1
|
Kinsey N, Belanger JM, Oberbauer AM. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes (Basel) 2024; 15:1474. [PMID: 39596674 PMCID: PMC11593353 DOI: 10.3390/genes15111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) disproportionately affects Belgian shepherd dogs and although genomic risk markers have been identified previously in the breed, causative variants have not been described. METHODS The current study analyzed differences in whole blood RNA expression associated with IE and with a previously identified IE risk haplotype on canine chromosome (CFA) 14 using a transcriptomics RNA-seq approach. RESULTS MFSD2A and a likely pseudogene of RPL19, both of which are genes implicated in seizure activity, were upregulated in dogs with IE. Genes in the interferon signaling pathway were downregulated in Belgian shepherds with IE. The CFA14 risk haplotype was associated with upregulation of CLIC1, ACE2, and PIGN and downregulation of EPDR1, all known to be involved with epilepsy or the Wnt/β-catenin signaling pathway. CONCLUSIONS These results highlight the value of assessing gene expression in canine IE research to uncover genomic contributory factors.
Collapse
Affiliation(s)
| | | | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
2
|
Hua D, Gu J, Xie F, Xu Y, Li Z, Zheng H, Chen Z. To explore the protective effect and mechanism of KLF7 overexpression on retinal ganglion cells after optic nerve crush in mice. Eur J Ophthalmol 2024:11206721241297023. [PMID: 39513284 DOI: 10.1177/11206721241297023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE To investigate the protective effect and mechanism of Krüppel-like factor 7 (KLF7) on retinal ganglion cells (RGCs) after optic nerve crush (ONC). METHODS Ninety 10-week-old C57BL/6J mice were randomly assigned to five groups. The blank control group (group A), IVT (intravitreal injection) of KLF7 (group B), IVT of phosphate-buffered saline after ONC (group C), IVT of KLF7 after ONC (group D), and IVT of green fluorescent protein after ONC (group E). Retinal electroretinography and immunofluorescence staining were performed to observe the function and survival rate of RGCs on days 3 and 7 after ONC. The Western Blot determined the expressions of JNK 1, ERK, P38, NF-κB, IL-1, IL-6, and TNF-α seven days after ONC. RESULTS After ONC, KLF7 gradually increased from day 3 to day 14, with the peak noted a peak on day 7. On day 7 after ONC, the RGC survival rate in Group D was significantly higher than in groups C (P = 0.028) and E (P = 0.007). The negative PhNR wave amplitude significantly decreased in groups C (P = 0.03) and E (P = 0.04) compared to group D. Moreover, group D also showed significantly higher ERK levels among the groups (all P < 0.01); NF-κB, IL-1, IL-6, and TNF-α expression decreased significantly in group D compared with groups C and E (all P < 0.01). CONCLUSIONS Overexpression of KLF7 improved the survival rate and function of RGCs in mice ONC models by activating the ERK pathway and inhibiting relevant inflammatory factors. KLF7 may be a promising protective factor against optic nerve damage.
Collapse
Affiliation(s)
- Dihao Hua
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Jingsai Gu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Feijia Xie
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Yishuang Xu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Zongyuan Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongmei Zheng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| |
Collapse
|
3
|
Qiao S, Jia Y, Xie L, Jing W, Xia Y, Song Y, Zhang J, Cao T, Song H, Meng L, Shi L, Zhang X. KLF7 promotes neuroblastoma differentiation through the GTPase signaling pathway by upregulating neuroblast differentiation-associated protein AHNAKs and glycerophosphodiesterase GDPD5. FEBS J 2024; 291:3870-3888. [PMID: 38924469 DOI: 10.1111/febs.17208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The arrest of neural crest-derived sympathoadrenal neuroblast differentiation contributes to neuroblastoma formation, and overriding this blocked differentiation is a clear strategy for treating high-risk neuroblastoma. A better understanding of neuroblast or neuroblastoma differentiation is essential for developing new therapeutic approaches. It has been proposed that Krueppel-like factor 7 (KLF7) is a neuroblastoma super-enhancer-associated transcription factor gene. Moreover, KLF7 was found to be intensely active in postmitotic neuroblasts of the developing nervous system during embryogenesis. However, the role of KLF7 in the differentiation of neuroblast or neuroblastoma is unknown. Here, we find a strong association between high KLF7 expression and favorable clinical outcomes in neuroblastoma. KLF7 induces differentiation of neuroblastoma cells independently of the retinoic acid (RA) pathway and acts cooperatively with RA to induce neuroblastoma differentiation. KLF7 alters the GTPase activity and multiple differentiation-related genes by binding directly to the promoters of neuroblast differentiation-associated protein (AHNAK and AHNAK2) and glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) and regulating their expression. Furthermore, we also observe that silencing KLF7 in neuroblastoma cells promotes the adrenergic-to-mesenchymal transition accompanied by changes in enhancer-mediated gene expression. Our results reveal that KLF7 is an inducer of neuroblast or neuroblastoma differentiation with prognostic significance and potential therapeutic value.
Collapse
Affiliation(s)
- Shupei Qiao
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Ying Jia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Li Xie
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Wenwen Jing
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Yang Xia
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Yue Song
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Jiahui Zhang
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Tianhua Cao
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Huilin Song
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Lingdi Meng
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, China
| | - Lei Shi
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, China
| | - Xue Zhang
- Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, China
| |
Collapse
|
4
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
5
|
Kinsey N, Belanger JM, Mandigers PJJ, Leegwater PA, Heinonen T, Hytönen MK, Lohi H, Ostrander EA, Oberbauer AM. Idiopathic Epilepsy Risk Allele Trends in Belgian Tervuren: A Longitudinal Genetic Analysis. Genes (Basel) 2024; 15:114. [PMID: 38255002 PMCID: PMC10815166 DOI: 10.3390/genes15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Idiopathic epilepsy (IE) has been known to be inherited in the Belgian Tervuren for many decades. Risk genotypes for IE in this breed have recently been identified on Canis familiaris chromosomes (CFA) 14 and 37. In the current study, the allele frequencies of these loci were analyzed to determine whether dog breeders had employed a purposeful selection against IE, leading to a reduction in risk-associated allele frequency within the breed over time. The allele frequencies of two generational groupings of Belgian Tervuren with and without IE were compared. Allele frequencies for risk-associated alleles on CFA14 were unchanged between 1985 and 2015, whereas those on CFA37 increased during that time in the control population (p < 0.05). In contrast, dogs with IE showed a decrease (p < 0.05) in the IE risk-associated allele frequency at the CFA37 locus. Seizure prevalence in the Belgian Tervuren appears to be increasing. These results suggest that, despite awareness that IE is inherited, selection against IE has not been successful.
