocytic machineries cooperate with polarity and scaffolding components to internalize receptors and target them to discrete membrane domains. Depending on the cell and tissue context, receptor endocytosis can terminate signaling responses but can also activate them within endosomes that act as signaling platforms. Therefore, cell homeostasis and responses to environmental cues rely on the dynamic cooperation of endosomal–lysosomal machineries with polarity and signaling cues. This review aims to address advances and emerging concepts on the cooperative regulation of endocytosis, polarity and signaling, primarily in Drosophila melanogaster and discuss some of the open questions across the different cell and tissue types that have not yet been fully explored.
Collapse
|
11
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
12
|
Clark JF, Soriano PM. Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Curr Top Dev Biol 2022; 149:123-152. [PMID: 35606055 PMCID: PMC9127239 DOI: 10.1016/bs.ctdb.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a conserved superfamily of transmembrane growth factor receptors that drive numerous cellular processes during development and in the adult. Upon activation, multiple adaptors and signaling effector proteins are recruited to binding site motifs located within the intracellular domain of the RTK. These RTK-effector interactions drive subsequent intracellular signaling cascades involved in canonical RTK signaling. Genetic dissection has revealed that alleles of Fibroblast Growth Factor receptors (FGFRs) that lack all canonical RTK signaling still retain some kinase-dependent biological activity. Here we examine how genetic analysis can be used to understand the mechanism by which RTKs drive multiple developmental processes via canonical signaling while revealing noncanonical activities. Recent data from both FGFRs and other RTKs highlight potential noncanonical roles in cell adhesion and nuclear signaling. The data supporting such functions are discussed as are recent technologies that have the potential to provide valuable insight into the developmental significance of these noncanonical activities.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philippe M Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
13
|
Ching KL, de Vries M, Gago J, Dancel-Manning K, Sall J, Rice WJ, Barnett C, Liang FX, Thorpe LE, Shopsin B, Segal LN, Dittmann M, Torres VJ, Cadwell K. ACE2-containing defensosomes serve as decoys to inhibit SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34981050 DOI: 10.1101/2021.12.17.473223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.
Collapse
|
14
|
Wang W, Bian J, Sun Y, Li Z. The new fate of internalized membrane receptors: Internalized activation. Pharmacol Ther 2021; 233:108018. [PMID: 34626676 DOI: 10.1016/j.pharmthera.2021.108018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Classically, the fate of internalized membrane receptors includes receptor degradation and receptor recycling. However, recent findings have begun to challenge these views. Much research demonstrated that many internalized membrane receptors can trigger distinct signal activation rather than being desensitized inside the cell. Here, we introduce the concept of "internalized activation" which not only represents a new mode of receptor activation, but also endows the new fate for receptor internalization (from death to life). The new activation mode and fate of membrane receptor are ubiquitous and have unique theoretical significance. We systematically put forward the features, process, and regulation of "internalized activation" and its significance in signal transduction and diseases. "Internalized activation" will provide a completely new understanding for the theory of receptor activation, internalization and novel drug targets for precision medicine.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Yang Sun
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
15
|
Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells. Rep Biochem Mol Biol 2021; 10:145-155. [PMID: 34604404 DOI: 10.52547/rbmb.10.2.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Background Focal adhesion (FA) play a critical role in many biological processes which include cell survival and cell migration. They serve as cellular anchor, allowing cells to stay attached to the extracellular matrix (ECM), and can also regulate cellular transduction. Previously, it has been suggested that vesicles such as endosomes could interact directly with FA or be implicated in their turnover. In this study, we investigated whether there is a relationship between FA and the early endocytic machinery in MDA-MB-231 cells. Methods In this study, cell culture, transfection, time laps confocal microscopies, immunocytochemistry, western blotting, Cell fractionation and immunoprecipitation techniques were performed. Results Cells acutely treated with Dynasore, an inhibitor of dynamin, or with Pitstop 2, an inhibitor of clathryn-dependent endocytosis showed a reduction in the expression of early endosome biomarkers such as Rab5 and EEA1. Additionally, cells treated with these endocytic inhibitors exhibited an increase number and size of FA, as well as an increase FA turnover duration. This data was consistent with the reduction of the speed of cell migration. We demonstrated that Rab5- and EEA1-positive early endosomes were found to be colocalized with internalized FA. Conclusion The present study suggests that there is a link between FA and early endosome markers, which indicates that the early endosomes may be involved in FA dynamics.
Collapse
|
16
|
Nászai M, Bellec K, Yu Y, Román-Fernández A, Sandilands E, Johansson J, Campbell AD, Norman JC, Sansom OJ, Bryant DM, Cordero JB. RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. eLife 2021; 10:e63807. [PMID: 34096503 PMCID: PMC8216719 DOI: 10.7554/elife.63807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Endocytosis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Humans
- Hyperplasia
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- ral GTP-Binding Proteins/genetics
- ral GTP-Binding Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Máté Nászai
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Karen Bellec
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Yachuan Yu
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Alvaro Román-Fernández
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Emma Sandilands
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Joel Johansson
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | | | - Jim C Norman
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Owen J Sansom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - David M Bryant
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Julia B Cordero
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| |
Collapse
|
17
|
Jatuyosporn T, Laohawutthichai P, Supungul P, Sotelo-Mundo RR, Ochoa-Leyva A, Tassanakajon A, Krusong K. PmAP2-β depletion enhanced activation of the Toll signaling pathway during yellow head virus infection in the black tiger shrimp Penaeus monodon. Sci Rep 2021; 11:10534. [PMID: 34006863 PMCID: PMC8131699 DOI: 10.1038/s41598-021-89922-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Yellow head virus (YHV) is a pathogen which causes high mortality in penaeid shrimp. Previous studies suggested that YHV enters shrimp cells via clathrin-mediated endocytosis. This research investigated the roles of clathrin adaptor protein 2 subunit β (AP-2β) from Penaeus monodon during YHV infection. PmAP2-β was continuously up-regulated more than twofold during 6-36 hpi. Suppression of PmAP2-β significantly reduced YHV copy numbers and delayed shrimp mortality. Quantitative RT-PCR revealed that knockdown of PmAP2-β significantly enhanced the expression level of PmSpätzle, a signaling ligand in the Toll pathway, by 30-fold at 6 and 12 hpi. Moreover, the expression levels of gene components in the Imd and JAK/STAT signaling pathways under the suppression of PmAP2-β during YHV infection were also investigated. Interestingly, anti-lipopolysaccharide factor isoform 3 (ALFPm3) was up-regulated by 40-fold in PmAP2-β knockdown shrimp upon YHV infection. In addition, silencing of PmAP2-β dramatically enhanced crustinPm1 expression in YHV-infected shrimp. Knockdown of ALFPm3 and crustinPm1 significantly reduced shrimp survival rate. Taken together, this work suggested that PmAP2-β-deficiency promoted the Toll pathway signalings, resulting in elevated levels of ALFPm3 and crustinPm1, the crucial antimicrobial peptides in defence against YHV.
