1
|
Dillemans L, Yu K, De Zutter A, Noppen S, Gouwy M, Berghmans N, Verhallen L, De Bondt M, Vanbrabant L, Brusselmans S, Martens E, Schols D, Verschueren P, Rosenkilde MM, Marques PE, Struyf S, Proost P. Natural carboxyterminal truncation of human CXCL10 attenuates glycosaminoglycan binding, CXCR3A signaling and lymphocyte chemotaxis, while retaining angiostatic activity. Cell Commun Signal 2024; 22:94. [PMID: 38308278 PMCID: PMC10835923 DOI: 10.1186/s12964-023-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lisa Verhallen
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Stef Brusselmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Korchynskyi O, Yoshida K, Korchynska N, Czarnik-Kwaśniak J, Tak PP, Pruijn GJM, Isozaki T, Ruth JH, Campbell PL, Amin MA, Koch AE. Mammalian Glycosylation Patterns Protect Citrullinated Chemokine MCP-1/CCL2 from Partial Degradation. Int J Mol Sci 2023; 24:ijms24031862. [PMID: 36768186 PMCID: PMC9915159 DOI: 10.3390/ijms24031862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic agent for monocytes, primarily produced by macrophages and endothelial cells. Significantly elevated levels of MCP-1/CCL2 were found in synovial fluids of patients with rheumatoid arthritis (RA), compared to osteoarthritis or other arthritis patients. Several studies suggested an important role for MCP-1 in the massive inflammation at the damaged joint, in part due to its chemotactic and angiogenic effects. It is a known fact that the post-translational modifications (PTMs) of proteins have a significant impact on their properties. In mammals, arginine residues within proteins can be converted into citrulline by peptidylarginine deiminase (PAD) enzymes. Anti-citrullinated protein antibodies (ACPA), recognizing these PTMs, have become a hallmark for rheumatoid arthritis (RA) and other autoimmune diseases and are important in diagnostics and prognosis. In previous studies, we found that citrullination converts the neutrophil attracting chemokine neutrophil-activating peptide 78 (ENA-78) into a potent macrophage chemoattractant. Here we report that both commercially available and recombinant bacterially produced MCP-1/CCL2 are rapidly (partially) degraded upon in vitro citrullination. However, properly glycosylated MCP-1/CCL2 produced by mammalian cells is protected against degradation during efficient citrullination. Site-directed mutagenesis of the potential glycosylation site at the asparagine-14 residue within human MCP-1 revealed lower expression levels in mammalian expression systems. The glycosylation-mediated recombinant chemokine stabilization allows the production of citrullinated MCP-1/CCL2, which can be effectively used to calibrate crucial assays, such as modified ELISAs.
Collapse
Affiliation(s)
- Olexandr Korchynskyi
- Department of Human Immunology and Centre for Innovative Biomedical Research, Medical Faculty, University of Rzeszow, 1a Warzywna St., 35-310 Rzeszów, Poland
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Molecular Immunology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 01054 Kyiv, Ukraine
- Department of Public Development and Health, S. Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79010 Lviv, Ukraine
- Correspondence:
| | - Ken Yoshida
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Rheumatology, Department of Internal Medicine, the Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Nataliia Korchynska
- Department of Public Development and Health, S. Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79010 Lviv, Ukraine
| | - Justyna Czarnik-Kwaśniak
- Department of Human Immunology and Centre for Innovative Biomedical Research, Medical Faculty, University of Rzeszow, 1a Warzywna St., 35-310 Rzeszów, Poland
| | - Paul P. Tak
- Department of Internal Medicine, University of Cambridge, Cambridge CB2 1TN, UK
- Candel Therapeutics, Needham, MA 02494, USA
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Takeo Isozaki
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jeffrey H. Ruth
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Phillip L. Campbell
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M. Asif Amin
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alisa E. Koch
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Kang SW, Rainczuk A, Oehler MK, Jobling TW, Plebanski M, Stephens AN. Active Ratio Test (ART) as a Novel Diagnostic for Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11061048. [PMID: 34200333 PMCID: PMC8230042 DOI: 10.3390/diagnostics11061048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Despite substantial effort, there remains a lack of biomarker-based, clinically relevant testing for the accurate, non-invasive diagnostic or prognostic profiling of epithelial ovarian cancers (EOC). Our previous work demonstrated that whilst the inflammatory marker C-X-C motif chemokine ligand 10 (CXCL10) has prognostic relevance in ovarian cancer, its use is complicated by the presence of multiple, N-terminally modified variants, mediated by several enzymes including Dipeptidyl Peptidase 4 (DPP4). Methods: In this study, we provide the first evidence for the “Active Ratio Test” (ART) as a novel method to measure biologically relevant CXCL10 proteoforms in clinical samples. Results: In a cohort of 275 patients, ART accurately differentiated patients with malignant EOCs from those with benign gynaecological conditions (AUC 0.8617) and significantly out-performed CA125 alone. Moreover, ART combined with the measurement of CA125 and DPP4 significantly increased prognostic performance (AUC 0.9511; sensitivity 90.0%; specificity 91.7%; Cohen’s d > 1) for EOC detection. Conclusion: Our data demonstrate that ART provides a useful method to accurately discriminate between patients with benign versus malignant EOC, and highlights their relevance to ovarian cancer diagnosis. This marker combination may also be applicable in broader screening applications, to identify or discriminate benign from malignant disease in asymptomatic women.
Collapse
Affiliation(s)
- Sung-Woog Kang
- Hudson Institute of Medical Research, Clayton 3168, Australia; (S.-W.K.); (A.R.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Adam Rainczuk
- Hudson Institute of Medical Research, Clayton 3168, Australia; (S.-W.K.); (A.R.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
- Bruker Pty Ltd., Preston 3072, Australia
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia;
- Robinson Institute, University of Adelaide, Adelaide 5000, Australia
| | - Thomas W. Jobling
- Department of Gynaecology Oncology, Monash Medical Centre, Bentleigh East 3165, Australia;
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (S.-W.K.); (A.R.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
- Correspondence:
| |
Collapse
|
6
|
Metzemaekers M, Mortier A, Vacchini A, Boff D, Yu K, Janssens R, Farina FM, Milanesi S, Berghmans N, Pörtner N, Van Damme J, Allegretti M, Teixeira MM, Locati M, Borroni EM, Amaral FA, Proost P. Endogenous modification of the chemoattractant CXCL5 alters receptor usage and enhances its activity toward neutrophils and monocytes. Sci Signal 2021; 14:14/673/eaax3053. [PMID: 33688078 DOI: 10.1126/scisignal.aax3053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The inflammatory human chemokine CXCL5 interacts with the G protein-coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1-78), truncated CXCL5 [CXCL5(9-78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and β-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.,Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Alessandro Vacchini
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Daiane Boff
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.,Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.,Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Floriana M Farina
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Samantha Milanesi
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium
| | | | - Mauro M Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Massimo Locati
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Elena M Borroni
- Humanitas Clinical and Research Center, IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, I-20090 Segrate, Italy
| | - Flavio A Amaral
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, Leuven B-3000, Belgium.
