1
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
2
|
Li Y, Xie Z, Lei X, Yang X, Huang S, Yuan W, Deng X, Wang Z, Tang G. Recent advances in pyruvate dehydrogenase kinase inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2024; 144:107160. [PMID: 38301426 DOI: 10.1016/j.bioorg.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Metabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs). Inhibiting the activity of PDKs in cancer cells can effectively block this metabolic transition in cancer cells, while also activating mitochondrial oxidative metabolism and promoting apoptosis of cancer cells. To this day, the study of PDKs inhibitors has become one of the research hotspots in the field of medicinal chemistry. Novel structures targeting PDKs are constantly being discovered, and some inhibitors have entered the clinical research stage. Here, we reviewed the research progress of PDKs inhibitors in recent years and classified them according to the PDKs binding sites they acted on, aiming to summarize the structural characteristics of inhibitors acting on different binding sites and explore their clinical application value. Finally, the shortcomings of some PDKs inhibitors and the further development direction of PDKs inhibitors are discussed.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Weixi Yuan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Puzderova B, Belvoncikova P, Grossmannova K, Csaderova L, Labudova M, Fecikova S, Pastorek J, Barathova M. Propranolol, Promising Chemosensitizer and Candidate for the Combined Therapy through Disruption of Tumor Microenvironment Homeostasis by Decreasing the Level of Carbonic Anhydrase IX. Int J Mol Sci 2023; 24:11094. [PMID: 37446271 DOI: 10.3390/ijms241311094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemotherapy represents a persisting medical problem, ranking among main causes of chemotherapy failure and cancer mortality. There is a possibility to utilize and repurpose already existing therapeutics which were not primarily intended for oncological treatment. Overactivation of adrenergic receptors and signaling dysregulation promotes tumor progression, metastatic potential, immune system evasion, tumor angiogenesis and drug resistance. The non-selective beta-blocker propranolol, approved in infantile haemangioma treatment, has a high potential for use in cancer therapy. We analyzed the effects of propranolol and 5-fluorouracil combination on sensitive and resistant cells derived from colorectal carcinoma in monolayers, single-component and co-culture spheroids and in vivo mouse models. Our results revealed that propranolol is able to exert its effect not only in chemosensitive colorectal cells, but also in 5-fluorouracil resistant cells. Propranolol disrupts the hypoxic adaptation machinery by inhibiting HIF1α, carbonic anhydrase IX, and activates apoptosis, which may be important in the management of chemo-resistant patients. We showed that propranolol slows down the growth of xenografts formed from colorectal cancer cells, even from cells already adapted to the β-blocker. We provide clear evidence that blockade of β-adrenergic receptors affects essential signaling pathways modulating tumor microenvironment and thus the response to anticancer therapy. Our findings indicate that propranolol could be repurposed to serve as chemosensitizer in combined therapy aimed at disrupting homeostasis of tumor microenvironment.
Collapse
Affiliation(s)
- Barbora Puzderova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Petra Belvoncikova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Katarina Grossmannova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Lucia Csaderova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Martina Labudova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Silvia Fecikova
- National Institute of Lung Disaeses, Thorax Surgery and Tuberculosis, Vyšné Hágy 1, 059 84 Vysoké Tatry, Slovakia
| | | | - Monika Barathova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
4
|
Guo Y, Zhou Y, Wu P, Ran M, Xu N, Shan W, Sha O, Tam KY. Dichloroacetophenone biphenylsulfone ethers as anticancer pyruvate dehydrogenase kinase inhibitors in non-small cell lung cancer models. Chem Biol Interact 2023; 378:110467. [PMID: 37004952 DOI: 10.1016/j.cbi.2023.110467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Pyruvate dehydrogenase kinase 1 (PDK1) is an important metabolic enzyme which is often overexpressed in many types of cancers, including non-small-cell lung cancers (NSCLC). Targeting PDK1 appears to be an attractive anticancer strategy. Based on a previously reported moderate potent anticancer PDK1 inhibitor, 64, we developed three dichloroacetophenone biphenylsulfone ethers, 30, 31 and 32, which showed strong PDK1 inhibitions of 74%, 83% and 72% at 10 μM, respectively. Then we investigated the anticancer effects of 31 in two NSCLC cell lines, namely, NCI-H1299 and NCI-H1975. It was found that 31 exhibited sub-micromolar cancer cell IC50s, suppressed colony formation, induced mitochondrial membrane potential depolarization, triggered apoptosis, altered cellular glucose metabolism, with concomitant reductions in extracellular lactate levels and enhanced the generation of reactive oxygen species in NSCLC cells. Moreover, 31 significantly suppressed the tumor growth in an NCI-H1975 mouse xenograft model, outperforming the anticancer effects of 64. Taken together our results suggested that inhibition of PDK1 via dichloroacetophenone biphenylsulfone ethers may provide a novel direction leading to an alternative treatment option in NSCLC therapy.