Collapse
Affiliation(s)
- Thapanan Jatuyosporn
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasunee Laohawutthichai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazaran Rosas No. 46, 83304, Hermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Departamentos de Microbiología Molecular, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Mexico
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Hernández-Pérez S, Runsala M, Šuštar V, Mattila PK. Analysis of Intracellular Vesicles in B Lymphocytes: Antigen Traffic in the Spotlight. Methods Mol Biol 2021; 2304:173-191. [PMID: 34028717 DOI: 10.1007/978-1-0716-1402-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
All eukaryotic cells are delimited by the plasma membrane, separating the cell from its environment. Two critical cellular pathways, the endocytic and the exocytic vesicle networks, shuttle material in and out the cell, respectively. The substantial development of cell biological imaging techniques, along with improved fluorescent probes and image analysis tools, has been instrumental in increasing our understanding of various functions and regulatory mechanisms of various intracellular vesicle subpopulations and their dynamics. Here, using B lymphocytes (B cells) as a model system, we provide a protocol for 3D analysis of the intracellular vesicle traffic in either fixed or living cells using spinning disk confocal microscopy. We also describe the usage of image deconvolution to improve the resolution, particularly important for vesicular networks in lymphocytes due to the small size of these cells. Lastly, we describe two types of quantitative analysis: vesicle distribution/clustering toward the microtubule organizing center (MTOC), and colocalization analysis with endolysosomal markers.
Collapse
Affiliation(s)
- Sara Hernández-Pérez
- Institute of Biomedicine, MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marika Runsala
- Institute of Biomedicine, MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vid Šuštar
- Institute of Biomedicine, MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pieta K Mattila
- Institute of Biomedicine, MediCity Research Laboratories, University of Turku, Turku, Finland.
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
19
|
Phuyal S, Baschieri F. Endomembranes: Unsung Heroes of Mechanobiology? Front Bioeng Biotechnol 2020; 8:597721. [PMID: 33195167 PMCID: PMC7642594 DOI: 10.3389/fbioe.2020.597721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli have profound effects on the cellular architecture and functions. Over the past two decades, considerable progress has been made in unraveling the molecular machineries that confer cells the ability to sense and transduce mechanical input into biochemical signals. This has resulted in the identification of several force-sensing proteins or mechanically activated ion channels distributed throughout most cell types, whereby the plasma membrane, cytoskeleton, and the nucleus have garnered much attention. Although organelles from the endomembrane system make up significant portion of cell volume and play pivotal roles in the spatiotemporal distribution of signaling molecules, they have received surprisingly little attention in mechanobiology. In this mini-review, we summarize results that document participation of the endomembrane system in sensing and responding to mechanical cues.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
20
|
Li W, Zhang S, Yang G. Dynamic organization of intracellular organelle networks. WIREs Mech Dis 2020; 13:e1505. [PMID: 32865347 DOI: 10.1002/wsbm.1505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/06/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Intracellular organelles are membrane-bound and biochemically distinct compartments constructed to serve specialized functions in eukaryotic cells. Through extensive interactions, they form networks to coordinate and integrate their specialized functions for cell physiology. A fundamental property of these organelle networks is that they constantly undergo dynamic organization via membrane fusion and fission to remodel their internal connections and to mediate direct material exchange between compartments. The dynamic organization not only enables them to serve critical physiological functions adaptively but also differentiates them from many other biological networks such as gene regulatory networks and cell signaling networks. This review examines this fundamental property of the organelle networks from a systems point of view. The focus is exclusively on homotypic networks formed by mitochondria, lysosomes, endosomes, and the endoplasmic reticulum, respectively. First, key mechanisms that drive the dynamic organization of these networks are summarized. Then, several distinct organizational properties of these networks are highlighted. Next, spatial properties of the dynamic organization of these networks are emphasized, and their functional implications are examined. Finally, some representative molecular machineries that mediate the dynamic organization of these networks are surveyed. Overall, the dynamic organization of intracellular organelle networks is emerging as a fundamental and unifying paradigm in the internal organization of eukaryotic cells. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuhao Zhang
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Sewduth R, Pandolfi S, Steklov M, Sheryazdanova A, Zhao P, Criem N, Baietti M, Lechat B, Quarck R, Impens F, Sablina A. The Noonan Syndrome Gene Lztr1 Controls Cardiovascular Function by Regulating Vesicular Trafficking. Circ Res 2020; 126:1379-1393. [PMID: 32175818 PMCID: PMC8575076 DOI: 10.1161/circresaha.119.315730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Noonan syndrome (NS) is one of the most frequent genetic disorders. Bleeding problems are among the most common, yet poorly defined complications associated with NS. A lack of consensus on the management of bleeding complications in patients with NS indicates an urgent need for new therapeutic approaches. OBJECTIVE Bleeding disorders have recently been described in patients with NS harboring mutations of LZTR1 (leucine zipper-like transcription regulator 1), an adaptor for CUL3 (CULLIN3) ubiquitin ligase complex. Here, we assessed the pathobiology of LZTR1-mediated bleeding disorders. METHODS AND RESULTS Whole-body and vascular specific knockout of Lztr1 results in perinatal lethality due to cardiovascular dysfunction. Lztr1 deletion in blood vessels of adult mice leads to abnormal vascular leakage. We found that defective adherent and tight junctions in Lztr1-depleted endothelial cells are caused by dysregulation of vesicular trafficking. LZTR1 affects the dynamics of fusion and fission of recycling endosomes by controlling ubiquitination of the ESCRT-III (endosomal sorting complex required for transport III) component CHMP1B (charged multivesicular protein 1B), whereas NS-associated LZTR1 mutations diminish CHMP1B ubiquitination. LZTR1-mediated dysregulation of CHMP1B ubiquitination triggers endosomal accumulation and subsequent activation of VEGFR2 (vascular endothelial growth factor receptor 2) and decreases blood levels of soluble VEGFR2 in Lztr1 haploinsufficient mice. Inhibition of VEGFR2 activity by cediranib rescues vascular abnormalities observed in Lztr1 knockout mice Conclusions: Lztr1 deletion phenotypically overlaps with bleeding diathesis observed in patients with NS. ELISA screening of soluble VEGFR2 in the blood of LZTR1-mutated patients with NS may predict both the severity of NS phenotypes and potential responders to anti-VEGF therapy. VEGFR inhibitors could be beneficial for the treatment of bleeding disorders in patients with NS.