| |
Collapse
|
7
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Bi J, Intriago MFB, Koivisto L, Jiang G, Häkkinen L, Larjava H. Leucocyte‐ and platelet‐rich fibrin regulates expression of genes related to early wound healing in human gingival fibroblasts. J Clin Periodontol 2020; 47:851-862. [DOI: 10.1111/jcpe.13293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Jiarui Bi
- Faculty of Dentistry Department of Oral Biological and Medical Sciences University of British Columbia Vancouver BC Canada
| | - Maria Fernanda Barona Intriago
- Faculty of Dentistry Department of Oral Biological and Medical Sciences University of British Columbia Vancouver BC Canada
| | - Leeni Koivisto
- Faculty of Dentistry Department of Oral Biological and Medical Sciences University of British Columbia Vancouver BC Canada
| | - Guoqiao Jiang
- Faculty of Dentistry Department of Oral Biological and Medical Sciences University of British Columbia Vancouver BC Canada
| | - Lari Häkkinen
- Faculty of Dentistry Department of Oral Biological and Medical Sciences University of British Columbia Vancouver BC Canada
| | - Hannu Larjava
- Faculty of Dentistry Department of Oral Biological and Medical Sciences University of British Columbia Vancouver BC Canada
| |
Collapse
|
9
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
10
|
Murphy PM. Chemokines and Chemokine Receptors. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Vacchini A, Mortier A, Proost P, Locati M, Metzemaekers M, Borroni EM. Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties. Int J Mol Sci 2018; 19:E3768. [PMID: 30486423 PMCID: PMC6321254 DOI: 10.3390/ijms19123768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH₂-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Massimo Locati
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1042, B-3000 Leuven, Belgium.
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via fratelli Cervi 93, I-20090 Segrate, Italy.
| |
Collapse
|
12
|
Preisner F, Leimer U, Sandmann S, Zoernig I, Germann G, Koellensperger E. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-culture Model. Stem Cell Rev Rep 2018; 14:125-140. [PMID: 29064018 DOI: 10.1007/s12015-017-9772-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study focuses on the interactions of human adipose tissue-derived stem cells (ADSCs) and malignant melanoma cells (MMCs) with regard to future cell-based skin therapies. The aim was to identify potential oncological risks as ADSCs could unintentionally be sited within the proximity of the tumor microenvironment of MMCs. An indirect co-culture model was used to analyze interactions between ADSCs and four different established melanoma cell lines (G-361, SK-Mel-5, MeWo and A2058) as well as two low-passage primary melanoma cell cultures (M1 and M2). Doubling time, migration and invasion, angiogenesis, quantitative real-time PCR of 229 tumor-associated genes and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPs) were evaluated. Co-culture with ADSCs significantly increased migration capacity of G-361, SK-Mel-5, A2058, MeWo and M1 and invasion capacity of G-361, SK-Mel-5 and A2058 melanoma cells. Furthermore, conditioned media from all ADSC-MMC-co-cultures induced tube formation in an angiogenesis assay in vitro. Gene expression analysis of ADSCs and MMCs, especially of low-passage melanoma cell cultures, revealed an increased expression of various genes with tumor-promoting activities, such as CXCL12, PTGS2, IL-6, and HGF upon ADSC-MMC-co-culture. In this context, a significant increase (up to 5,145-fold) in the expression of numerous tumor-associated proteins could be observed, e.g. several pro-angiogenic factors, such as VEGF, IL-8, and CCL2, as well as different matrix metalloproteinases, especially MMP-2. In conclusion, the current report clearly demonstrates that a bi-directional crosstalk between ADSCs and melanoma cells can enhance different malignant properties of melanoma cells in vitro.
Collapse
Affiliation(s)
- Fabian Preisner
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Uwe Leimer
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Stefanie Sandmann
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Inka Zoernig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 60120, Heidelberg, Germany
| | - Guenter Germann
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Eva Koellensperger
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany.
| |
Collapse
|
13
|
Janssens R, Boff D, Ruytinx P, Mortier A, Vanheule V, Larsen O, Daugvilaite V, Rosenkilde MM, Noppen S, Liekens S, Schols D, De Meester I, Opdenakker G, Struyf S, Teixeira MM, Amaral FA, Proost P. Peroxynitrite Exposure of CXCL12 Impairs Monocyte, Lymphocyte and Endothelial Cell Chemotaxis, Lymphocyte Extravasation in vivo and Anti-HIV-1 Activity. Front Immunol 2018; 9:1933. [PMID: 30233568 PMCID: PMC6127631 DOI: 10.3389/fimmu.2018.01933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
CXCL12 is a chemotactic cytokine that attracts many different cell types for homeostasis and during inflammation. Under stress conditions, macrophages and granulocytes produce factors such as peroxynitrite as a consequence of their oxidative response. After short incubations of CXCL12 with peroxynitrite, the gradual nitration of Tyr7, Tyr61, or both Tyr7 and Tyr61 was demonstrated with the use of mass spectrometry, whereas longer incubations caused CXCL12 degradation. Native CXCL12 and the nitrated forms, [3-NT61]CXCL12 and [3-NT7/61]CXCL12, were chemically synthesized to evaluate the effects of Tyr nitration on the biological activity of CXCL12. All CXCL12 forms had a similar binding affinity for heparin, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3. However, nitration significantly enhanced the affinity of CXCL12 for chondroitin sulfate. Internalization of CXCR4 and β-arrestin 2 recruitment to CXCR4 was significantly reduced for [3-NT7/61]CXCL12 compared to CXCL12, whereas β-arrestin 2 recruitment to ACKR3 was similar for all CXCL12 variants. [3-NT7/61]CXCL12 was weaker in calcium signaling assays and in in vitro chemotaxis assays with monocytes, lymphocytes and endothelial cells. Surprisingly, nitration of Tyr61, but not Tyr7, partially protected CXCL12 against cleavage by the specific serine protease CD26. In vivo, the effects were more pronounced compared to native CXCL12. Nitration of any Tyr residue drastically lowered lymphocyte extravasation to joints compared to native CXCL12. Finally, the anti-HIV-1 activity of [3-NT7]CXCL12 and [3-NT7/61]CXCL12 was reduced, whereas CXCL12 and [3-NT61]CXCL12 were equally potent. In conclusion, nitration of CXCL12 occurs readily upon contact with peroxynitrite and specifically nitration of Tyr7 fully reduces its in vitro and in vivo biological activities.
Collapse
Affiliation(s)
- Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.,Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daiane Boff
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.,Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pieter Ruytinx
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Olav Larsen
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.,Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
15
|
Cecchinato V, Uguccioni M. Insight on the regulation of chemokine activities. J Leukoc Biol 2018; 104:295-300. [PMID: 29668065 DOI: 10.1002/jlb.3mr0118-014r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023] Open
Abstract
The activity of chemokines is regulated by several mechanisms that control the final cellular response. The present review discusses the complexity of the regulation of the chemokine system, and the novel findings describing how in persistent infections, the expression of chemokine receptors on the surface of T cells does not correlate with their homing potential. Thanks to the latest advances in our comprehension of the chemokine system, novel approaches targeting chemokines, chemokine receptors, or protein of their signaling pathway should be considered in order to achieve a personalized therapy.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Laboratory of "Chemokines in Immunity", Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Laboratory of "Chemokines in Immunity", Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
16
|
Natural nitration of CXCL12 reduces its signaling capacity and chemotactic activity in vitro and abrogates intra-articular lymphocyte recruitment in vivo. Oncotarget 2018; 7:62439-62459. [PMID: 27566567 PMCID: PMC5308738 DOI: 10.18632/oncotarget.11516] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/13/2016] [Indexed: 01/01/2023] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor-1 is important for leukocyte migration to lymphoid organs and inflamed tissues and stimulates tumor development. In vitro, CXCL12 activity through CXCR4 is abolished by proteolytic processing. However, limited information is available on in vivo effects of posttranslationally modified CXCL12. Natural CXCL12 was purified from the coculture supernatant of stromal cells stimulated with leukocytes and inflammatory agents. In this conditioned medium, CXCL12 with a nitration on Tyr7, designated [3-NT7]CXCL12, was discovered via Edman degradation. CXCL12 and [3-NT7]CXCL12 were chemically synthesized to evaluate the biological effects of this modification. [3-NT7]CXCL12 recruited β-arrestin 2 and phosphorylated the Akt kinase similar to CXCL12 in receptor-transfected cells. Also the affinity of CXCL12 and [3-NT7]CXCL12 for glycosaminoglycans, the G protein-coupled chemokine receptor CXCR4 and the atypical chemokine receptor ACKR3 were comparable. However, [3-NT7]CXCL12 showed a reduced ability to enhance intracellular calcium concentrations, to generate inositol triphosphate, to phosphorylate ERK1/2 and to induce monocyte and lymphocyte chemotaxis in vitro. Moreover, nitrated CXCL12 failed to induce in vivo extravasation of lymphocytes to the joint. In summary, nitration on Tyr7 under inflammatory conditions is a novel natural posttranslational regulatory mechanism of CXCL12 which may downregulate the CXCR4-mediated inflammatory and tumor-promoting activities of CXCL12.