Collapse
|
5
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Bioactive Platinum(IV) Complexes Incorporating Halogenated Phenylacetates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207120. [PMID: 36296713 PMCID: PMC9611758 DOI: 10.3390/molecules27207120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
A new series of cytotoxic platinum(IV) complexes (1-8) incorporating halogenated phenylacetic acid derivatives (4-chlorophenylacetic acid, 4-fluorophenylacetic acid, 4-bromophenylacetic acid and 4-iodophenylacetic acid) were synthesised and characterised using spectroscopic and spectrometric techniques. Complexes 1-8 were assessed on a panel of cell lines including HT29 colon, U87 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, SJ-G2 glioblastoma, MIA pancreas, the ADDP-resistant ovarian variant, and the non-tumour-derived MCF10A breast line. The in vitro cytotoxicity results confirmed the superior biological activity of the studied complexes, especially those containing 4-fluorophenylacetic acid and 4-bromophenylacetic acid ligands, namely 4 and 6, eliciting an average GI50 value of 20 nM over the range of cell lines tested. In the Du145 prostate cell line, 4 exhibited the highest degree of potency amongst the derivatives, displaying a GI50 value of 0.7 nM, which makes it 1700-fold more potent than cisplatin (1200 nM) and nearly 7-fold more potent than our lead complex, 56MESS (4.6 nM) in this cell line. Notably, in the ADDP-resistant ovarian variant cell line, 4 (6 nM) was found to be almost 4700-fold more potent than cisplatin. Reduction reaction experiments were also undertaken, along with studies aimed at determining the complexes' solubility, stability, lipophilicity, and reactive oxygen species production.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
| | - Maria George Elias
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
- Ingham Institute, Sydney, NSW 2170, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia
| | | | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
| | | | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Sydney, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203218
| |
Collapse
|
6
|
Cunha A, Rocha AC, Barbosa F, Baião A, Silva P, Sarmento B, Queirós O. Glycolytic Inhibitors Potentiated the Activity of Paclitaxel and Their Nanoencapsulation Increased Their Delivery in a Lung Cancer Model. Pharmaceutics 2022; 14:pharmaceutics14102021. [PMID: 36297455 PMCID: PMC9611291 DOI: 10.3390/pharmaceutics14102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Antiglycolytic agents inhibit cell metabolism and modify the tumor’s microenvironment, affecting chemotherapy resistance mechanisms. In this work, we studied the effect of the glycolytic inhibitors 3-bromopyruvate (3BP), dichloroacetate (DCA) and 2-deoxyglucose (2DG) on cancer cell properties and on the multidrug resistance phenotype, using lung cancer cells as a model. All compounds led to the loss of cell viability, with different effects on the cell metabolism, migration and proliferation, depending on the drug and cell line assayed. DCA was the most promising compound, presenting the highest inhibitory effect on cell metabolism and proliferation. DCA treatment led to decreased glucose consumption and ATP and lactate production in both A549 and NCI-H460 cell lines. Furthermore, the DCA pretreatment sensitized the cancer cells to Paclitaxel (PTX), a conventional chemotherapeutic drug, with a 2.7-fold and a 10-fold decrease in PTX IC50 values in A549 and NCI-H460 cell lines, respectively. To increase the intracellular concentration of DCA, thereby potentiating its effect, DCA-loaded poly(lactic-co-glycolic acid) nanoparticles were produced. At higher DCA concentrations, encapsulation was found to increase its toxicity. These results may help find a new treatment strategy through combined therapy, which could open doors to new treatment approaches.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
| | - Ana Catarina Rocha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- DCM—Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Flávia Barbosa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- DCM—Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Baião
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Patrícia Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
7
|
HIF in Gastric Cancer: Regulation and Therapeutic Target. Molecules 2022; 27:molecules27154893. [PMID: 35956843 PMCID: PMC9370240 DOI: 10.3390/molecules27154893] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
HIF means hypoxia-inducible factor gene family, and it could regulate various biological processes, including tumor development. In 2021, the FDA approved the new drug Welireg for targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers the health of people all across the world. Currently, there are various treatment methods for patients with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and provided some references for the treatment of gastric cancer.