Collapse
Affiliation(s)
- R. Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - S. Pandolfi
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M. Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - A. Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - P. Zhao
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - N. Criem
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M.F. Baietti
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - B. Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - R. Quarck
- University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - F. Impens
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
- VIB Proteomics Core, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - A.A. Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Choubey PK, Nandy N, Pandey A, Roy JK. Rab11 plays a key role in stellate cell differentiation via non-canonical Notch pathway in Malpighian tubules of Drosophila melanogaster. Dev Biol 2020; 461:19-30. [PMID: 31911183 DOI: 10.1016/j.ydbio.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Rab11, a member of Rab-GTPase family, and a marker of recycling endosomes has been reported to be involved in the differentiation of various tissues in Drosophila. Here we report a novel role of Rab11 in the differentiation of stellate cells via the non-canonical Notch pathway in Malpighian tubules. During Malpighian tubule development caudal visceral mesodermal cells intercalate into the epithelial tubule of ectodermal origin consisting of principal cells, undergo mesenchymal to epithelial transition and differentiate into star shaped stellate cells in adult Malpighian tubule. Two transcription factors, Teashirt and Cut (antagonistic to each other) are known to be expressed in stellate cells and principal cells, respectively, from early stages of development and serve as markers for these cells. Inhibition of Rab11 function or over-expression of activated Notch in stellate cells resulted in the expression of Cut that leads to down-regulation of Teashirt or vice-versa that leads to hampered differentiation of stellate cells. The stellate cells do not transform to star/bar shaped and remain in mesenchymal state in adult Malpighian tubule. Over-expression of Deltex, which plays important role in non-canonical Notch signaling pathway, shows similar phenotype of stellate cells as seen in individuals with down-regulated Rab11, while down-regulation of Deltex in genetic background of Rab11RNAi rescues Teashirt expression and shape of stellate cells. Our experiments suggest that an inhibition or reduction of Rab11 function in stellate cells results in the faulty recycling of Notch receptors to plasma membrane as they accumulate in early and late endosomes, leading to Deltex mediated non-canonical Notch activation.
Collapse
Affiliation(s)
- Praween Kumar Choubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India.
| | - Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | - Akanksha Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
23
|
Gupta A, Rivera-Molina F, Xi Z, Toomre D, Schepartz A. Endosome motility defects revealed at super-resolution in live cells using HIDE probes. Nat Chem Biol 2020; 16:408-414. [PMID: 32094922 PMCID: PMC7176048 DOI: 10.1038/s41589-020-0479-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
We report new lipid-based, high-density, environmentally sensitive (HIDE) probes that accurately and selectively image endo-lysosomes and their dynamics at super-resolution for extended times. Treatment of live cells with the small molecules DiIC16TCO or DiIC16’TCO followed by in situ tetrazine ligation reaction with the silicon-rhodamine dye SiR-Tz generates the HIDE probes DiIC16-SiR and DiIC16’-SiR in the endo-lysosomal membrane. These new probes support the acquisition of super-resolution videos of organelle dynamics in primary cells for more than 7 minutes with no detectable change in endosome structure or function. Using DiIC16-SiR and DiIC16’-SiR, we describe the first direct evidence of endosome motility defects in cells from patients with Niemann-Pick Type-C disease. In wild-type fibroblasts, the probes reveal distinct but rare inter-endosome kiss-and-run events that cannot be observed using confocal methods. Our results shed new light on the role of NPC1 in organelle motility and cholesterol trafficking.
Collapse
Affiliation(s)
- Aarushi Gupta
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT, USA. .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
24
|
Xiong W, Tang TX, Littleton E, Karcini A, Lazar IM, Capelluto DGS. Preferential phosphatidylinositol 5-phosphate binding contributes to a destabilization of the VHS domain structure of Tom1. Sci Rep 2019; 9:10868. [PMID: 31350523 PMCID: PMC6659632 DOI: 10.1038/s41598-019-47386-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Tom1 transports endosomal ubiquitinated proteins that are targeted for degradation in the lysosomal pathway. Infection of eukaryotic cells by Shigella flexneri boosts oxygen consumption and promotes the synthesis of phosphatidylinositol-5-phosphate (PtdIns5P), which triggers Tom1 translocation to signaling endosomes. Removing Tom1 from its cargo trafficking function hinders protein degradation in the host and, simultaneously, enables bacterial survival. Tom1 preferentially binds PtdIns5P via its VHS domain, but the effects of a reducing environment as well as PtdIns5P on the domain structure and function are unknown. Thermal denaturation studies demonstrate that, under reducing conditions, the monomeric Tom1 VHS domain switches from a three-state to a two-state transition behavior. PtdIns5P reduced thermostability, interhelical contacts, and conformational compaction of Tom1 VHS, suggesting that the phosphoinositide destabilizes the protein domain. Destabilization of Tom1 VHS structure was also observed with other phospholipids. Isothermal calorimetry data analysis indicates that, unlike ubiquitin, Tom1 VHS endothermically binds to PtdIns5P through two noncooperative binding sites, with its acyl chains playing a relevant role in the interaction. Altogether, these findings provide mechanistic insights about the recognition of PtdIns5P by the VHS domain that may explain how Tom1, when in a different VHS domain conformational state, interacts with downstream effectors under S. flexneri infection.