Collapse
Affiliation(s)
- Nathan Kinsey
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| | - Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Peter A. Leegwater
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
6
|
Hong W, Gong P, Pan X, Liu Y, Qi G, Qi C, Qin S. Krüppel-like factor 7 deficiency disrupts corpus callosum development and neuronal migration in the developing mouse cerebral cortex. Brain Pathol 2023; 33:e13186. [PMID: 37401095 PMCID: PMC10467035 DOI: 10.1111/bpa.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Krüppel-like Factor 7 (KLF7) is a zinc finger transcription factor that has a critical role in cellular differentiation, tumorigenesis, and regeneration. Mutations in Klf7 are associated with autism spectrum disorder, which is characterized by neurodevelopmental delay and intellectual disability. Here we show that KLF7 regulates neurogenesis and neuronal migration during mouse cortical development. Conditional depletion of KLF7 in neural progenitor cells resulted in agenesis of the corpus callosum, defects in neurogenesis, and impaired neuronal migration in the neocortex. Transcriptomic profiling analysis indicated that KLF7 regulates a cohort of genes involved in neuronal differentiation and migration, including p21 and Rac3. These findings provide insights into our understanding of the potential mechanisms underlying neurological defects associated with Klf7 mutations.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Congcong Qi
- Department of Laboratory Animal ScienceFudan UniversityShanghaiChina
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Sui Y, Jiang H, Kellogg CM, Oh S, Janknecht R. Promotion of colorectal cancer by transcription factor BHLHE40 involves upregulation of ADAM19 and KLF7. Front Oncol 2023; 13:1122238. [PMID: 36890812 PMCID: PMC9986587 DOI: 10.3389/fonc.2023.1122238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BHLHE40 is a transcription factor, whose role in colorectal cancer has remained elusive. We demonstrate that the BHLHE40 gene is upregulated in colorectal tumors. Transcription of BHLHE40 was jointly stimulated by the DNA-binding ETV1 protein and two associated histone demethylases, JMJD1A/KDM3A and JMJD2A/KDM4A, which were shown to also form complexes on their own and whose enzymatic activity was required for BHLHE40 upregulation. Chromatin immunoprecipitation assays revealed that ETV1, JMJD1A and JMJD2A interacted with several regions within the BHLHE40 gene promoter, suggesting that these three factors directly control BHLHE40 transcription. BHLHE40 downregulation suppressed both growth and clonogenic activity of human HCT116 colorectal cancer cells, strongly hinting at a pro-tumorigenic role of BHLHE40. Through RNA sequencing, the transcription factor KLF7 and the metalloproteinase ADAM19 were identified as putative BHLHE40 downstream effectors. Bioinformatic analyses showed that both KLF7 and ADAM19 are upregulated in colorectal tumors as well as associated with worse survival and their downregulation impaired HCT116 clonogenic activity. In addition, ADAM19, but not KLF7, downregulation reduced HCT116 cell growth. Overall, these data have revealed a ETV1/JMJD1A/JMJD2A→BHLHE40 axis that may stimulate colorectal tumorigenesis through upregulation of genes such as KLF7 and ADAM19, suggesting that targeting this axis represents a potential novel therapeutic avenue.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hanlin Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Collyn M Kellogg
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Stephenson Cancer Center, Oklahoma City, OK, United States
| |
Collapse
|
8
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Obesity-induced elevated palmitic acid promotes inflammation and glucose metabolism disorders through GPRs/NF-κB/KLF7 pathway. Nutr Diabetes 2022; 12:23. [PMID: 35443706 PMCID: PMC9021212 DOI: 10.1038/s41387-022-00202-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Our previous results have shown that obesity-induced excessive palmitic acid (PA) can promote the expression of KLF7, which plays a vital role in regulation of inflammation, glucose metabolism. But the exact mechanism of PA up-regulating the expression of KLF7 is not clear yet. This study is intend to explore whether PA promoting KLF7 expression through GPRs/NF-κB signaling pathway, causing inflammation and glucose metabolism disorders. Methods Cells were blocked GPRs/NF-κB under PA stimulation in vitro to demonstrate the molecular mechanism of PA up-regulates KLF7 expression. The regulatory effect of p65 on KLF7 was detected by luciferase reporter gene assay. Blocking GPRs/NF-κB in diet-induced obesity mice to detect the expression of KLF7, inflammatory cytokines and glucose metabolism related factors, clarifying the effects of GPRs/NF-κB on KLF7 in vivo. Results In 3T3-L1 adipocytes and HepG2 cells, PA could up-regulate the expression of KLF7 by promoting the GPR40/120-NF-κB signaling pathway, leading to inflammation and reduced glucose consumption (p < 0.05 for both). Luciferase reporter gene assay and ChIP assay showed that p65 could transcriptionally up-regulates the expression of KLF7. In high-fat diet (HFD) mice, after intraperitoneal injection of GPR40 or GPR120 blocker, the levels of p-p65 and KLF7 in epididymal white adipose tissue and liver were significantly decreased (p < 0.05 for both). Pharmacological inhibition of p-p65 significantly attenuated KLF7 expression and improved glucose tolerant and insulin sensitive (p < 0.05 for both). Conclusions Our results indicate that obesity-induced elevated palmitic acid promotes inflammation and glucose metabolism disorders through GPRs/NF-κB/KLF7 signaling pathway.
Collapse
|
10
|
Deng L, Qing W, Lai S, Zheng J, Liu C, Huang H, Peng P, Mu Y. Differential Expression Profiling of microRNAs in Human Placenta-Derived Mesenchymal Stem Cells Cocultured with Grooved Porous Hydroxyapatite Scaffolds. DNA Cell Biol 2022; 41:292-304. [PMID: 35180361 DOI: 10.1089/dna.2021.0850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Scaffold materials used for bone defect repair are often limited by osteogenic efficacy. Moreover, microRNAs (miRNAs) are involved in regulating the expression of osteogenic-related genes. In previous studies, we verified the enhancement of osteogenesis using a grooved porous hydroxyapatite scaffold (HAG). In the present study, we analyzed the contribution of HAG to the osteogenic differentiation of human placenta-derived mesenchymal stem cells (hPMSCs) from the perspective of miRNA differential expression. Furthermore, results showed that miRNAs were differentially expressed in the osteogenic differentiation of hPMSCs cocultured with HAG. In detail, 16 miRNAs were significantly upregulated and 29 miRNAs were downregulated with HAG. In addition, bioinformatics analyses showed that the differentially expressed miRNAs were enriched in a variety of biological processes, including signal transduction, cell metabolism, cell junctions, cell development and differentiation, and that they were associated with osteogenic differentiation through axon guidance, mitogen-activated protein kinase, and the transforming growth factor beta signaling pathway. Furthermore, multiple potential target genes of these miRNAs were closely related to osteogenic differentiation. Importantly, overexpression of miR-146a-5p (an upregulated miRNA) promoted the osteogenic differentiation of hPMSCs, and miR-145-5p overexpression (a downregulated miRNA) inhibited the osteogenic differentiation of hPMSCs.