Collapse
|
8
|
An J, Ha EM. Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells. J Microbiol 2022; 60:735-745. [DOI: 10.1007/s12275-022-2201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
|
9
|
Simón L, Sanhueza S, Gaete-Ramírez B, Varas-Godoy M, Quest AFG. Role of the Pro-Inflammatory Tumor Microenvironment in Extracellular Vesicle-Mediated Transfer of Therapy Resistance. Front Oncol 2022; 12:897205. [PMID: 35646668 PMCID: PMC9130576 DOI: 10.3389/fonc.2022.897205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Advances in our understanding of cancer biology have contributed to generating different treatments to improve the survival of cancer patients. However, although initially most of the therapies are effective, relapse and recurrence occur in a large percentage of these cases after the treatment, and patients then die subsequently due to the development of therapy resistance in residual cancer cells. A large spectrum of molecular and cellular mechanisms have been identified as important contributors to therapy resistance, and more recently the inflammatory tumor microenvironment (TME) has been ascribed an important function as a source of signals generated by the TME that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Currently, extracellular vesicles (EVs) are considered one of the main means of communication between cells of the TME and have emerged as crucial modulators of cancer drug resistance. Important in this context is, also, the inflammatory TME that can be caused by several conditions, including hypoxia and following chemotherapy, among others. These inflammatory conditions modulate the release and composition of EVs within the TME, which in turn alters the responses of the tumor cells to cancer therapies. The TME has been ascribed an important function as a source of signals that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Although generally the main cellular components considered to participate in generating a pro-inflammatory TME are from the immune system (for instance, macrophages), more recently other types of cells of the TME have also been shown to participate in this process, including adipocytes, cancer-associated fibroblasts, endothelial cells, cancer stem cells, as well as the tumor cells. In this review, we focus on summarizing available information relating to the impact of a pro-inflammatory tumor microenvironment on the release of EVs derived from both cancer cells and cells of the TME, and how these EVs contribute to resistance to cancer therapies.
Collapse
Affiliation(s)
- Layla Simón
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago, Chile
| | - Sofía Sanhueza
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Belén Gaete-Ramírez
- Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Parczyk J, Ruhnau J, Pelz C, Schilling M, Wu H, Piaskowski NN, Eickholt B, Kühn H, Danker K, Klein A. Dichloroacetate and PX-478 exhibit strong synergistic effects in a various number of cancer cell lines. BMC Cancer 2021; 21:481. [PMID: 33931028 PMCID: PMC8086110 DOI: 10.1186/s12885-021-08186-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Background One key approach for anticancer therapy is drug combination. Drug combinations can help reduce doses and thereby decrease side effects. Furthermore, the likelihood of drug resistance is reduced. Distinct alterations in tumor metabolism have been described in past decades, but metabolism has yet to be targeted in clinical cancer therapy. Recently, we found evidence for synergism between dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, and the HIF-1α inhibitor PX-478. In this study, we aimed to analyse this synergism in cell lines of different cancer types and to identify the underlying biochemical mechanisms. Methods The dose-dependent antiproliferative effects of the single drugs and their combination were assessed using SRB assays. FACS, Western blot and HPLC analyses were performed to investigate changes in reactive oxygen species levels, apoptosis and the cell cycle. Additionally, real-time metabolic analyses (Seahorse) were performed with DCA-treated MCF-7 cells. Results The combination of DCA and PX-478 produced synergistic effects in all eight cancer cell lines tested, including colorectal, lung, breast, cervical, liver and brain cancer. Reactive oxygen species generation and apoptosis played important roles in this synergism. Furthermore, cell proliferation was inhibited by the combination treatment. Conclusions Here, we found that these tumor metabolism-targeting compounds exhibited a potent synergism across all tested cancer cell lines. Thus, we highly recommend the combination of these two compounds for progression to in vivo translational and clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08186-9.