Collapse
Affiliation(s)
- Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Tuo-Xian Tang
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Evan Littleton
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Arba Karcini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
25
|
Hervieu A, Kermorgant S. The Role of PI3K in Met Driven Cancer: A Recap. Front Mol Biosci 2018; 5:86. [PMID: 30406111 PMCID: PMC6207648 DOI: 10.3389/fmolb.2018.00086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022] Open
Abstract
The Receptor Tyrosine Kinase (RTK) Met, overexpressed or mutated in cancer, plays a major role in cancer progression and represents an attractive target for cancer therapy. However RTK inhibitors can lead to drug resistance, explaining the necessity to develop therapies that target downstream signaling. Phosphatidylinositide 3-kinase (PI3K) is one of the most deregulated pathways in cancer and implicated in various types of cancer. PI3K signaling is also a major signaling pathway downstream of RTK, including Met. PI3K major effectors include Akt and "mechanistic Target of Rapamycin" (mTOR), which each play key roles in numerous and various cell functions. Advancements made due to the development of molecular and pharmaceutical tools now allow us to delve into the roles of each independently. In this review, we summarize the current understanding we possess of the activation and role of PI3K/Akt/mTOR, downstream of Met, in cancer.
Collapse
Affiliation(s)
- Alexia Hervieu
- Signal Transduction and Molecular Pharmacology Team, Cancer Therapeutics Division, Institute of Cancer Research, Sutton, United Kingdom
- Spatial Signalling Team, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stéphanie Kermorgant
- Spatial Signalling Team, Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Ménard L, Floc'h N, Martin MJ, Cross DAE. Reactivation of Mutant-EGFR Degradation through Clathrin Inhibition Overcomes Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2018; 78:3267-3279. [PMID: 29555874 DOI: 10.1158/0008-5472.can-17-2195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
Tyrosine kinase inhibitors (TKI) targeting mutant EGFR in non-small cell lung cancer (NSCLC) have been successful to control cancer growth, but acquired resistance inevitably occurs, including mutations directly on EGFR, for example, T790M and C797S. Strategies to prevent such acquired mutations by reducing mutant-EGFR expression have met limited success. Here, we propose a new model of mutant-EGFR trafficking and demonstrate that clathrin inhibition induces rapid degradation across a large panel of endogenous mutant-EGFR (Ex19del, L858R, and Ex20Ins). This panel included mutant-EGFR (T790M) resistant to the first- and second-generation EGFR inhibitors and to the third-generation TKI osimertinib and occurs through both mutational (C797S) and nonmutational EGFR mechanisms. Clathrin-mediated endocytosis inhibition of mutant EGFR induced a macropinocytosis-dependent lysosomal pathway associated with a loss of mutant-EGFR-dependent signaling (pAKT, pERK). Moreover, induction of this macropinocytic pathway led to robust apoptosis-dependent death across all mutant-EGFR cell lines tested, including those resistant to TKIs. We, therefore, propose a novel strategy to target mutant-EGFR refractory to approved existing TKI treatments in NSCLC and where new treatment strategies remain a key area of unmet need.Significance: These findings extend our mechanistic understanding of NSCLC mutant EGFR trafficking biology, the role that trafficking may play in resistance of mutant EGFR to tyrosine kinase inhibitors, and provide new therapeutic and biological insights to tackle this fundamental issue and improve benefit to patients. Cancer Res; 78(12); 3267-79. ©2018 AACR.
Collapse
Affiliation(s)
- Ludovic Ménard
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom.
| | - Nicolas Floc'h
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom
| | - Matthew J Martin
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom
| | - Darren A E Cross
- IMED Oncology, AstraZeneca, Cambridge, Cambridgeshire, United Kingdom.
| |
Collapse
|
27
|
Masters TA, Tumbarello DA, Chibalina MV, Buss F. MYO6 Regulates Spatial Organization of Signaling Endosomes Driving AKT Activation and Actin Dynamics. Cell Rep 2018; 19:2088-2101. [PMID: 28591580 PMCID: PMC5469940 DOI: 10.1016/j.celrep.2017.05.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
APPL1- and RAB5-positive signaling endosomes play a crucial role in the activation of AKT in response to extracellular stimuli. Myosin VI (MYO6) and two of its cargo adaptor proteins, GIPC and TOM1/TOM1L2, localize to these peripheral endosomes and mediate endosome association with cortical actin filaments. Loss of MYO6 leads to the displacement of these endosomes from the cell cortex and accumulation in the perinuclear space. Depletion of this myosin not only affects endosome positioning, but also induces actin and lipid remodeling consistent with endosome maturation, including accumulation of F-actin and the endosomal lipid PI(3)P. These processes acutely perturb endosome function, as both AKT phosphorylation and RAC-dependent membrane ruffling were markedly reduced by depletion of either APPL1 or MYO6. These results place MYO6 and its binding partners at a central nexus in cellular signaling linking actin dynamics at the cell surface and endosomal signaling in the cell cortex.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - David A Tumbarello
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Margarita V Chibalina
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
28
|
Spatio-temporal regulation of EGFR signaling by the Eps15 homology domain-containing protein 3 (EHD3). Oncotarget 2018; 7:79203-79216. [PMID: 27811356 PMCID: PMC5346708 DOI: 10.18632/oncotarget.13008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The epidermal growth factor (EGF) receptor EGFR is a major receptor tyrosine kinase whose role in gliomagenesis is well established. We have recently identified EHD3 [Eps15 homology (EH) domain-containing protein 3], an endocytic trafficking regulatory protein, as a putative brain tumor suppressor. Here, we investigate the underlying mechanisms, by establishing a novel mechanistic and functional connection between EHD3 and the EGFR signaling pathway. We show that, in response to stimulation with the EGF ligand, EHD3 accelerates the rate of EGFR degradation by dramatically increasing its ubiquitination. As part of this process, EHD3 also regulates EGFR endosomal trafficking by diverting it away from the recycling route into the degradative pathway. Moreover, we found that upon EGF activation, rather than affecting the total MAPK and AKT downstream signaling, EHD3 decreases endosome-based signaling of these two pathways, thus suggesting the contribution of EHD3 in the spatial regulation of EGFR signaling. This function explains the higher sensitivity of EHD3-expressing cells to the growth-inhibitory effects of EGF. In summary, this is the first report supporting a mechanism of EHD3-mediated tumor suppression that involves the attenuation of endosomal signaling of the EGFR oncogene.