Collapse
|
17
|
Chen YC, Li KM, Zarivach R, Sun YJ, Sue SC. Human CCL5 trimer: expression, purification and initial crystallographic studies. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:82-85. [PMID: 29400316 DOI: 10.1107/s2053230x17018544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/30/2017] [Indexed: 11/10/2022]
Abstract
The chemokine CCL5 is considered to be a potential therapeutic target because of its ability to recruit immune cells to inflammatory sites. CCL5 aggregates under physiological conditions, and high-order oligomer formation is considered to be significant for cell migration, immune-cell activation and HIV cell entry. The structure of the high-order oligomer is unknown and the mechanism by which the oligomer is derived has yet to be established. Here, a CCL5 mutant (CCL5-E66S) which is deficient in oligomer formation was mixed with native CCL5 to prepare a protein trimer. At an optimized ratio the trimeric CCL5 crystallized, and the crystal belonged to the tetragonal space group P41212, with unit-cell parameters a = 56.6, b = 56.6, c = 154.1 Å. The Matthews coefficient (VM) of the crystal is 2.58 Å3 Da-1 (three molecules in the asymmetric unit), with a solvent content of 52.32%. Diffraction data were collected to a resolution of 1.87 Å and the statistics indicated satisfactory data quality. The new structure will reveal the interfaces in the CCL5 oligomer, therefore assisting in understanding the mechanism of CCL5 oligomerization.
Collapse
Affiliation(s)
- Yi Chen Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun Mou Li
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuh Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
18
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling. Int J Mol Sci 2017; 18:ijms18071513. [PMID: 28703769 PMCID: PMC5536003 DOI: 10.3390/ijms18071513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CXC chemokine ligand (CXCL)9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR)3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs) protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.
Collapse
|
20
|
Lorenzini J, Scott Fites J, Nett J, Klein BS. Blastomyces dermatitidis serine protease dipeptidyl peptidase IVA (DppIVA) cleaves ELR + CXC chemokines altering their effects on neutrophils. Cell Microbiol 2017; 19. [PMID: 28346820 DOI: 10.1111/cmi.12741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
Abstract
Blastomycosis elicits a pyogranulomatous inflammatory response that involves a prominent recruitment of neutrophils to the site of infection. Although neutrophils are efficiently recruited to the site of infection, this event is paradoxically coupled with the host's inability to control infection by Blastomyces dermatitidis, the causative agent. The mechanisms underlying this characteristic pyogranulomatous response and inability of neutrophils to kill the yeast are poorly understood. We recently reported that the fungal protease dipeptidyl peptidase IVA (DppIVA) promotes B. dermatitidis virulence by cleaving a dipeptide from the N-terminus of C-C chemokines and granulocyte/macrophage-colony stimulating factor, thereby inactivating them. Herein, we present evidence that DppIVA can also truncate the N-terminus of members of the ELR+ CXC chemokine family, which are known to modulate neutrophil function. We show that the DppIVA cleaved form of human (h) CXCL-2, for example, hCXCL-2 (3-73), is a more potent neutrophil chemoattractant than its intact counterpart, but hCXCL-2 (3-73) is conversely impaired in its ability to prime the reactive oxygen species response of neutrophils. Thus, DppIVA action on ELR+ CXC chemokines may promote the pyogranulomatous response that is typical of blastomycosis, while also explaining the inability of neutrophils to control infection.
Collapse
Affiliation(s)
- Jenna Lorenzini
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Scott Fites
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jeniel Nett
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
21
|
Poposki JA, Klingler AI, Stevens WW, Peters AT, Hulse KE, Grammer LC, Schleimer RP, Welch KC, Smith SS, Sidle DM, Conley DB, Tan BK, Kern RC, Kato A. Proprotein convertases generate a highly functional heterodimeric form of thymic stromal lymphopoietin in humans. J Allergy Clin Immunol 2017; 139:1559-1567.e8. [PMID: 27744031 PMCID: PMC5389936 DOI: 10.1016/j.jaci.2016.08.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 08/25/2016] [Indexed: 01/18/2023]
Abstract
RATIONALE Thymic stromal lymphopoietin (TSLP) is known to be elevated and truncated in nasal polyps (NPs) of patients with chronic rhinosinusitis and might play a significant role in type 2 inflammation in this disease. However, neither the structure nor the role of the truncated products of TSLP has been studied. OBJECTIVE We sought to investigate the mechanisms of truncation of TSLP in NPs and the function of the truncated products. METHODS We incubated recombinant human TSLP with NP extracts, and determined the protein sequence of the truncated forms of TSLP using Edman protein sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. We investigated the functional activity of truncated TSLP using a PBMC-based bioassay. RESULTS Edman sequencing and mass spectrometry results indicated that NP extracts generated 2 major truncated products, TSLP (residues 29-124) and TSLP (131-159). Interestingly, these 2 products remained linked with disulfide bonds and presented as a dimerized form, TSLP (29-124 + 131-159). We identified that members of the proprotein convertase were rate-limiting enzymes in the truncation of TSLP between residues 130 and 131 and generated a heterodimeric unstable metabolite TSLP (29-130 + 131-159). Carboxypeptidase N immediately digested 6 amino acids from the C terminus of the longer subunit of TSLP to generate a stable dimerized form, TSLP (29-124 + 131-159), in NPs. These truncations were homeostatic but primate-specific events. A metabolite TSLP (29-130 + 131-159) strongly activated myeloid dendritic cells and group 2 innate lymphoid cells compared with mature TSLP. CONCLUSIONS Posttranslational modifications control the functional activity of TSLP in humans and overproduction of TSLP may be a key trigger for the amplification of type 2 inflammation in diseases.
Collapse
Affiliation(s)
- Julie A Poposki
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Aiko I Klingler
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Douglas M Sidle
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
22
|
CCL2 nitration is a negative regulator of chemokine-mediated inflammation. Sci Rep 2017; 7:44384. [PMID: 28290520 PMCID: PMC5349559 DOI: 10.1038/srep44384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation.