Collapse
Affiliation(s)
- Jonas Parczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Jérôme Ruhnau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Carsten Pelz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Max Schilling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hao Wu
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Nicole Nadine Piaskowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Britta Eickholt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Kerstin Danker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
11
|
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z, Xie H. Altered glycolysis results in drug-resistant in clinical tumor therapy. Oncol Lett 2021; 21:369. [PMID: 33747225 DOI: 10.3892/ol.2021.12630] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo metabolic reprogramming, including increased glucose metabolism, fatty acid synthesis and glutamine metabolic rates. These enhancements to three major metabolic pathways are closely associated with glycolysis, which is considered the central component of cancer cell metabolism. Increasing evidence suggests that dysfunctional glycolysis is commonly associated with drug resistance in cancer treatment, and aberrant glycolysis plays a significant role in drug-resistant cancer cells. Studies on the development of drugs targeting these abnormalities have led to improvements in the efficacy of tumor treatment. The present review discusses the changes in glycolysis targets that cause drug resistance in cancer cells, including hexokinase, pyruvate kinase, pyruvate dehydrogenase complex, glucose transporters, and lactate, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies. In addition, the association between increased oxidative phosphorylation and drug resistance is introduced, which is caused by metabolic plasticity. Given that aberrant glycolysis has been identified as a common metabolic feature of drug-resistant tumor cells, targeting glycolysis may be a novel strategy to develop new drugs to benefit patients with drug-resistance.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shipeng Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaowei Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
Marcucci F, Rumio C. Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia 2021; 23:234-245. [PMID: 33418276 PMCID: PMC7804361 DOI: 10.1016/j.neo.2020.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells often switch from mitochondrial oxidative metabolism to glycolytic metabolism even under aerobic conditions. Tumor cell glycolysis is accompanied by several nonenzymatic activities among which induction of drug resistance has important therapeutic implications. In this article, we review the main aspects of glycolysis-induced drug resistance. We discuss the classes of antitumor drugs that are affected and the components of the glycolytic pathway (transporters, enzymes, metabolites) that are involved in the induction of drug resistance. Glycolysis-associated drug resistance occurs in response to stimuli, either cell-autonomous (e.g., oncoproteins) or deriving from the tumor microenvironment (e.g., hypoxia or pseudohypoxia, mechanical cues, etc.). Several mechanisms mediate the induction of drug resistance in response to glycolytic metabolism: inhibition of apoptosis, induction of epithelial-mesenchymal transition, induction of autophagy, inhibition of drug influx and increase of drug efflux. We suggest that drug resistance in response to glycolysis comes into play in presence of qualitative (e.g., expression of embryonic enzyme isoforms, post-translational enzyme modifications) or quantitative (e.g., overexpression of enzymes or overproduction of metabolites) alterations of glycolytic metabolism. We also discern similarities between changes occurring in tumor cells in response to stimuli inducing glycolysis-associated drug resistance and those occurring in cells of the innate immune system in response to danger signals and that have been referred to as danger-associated metabolic modifications. Eventually, we briefly address that also mitochondrial oxidative metabolism may induce drug resistance and discuss the therapeutic implications deriving from the fact that the main energy-generating metabolic pathways may be both at the origin of antitumor drug resistance.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Atas E, Oberhuber M, Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Front Oncol 2020; 10:583217. [PMID: 33384955 PMCID: PMC7771695 DOI: 10.3389/fonc.2020.583217] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area ‘Data & Technologies’, CBmed—Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area ‘Data & Technologies’, CBmed—Center for Biomarker Research in Medicine GmbH, Graz, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21249367. [PMID: 33316932 PMCID: PMC7763818 DOI: 10.3390/ijms21249367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.