Collapse
|
29
|
Mishra AR, Chaturvedi A. B Cell Receptor Signaling and Compartmentalization by Confocal Microscopy. Methods Mol Biol 2018; 1707:121-129. [PMID: 29388104 DOI: 10.1007/978-1-4939-7474-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Binding of antigen to the B cell receptor (BCR) triggers both BCR signaling and endocytosis simultaneously. BCR signaling pathways and their regulation have been studied extensively by both biochemical methods and flow cytometry, resulting in a comprehensive understanding of the temporal dynamics of the signaling enzymes and effector proteins. However, spatial regulation of these signaling pathways in subcellular pathways is relatively poorly understood. Here, we describe a method to study the spatio-temporal distribution of phosphorylated-kinases in antigen-activated B cells by confocal microscopy. This method can also be applied to other cell types where it is of interest to understand the spatial distribution of signaling enzymes and their effector proteins.
Collapse
Affiliation(s)
- Anurag R Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Indore, India
| | - Akanksha Chaturvedi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India.
| |
Collapse
|
30
|
Post S, Karashchuk G, Wade JD, Sajid W, De Meyts P, Tatar M. Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Front Endocrinol (Lausanne) 2018; 9:245. [PMID: 29892262 PMCID: PMC5985746 DOI: 10.3389/fendo.2018.00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Insulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. Drosophila melanogaster IIS is propagated by eight Drosophila insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single Drosophila insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes. We determined the distinct cell signaling effects of DILP2 and DILP5 stimulation upon Drosophila S2 cells. DILP2 and DILP5 induced similar transcriptional patterns but differed in signal transduction kinetics. DILP5 induced sustained phosphorylation of Akt, while DILP2 produced acute, transient Akt phosphorylation. Accordingly, we used phosphoproteomic analysis to identify distinct patterns of non-genomic signaling induced by DILP2 and DILP5. Across all treatments and replicates, 5,250 unique phosphopeptides were identified, representing 1,575 proteins. Among these peptides, DILP2, but not DILP5, dephosphorylated Ser15 on glycogen phosphorylase (GlyP), and DILP2, but not DILP5, was subsequently shown to repress enzymatic GlyP activity in S2 cells. The functional consequences of this difference were evaluated in adult Drosophila dilp mutants: dilp2 null adults have elevated GlyP enzymatic activity relative to wild type, while dilp5 mutants have reduced GlyP activity. In flies with intact insulin genes, GlyP overexpression extended lifespan in a Ser15 phosphorylation-dependent manner. In dilp2 mutants, that are otherwise long-lived, longevity was repressed by expression of phosphonull GlyP that is enzymatically inactive. Overall, DILP2, unlike DILP5, signals to affect longevity in part through its control of phosphorylation to deactivate glycogen phosphorylase, a central modulator of glycogen storage and gluconeogenesis.
Collapse
Affiliation(s)
- Stephanie Post
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| | - Galina Karashchuk
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | | | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, Brussels, Belgium
- Department of Stem Cell Research Novo Nordisk A/S, Måløv, Denmark
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| |
Collapse
|
31
|
Vermehren-Schmaedick A, Jacob T, Vu TQ. Methodology for Detecting and Tracking Brain-Derived Neurotrophic Factor Complexes in Neurons Using Single Quantum Dots. BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) 2018. [DOI: 10.1007/7657_2018_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
33
|
Caviglia S, Flores-Benitez D, Lattner J, Luschnig S, Brankatschk M. Rabs on the fly: Functions of Rab GTPases during development. Small GTPases 2017; 10:89-98. [PMID: 28118081 PMCID: PMC6380344 DOI: 10.1080/21541248.2017.1279725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The organization of intracellular transport processes is adapted specifically to different cell types, developmental stages, and physiologic requirements. Some protein traffic routes are universal to all cells and constitutively active, while other routes are cell-type specific, transient, and induced under particular conditions only. Small GTPases of the Rab (Ras related in brain) subfamily are conserved across eukaryotes and regulate most intracellular transit pathways. The complete sets of Rab proteins have been identified in model organisms, and molecular principles underlying Rab functions have been uncovered. Rabs provide intracellular landmarks that define intracellular transport sequences. Nevertheless, it remains a challenge to systematically map the subcellular distribution of all Rabs and their functional interrelations. This task requires novel tools to precisely describe and manipulate the Rab machinery in vivo. Here we discuss recent findings about Rab roles during development and we consider novel approaches to investigate Rab functions in vivo.
Collapse
Affiliation(s)
- Sara Caviglia
- a Danish Stem Cell Center (DanStem), University of Copenhagen , Copenhagen , Denmark.,c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland
| | - David Flores-Benitez
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Johanna Lattner
- b Max Planck Institute for Cell Biology and Genetics (MPI-CBG) , Dresden , Germany
| | - Stefan Luschnig
- c Institute of Molecular Life Sciences and Ph.D. Program in Molecular Life Sciences, University of Zurich , Zurich , Switzerland.,d Institute of Neurobiology and Cluster of Excellence Cells-in-Motion (EXC 1003 - CiM), University of Münster , Münster , Germany
| | - Marko Brankatschk
- e The Biotechnological Center of the TU Dresden (BIOTEC) , Dresden , Germany
| |
Collapse
|
34
|
Mondal P, Khamo JS, Krishnamurthy VV, Cai Q, Zhang K. Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells. Front Mol Neurosci 2017; 10:4. [PMID: 28163671 PMCID: PMC5247435 DOI: 10.3389/fnmol.2017.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer’s disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | | | - Qi Cai
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
35
|
Zhang Z, Wang L, Du J, Li Y, Yang H, Li C, Li H, Hu H. Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway. Oncol Lett 2016; 12:4991-4998. [PMID: 28101233 PMCID: PMC5228301 DOI: 10.3892/ol.2016.5307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/03/2016] [Indexed: 12/30/2022] Open
Abstract
Matrix metalloproteinase-1 (MMP-1) has been identified as an important participant in tumor invasion, metastasis and angiogenesis. The purpose of the present study was to investigate the effects of epidermal growth factor receptor (EGFR) localization to lipid rafts on signaling pathways involved in the regulation of MMP-1 expression in SiHa cells, a cervical cancer cell line. EGFR activation by EGF specifically induced MMP-1 expression at both the messenger RNA and protein levels. Additionally, it was observed that EGFR localized to lipid rafts, and that the redistribution of EGFR induced by lipid raft disruption strengthened EGF-induced MMP-1 expression. MMP-1 induction was blocked by the mitogen-activated protein kinase (MAPK) kinase inhibitors PD98059 and U0126. Our results suggested that lipid rafts provide a platform to inhibit EGFR regulation of MMP-1 in SiHa cells through the MAPK/extracellular signal-regulated kinase signaling pathway.