Collapse
|
23
|
Song KH, Park MS, Nandu TS, Gadad S, Kim SC, Kim MY. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat Commun 2016; 7:13796. [PMID: 27982029 PMCID: PMC5171903 DOI: 10.1038/ncomms13796] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
Some polypeptide N-acetyl-galactosaminyltransferases (GALNTs) are associated with cancer, but their function in organ-specific metastasis remains unclear. Here, we report that GALNT14 promotes breast cancer metastasis to the lung by enhancing the initiation of metastatic colonies as well as their subsequent growth into overt metastases. Our results suggest that GALNT14 augments the self-renewal properties of breast cancer cells (BCCs). Furthermore, GALNT14 overcomes the inhibitory effect of lung-derived bone morphogenetic proteins (BMPs) on self-renewal and therefore facilitates metastasis initiation within the lung microenvironment. In addition, GALNT14 supports continuous growth of BCCs in the lung by not only inducing macrophage infiltration but also exploiting macrophage-derived fibroblast growth factors (FGFs). Finally, we identify KRAS-PI3K-c-JUN signalling as an upstream pathway that accounts for the elevated expression of GALNT14 in lung-metastatic BCCs. Collectively, our findings uncover an unprecedented role for GALNT14 in the pulmonary metastasis of breast cancer and elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ki-Hoon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea
| | - Mi So Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea
| | - Tulip S. Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shrikanth Gadad
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sang-Cheol Kim
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do 363-951, Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea
- KAIST Institute for the BioCentury, Cancer Metastasis Control Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
24
|
Metzemaekers M, Van Damme J, Mortier A, Proost P. Regulation of Chemokine Activity - A Focus on the Role of Dipeptidyl Peptidase IV/CD26. Front Immunol 2016; 7:483. [PMID: 27891127 PMCID: PMC5104965 DOI: 10.3389/fimmu.2016.00483] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning of the immune system. After introducing the chemokine family together with the GPCRs and GAGs, as main interaction partners of chemokines, and discussing the different forms of posttranslational modifications, this review will focus on the intriguing relationship of chemokines with the serine protease CD26.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Anneleen Mortier
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven , Leuven , Belgium
| |
Collapse
|
25
|
Wesley UV, Hatcher JF, Ayvaci ER, Klemp A, Dempsey RJ. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis. Mol Neurobiol 2016; 54:4973-4985. [PMID: 27525674 DOI: 10.1007/s12035-016-0039-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA.
| | - James F Hatcher
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Emine R Ayvaci
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Abby Klemp
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA.
| |
Collapse
|
26
|
Parsons SDC, McGill K, Doyle MB, Goosen WJ, van Helden PD, Gormley E. Antigen-Specific IP-10 Release Is a Sensitive Biomarker of Mycobacterium bovis Infection in Cattle. PLoS One 2016; 11:e0155440. [PMID: 27167122 PMCID: PMC4864312 DOI: 10.1371/journal.pone.0155440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
The most widely used ante-mortem diagnostic tests for tuberculosis in cattle are the tuberculin skin test and the interferon-gamma (IFN-γ) release assay, both of which measure cell-mediated immune responses to Mycobacterium bovis infection. However, limitations in the performance of these tests results in a failure to identify all infected animals. In attempting to increase the range of diagnostic tests for tuberculosis, measurement of the cytokine IP-10 in antigen-stimulated blood has previously been shown to improve the detection of M. tuberculosis and M. bovis infection, in humans and African buffaloes (Syncerus caffer), respectively. In the present study, 60 cattle were identified by the single intradermal comparative tuberculin test as tuberculosis reactors (n = 24) or non-reactors (n = 36) and the release of IFN-γ and IP-10 in antigen-stimulated whole blood from these animals was measured using bovine specific ELISAs. There was a strong correlation between IP-10 and IFN-γ production in these samples. Moreover, measurement of the differential release of IP-10 in response to stimulation with M. bovis purified protein derivative (PPD) and M. avium PPD distinguished between reactor and non-reactor cattle with a sensitivity of 100% (95% CI, 86%–100%) and a specificity of 97% (95% CI, 85%–100%). These results suggest that IP-10 might prove valuable as a diagnostic biomarker of M. bovis infection in cattle.
Collapse
Affiliation(s)
- Sven D C Parsons
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kevina McGill
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Mairead B Doyle
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Wynand J Goosen
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research/Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eamonn Gormley
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
27
|
Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci U S A 2016; 113:5000-5. [PMID: 27091995 DOI: 10.1073/pnas.1523981113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CC chemokine ligand 5 (CCL5) and CCL3 are critical for immune surveillance and inflammation. Consequently, they are linked to the pathogenesis of many inflammatory conditions and are therapeutic targets. Oligomerization and glycosaminoglycan (GAG) binding of CCL5 and CCL3 are vital for the functions of these chemokines. Our structural and biophysical analyses of human CCL5 reveal that CCL5 oligomerization is a polymerization process in which CCL5 forms rod-shaped, double-helical oligomers. This CCL5 structure explains mutational data and offers a unified mechanism for CCL3, CCL4, and CCL5 assembly into high-molecular-weight, polydisperse oligomers. A conserved, positively charged BBXB motif is key for the binding of CC chemokines to GAG. However, this motif is partially buried when CCL3, CCL4, and CCL5 are oligomerized; thus, the mechanism by which GAG binds these chemokine oligomers has been elusive. Our structures of GAG-bound CCL5 and CCL3 oligomers reveal that these chemokine oligomers have distinct GAG-binding mechanisms. The CCL5 oligomer uses another positively charged and fully exposed motif, KKWVR, in GAG binding. However, residues from two partially buried BBXB motifs along with other residues combine to form a GAG-binding groove in the CCL3 oligomer. The N termini of CC chemokines are shown to be involved in receptor binding and oligomerization. We also report an alternative CCL3 oligomer structure that reveals how conformational changes in CCL3 N termini profoundly alter its surface properties and dimer-dimer interactions to affect GAG binding and oligomerization. Such complexity in oligomerization and GAG binding enables intricate, physiologically relevant regulation of CC chemokine functions.
Collapse
|
28
|
Homma T, Kato A, Sakashita M, Norton JE, Suh LA, Carter RG, Schleimer RP. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors. Am J Respir Cell Mol Biol 2016; 52:471-81. [PMID: 25180535 DOI: 10.1165/rcmb.2014-0240oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Tetsuya Homma
- 1 Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | | | |
Collapse
|
29
|
Mortier A, Gouwy M, Van Damme J, Proost P, Struyf S. CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology. J Leukoc Biol 2016; 99:955-69. [PMID: 26744452 PMCID: PMC7166560 DOI: 10.1189/jlb.3mr0915-401r] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022] Open
Abstract
Review of how chemokine processing by CD26/DPP IV regulates leukocyte trafficking. Post‐translational modification of chemokines is an essential regulatory mechanism to enhance or dampen the inflammatory response. CD26/dipeptidylpeptidase IV, ubiquitously expressed in tissues and blood, removes NH2‐terminal dipeptides from proteins with a penultimate Pro or Ala. A large number of human chemokines, including CXCL2, CXCL6, CXCL9, CXCL10, CXCL11, CXCL12, CCL3L1, CCL4, CCL5, CCL11, CCL14, and CCL22, are cleaved by CD26; however, the efficiency is clearly influenced by the amino acids surrounding the cleavage site and although not yet proven, potentially affected by the chemokine concentration and interactions with third molecules. NH2‐terminal cleavage of chemokines by CD26 has prominent effects on their receptor binding, signaling, and hence, in vitro and in vivo biologic activities. However, rather than having a similar result, the outcome of NH2‐terminal truncation is highly diverse. Either no difference in activity or drastic alterations in receptor recognition/specificity and hence, chemotactic activity are observed. Analogously, chemokine‐dependent inhibition of HIV infection is enhanced (for CCL3L1 and CCL5) or decreased (for CXCL12) by CD26 cleavage. The occurrence of CD26‐processed chemokine isoforms in plasma underscores the importance of the in vitro‐observed CD26 cleavages. Through modulation of chemokine activity, CD26 regulates leukocyte/tumor cell migration and progenitor cell release from the bone marrow, as shown by use of mice treated with CD26 inhibitors or CD26 knockout mice. As chemokine processing by CD26 has a significant impact on physiologic and pathologic processes, application of CD26 inhibitors to affect chemokine function is currently explored, e.g., as add‐on therapy in viral infection and cancer.