Collapse
Affiliation(s)
- Li Deng
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Wei Qing
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Jiajun Zheng
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Cong Liu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Pairan Peng
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Li J, Sun L, Peng XL, Yu XM, Qi SJ, Lu ZJ, Han JDJ, Shen Q. Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons. PLoS Genet 2021; 17:e1009355. [PMID: 33760820 PMCID: PMC7990179 DOI: 10.1371/journal.pgen.1009355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation. Neural stem cells and progenitor cells in the embryonic brain give rise to neurons following a precise temporal order after initial expansion. Early-born neurons including Cajal-Retzius (CR) cells and subplate neurons form the preplate in the developing cerebral cortex, then CR neurons occupy the layer 1, playing an important role in cortical histogenesis. The molecular mechanisms governing the early neuronal differentiation processes remain to be explored. Here, by genome-wide approaches including bulk RNA-seq, single-cell RNA-seq and ChIP-seq, we comprehensively characterized the temporal dynamic gene expression profile and epigenetic status at different stages during early cortical development and uncovered molecularly heterogeneous subpopulations within the CR cells. We revealed CR neuron signatures and cell type-specific histone modification patterns along early neuron specification. Using in vitro and in vivo assays, we identified novel lncRNAs as potential functional regulators in preplate differentiation and CR neuron identity establishment. Our study provides a comprehensive analysis of the genetic and epigenetic programs during neuronal differentiation and would help bring new insights into the early cortical neurogenesis process, particularly the differentiation of CR neurons.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- PTN graduate program, School of Life Sciences, Peking University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Lei Sun
- PTN graduate program, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Xiao-Ming Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Shao-Jun Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Brain and Spinal Cord Clinical Research Center, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Reccia MG, Volpicelli F, Benedikz E, Svenningsen ÅF, Colucci-D’Amato L. Generation of High-Yield, Functional Oligodendrocytes from a c- myc Immortalized Neural Cell Line, Endowed with Staminal Properties. Int J Mol Sci 2021; 22:1124. [PMID: 33498778 PMCID: PMC7865411 DOI: 10.3390/ijms22031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs.
Collapse
Affiliation(s)
- Mafalda Giovanna Reccia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Eirkiur Benedikz
- Faculty of Health Sciences, J.B. Winsløwsvej 21, 5000 Odense, Denmark;
| | - Åsa Fex Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløws Vej 21.1, 5000 Odense, Denmark
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- Interuniversity Center for Research in Neuroscience (CIRN), University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| |
Collapse
|
13
|
Zhang Z, Nie C, Chen Y, Dong Y, Lin T. DNA methylation of CpG sites in the chicken KLF7 promoter and Exon 2 in association with mRNA expression in abdominal adipose tissue and blood metabolic indicators. BMC Genet 2020; 21:120. [PMID: 33054719 PMCID: PMC7558735 DOI: 10.1186/s12863-020-00923-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous study found that chicken KLF7 was an important regulator in formation of adipose tissue. In the present study, we analyzed the association for DNA methylation in chicken KLF7 with its transcripts of abdominal adipose tissue and blood metabolic indicators. RESULTS The KLF7 transcripts of the adipose tissue of Chinese yellow broilers were associated with age (F = 6.67, P = 0.0035). In addition, the KLF7 transcripts were negatively correlated with blood glucose levels (r = - 0.61841, P = 0.0140). The DNA methylation levels of 26 CpG loci in the chicken KLF7 promoter and Exon 2 were studied by Sequenom MassArray. A total of 22 valid datasets were obtained. None of them was significantly different in relation to age (P > 0.05). However, the DNA methylation levels in the promoter were lower than those in Exon 2 (T = 40.74, P < 0.01). Correlation analysis showed that the DNA methylation levels of PCpG6 and E2CpG9 were significantly correlated with KLF7 transcripts and blood high-density lipoprotein levels, respectively, and many CpG loci were correlated with each other (P < 0.05). The methylation data were subjected to principal component analysis and factor analysis. The six principal components (z1-z6) were extracted and named Factors 1-6, respectively. Factor analysis showed that Factor 1 had a higher load on the loci in the promoter, and Factors 2-6 loaded highly on quite different loci in Exon 2. Correlation analysis showed that only z1 was significantly correlated to KLF7 transcripts (P < 0.05). In addition, an established regression equation between z1 and KLF7 transcripts was built, and the contribution of z1 to the variation on KLF7 transcripts was 34.29%. CONCLUSIONS In conclusion, the KLF7 transcripts of chicken abdominal adipose tissue might be inhibited by DNA methylation in the promoter, and it might be related to the DNA methylation level of PCpG6.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Medicine, Shihezi University, No. 59 Beier Road, Shihezi, Xinjiang, 832000, P. R. China.
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi university, Shihezi, 832000, China
| | - Yuechan Chen
- First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Yanzhe Dong
- School of Medicine, Shihezi University, No. 59 Beier Road, Shihezi, Xinjiang, 832000, P. R. China
| | - Tao Lin
- School of Medicine, Shihezi University, No. 59 Beier Road, Shihezi, Xinjiang, 832000, P. R. China
| |
Collapse
|
14
|
Yang J, Xie K, Wang Z, Li C. Elevated KLF7 levels may serve as a prognostic signature and might contribute to progression of squamous carcinoma. FEBS Open Bio 2020; 10:1577-1586. [PMID: 32536035 PMCID: PMC7396437 DOI: 10.1002/2211-5463.12912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Global efforts have been undertaken to define the genome-wide distribution of epigenetic markers in cancerous tissues, which provide an invaluable opportunity to understand cancer biology and identify predictive signatures. Several studies have focused on the gene expression patterns of squamous carcinoma to identify tumor subtypes and find prognostic and therapeutic targets because squamous carcinoma genomes showed high instability. However, the number of reliable reports referring prognostic significance of genes and their role in squamous carcinoma is still quite limited. Krüppel-like factor 7 (KLF7) is a transcription factor that is widely expressed in numerous human tissues at low levels. Members of the KLF family have established roles in tumor cell fate, stress response, cell survival and the tumor-initiating properties of cancer stem-like cells. Hence to investigate whether KFL7 expression from cancer tissue holds promise as a prognostic and/or therapeutic target, we analyzed gene expression profiles from squamous carcinoma and surgical margin tissues in The Cancer Genome Atlas. We identified significant up-regulation of KLF7 in squamous carcinoma, which was confirmed by immunohistochemical staining. Elevated KLF7 expression was associated with poor squamous carcinoma prognosis before and after correcting for confounding factors by multivariate Cox regression analysis. Several pathways, such as Neurotrophin and GnRH pathways, were activated in KLF7-up-regulated squamous carcinoma samples through Gene Set Enrichment Analysis. In conclusion, we consolidate the potential role(s) of KLF7 in squamous carcinoma carcinogenesis from The Cancer Genome Atlas surgical margin tissue, offering insights into expression signatures that are potentially useful for prognosis modalities.