Collapse
Affiliation(s)
- Zongfeng Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lina Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Juan Du
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yuanbo Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Huilun Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chenxi Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hui Li
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haiyang Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
36
|
Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep 2016; 6:29256. [PMID: 27387133 PMCID: PMC4937378 DOI: 10.1038/srep29256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
EGF-mediated EGFR endocytosis plays a crucial role in the attenuation of EGFR activation by sorting from early endosomes to late endosomes and transporting them into lysosomes for the final proteolytic degradation. We previously observed that cathepsin S (CTSS) inhibition induces tumour cell autophagy through the EGFR-mediated signalling pathway. In this study, we further clarified the relationship between CTSS activities and EGFR signalling regulation. Our results revealed that CTSS can regulate EGFR signalling by facilitating EGF-mediated EGFR degradation. CTSS inhibition delayed the EGFR degradation process and caused EGFR accumulation in the late endosomes at the perinuclear region, which provides spatial compartments for prolonged EGFR and sustained downstream signal transducer and activator of transcription 3 and AKT signalling. Notably, cellular apoptosis was markedly enhanced by combining treatment with the EGFR inhibitor Iressa and CTSS inhibitor 6r. The data not only reveal a biological role of CTSS in EGFR signalling regulation but also evidence a rationale for its clinical evaluation in the combination of CTSS and EGFR tyrosine kinase inhibitors.
Collapse
|
37
|
Pandey MS, Miller CM, Harris EN, Weigel PH. Activation of ERK and NF-κB during HARE-Mediated Heparin Uptake Require Only One of the Four Endocytic Motifs. PLoS One 2016; 11:e0154124. [PMID: 27100626 PMCID: PMC4839745 DOI: 10.1371/journal.pone.0154124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Fifteen different ligands, including heparin (Hep), are cleared from lymph and blood by the Hyaluronan (HA) Receptor for Endocytosis (HARE; derived from Stabilin-2 by proteolysis), which contains four endocytic motifs (M1-M4). Endocytosis of HARE•Hep complexes is targeted to coated pits by M1, M2, and M3 (Pandey et al, Int. J. Cell Biol. 2015, article ID 524707), which activates ERK1/2 and NF-κB (Pandey et al J. Biol. Chem. 288, 14068-79, 2013). Here, we used a NF-κB promoter-driven luciferase gene assay and cell lines expressing different HARE cytoplasmic domain mutants to identify motifs needed for Hep-mediated signaling. Deletion of M1, M2 or M4 singly had no effect on Hep-mediated ERK1/2 activation, whereas signaling (but not uptake) was eliminated in HARE(ΔM3) cells lacking NPLY2519. ERK1/2 signaling in cells expressing WT HARE(Y2519A) or HARE(Y2519A) lacking M1, M2 and M4 (containing M3-only) was decreased by 75% or eliminated, respectively. Deletion of M3 (but not M1, M2 or M4) also inhibited the formation of HARE•Hep•ERK1/2 complexes by 67%. NF-κB activation by HARE-mediated uptake of Hep, HA, dermatan sulfate or acetylated LDL was unaffected in single-motif deletion mutants lacking M1, M2 or M4. In contrast, cells expressing HARE(ΔM3) showed loss of HARE-mediated NF-κB activation during uptake of each of these four ligands. NF-κB activation by the four signaling ligands was also eliminated in HARE(Y2519A) or HARE(M3-only;Y2519A) cells. We conclude that the HARE NPLY2519 motif is necessary for both ERK1/2 and NF-κB signaling and that Tyr2519 is critical for these functions.
Collapse
Affiliation(s)
- Madhu S. Pandey
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Colton M. Miller
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, United States of America
| | - Paul H. Weigel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
- * E-mail:
| |
Collapse
|
38
|
Nguyen MK, Kim CY, Kim JM, Park BO, Lee S, Park H, Heo WD. Optogenetic oligomerization of Rab GTPases regulates intracellular membrane trafficking. Nat Chem Biol 2016; 12:431-6. [PMID: 27065232 DOI: 10.1038/nchembio.2064] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 12/25/2022]
Abstract
Intracellular membrane trafficking, which is involved in diverse cellular processes, is dynamic and difficult to study in a spatiotemporal manner. Here we report an optogenetic strategy, termed light-activated reversible inhibition by assembled trap of intracellular membranes (IM-LARIAT), that uses various Rab GTPases combined with blue-light-induced hetero-interaction between cryptochrome 2 and CIB1. In this system, illumination induces a rapid and reversible intracellular membrane aggregation that disrupts the dynamics and functions of the targeted membrane. We applied IM-LARIAT to specifically perturb several Rab-mediated trafficking processes, including receptor transport, protein sorting and secretion, and signaling initiated from endosomes. We finally used this tool to reveal different functions of local Rab5-mediated and Rab11-mediated membrane trafficking in growth cones and soma of young hippocampal neurons. Our results show that IM-LARIAT is a versatile tool that can be used to dissect spatiotemporal functions of intracellular membranes in diverse systems.
Collapse
Affiliation(s)
- Mai Khanh Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Cha Yeon Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon, Republic of Korea
| | - Jin Man Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Byung Ouk Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyerim Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Kalaidzidis I, Miaczynska M, Brewińska-Olchowik M, Hupalowska A, Ferguson C, Parton RG, Kalaidzidis Y, Zerial M. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J Cell Biol 2016; 211:123-44. [PMID: 26459602 PMCID: PMC4602042 DOI: 10.1083/jcb.201311117] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway.