Collapse
Affiliation(s)
- Anneleen Mortier
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Mieke Gouwy
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Jo Van Damme
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Paul Proost
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| | - Sofie Struyf
- KU Leuven University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Leuven, Belgium
| |
Collapse
|
30
|
Cecchinato V, D'Agostino G, Raeli L, Uguccioni M. Chemokine interaction with synergy-inducing molecules: fine tuning modulation of cell trafficking. J Leukoc Biol 2015; 99:851-5. [PMID: 26715684 PMCID: PMC5039040 DOI: 10.1189/jlb.1mr1015-457r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023] Open
Abstract
Review on synergistic activities induced by heterocomplexes formed with chemokines. Directed migration and arrest of leukocytes during homeostasis, inflammation, and tumor development is mediated by the chemokine system, which governs leukocyte migration and activities. Although we understand well the effects of different chemokines one by one, much less was known about the potential consequences of the concomitant expression of multiple chemokines or of their interaction with inflammatory molecules on leukocyte migration and functions. In the past 10 yr, several studies revealed the existence of additional features of chemokines: they can antagonize chemokine receptors or synergize with other chemokines, also by forming heterocomplexes. Moreover, recent data show that not only chemokines but also the alarmin high-mobility group box 1 can for a complex with CXCL12, enhancing its potency on CXCR4. The molecular mechanism underlying the effect of the heterocomplex has been partially elucidated, whereas its structure is a matter of current investigations. The present review discusses the current knowledge and relevance of the functions of heterocomplexes formed between chemokines or between the chemokine CXCL12 and the alarmin high-mobility group box 1. These studies highlight the importance of taking into account, when approaching innovative therapies targeting the chemokine system, also the fact that some chemokines and molecules released in inflammation, can considerably affect the activity of chemokine receptor agonists.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Lorenzo Raeli
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
31
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
32
|
Ponzetta A, Benigni G, Antonangeli F, Sciumè G, Sanseviero E, Zingoni A, Ricciardi MR, Petrucci MT, Santoni A, Bernardini G. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Res 2015; 75:4766-77. [PMID: 26438594 DOI: 10.1158/0008-5472.can-15-1320] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.
Collapse
Affiliation(s)
- Andrea Ponzetta
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giorgia Benigni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Antonangeli
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Emilio Sanseviero
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy. IRCCS, Neuromed, Pozzilli, IS, Italy.
| | - Giovanni Bernardini
- Department of Molecular Medicine-Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy. IRCCS, Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
33
|
Boshuizen RS, Marsden C, Turkstra J, Rossant CJ, Slootstra J, Copley C, Schwamborn K. A combination of in vitro techniques for efficient discovery of functional monoclonal antibodies against human CXC chemokine receptor-2 (CXCR2). MAbs 2015; 6:1415-24. [PMID: 25484047 DOI: 10.4161/mabs.36237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Development of functional monoclonal antibodies against intractable GPCR targets. RESULTS Identification of structured peptides mimicking the ligand binding site, their use in panning to enrich for a population of binders, and the subsequent challenge of this population with receptor overexpressing cells leads to functional monoclonal antibodies. CONCLUSION The combination of techniques provides a successful strategic approach for the development of functional monoclonal antibodies against CXCR2 in a relatively small campaign. SIGNIFICANCE The presented combination of techniques might be applicable for other, notoriously difficult, GPCR targets. SUMMARY The CXC chemokine receptor-2 (CXCR2) is a member of the large 'family A' of G-protein-coupled-receptors and is overexpressed in various types of cancer cells. CXCR2 is activated by binding of a number of ligands, including interleukin 8 (IL-8) and growth-related protein α (Gro-α). Monoclonal antibodies capable of blocking the ligand-receptor interaction are therefore of therapeutic interest; however, the development of biological active antibodies against highly structured GPCR proteins is challenging. Here we present a combination of techniques that improve the discovery of functional monoclonal antibodies against the native CXCR2 receptor. The IL-8 binding site of CXCR2 was identified by screening peptide libraries with the IL-8 ligand, and then reconstructed as soluble synthetic peptides. These peptides were used as antigens to probe an antibody fragment phage display library to obtain subpopulations binding to the IL-8 binding site of CXCR2. Further enrichment of the phage population was achieved by an additional selection round with CXCR2 overexpressing cells as a different antigen source. The scFvs from the CXCR2 specific phage clones were sequenced and converted into monoclonal antibodies. The obtained antibodies bound specifically to CXCR2 expressing cells and inhibited the IL-8 and Gro-α induced ß-arrestin recruitment with IC50 values of 0.3 and 0.2 nM, respectively, and were significantly more potent than the murine monoclonal antibodies (18 and 19 nM, respectively) obtained by the classical hybridoma technique, elicited with the same peptide antigen. According to epitope mapping studies, the antibody efficacy is largely defined by N-terminal epitopes comprising the IL-8 and Gro-α binding sites. The presented strategic combination of in vitro techniques, including the use of different antigen sources, is a powerful alternative for the development of functional monoclonal antibodies by the classical hybridoma technique, and might be applicable to other GPCR targets.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
- BSA, bovine serum albumin
- CLIPS™, Chemical LInkage of Peptides onto Scaffolds
- CXCR2
- ECL, extracellular loop
- EDTA, ethylenediaminetetraacetic acid
- ELISA, enzyme-linked immunoabsorbent assay
- Fmoc, fluorenylmethyloxycarbonyl
- GPCR
- GPCR, G-protein coupled receptor
- Gro-α, growth-related protein α
- IL-8, interleukin 8
- IPTG, isopropyl β-D-1-thiogalactopyranoside
- MFI, mean fluorescence intensity
- PBS, phosphate buffer saline
- PCR, polymerase chain reaction
- PEG, polyethyleneglycol
- TES, 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid
- TRIS, tris(hydroxymethyl)aminomethane
- ligand inhibition
- monoclonal antibody
- phage display library
- scFv, single-chain variable fragment
Collapse
|
34
|
Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR, Kufareva I, Handel TM. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J Biol Chem 2015. [PMID: 26216880 DOI: 10.1074/jbc.m115.675108] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3.
Collapse
Affiliation(s)
- Melinda S Hanes
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Catherina L Salanga
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Arnab B Chowdry
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Iain Comerford
- Chemokine Biology Group, The School of Molecular and Biomedical Science, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia
| | - Shaun R McColl
- Chemokine Biology Group, The School of Molecular and Biomedical Science, The University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005, Australia
| | - Irina Kufareva
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| | - Tracy M Handel
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093 and
| |
Collapse
|
35
|
Vanheule V, Janssens R, Boff D, Kitic N, Berghmans N, Ronsse I, Kungl AJ, Amaral FA, Teixeira MM, Van Damme J, Proost P, Mortier A. The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74-103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice. J Biol Chem 2015; 290:21292-304. [PMID: 26183778 DOI: 10.1074/jbc.m115.649855] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The ELR(-)CXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74-103)) being the most potent. The COOH-terminal peptide CXCL9(74-103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74-103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74-103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74-103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.