Collapse
Affiliation(s)
- Jingrun Yang
- Department of DermatologyPLA General HospitalBeijingChina
| | - Kuixia Xie
- Dermatological DepartmentTianjin Fifth Centre HospitalTianjinChina
| | - Zihui Wang
- Department of PharmacyBeijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Chengxin Li
- Department of DermatologyPLA General HospitalBeijingChina
| |
Collapse
|
15
|
Niu R, Tang Y, Xi Y, Jiang D. High Expression of Krüppel-like Factor 7 Indicates Unfavorable Clinical Outcomes in Patients with Lung Adenocarcinoma. J Surg Res 2020; 250:216-223. [PMID: 32092599 DOI: 10.1016/j.jss.2019.12.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Krüppel-like factor 7 (KLF7), which belongs to the KLF family of zinc finger transcription factors, plays a critical role in regulating gene expression. It was reported that KLF7 overexpression was closely related to the progression of gastric cancer. However, the role of KLF7 in lung adenocarcinoma (LAC) has not been elucidated. The aim of our study is to investigate the expression pattern of KLF7 and explore whether the KLF7 expression is correlated with unfavorable clinical outcome of patients with LAC. MATERIALS AND METHODS The protein and mRNA levels of KLF7 were examined in LAC tissues by using immunohistochemistry staining and quantitative reverse transcription polymerase chain reaction, respectively. The prognostic role of KLF7 in patients with LAC was assessed using univariate and multivariate analyses. Clinical outcomes were evaluated by Kaplan-Meier analysis and logrank test. The effects of KLF7 on lung cancer cells were investigated through cellular experiments. RESULTS KLF7 expression was elevated in LAC tissues compared with adjacent normal tissues. High protein level of KLF7 was correlated with larger tumor size, positive lymph node metastasis, and advanced TNM stage. Moreover, patients with LAC with higher expression level of KLF7 had poorer overall survival, and KLF7 was identified as an unfavorable independent prognosis factor. Knockdown of KLF7 can suppress the proliferation and invasion abilities of cancer cells. CONCLUSIONS Our studies revealed that high KLF7 expression level was significantly associated with the poorer clinical outcomes of patients with LAC, indicating the potential role of KLF7 as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Rungui Niu
- Department of Geratology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Yanlei Tang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China.
| | - Daowen Jiang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhang Z, Wu C, Lin T, Chen Y. Loss of the third C2H2 zinc finger of chicken KLF7 affects its transcriptional regulation activities in adipose tissue. Acta Biochim Biophys Sin (Shanghai) 2020; 52:84-90. [PMID: 31828306 DOI: 10.1093/abbs/gmz132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
KLF7, one of candidate genes in neurotherapy and metabolic syndrome, has been studied in adipogenesis of mammalian species and birds. However, the effect of the third C2H2 zinc finger of KLF7 for its transcriptional regulation in adipogenesis has not been well understood. Here, the wild-type chicken KLF7 (KLF7) overexpression plasmid, pCMV-myc-KLF7, and two plasmids of chicken KLF7 mutants, i.e. pCMV-myc-KLF7m1 with half of the third zinc finger (KLF7m1) and pCMV-myc-KLF7m2 without the third zinc finger (KLF7m2), were constructed. Luciferase reporter assay in DF1 cells showed that the effect of chicken KLF7 overexpression on the promoter activity of LPL was greater than those of KLF7m1 and KLF7m2 (P < 0.05). There was no significant difference among the overexpression of KLF7, KLF7m1 and KLF7m2 on the promoter activities of FASN, C/EBPα and FABP4 (P > 0.05). Additionally, the effects of KLF7, KLF7m1 and KLF7m2 overexpression on the promoter activity of PPARγ were different. KLF7 overexpression had no significant effect on the PPARγ promoter activity (P > 0.05), KLF7m1 overexpression suppressed PPARγ promoter activity (P < 0.05), while KLF7m2 overexpression facilitated the promoter activity of PPARγ (P < 0.05), consistent with the results of western blot analysis. Our results suggested that the third zinc finger of chicken KLF7 may play a role in its transcriptional regulation of LPL and PPARγ but has no effect on its regulation of C/EBPα, FASN and FABP4. The third zinc finger of KLF7 might be a target for the treatment of metabolic disorder in chicken.
Collapse
Affiliation(s)
- Zhiwei Zhang
- School of Medicine, Shihezi University, Shihezi 832000, China
| | - Chunyan Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Tao Lin
- School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yuechan Chen
- First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
17
|
Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential Elements of Locomotor Control in the Intact and Possibly the Injured Spinal Cord. Front Cell Neurosci 2019; 13:512. [PMID: 31798419 PMCID: PMC6874159 DOI: 10.3389/fncel.2019.00512] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Propriospinal interneurons (INs) communicate information over short and long distances within the spinal cord. They act to coordinate different parts of the body by linking motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their role in coordinating locomotor circuits near and far may be invaluable to the recovery of locomotor function lost due to injury to the spinal cord where the flow of motor commands from the brain and brainstem to spinal motor circuits is disrupted. The formation and activation of circuits established by spared propriospinal INs may promote the re-emergence of locomotion. In light of progress made in animal models of spinal cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in the intact spinal cord and describe recent studies investigating the assembly and/or activation of propriospinal circuits to promote recovery of locomotion following SCI.