Collapse
|
15
|
Hsu TH, Hung SW, Wu CY, Chiu CC, Hong HT, Lee GC, Chen CC, Lin JS, Wu CP. Supplementation of beef extract improves chemotherapy-induced fatigue and toxic effects in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Shi H, Li K, Feng J, Liu G, Feng Y, Zhang X. LncRNA-DANCR Interferes With miR-125b-5p/HK2 Axis to Desensitize Colon Cancer Cells to Cisplatin vis Activating Anaerobic Glycolysis. Front Oncol 2020; 10:1034. [PMID: 32766131 PMCID: PMC7379395 DOI: 10.3389/fonc.2020.01034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colon cancer is one of the most prevalent malignancies that lead to high occurrence of cancer-related deaths. Currently, chemotherapies and radiotherapies remain the primary treatments for advanced colon cancer. Despite the initial effectiveness, a fraction of colon cancer patients developed cisplatin resistance, resulting in therapeutic failure. The long non-coding RNA differentiation antagonizing non-coding RNA (DANCR) has been shown to be upregulated in multiple cancers, indicating an oncogenic role of DANCR. This study aims to elucidate the roles of DANCR in regulating cisplatin (CDDP) resistance of colon cancer. We found DANCR was significantly upregulated in colon cancer tissues and cells compared with normal colon tissues and cells. DANCR was upregulated in cisplatin-resistant colon cancer cells. Moreover, overexpression of DANCR significantly desensitized colon cancer cells to cisplatin. On the other way, silencing DANCR dramatically overrode CDDP resistance of colon cancer cells. Bioinformatics prediction revealed DANCR could bind to seeding region of miR-125b-5p as a competitive endogenous RNA. This interference was further validated by luciferase assay. Moreover, we detected a negative correlation between DANCR and miR-125b-5p in colon cancer patient tissues: miR-125b-5p was clearly downregulated in colon cancer tissues and cells. Overexpression of miR-125b-5p significantly sensitized cisplatin-resistant cells. Interestingly, we observed the cisplatin-resistant cells were associated with a significantly increased glycolysis rate. We further identified glycolysis enzyme, hexokinase 2 (HK2), as a direct target of miR-125b-5p in colon cancer cells. Rescue experiments showed overexpression of miR-125b-5p suppressed cellular glycolysis rate and increased cisplatin sensitivity through direct targeting the 3' UTR of HK2. Importantly, silencing endogenous DANCR significantly induced the miR-125b-5p/HK2 axis, resulting in suppression of the glycolysis rate and increase in cisplatin sensitivity of colon cancer cell. Expectedly, these processes could be further rescued by inhibiting miR-125b-5p in the DANCR-silenced cells. Finally, we validated the DANCR-promoted cisplatin resistance via the miR-125b-5p/HK2 axis from an in vivo xenograft mice model. In summary, our study reveals a new mechanism of the DANCR-promoted cisplatin resistance, presenting the lncRNA-DANCR-miR-125b-5p/HK2 axis as a potential target for treating chemoresistant colon cancer.