Collapse
Affiliation(s)
- Inna Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Marta Miaczynska
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Marta Brewińska-Olchowik
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Anna Hupalowska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Charles Ferguson
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland St. Lucia, Brisbane, Australia 4072
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland St. Lucia, Brisbane, Australia 4072
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
40
|
Mamińska A, Bartosik A, Banach-Orłowska M, Pilecka I, Jastrzębski K, Zdżalik-Bielecka D, Castanon I, Poulain M, Neyen C, Wolińska-Nizioł L, Toruń A, Szymańska E, Kowalczyk A, Piwocka K, Simonsen A, Stenmark H, Fürthauer M, González-Gaitán M, Miaczynska M. ESCRT proteins restrict constitutive NF-κB signaling by trafficking cytokine receptors. Sci Signal 2016; 9:ra8. [PMID: 26787452 DOI: 10.1126/scisignal.aad0848] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because signaling mediated by the transcription factor nuclear factor κB (NF-κB) is initiated by ligands and receptors that can undergo internalization, we investigated how endocytic trafficking regulated this key physiological pathway. We depleted all of the ESCRT (endosomal sorting complexes required for transport) subunits, which mediate receptor trafficking and degradation, and found that the components Tsg101, Vps28, UBAP1, and CHMP4B were essential to restrict constitutive NF-κB signaling in human embryonic kidney 293 cells. In the absence of exogenous cytokines, depletion of these proteins led to the activation of both canonical and noncanonical NF-κB signaling, as well as the induction of NF-κB-dependent transcriptional responses in cultured human cells, zebrafish embryos, and fat bodies in flies. These effects depended on cytokine receptors, such as the lymphotoxin β receptor (LTβR) and tumor necrosis factor receptor 1 (TNFR1). Upon depletion of ESCRT subunits, both receptors became concentrated on and signaled from endosomes. Endosomal accumulation of LTβR induced its ligand-independent oligomerization and signaling through the adaptors TNFR-associated factor 2 (TRAF2) and TRAF3. These data suggest that ESCRTs constitutively control the distribution of cytokine receptors in their ligand-free state to restrict their signaling, which may represent a general mechanism to prevent spurious activation of NF-κB.
Collapse
Affiliation(s)
- Agnieszka Mamińska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Anna Bartosik
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | - Iwona Pilecka
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | - Irinka Castanon
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Morgane Poulain
- Institut de Biologie Valrose, CNRS UMR 7277, INSERM 1091, University of Nice Sophia Antipolis, 06108 Nice, France
| | - Claudine Neyen
- École Polytechnique Fédérale de Lausanne (EPFL), Global Health Institute, 1015 Lausanne, Switzerland
| | | | - Anna Toruń
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ewelina Szymańska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Agata Kowalczyk
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | | | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Maximilian Fürthauer
- Institut de Biologie Valrose, CNRS UMR 7277, INSERM 1091, University of Nice Sophia Antipolis, 06108 Nice, France
| | | | - Marta Miaczynska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| |
Collapse
|
41
|
Stasyk T, Huber LA. Spatio-Temporal Parameters of Endosomal Signaling in Cancer: Implications for New Treatment Options. J Cell Biochem 2015; 117:836-43. [PMID: 26506511 PMCID: PMC4949996 DOI: 10.1002/jcb.25418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 02/03/2023]
Abstract
The endo/lysosomal system in cells provides membranous platforms to assemble specific signaling complexes and to terminate signal transduction, thus, is essential for physiological signaling. Endocytic organelles can significantly extend signaling of activated cell surface receptors, and may additionally provide distinct locations for the generation of specific signaling outputs. Failures of regulation at different levels of endocytosis, recycling, degradation as well as aberrations in specific endo/lysosomal signaling pathways, such as mTORC1, might lead to different diseases including cancer. Therefore, a better understanding of spatio‐temporal compartmentalization of sub‐cellular signaling might provide an opportunity to interfere with aberrant signal transduction in pathological processes by novel combinatorial therapeutic approaches. J. Cell. Biochem. 117: 836–843, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Taras Stasyk
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Austria
| | - Lukas A Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Austria.,ADSI - Austrian Drug Screening Institute, Innsbruck, Austria
| |
Collapse
|
42
|
van Bergeijk P, Hoogenraad CC, Kapitein LC. Right Time, Right Place: Probing the Functions of Organelle Positioning. Trends Cell Biol 2015; 26:121-134. [PMID: 26541125 DOI: 10.1016/j.tcb.2015.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The proper spatial arrangement of organelles underlies many cellular processes including signaling, polarization, and growth. Despite the importance of local positioning, the precise connection between subcellular localization and organelle function is often not fully understood. To address this, recent studies have developed and employed different strategies to directly manipulate organelle distributions, such as the use of (light-sensitive) heterodimerization to control the interaction between selected organelles and specific motor proteins, adaptor molecules, or anchoring factors. We review here the importance of subcellular localization as well as tools to control local organelle positioning. Because these approaches allow spatiotemporal control of organelle distribution, they will be invaluable tools to unravel local functioning and the mechanisms that control positioning.
Collapse
Affiliation(s)
- Petra van Bergeijk
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
43
|
Fernández-Acero T, Rodríguez-Escudero I, Molina M, Cid VJ. The yeast cell wall integrity pathway signals from recycling endosomes upon elimination of phosphatidylinositol (4,5)-bisphosphate by mammalian phosphatidylinositol 3-kinase. Cell Signal 2015; 27:2272-84. [PMID: 26261079 DOI: 10.1016/j.cellsig.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] is essential for recognition of the plasma membrane inner leaf by protein complexes. We expressed mammalian class I phosphoinositide 3-kinase (PI3K) in Saccharomyces cerevisiae to eliminate PtdIns(4,5)P(2) by its conversion into PtdIns(3,4,5)P(3), a lipid naturally missing in this yeast. This led to loss of actin function and endocytosis defects, causing a blockage in polarized secretion. Also, the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway was activated, triggering a typical transcriptional response. In the absence of PtdIns(4,5)P(2) at the plasma membrane, the Pkc1 protein kinase upstream the CWI MAPK module localized to post-Golgi endosomes marked by SNARE Snc1 and Rab GTPases Ypt31 and Ypt32. Other components at the head of the pathway, like the mechanosensor Wsc1, the GTPase Rho1 and its activator the GDP/GTP exchange factor Rom2, co-localized with Pkc1 in these compartments. Chemical inhibition of PI3K proved that both CWI activation and Pkc1 relocation to endosomes are reversible. These results suggest that the CWI pathway is able to respond to loss of plasma membrane identity from recycling endosomes.