Collapse
Affiliation(s)
- Alex M Laliberte
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara Goltash
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas R Lalonde
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tuan Vu Bui
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Li WY, Zhu GY, Yue WJ, Sun GD, Zhu XF, Wang Y. KLF7 overexpression in bone marrow stromal stem cells graft transplantation promotes sciatic nerve regeneration. J Neural Eng 2019; 16:056011. [PMID: 31296795 DOI: 10.1088/1741-2552/ab3188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Our previous study demonstrated that the transcription factor, Krüppel-like Factor 7 (KLF7), stimulates axon regeneration following peripheral nerve injury. In the present study, we used a gene therapy approach to overexpress KLF7 in bone marrow-derived stem/stromal cells (BMSCs) as support cells, combined with acellular nerve allografts (ANAs) and determined the potential therapeutic efficacy of a KLF7-transfected BMSC nerve graft transplantation in a rodent model for sciatic nerve injury and repair. APPROACH We efficiently transfected BMSCs with adeno-associated virus (AAV)-KLF7, which were then seeded in ANAs for bridging sciatic nerve defects. MAIN RESULTS KLF7 overexpression promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. In vivo, KLF7 overexpression promotes transplanted BMSCs survival and myelinated fiber regeneration in regenerating ANAs; however, KLF7 did not improve Schwann-like cell differentiation of BMSCs within in the nerve grafts. KLF7-BMSCs significantly upregulated expression and secretion of neurotrophic factors by BMSCs, including nerve growth factor, ciliary neurotrophic factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in regenerating ANA. KLF7-BMSCs also improved motor axon regeneration, and subsequent neuromuscular innervation and prevention of muscle atrophy. These benefits were associated with increased motor functional recovery of regenerating ANAs. SIGNIFICANCE Our findings suggest that KLF7-BMSCs promoted peripheral nerve axon regeneration and myelination, and ultimately, motor functional recovery. The mechanism of KLF7 action may be related to its ability to enhance transplanted BMSCs survival and secrete neurotrophic factors rather than Schwann-like cell differentiation. This study provides novel foundational data connecting the benefits of KLF7 in neural injury and repair to BMSC biology and function, and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang 157011, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Guan F, Kang Z, Zhang JT, Xue NN, Yin H, Wang L, Mao BB, Peng WC, Zhang BL, Liang X, Hu ZQ. KLF7 promotes polyamine biosynthesis and glioma development through transcriptionally activating ASL. Biochem Biophys Res Commun 2019; 514:51-57. [DOI: 10.1016/j.bbrc.2019.04.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
|
20
|
Melo TP, Fortes MRS, Bresolin T, Mota LFM, Albuquerque LG, Carvalheiro R. Multitrait meta-analysis identified genomic regions associated with sexual precocity in tropical beef cattle. J Anim Sci 2018; 96:4087-4099. [PMID: 30053002 DOI: 10.1093/jas/sky289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Multitrait meta-analyses are a strategy to produce more accurate genome-wide association studies, especially for complex phenotypes. We carried out a meta-analysis study for traits related to sexual precocity in tropical beef cattle (Nellore and Brahman) aiming to identify important genomic regions affecting these traits. The traits included in the analyses were age at first calving (AFC), early pregnancy (EP), age at first corpus luteum (AGECL), first postpartum anoestrus interval (PPAI), and scrotal circumference (SC). The traits AFC, EP, and SCN were measured in Nellore cattle, while AGECL, PPAI, and SCB were measured in Brahman cattle. Meta-analysis resulted in 108 significant single-nucleotide polymorphisms (SNPs), at an empirical threshold P-value of 1.39 × 10-5 (false discovery rate [FDR] < 0.05). Within 0.5 Mb of the significant SNP, candidate genes were annotated and analyzed for functional enrichment. Most of the closest genes to the SNP with higher significance in each chromosome have been associated with important roles in reproductive function. They are TSC22D2, KLF7, ARHGAP29, 7SK, MAP3K5, TLE3, WDR5, TAF3, TMEM68, PPP1R15B, NR2F2, GALR1, SUFU, and KCNU1. We did not observe any significant SNP in BTA5, BTA12, BTA17, BTA18, BTA19, BTA20, BTA22, BTA23, BTA25, and BTA28. Although the majority of significant SNPs are in BTA14, it was identified significant associations in multiple chromosomes (19 out of 29 autosomes), which is consistent with the postulation that reproductive traits are complex polygenic phenotypes. Five proposed association regions harbor the majority of the significant SNP (76%) and were distributed over four chromosomes (P < 1.39 × 10-5, FDR < 0.05): BTA2 (5.55%) from 95 to 96 Mb, BTA4 (5.55%) from 94.1 to 94.8 Mb, BTA14 (59.26%) from 24 to 25 Mb and 29 to 30 Mb, and BTA21 (5.55%) from 6.7 Mb to 11.4 Mb. These regions harbored key genes related to reproductive function. Moreover, these genes were enriched for functional groups associated with immune response, maternal-fetal tolerance, pregnancy maintenance, embryo development, fertility, and response to stress. Further studies including other breeds and precocity traits could confirm the importance of these regions and identify new candidate regions for sexual precocity in beef cattle.
Collapse
Affiliation(s)
- Thaise P Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.,The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, Queensland, Australia
| | - Tiago Bresolin
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Lucia G Albuquerque
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, FCAV/ UNESP - Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,National Council for Scientific and Technological Development (CNPq), Brasília, Distrito Federal, Brazil
| |
Collapse
|
21
|
The Effect and Mechanism of KLF7 in the TLR4/NF- κB/IL-6 Inflammatory Signal Pathway of Adipocytes. Mediators Inflamm 2018; 2018:1756494. [PMID: 30598636 PMCID: PMC6287150 DOI: 10.1155/2018/1756494] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/20/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate the role and possible molecular mechanism of Krüppel-like factor 7 (KLF7) in the TLR4/NF-κB/IL-6 inflammatory signaling pathway activated by free fatty acids (FFA). Methods The mRNA and protein expression levels of KLF7 and the factors of TLR4/NF-κB/IL-6 inflammatory signal pathways were detected by qRT-PCR and Western blotting after cell culture with different concentrations of palmitic acid (PA). The expression of KLF7 or TLR4 in adipocytes was upregulated or downregulated; after that, the mRNA and protein expression levels of these key factors were detected. KLF7 expression was downregulated while PA stimulated adipocytes, and then the mRNA and protein expressions of KLF7/p65 and downstream inflammatory cytokine IL-6 were detected. The luciferase reporter assay was used to determine whether KLF7 had a transcriptional activation effect on IL-6. Results (1) High concentration of PA can promote the expression of TLR4, KLF7, and IL-6 in adipocytes. (2) TLR4 positively regulates KLF7 expression in adipocytes. (3) KLF7 positively regulates IL-6 expression in adipocytes. (4) PA promotes IL-6 expression via KLF7 in adipocytes. (5) KLF7 has a transcriptional activation on IL-6. Conclusion PA promotes the expression of the inflammatory cytokine IL-6 by activating the TLR4/KLF7/NF-κB inflammatory signaling pathway. In addition, KLF7 may directly bind to the IL-6 promoter region and thus activate IL-6.