Collapse
Affiliation(s)
- Vincent Vanheule
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Janssens
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Daiane Boff
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Nikola Kitic
- the Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzes Universität, 8010 Graz, Austria
| | - Nele Berghmans
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle Ronsse
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Andreas J Kungl
- the Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzes Universität, 8010 Graz, Austria
| | - Flavio Almeida Amaral
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Mauro Martins Teixeira
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Jo Van Damme
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Paul Proost
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium,
| | - Anneleen Mortier
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat Immunol 2015; 16:850-8. [PMID: 26075911 DOI: 10.1038/ni.3201] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/17/2015] [Indexed: 12/12/2022]
Abstract
The success of antitumor immune responses depends on the infiltration of solid tumors by effector T cells, a process guided by chemokines. Here we show that in vivo post-translational processing of chemokines by dipeptidylpeptidase 4 (DPP4, also known as CD26) limits lymphocyte migration to sites of inflammation and tumors. Inhibition of DPP4 enzymatic activity enhanced tumor rejection by preserving biologically active CXCL10 and increasing trafficking into the tumor by lymphocytes expressing the counter-receptor CXCR3. Furthermore, DPP4 inhibition improved adjuvant-based immunotherapy, adoptive T cell transfer and checkpoint blockade. These findings provide direct in vivo evidence for control of lymphocyte trafficking via CXCL10 cleavage and support the use of DPP4 inhibitors for stabilizing biologically active forms of chemokines as a strategy to enhance tumor immunotherapy.
Collapse
|
37
|
Sozzani S, Del Prete A, Bonecchi R, Locati M. Chemokines as effector and target molecules in vascular biology. Cardiovasc Res 2015; 107:364-72. [PMID: 25969393 DOI: 10.1093/cvr/cvv150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/26/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokines are key mediators of inflammation. In pathological tissues, the main roles of chemokines are to regulate leucocyte accumulation through the activation of oriented cell migration and the activation of limited programs of gene transcription. Through these activities, chemokines exert many crucial functions, including the regulation of angiogenesis. The 'chemokine system' is tightly regulated at several levels, such as the post-transcriptional processing of ligands, the regulation of the expression and function of the receptors and through the expression of molecules known as 'atypical chemokine receptors', proteins that function as chemokine scavenging and presenting molecules. Several experimental evidence obtained in vitro, in animal models and in human studies, has defined a crucial role of chemokines in cardiovascular diseases. An intense area of research is currently exploring the possibility to develop new effective therapeutic strategies through the identification of chemokine receptor antagonists.
Collapse
Affiliation(s)
- Silvano Sozzani
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int J Parasitol 2015; 45:613-27. [PMID: 25957161 DOI: 10.1016/j.ijpara.2015.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
Tick saliva serine protease inhibitors (serpins) facilitate tick blood meal feeding through inhibition of protease mediators of host defense pathways. We previously identified a highly conserved Amblyomma americanum serpin 19 that is characterised by its reactive center loop being 100% conserved in ixodid ticks. In this study, biochemical characterisation reveals that the ubiquitously transcribed A. americanum serpin 19 is an anti-coagulant protein, inhibiting the activity of five of the eight serine protease blood clotting factors. Pichia pastoris-expressed recombinant (r) A. americanum serpin 19 inhibits the enzyme activity of trypsin, plasmin and blood clotting factors (f) Xa and XIa, with stoichiometry of inhibition estimated at 5.1, 9.4, 23.8 and 28, respectively. Similar to typical inhibitory serpins, recombinant A. americanum serpin 19 forms irreversible complexes with trypsin, fXa and fXIa. At a higher molar excess of recombinant A. americanum serpin 19, fXIIa is inhibited by 82.5%, and thrombin (fIIa), fIXa, chymotrypsin and tryptase are inhibited moderately by 14-29%. In anti-hemostatic functional assays, recombinant A. americanum serpin 19 inhibits thrombin but not ADP and cathepsin G activated platelet aggregation, delays clotting in recalcification and thrombin time assays by up to 250s, and up to 40s in the activated partial thromboplastin time assay. Given A. americanum serpin 19 high cross-tick species conservation, and specific reactivity of recombinant A. americanum serpin 19 with antibodies to A. americanum tick saliva proteins, we conclude that recombinant A. americanum serpin 19 is a potential candidate for development of a universal tick vaccine.
Collapse
|
39
|
Repnik U, Starr AE, Overall CM, Turk B. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines. J Biol Chem 2015; 290:13800-11. [PMID: 25833952 DOI: 10.1074/jbc.m115.638395] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/24/2022] Open
Abstract
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.
Collapse
Affiliation(s)
- Urska Repnik
- From the Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Amanda E Starr
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher M Overall
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, the Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| | - Boris Turk
- From the Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia, the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, SI-1000 Ljubljana, Slovenia, and the Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Liang WG, Ren M, Zhao F, Tang WJ. Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 2015; 427:1345-1358. [PMID: 25636406 PMCID: PMC4355285 DOI: 10.1016/j.jmb.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/23/2022]
Abstract
CC chemokine ligands (CCL) are 8-14 kDa signaling proteins involved in diverse immune functions. While CCLs share similar tertiary structures, oligomerization produces highly diverse quaternary structures that protect chemokines from proteolytic degradation and modulate their functions. CCL18 is closely related to CCL3 and CCL4 with respect to both protein sequence and genomic location, yet CCL18 has distinct biochemical and biophysical properties. Here, we report a crystal structure of human CCL18 and its oligomerization states in solution based on crystallographic and small angle X-ray scattering (SAXS) analyses. Our data shows that CCL18 adopts an α-helical conformation at its N-terminus that weakens its dimerization, explaining CCL18’s preference for the monomeric state. Multiple contacts between monomers allow CCL18 to reversibly form a unique open-ended oligomer different from those of CCL3, CCL4, and CCL5. Furthermore, these differences hinge on proline 8, which is conserved in CCL3 and CCL4, but is replaced by lysine in human CCL18. Our structural analyses suggest that a proline 8 to alanine mutation stabilizes a type I β-turn at the N-terminus of CCL4 to prevent dimerization but prevents dimers from making key contacts with each other in CCL3. Thus, the P8A mutation induces depolymerization of CCL3 and CCL4 by distinct mechanisms. Finally, we used structural, biochemical, and functional analyses to unravel why insulin-degrading enzyme (IDE) degrades CCL3 and CCL4 but not CCL18. Our results elucidate the molecular basis for the oligomerization of three closely related CC chemokines and suggest how oligomerization shapes CCL chemokine function.
Collapse
Affiliation(s)
- Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | - Min Ren
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | - Fan Zhao
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA.
| |
Collapse
|
41
|
Damgaard D, Senolt L, Nielsen MF, Pruijn GJ, Nielsen CH. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. Arthritis Res Ther 2014; 16:498. [PMID: 25475141 PMCID: PMC4298085 DOI: 10.1186/s13075-014-0498-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/10/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Members of the peptidylarginine deiminase (PAD) family catalyse the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullination of proteins is well described in rheumatoid arthritis (RA), and hypercitrullination of proteins may be related to inflammation in general. PAD activity has been demonstrated in various cell lysates, but so far not in synovial fluid. We aimed to develop an assay for detection of PAD activity, if any, in synovial fluid from RA patients. Methods An enzyme-linked immunosorbent assay using human fibrinogen as the immobilized substrate for citrullination and anti-citrullinated fibrinogen antibody as the detecting agent were used for measurement of PAD activity in synovial fluid samples from five RA patients. The concentrations of PAD2 and calcium were also determined. Results Approximately 150 times lower levels of recombinant human PAD2 (rhPAD2) than of rhPAD4 were required for citrullination of fibrinogen. PAD activity was detected in four of five synovial fluid samples from RA patients and correlated with PAD2 concentrations in the samples (r = 0.98, P = 0.003). The calcium requirement for half-maximal activities of PAD2 and PAD4 were found in a range from 0.35 to 1.85 mM, and synovial fluid was found to contain sufficient calcium levels for the citrullination process to occur. Conclusions We present an assay with high specificity for PAD2 activity and show that citrullination of fibrinogen can occur in cell-free synovial fluid from RA patients.