Collapse
Affiliation(s)
- Teresa Fernández-Acero
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Isabel Rodríguez-Escudero
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María Molina
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain.
| | - Víctor J Cid
- Dpto. de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain; Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| |
Collapse
|
44
|
Matsubayashi Y, Coulson-Gilmer C, Millard TH. Endocytosis-dependent coordination of multiple actin regulators is required for wound healing. J Cell Biol 2015. [PMID: 26216900 PMCID: PMC4523608 DOI: 10.1083/jcb.201411037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to heal wounds efficiently is essential for life. After wounding of an epithelium, the cells bordering the wound form dynamic actin protrusions and/or a contractile actomyosin cable, and these actin structures drive wound closure. Despite their importance in wound healing, the molecular mechanisms that regulate the assembly of these actin structures at wound edges are not well understood. In this paper, using Drosophila melanogaster embryos, we demonstrate that Diaphanous, SCAR, and WASp play distinct but overlapping roles in regulating actin assembly during wound healing. Moreover, we show that endocytosis is essential for wound edge actin assembly and wound closure. We identify adherens junctions (AJs) as a key target of endocytosis during wound healing and propose that endocytic remodeling of AJs is required to form "signaling centers" along the wound edge that control actin assembly. We conclude that coordination of actin assembly, AJ remodeling, and membrane traffic is required for the construction of a motile leading edge during wound healing.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Camilla Coulson-Gilmer
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Tom H Millard
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
45
|
Chaiyadet S, Smout M, Johnson M, Whitchurch C, Turnbull L, Kaewkes S, Sotillo J, Loukas A, Sripa B. Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production. Int J Parasitol 2015; 45:773-81. [PMID: 26187786 DOI: 10.1016/j.ijpara.2015.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/18/2015] [Accepted: 06/06/2015] [Indexed: 01/22/2023]
Abstract
Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south-eastern Asia.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand; Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Michael Johnson
- Faculty of Science, University of Technology Sydney, Sydney, Australia
| | | | - Lynne Turnbull
- Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Sasithorn Kaewkes
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
46
|
Clegg LW, Mac Gabhann F. Site-Specific Phosphorylation of VEGFR2 Is Mediated by Receptor Trafficking: Insights from a Computational Model. PLoS Comput Biol 2015; 11:e1004158. [PMID: 26067165 PMCID: PMC4466579 DOI: 10.1371/journal.pcbi.1004158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/25/2015] [Indexed: 02/05/2023] Open
Abstract
Matrix-binding isoforms and non-matrix-binding isoforms of vascular endothelial growth factor (VEGF) are both capable of stimulating vascular remodeling, but the resulting blood vessel networks are structurally and functionally different. Here, we develop and validate a computational model of the binding of soluble and immobilized ligands to VEGF receptor 2 (VEGFR2), the endosomal trafficking of VEGFR2, and site-specific VEGFR2 tyrosine phosphorylation to study differences in induced signaling between these VEGF isoforms. In capturing essential features of VEGFR2 signaling and trafficking, our model suggests that VEGFR2 trafficking parameters are largely consistent across multiple endothelial cell lines. Simulations demonstrate distinct localization of VEGFR2 phosphorylated on Y1175 and Y1214. This is the first model to clearly show that differences in site-specific VEGFR2 activation when stimulated with immobilized VEGF compared to soluble VEGF can be accounted for by altered trafficking of VEGFR2 without an intrinsic difference in receptor activation. The model predicts that Neuropilin-1 can induce differences in the surface-to-internal distribution of VEGFR2. Simulations also show that ligated VEGFR2 and phosphorylated VEGFR2 levels diverge over time following stimulation. Using this model, we identify multiple key levers that alter how VEGF binding to VEGFR2 results in different coordinated patterns of multiple downstream signaling pathways. Specifically, simulations predict that VEGF immobilization, interactions with Neuropilin-1, perturbations of VEGFR2 trafficking, and changes in expression or activity of phosphatases acting on VEGFR2 all affect the magnitude, duration, and relative strength of VEGFR2 phosphorylation on tyrosines 1175 and 1214, and they do so predictably within our single consistent model framework. Vascular endothelial growth factor (VEGF) is an important regulator of blood vessel growth. To date, therapies attempting to harness the VEGF system to promote blood vessel growth (e.g. for wound healing or ischemic disease) have achieved only limited success. To improve VEGF-based therapies, we need to better understand how VEGF promotes development of functional blood vessels. We have developed a computational model of VEGF binding to the receptor VEGFR2, trafficking of VEGFR2 through endosomal compartments in the cell, and activation of VEGFR2 on several tyrosine residues. The pattern of tyrosines activated on VEGFR2 influences cell behavior, promoting cell survival, proliferation, or migration. The combination of these cues influences the diameter of vessels, degree of branching, and leakiness of the resultant vessel network. Our model shows that changes in VEGFR2 trafficking as a result of VEGF immobilization to the extracellular matrix are sufficient to describe observed changes in the pattern of VEGFR2 activation compared to stimulation with purely soluble VEGF. This model can be used to predict how VEGF immobilization, interactions with co-receptors or proteins that deactivate VEGFR2, and changes to VEGFR2 trafficking can be tuned to promote development of functional blood vessel networks for tissue engineering applications.
Collapse
Affiliation(s)
- Lindsay Wendel Clegg
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
48
|
Preuten T, Blackwood L, Christie JM, Fankhauser C. Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go? THE NEW PHYTOLOGIST 2015; 206:1038-1050. [PMID: 25643813 DOI: 10.1111/nph.13299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/16/2014] [Indexed: 05/05/2023]
Abstract
The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization.
Collapse
Affiliation(s)
- Tobias Preuten
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| | - Lisa Blackwood
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
49
|
van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC. Optogenetic control of organelle transport and positioning. Nature 2015; 518:111-114. [PMID: 25561173 DOI: 10.1038/nature14128] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/01/2014] [Indexed: 01/20/2023]
Abstract
Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.
Collapse
Affiliation(s)
- Petra van Bergeijk
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Max Adrian
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
50
|
A. Karpov O, W. Fearnley G, A. Smith G, Kankanala J, J. McPherson M, C. Tomlinson D, A. Harrison M, Ponnambalam S. Receptor tyrosine kinase structure and function in health and disease. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.4.476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|