Collapse
|
22
|
Powis Z, Petrik I, Cohen J, Escolar D, Burton J, van Ravenswaaij-Arts C, Sival D, Stegmann A, Kleefstra T, Pfundt R, Chikarmane R, Begtrup A, Huether R, Tang S, Shinde D. De novo variants in KLF7
are a potential novel cause of developmental delay/intellectual disability, neuromuscular and psychiatric symptoms. Clin Genet 2018; 93:1030-1038. [DOI: 10.1111/cge.13198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Z. Powis
- Ambry Genetics; Aliso Viejo California
| | - I. Petrik
- Ambry Genetics; Aliso Viejo California
| | - J.S. Cohen
- Kennedy Krieger Institute; Baltimore Maryland
| | - D. Escolar
- Kennedy Krieger Institute; Baltimore Maryland
| | - J. Burton
- University of Illinois College of Medicine at Peoria; Peoria Illinois
| | - C.M.A. van Ravenswaaij-Arts
- Department of Genetics; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - D.A. Sival
- Department of Neurology; University of Groningen, University Medical Center Groningen; Groningen The Netherlands
| | - A.P.A. Stegmann
- Clinical Genetics; Maastricht University Medical Center; Maastricht The Netherlands
- Department of Genetics; Radboud University Medical Center; Nijmegen The Netherlands
| | - T. Kleefstra
- Clinical Genetics; Maastricht University Medical Center; Maastricht The Netherlands
| | - R. Pfundt
- Clinical Genetics; Maastricht University Medical Center; Maastricht The Netherlands
| | | | | | | | - S. Tang
- Ambry Genetics; Aliso Viejo California
| | | |
Collapse
|
23
|
Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, Li HT, Deng LX, Zhu XF, Wang Y. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration. Neurosci Bull 2018; 34:419-437. [PMID: 29356943 DOI: 10.1007/s12264-018-0206-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Wei-Ting Zhang
- The Affiliated Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Feng-Guo Zhai
- Department of Pharmacy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Ping Sun
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Hui-Ting Li
- The Affiliated Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Feng Zhu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China.
| | - Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China.
| |
Collapse
|
24
|
AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury. Neural Plast 2017; 2017:1621629. [PMID: 28884027 PMCID: PMC5572611 DOI: 10.1155/2017/1621629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/27/2017] [Accepted: 06/12/2017] [Indexed: 01/16/2023] Open
Abstract
DPSN axons mediate and maintain a variety of normal spinal functions. Unsurprisingly, DPSN tracts have been shown to mediate functional recovery following SCI. KLF7 could contribute to CST axon plasticity after spinal cord injury. In the present study, we assessed whether KLF7 could effectively promote DPSN axon regeneration and synapse formation following SCI. An AAV-KLF7 construct was used to overexpress KLF7. In vitro, KLF7 and target proteins were successfully elevated and axonal outgrowth was enhanced. In vivo, young adult C57BL/6 mice received a T10 contusion followed by an AAV-KLF7 injection at the T7–9 levels above the lesion. Five weeks later, overexpression of KLF7 was expressed in DPSN. KLF7 and KLF7 target genes (NGF, TrkA, GAP43, and P0) were detectably increased in the injured spinal cord. Myelin sparring at the lesion site, DPSN axonal regeneration and synapse formation, muscle weight, motor endplate morphology, and functional parameters were all additionally improved by KLF7 treatment. Our findings suggest that KLF7 promotes DPSN axonal plasticity and the formation of synapses with motor neurons at the caudal spinal cord, leading to improved functional recovery and further supporting the potential of AAV-KLF7 as a therapeutic agent for spinal cord injury.
Collapse
|
25
|
Ding X, Wang X, Gong Y, Ruan H, Sun Y, Yu Y. KLF7 overexpression in human oral squamous cell carcinoma promotes migration and epithelial-mesenchymal transition. Oncol Lett 2017; 13:2281-2289. [PMID: 28454392 PMCID: PMC5403581 DOI: 10.3892/ol.2017.5734] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022] Open
Abstract
Krüppel-like factor 7 (KLF7) is a member of the KLF family of zinc finger transcription factors, and was the first KLF cloned using complementary DNA and polymerase chain reaction (PCR) techniques with human vascular endothelial cells as a template. In addition, KLF7 is known as the ubiquitous Krüppel-like factor, as it is widely expressed in numerous human tissues at low levels. In the present study, the function of KLF7 in migration and epithelial-mesenchymal transition (EMT), which are associated with tumor progression, was investigated in human oral squamous cell carcinoma (OSCC) cells. Genes that were differentially expressed in normal vs. OSCC tissue were identified in the Gene Expression Omnibus database, which identified upregulation of KLF7 in OSCC. The expression and subcellular location of KLF7 was then analyzed using immunohistochemistry. KLF7 expression was measured in three OSCC cell lines, and the two cell lines with the highest (HN13) and lowest (CAL27) KLF7 expression were selected for further analysis. Subsequently, HN13 cells with reduced KLF7 expression (sh-HN13) and CAL27 cells overexpressing KLF7 (OE-CAL27) were constructed. Transwell migration and wound healing assays were then used to analyze the migration of the cells. In addition, mRNA and protein expression levels of the EMT markers E-cadherin, N-cadherin, vimentin and snail were detected using reverse transcription-quantitative PCR and western blotting. KLF7 overexpression in OSCC was validated using tissue immunohistochemistry, which identified moderate to high cytoplasmic staining of KLF7 in OSCC cells. KLF7 knockdown and overexpression altered the migration ability of sh-HN13 and OE-CAL27 cells, which decreased and increased significantly respectively. Expression of E-cadherin, N-cadherin, vimentin and snail was markedly altered in sh-HN13 and OE-CAL27 cells, indicating changes in EMT status. The results of the present study suggest that KLF7 overexpression changes the migratory behavior of OSCC cells, and induces EMT and lymph node metastasis through the expression of snail.
Collapse
Affiliation(s)
- Xiaojun Ding
- Department of Stomatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Xinhao Wang
- Department of Stomatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Yiming Gong
- Department of Stomatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Hong Ruan
- Department of Stomatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
26
|
Wang Y, Li WY, Jia H, Zhai FG, Qu WR, Cheng YX, Liu YC, Deng LX, Guo SF, Jin ZS. KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration. Neuroscience 2016; 340:319-332. [PMID: 27826105 DOI: 10.1016/j.neuroscience.2016.10.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 11/16/2022]
Abstract
Our former study demonstrated that Krüppel-like Factor 7 (KLF7) is a transcription factor that stimulates axonal regeneration after peripheral nerve injury. Currently, we used a gene therapy approach to overexpress KLF7 in Schwann cells (SCs) and assessed whether KLF7-transfected SCs graft could promote sciatic nerve regeneration. SCs were transfected by adeno-associated virus 2 (AAV2)-KLF7 in vitro. Mice were allografted by an acellular nerve (ANA) with either an injection of DMEM (ANA group), SCs (ANA+SCs group) or AAV2-KLF7-transfected SCs (ANA+KLF7-SCs group) to assess repair of a sciatic nerve gap. The results indicate that KLF7 overexpression promoted the proliferation of both transfected SCs and native SCs. The neurite length of the dorsal root ganglia (DRG) explants was enhanced. Several beneficial effects were detected in the ANA+KLF7-SCs group including an increase in the compound action potential amplitude, sciatic function index score, enhanced expression of PKH26-labeling transplant SCs, peripheral myelin protein 0, neurofilaments, S-100, and myelinated regeneration nerve. Additionally, HRP-labeled motoneurons in the spinal cord, CTB-labeled sensory neurons in the DRG, motor endplate density and the weight ratios of target muscles were increased by the treatment while thermal hyperalgesia was diminished. Finally, expression of KLF7, NGF, GAP43, TrkA and TrkB were enhanced in the grafted SCs, which may indicate that several signal pathways may be involved in conferring the beneficial effects from KLF7 overexpression. We concluded that KLF7-overexpressing SCs promoted axonal regeneration of the peripheral nerve and enhanced myelination, which collectively proved KLF-SCs as a novel therapeutic strategy for injured nerves.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China.