Collapse
|
42
|
Chakraborty M, McGreal EP, Williams A, Davies PL, Powell W, Abdulla S, Voitenok NN, Hogwood J, Gray E, Spiller B, Chambers RC, Kotecha S. Role of serine proteases in the regulation of interleukin-877 during the development of bronchopulmonary dysplasia in preterm ventilated infants. PLoS One 2014; 9:e114524. [PMID: 25474412 PMCID: PMC4256433 DOI: 10.1371/journal.pone.0114524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
RATIONALE The chemokine interleukin-8 is implicated in the development of bronchopulmonary dysplasia in preterm infants. The 77-amino acid isoform of interleukin-8 (interleukin-877) is a less potent chemoattractant than other shorter isoforms. Although interleukin-877 is abundant in the preterm circulation, its regulation in the preterm lung is unknown. OBJECTIVES To study expression and processing of pulmonary interleukin-877 in preterm infants who did and did not develop bronchopulmonary dysplasia. METHODS Total interleukin-8 and interleukin-877 were measured in bronchoalveolar lavage fluid from preterm infants by immunoassay. Neutrophil serine proteases were used to assess processing. Neutrophil chemotaxis assays and degranulation of neutrophil matrix metalloproteinase-9 were used to assess interleukin-8 function. MAIN RESULTS Peak total interleukin-8 and interleukin-877 concentrations were increased in infants who developed bronchopulmonary dysplasia compared to those who did not. Shorter forms of interleukin-8 predominated in the preterm lung (96.3% No-bronchopulmonary dysplasia vs 97.1% bronchopulmonary dysplasia, p>0.05). Preterm bronchoalveolar lavage fluid significantly converted exogenously added interleukin-877 to shorter isoforms (p<0.001). Conversion was greater in bronchopulmonary dysplasia infants (p<0.05). This conversion was inhibited by α-1 antitrypsin and antithrombin III (p<0.01). Purified neutrophil serine proteases efficiently converted interleukin-877 to shorter isoforms in a time- and dose-dependent fashion; shorter interleukin-8 isoforms were primarily responsible for neutrophil chemotaxis (p<0.001). Conversion by proteinase-3 resulted in significantly increased interleukin-8 activity in vitro (p<0.01). CONCLUSIONS Shorter, potent, isoforms interleukin-8 predominate in the preterm lung, and are increased in infants developing bronchopulmonary dysplasia, due to conversion of interleukin-877 by neutrophil serine proteases and thrombin. Processing of interleukin-8 provides an attractive therapeutic target to prevent development of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Mallinath Chakraborty
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eamon P. McGreal
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew Williams
- Centre for Inflammation and Tissue Repair, Rayne Institute, University College London, London, United Kingdom
| | - Philip L. Davies
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wendy Powell
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Salima Abdulla
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - John Hogwood
- Division of Haematology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Elaine Gray
- Division of Haematology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Brad Spiller
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rachel C. Chambers
- Centre for Inflammation and Tissue Repair, Rayne Institute, University College London, London, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
43
|
Nomiyama H, Yoshie O. Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors. J Leukoc Biol 2014; 97:39-47. [PMID: 25416815 DOI: 10.1189/jlb.2ru0614-290r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemokine receptors regulate cell migration and homing. They belong to the rhodopsin-like family of GPCRs. Their ancestor genes emerged in the early stages of vertebrate evolution. Since then, the family has been greatly expanded through whole and segmental genome duplication events. During evolution, many amino acid changes have been introduced in individual chemokine receptors, but certain motifs and residues are highly conserved. Previously, we proposed a nomenclature system of the vertebrate chemokine receptors based on their evolutionary history and phylogenetic analyses. With the use of this classification system, we are now able to confidently assign the species orthologs of vertebrate chemokine receptors. Here, we systematically analyze conserved motifs and residues of each group of orthologous chemokine receptors that may play important roles in their signaling and biologic functions. Our present analysis may provide useful information on how individual chemokine receptors are activated upon ligand binding.
Collapse
Affiliation(s)
- Hisayuki Nomiyama
- *Department of Molecular Enzymology, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan; and Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Osamu Yoshie
- *Department of Molecular Enzymology, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan; and Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
44
|
Zabel BA, Rott A, Butcher EC. Leukocyte chemoattractant receptors in human disease pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:51-81. [PMID: 25387059 DOI: 10.1146/annurev-pathol-012513-104640] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combinations of leukocyte attractant ligands and cognate heptahelical receptors specify the systemic recruitment of circulating cells by triggering integrin-dependent adhesion to endothelial cells, supporting extravasation, and directing specific intratissue localization via gradient-driven chemotaxis. Chemoattractant receptors also control leukocyte egress from lymphoid organs and peripheral tissues. In this article, we summarize the fundamental mechanics of leukocyte trafficking, from the evolution of multistep models of leukocyte recruitment and navigation to the regulation of chemoattractant availability and function by atypical heptahelical receptors. To provide a more complete picture of the migratory circuits involved in leukocyte trafficking, we integrate a number of nonchemokine chemoattractant receptors into our discussion. Leukocyte chemoattractant receptors play key roles in the pathogenesis of autoimmune diseases, allergy, inflammatory disorders, and cancer. We review recent advances in our understanding of chemoattractant receptors in disease pathogenesis, with a focus on genome-wide association studies in humans and the translational implications of mechanistic studies in animal disease models.
Collapse
Affiliation(s)
- Brian A Zabel
- Palo Alto Veterans Institute for Research and Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304;
| | | | | |
Collapse
|
45
|
Ko HL, Wang YS, Fong WL, Chi MS, Chi KH, Kao SJ. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for lung cancer: A marker phase I trial. Thorac Cancer 2014; 5:500-8. [PMID: 26767044 DOI: 10.1111/1759-7714.12117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/22/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tumor cells continuously evolve over time in response to host pressures. However, explanations as to how tumor cells are influenced by the inflammatory tumor microenvironment over time are, to date, poorly defined. We hypothesized that prognostic biomarkers could be obtained by exploring the expression of inflammation-associated genes between early and late stage lung cancer tumor samples. METHODS Candidate inflammation-associated genes, apolipoprotein C-1 (APOC1), MMP1, KMO)1, CXCL5, CXCL)7, IL-1α, IL-1β, TNF-α and IL-6 were verified by real-time quantitative polymerase chain reaction. Gene expression profiles and immunofluorescence staining of 30 lung cancer tissues were compared. RESULTS Expressions of APOC1 and IL-6 mRNA on tumor tissues in late stage disease were significantly higher than in early stage lung cancer samples. Immunofluorescence staining of tumor samples showed that the expression of APOC1 gradually increased from early to late stage in lung cancer patients. The expression levels of IL-6 and APOC1 in tumor samples were positively correlated; however, no prognostic value of APOC1 can be identified in serum samples. CONCLUSIONS We found that the level of tumor APOC1 was highly expressed in late stage lung cancer. Further research is warranted to determine the molecular mechanisms underlying the cross talk of APOC1 and IL-6 in tumor progression. An expanded sample size marker phase II study may lead to the discovery of new lung cancer therapeutics targeting APOC1.