| | - Hua Jia
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Feng-Guo Zhai
- Department of Pharmacology, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Wen-Rui Qu
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Su-Fen Guo
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| | - Zai-Shun Jin
- Hand & Foot Surgery and Reparative & Reconstructive Surgery Center, Orthopaedic Hospital of the Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
27
|
Budnick I, Hamburg-Shields E, Chen D, Torre E, Jarrell A, Akhtar-Zaidi B, Cordovan O, Spitale RC, Scacheri P, Atit RP. Defining the identity of mouse embryonic dermal fibroblasts. Genesis 2016; 54:415-30. [PMID: 27265328 DOI: 10.1002/dvg.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023]
Abstract
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isadore Budnick
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | | | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Eduardo Torre
- Epithelial Biology Program, Department of Dermatology, Stanford University, California
| | - Andrew Jarrell
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Batool Akhtar-Zaidi
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Olivia Cordovan
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Rob C Spitale
- Epithelial Biology Program, Department of Dermatology, Stanford University, California.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Peter Scacheri
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmaceutical Sciences, University of California, Irvine, California.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
28
|
Characterization of Chicken MMP13 Expression and Genetic Effect on Egg Production Traits of Its Promoter Polymorphisms. G3-GENES GENOMES GENETICS 2016; 6:1305-12. [PMID: 26966259 PMCID: PMC4856082 DOI: 10.1534/g3.116.027755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracelluar matrix undergoes constant remodeling, cell–cell, and cell–matrix interactions during chicken ovarian follicle growth, which is coordinated by matrix metalloproteinases (MMPs), and their associated endogenous inhibitors (TIMPs). Transcriptome analysis revealed upregulation of MMP13 in sexually mature chicken ovaries. In this study, we found that the expression of MMP13 in chicken ovary was stably elevated from 60 d to 159 d, and was significantly higher at 159 d than at the other three developmental stages (P < 0.05). The expression of MMP13 mRNA increased from SW (small white follicles) to F5 (fifth largest follicles), then decreased to F1 (first largest follicles), and dramatically increased again in POF1 (newly postovulatory follicles) follicles (P < 0.05). The MMP13 protein was localized in stroma cells and primordial follicles of sexually immature chicken ovaries, in the theca cell layers of all sized follicles of sexually mature chicken ovaries. Furthermore, we identified a positive element (positions –1863 to –1036) controlling chicken MMP13 transcription, and, in this region, six single nucleotide polymorphisms were found and genotyped in chicken populations. In the White Recessive Rock population, hens with A–1356-C–1079/A–1356-C–1079 genotype had earlier “age at first laying” than those with G–1356-T–1079/G–1356-T–1079 genotype (P < 0.05), and exhibited significantly lower transcriptional activity (P < 0.01). Collectively, chicken MMP13 plays an important role in ovarian follicle growth and regression, and polymorphisms in its promoter region could be used as molecular markers for improving the trait “age at first laying” in chicken breeding.
Collapse
|
29
|
Wang X, Shen QW, Wang J, Zhang Z, Feng F, Chen T, Zhang Y, Wei H, Li Z, Wang X, Wang Y. KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling. Stem Cells 2016; 34:1310-20. [PMID: 26930448 DOI: 10.1002/stem.2346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 11/11/2022]
Abstract
Retaining muscle stem satellite cell (SC) quiescence is important for the maintenance of stem cell population and tissue regeneration. Accumulating evidence supports the model where key extracellular signals play crucial roles in maintaining SC quiescence or activation, however, the intracellular mechanisms that mediate niche signals to control SC behavior are not fully understood. Here, we reported that KLF7 functioned as a key mediator involved in low-level TGF-β signaling and canonical Notch signaling-induced SC quiescence and myoblast arrest. The data obtained showed that KLF7 was upregulated in quiescent SCs and nonproliferating myoblasts. Silence of KLF7 promoted SCs activation and myoblasts proliferation, but overexpression of KLF7 induced myogenic cell arrest. Notably, the expression of KLF7 was regulated by TGF-β and Notch3 signaling. Knockdown of KLF7 diminished low-level TGF-β and canonical Notch signaling-induced SC quiescence. Investigation into the mechanism revealed that KLF7 regulation of SC function was dependent on p21 and acetylation of Lys227 and/or 231 in the DNA binding domain of KLF7. Our study provides new insights into the regulatory network of muscle stem cell quiescence. Stem Cells 2016;34:1310-1320.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qingwu W Shen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, People's Republic of China
| | - Jie Wang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhiguo Zhang
- College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, People's Republic of China
| | - Fu Feng
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ting Chen
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanyan Zhang
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Huan Wei
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhongwen Li
- Department of Animal Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
30
|
Sokolov A, Carlin DE, Paull EO, Baertsch R, Stuart JM. Pathway-Based Genomics Prediction using Generalized Elastic Net. PLoS Comput Biol 2016; 12:e1004790. [PMID: 26960204 PMCID: PMC4784899 DOI: 10.1371/journal.pcbi.1004790] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach.
Collapse
Affiliation(s)
- Artem Sokolov
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Daniel E. Carlin
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Evan O. Paull
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Robert Baertsch
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joshua M. Stuart
- Department of Biomolecular Engineering and Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
31
|
Gao Y, Cao Q, Lu L, Zhang X, Zhang Z, Dong X, Jia W, Cao Y. Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. Dev Dyn 2015. [PMID: 26198170 DOI: 10.1002/dvdy.24310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kruppel-like factors (Klfs) are a family of transcription factors consisting of 17 members in mammals, Klf1-Klf17, which are involved in fundamental cellular physiological procedures, such as cell proliferation, differentiation, and apoptosis. However, their functions in embryonic development have been poorly understood. Our previous study has demonstrated that the pluripotency factor Klf4 participates in germ layer formation and axis patterning of Xenopus embryos by means of the regulation of key developmental signals. In the present study, we further investigated comprehensively the expression and functions of the klf family genes, klf2, klf5, klf6, klf7, klf8, klf11, klf15, and klf17, during the embryogenesis of Xenopus laevis. RESULTS Spatio-temporal expression analyses demonstrate that these genes are transcribed both maternally and zygotically in Xenopus embryos, and during organogenesis and tissue differentiation, they are localized to a variety of placodes and tissues. Gain and loss of function studies manifest that Klf factors play different roles in germ layer formation and body axis patterning. Moreover, each Klf factor exhibits distinct regulatory effects on the expression of genes that are essential for germ layer formation and body axis patterning. CONCLUSIONS These results suggest that Klf factors are involved in the fine-tuning of these genes during early embryogenesis.
Collapse
Affiliation(s)
- Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Qing Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xiaohua Dong
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Wenshuang Jia
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| |
Collapse
|
32
|
Yin KJ, Hamblin M, Fan Y, Zhang J, Chen YE. Krüpple-like factors in the central nervous system: novel mediators in stroke. Metab Brain Dis 2015; 30:401-10. [PMID: 24338065 PMCID: PMC4113556 DOI: 10.1007/s11011-013-9468-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023]
Abstract
Transcription factors play an important role in the pathophysiology of many neurological disorders, including stroke. In the past three decades, an increasing number of transcription factors and their related gene signaling networks have been identified, and have become a research focus in the stroke field. Krüppel-like factors (KLFs) are members of the zinc finger family of transcription factors with diverse regulatory functions in cell growth, differentiation, proliferation, migration, apoptosis, metabolism, and inflammation. KLFs are also abundantly expressed in the brain where they serve as critical regulators of neuronal development and regeneration to maintain normal brain function. Dysregulation of KLFs has been linked to various neurological disorders. Recently, there is emerging evidence that suggests KLFs have an important role in the pathogenesis of stroke and provide endogenous vaso-or neuro-protection in the brain's response to ischemic stimuli. In this review, we summarize the basic knowledge and advancement of these transcriptional mediators in the central nervous system, highlighting the novel roles of KLFs in stroke.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| | | | | | | | - Y. Eugene Chen
- Correspondence addressed to: Ke-Jie Yin, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-647-8975, Fax: 734-936-2641, , Y. Eugene Chen, M.D., Ph.D., Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Phone: 734-763-7838, Fax: 734-936-2641,
| |
Collapse
|
33
|
Zhang Z, Wang H, Sun Y, Li H, Wang N. Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochim Biophys Sin (Shanghai) 2013; 45:280-8. [PMID: 23439665 DOI: 10.1093/abbs/gmt010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Krüppel-like factor 7 (Klf7) has been extensively studied in the mammalian species, but its function in avian species is unclear. The objective of this study was to reveal the function of chicken Klf7 (Gallus gallus Klf7, gKlf7) in adipogenesis. The results of real-time reverse transcription polymerase chain reaction demonstrated that the relative mRNA level of chicken Klf7 (gKlf7/gβ-Actin) in the abdominal adipose tissue was significantly associated with the abdominal fat content and the age of broilers (P < 0.05), and gKlf7 was more highly expressed in preadipocytes than in mature adipocytes (P < 0.05). In addition, Oil red O staining showed that gKlf7 inhibited chicken preadipocyte differentiation, and MTT assay indicated that gKlf7 overexpression promoted preadipocyte proliferation. Additionally, luciferase assays showed that gKlf7 overexpression suppressed the chicken CCAAT/enhancer-binding protein α (C/ebpα), fatty acid synthase (Fasn), and lipoprotein lipase (Lpl) promoter activities (P < 0.05), and gKlf7 knockdown increased the chicken peroxisome proliferator-activated receptor γ (Pparγ), C/ebpα and fatty acid-binding protein 4 (Fabp4) promoter activities (P < 0.05). Together, our study demonstrated that chicken Klf7 inhibits preadipocyte differentiation and promotes preadipocyte proliferation.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | | | | | | | | |
Collapse
|
34
|
Zhang ZW, Wang ZP, Zhang K, Wang N, Li H. Cloning, tissue expression and polymorphisms of chicken Krüppel-like factor 7 gene. Anim Sci J 2013; 84:535-42. [PMID: 23607628 DOI: 10.1111/asj.12043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Krüppel-like factor 7 (KLF7) has been extensively studied in mammalian species, but its role in birds is still unclear. In the current study, cloning and sequencing showed that the full-length coding region of chicken KLF7 (Gallus gallus KLF7, gKLF7) was 891 bp long, encoding 296 amino acids. In addition, real-time RT-PCR analysis showed that gKLF7 was broadly expressed in all 15 chicken tissues selected, and its expression was significantly different in spleen, proventriculus, abdominal fat, brain, leg muscle, gizzard and heart between fat and lean broilers at 7 weeks of age. Additionally, one novel single nucleotide polymorphism (SNP), XM_426569.3: c. A141G, was identified in the second exon of gKLF7. Association analysis showed that this locus was significantly associated with fatness traits in Arbor Acres broiler random population and the eighth generation of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) population (P < 0.05). These results suggest that gKLF7 might be a candidate gene for chicken fatness traits.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China
| | | | | | | | | |
Collapse
|
35
|
Seo S, Lomberk G, Mathison A, Buttar N, Podratz J, Calvo E, Iovanna J, Brimijoin S, Windebank A, Urrutia R. Krüppel-like factor 11 differentially couples to histone acetyltransferase and histone methyltransferase chromatin remodeling pathways to transcriptionally regulate dopamine D2 receptor in neuronal cells. J Biol Chem 2012; 287:12723-35. [PMID: 22375010 PMCID: PMC3339994 DOI: 10.1074/jbc.m112.351395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of Krüppel-like factor (KLF)-mediated transcriptional pathways in the biochemistry of neuronal differentiation has been recognized relatively recently. Elegant studies have revealed that KLF proteins are important regulators of two major molecular and cellular processes critical for neuronal cell differentiation: neurite formation and the expression of neurotransmitter-related genes. However, whether KLF proteins mediate these key processes in a separate or coordinated fashion remains unknown. Moreover, knowledge on the contribution of chromatin dynamics to the biochemical mechanisms utilized by these proteins to perform their function is absent. Here we report the characterization of two antagonistic, chromatin-mediated mechanisms by which KLF11, also known as TIEG2 (transforming growth factor-β-inducible early gene 2) and MODY VII (maturity onset diabetes of the young VII), regulates transcription of the fopamine D2 receptor (Drd2) gene. First, KLF11 activates transcription by binding to a distinct Sp-KLF site within the Drd2 promoter (-98 to -94) and recruiting the p300 histone acetyltransferase. Second, Drd2 transcriptional activation is partially antagonized by heterochromatin protein 1 (HP1), the code reader for histone H3 lysine 9 methylation. Interestingly, KLF11 regulates neurotransmitter receptor gene expression in differentiating neuronal cell populations without affecting neurite formation. Overall, these studies highlight histone methylation and acetylation as key biochemical mechanisms modulating KLF-mediated neurotransmitter gene transcription. These data extend our knowledge of chromatin-mediated biochemical events that maintain key phenotypic features of differentiated neuronal cells.
Collapse
Affiliation(s)
- Seungmae Seo
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
ZFPIP/Zfp462 is involved in P19 cell pluripotency and in their neuronal fate. Exp Cell Res 2011; 317:1922-34. [DOI: 10.1016/j.yexcr.2011.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/13/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
|