Collapse
Affiliation(s)
- Hui-Ling Ko
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Weng-Lam Fong
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Shang-Jyh Kao
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| |
Collapse
|
46
|
Yoshida K, Korchynskyi O, Tak PP, Isozaki T, Ruth JH, Campbell PL, Baeten DL, Gerlag DM, Amin MA, Koch AE. Citrullination of Epithelial Neutrophil-Activating Peptide 78/CXCL5 Results in Conversion From a Non-Monocyte-Recruiting Chemokine to a Monocyte-Recruiting Chemokine. Arthritis Rheumatol 2014; 66:2716-27. [DOI: 10.1002/art.38750] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 06/12/2014] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Paul P. Tak
- University of Amsterdam; Amsterdam The Netherlands
| | | | | | | | | | | | | | - Alisa E. Koch
- Department of Veterans Affairs Medical Center, Ann Arbor, and University of Michigan; Ann Arbor
| |
Collapse
|
47
|
Ham A, Rabadi M, Kim M, Brown KM, Ma Z, D'Agati V, Lee HT. Peptidyl arginine deiminase-4 activation exacerbates kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2014; 307:F1052-62. [PMID: 25164081 DOI: 10.1152/ajprenal.00243.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peptidyl arginine deiminase (PAD)4 is a nuclear enzyme that catalyzes the posttranslational conversion of arginine residues to citrulline. Posttranslational protein citrullination has been implicated in several inflammatory autoimmune diseases, including rheumatoid arthritis, colitis, and multiple sclerosis. Here, we tested the hypothesis that PAD4 contributes to ischemic acute kidney injury (AKI) by exacerbating the inflammatory response after renal ischemia-reperfusion (I/R). Renal I/R injury in mice increased PAD4 activity as well as PAD4 expression in the mouse kidney. After 30 min of renal I/R, vehicle-treated mice developed severe AKI with large increases in plasma creatinine. In contrast, mice pretreated with PAD4 inhibitors (2-chloroamidine or streptonigrin) had significantly reduced renal I/R injury. Further supporting a critical role for PAD4 in generating ischemic AKI, mice pretreated with recombinant human PAD4 (rPAD4) protein and subjected to mild (20 min) renal I/R developed exacerbated ischemic AKI. Consistent with the hypothesis that PAD4 regulates renal tubular inflammation after I/R, mice treated with a PAD4 inhibitor had significantly reduced renal neutrophil chemotactic cytokine (macrophage inflammatory protein-2 and keratinocyte-derived cytokine) expression and had decreased neutrophil infiltration. Furthermore, mice treated with rPAD4 had significantly increased renal tubular macrophage inflammatory protein-2 and keratinocyte-derived cytokine expression as well as increased neutrophil infiltration and necrosis. Finally, cultured mouse kidney proximal tubules treated with rPAD4 had significantly increased proinflammatory chemokine expression compared with vehicle-treated cells. Taken together, our results suggest that PAD4 plays a critical role in renal I/R injury by increasing renal tubular inflammatory responses and neutrophil infiltration after renal I/R.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - May Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Kevin M Brown
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Zhe Ma
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York; and
| |
Collapse
|
48
|
Romero V, Fert-Bober J, Nigrovic PA, Darrah E, Haque UJ, Lee DM, van Eyk J, Rosen A, Andrade F. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci Transl Med 2014; 5:209ra150. [PMID: 24174326 DOI: 10.1126/scitranslmed.3006869] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autoantibodies to citrullinated protein antigens are specific markers of rheumatoid arthritis (RA). Although protein citrullination can be activated by numerous stimuli in cells, it remains unclear which of these produce the prominent citrullinated autoantigens targeted in RA. In these studies, we show that RA synovial fluid cells have an unusual pattern of citrullination with marked citrullination of proteins across the broad range of molecular weights, which we term cellular hypercitrullination. Although histone citrullination is a common event during neutrophil activation and death induced by different pathways including apoptosis, NETosis, and necroptosis/autophagy, hypercitrullination is not induced by these stimuli. However, marked hypercitrullination is induced by two immune-mediated membranolytic pathways, mediated by perforin and the membrane attack complex (MAC), which are active in the RA joint and of importance in RA pathogenesis. We further demonstrate that perforin and MAC activity on neutrophils generate the profile of citrullinated autoantigens characteristic of RA. These data suggest that activation of peptidylarginine deiminases during complement and perforin activity may be at the core of citrullinated autoantigen production in RA. These pathways may be amenable to monitoring and therapeutic modulation.
Collapse
Affiliation(s)
- Violeta Romero
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Evaluation of antibody–chemokine fusion proteins for tumor-targeting applications. Exp Biol Med (Maywood) 2014; 239:842-852. [DOI: 10.1177/1535370214536667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is an increasing biotechnological interest in the ‘arming’ of therapeutic antibodies with bioactive payloads. While many antibody–cytokine fusion proteins have been extensively investigated in preclinical and clinical studies, there are only few reports related to antibody–chemokine fusion proteins (‘immunochemokines’). Here, we describe the cloning, expression, and characterization of 10 immunochemokines based on the monoclonal antibody F8, specific to the alternatively spliced extra domain A (EDA) of fibronectin, a marker of angiogenesis. Among the 10 murine chemokines tested in our study, only CCL19, CCL20, CCL21, and CXCL10 could be expressed and isolated at acceptable purity levels as F8-based fusion proteins. The immunochemokines retained the binding characteristics of the parental antibody, but could not be characterized by gel-filtration analysis, an analytical limitation which had previously been observed in our laboratory for the unconjugated chemokines. When radioiodinated preparations of CCL19-F8, CCL20-F8, CCL21-F8, and CXCL10-F8 were tested in quantitative biodistribution studies in tumor-bearing mice, the four fusion proteins failed to preferentially accumulate at the tumor site, while the unconjugated parental antibody displayed a tumor:blood ratio >20:1, 24 h after intravenous (i.v.) administration. The tumor-targeting ability of CCL19-F8 could be rescued only in part by preadministration of unlabeled CCL19-F8, indicating that a chemokine trapping mechanism may hinder pharmacodelivery strategies. While this article highlights expression, analytical, and biodistribution challenges associated with the antibody-based in vivo delivery of chemokines at sites of disease, it provides the first comprehensive report in this field and may facilitate future studies with immunochemokines.
Collapse
|
50
|
Sipilä K, Haag S, Denessiouk K, Käpylä J, Peters EC, Denesyuk A, Hansen U, Konttinen Y, Johnson MS, Holmdahl R, Heino J. Citrullination of collagen II affects integrin‐mediated cell adhesion in a receptor‐specific manner. FASEB J 2014; 28:3758-68. [DOI: 10.1096/fj.13-247767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kalle Sipilä
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Sabrina Haag
- Division of Medical Inflammation Research, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Department of BioscienceÅbo Akademi UniversityTurkuFinland
| | - Jarmo Käpylä
- Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Eric C. Peters
- Genomics Institute of the Novartis Research FoundationSan DiegoCaliforniaUSA
| | - Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Department of BioscienceÅbo Akademi UniversityTurkuFinland
| | - Uwe Hansen
- Department of Physiology, Chemistry, and PathobiochemistryMuenster University HospitalMuensterGermany
| | - Yrjö Konttinen
- Department of MedicineInstitute of Clinical Medicine, University of HelsinkiHelsinkiFinland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Department of BioscienceÅbo Akademi UniversityTurkuFinland
| | - Rikard Holmdahl
- Medicity Research LaboratoryUniversity of TurkuTurkuFinland
- Division of Medical Inflammation Research, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Jyrki Heino
- Department of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|