Collapse
Affiliation(s)
- Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kejun Li
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinxin Feng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gaojie Liu
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yanlin Feng
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiangliang Zhang
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Roy S, Kumaravel S, Sharma A, Duran CL, Bayless KJ, Chakraborty S. Hypoxic tumor microenvironment: Implications for cancer therapy. Exp Biol Med (Maywood) 2020; 245:1073-1086. [PMID: 32594767 DOI: 10.1177/1535370220934038] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Ankith Sharma
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Camille L Duran
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
18
|
Krabbendam IE, Honrath B, Dilberger B, Iannetti EF, Branicky RS, Meyer T, Evers B, Dekker FJ, Koopman WJH, Beyrath J, Bano D, Schmidt M, Bakker BM, Hekimi S, Culmsee C, Eckert GP, Dolga AM. SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell Death Dis 2020; 11:263. [PMID: 32327637 PMCID: PMC7181639 DOI: 10.1038/s41419-020-2458-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022]
Abstract
Metabolic flexibility is an essential characteristic of eukaryotic cells in order to adapt to physiological and environmental changes. Especially in mammalian cells, the metabolic switch from mitochondrial respiration to aerobic glycolysis provides flexibility to sustain cellular energy in pathophysiological conditions. For example, attenuation of mitochondrial respiration and/or metabolic shifts to glycolysis result in a metabolic rewiring that provide beneficial effects in neurodegenerative processes. Ferroptosis, a non-apoptotic form of cell death triggered by an impaired redox balance is gaining attention in the field of neurodegeneration. We showed recently that activation of small-conductance calcium-activated K+ (SK) channels modulated mitochondrial respiration and protected neuronal cells from oxidative death. Here, we investigated whether SK channel activation with CyPPA induces a glycolytic shift thereby increasing resilience of neuronal cells against ferroptosis, induced by erastin in vitro and in the nematode C. elegans exposed to mitochondrial poisons in vivo. High-resolution respirometry and extracellular flux analysis revealed that CyPPA, a positive modulator of SK channels, slightly reduced mitochondrial complex I activity, while increasing glycolysis and lactate production. Concomitantly, CyPPA rescued the neuronal cells from ferroptosis, while scavenging mitochondrial ROS and inhibiting glycolysis reduced its protection. Furthermore, SK channel activation increased survival of C. elegans challenged with mitochondrial toxins. Our findings shed light on metabolic mechanisms promoted through SK channel activation through mitohormesis, which enhances neuronal resilience against ferroptosis in vitro and promotes longevity in vivo.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Birgit Honrath
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- German Center for Neurodegenerative Diseases (DZNE) e.V., Sigmund-Freud-Straße 27, 53127, Bonn, Germany
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, Marburg, 35032, Germany
| | - Benjamin Dilberger
- Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Eligio F Iannetti
- Khondrion, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Robyn S Branicky
- Department of Biology, McGill University, 1205 Ave Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Tammo Meyer
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Bernard Evers
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signalling, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Werner J H Koopman
- Radboud University Medical Center, Department of Biochemistry (286), Nijmegen, The Netherlands
| | - Julien Beyrath
- Khondrion, Philips van Leydenlaan 15, 6525EX, Nijmegen, The Netherlands
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE) e.V., Sigmund-Freud-Straße 27, 53127, Bonn, Germany
| | - Martina Schmidt
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Barbara M Bakker
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signalling, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Siegfried Hekimi
- Department of Biology, McGill University, 1205 Ave Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, Marburg, 35032, Germany
- Center for Mind Brain and Behavior-CMBB, University of Marburg, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Gunter P Eckert
- Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
19
|
Xu G, Li M, Wu J, Qin C, Tao Y, He H. Circular RNA circNRIP1 Sponges microRNA-138-5p to Maintain Hypoxia-Induced Resistance to 5-Fluorouracil Through HIF-1α-Dependent Glucose Metabolism in Gastric Carcinoma. Cancer Manag Res 2020; 12:2789-2802. [PMID: 32425596 PMCID: PMC7186590 DOI: 10.2147/cmar.s246272] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hypoxia-induced chemoresistance is recognized as a major obstacle to the successful treatment of gastric cancer (GC). Circular RNAs (circRNAs) have been proposed to implicate in resistance to chemotherapeutic drugs. However, whether circNRIP1 is involved in the development of hypoxia-induced 5-fluorouracil (5-FU) resistance remains largely unknown. Methods Gene expression was evaluated using quantitative real-time polymerase chain reaction and Western blot. The impact of circNRIP1 on hypoxia-induced resistance to 5-FU was investigated by determining glucose consumption, lactate production and glucose-6-phosphate (G6P) levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide assay was performed to assess cell survival. Results circNRIP1 was upregulated in GC cells. Hypoxia induced the upregulation of circNRIP1 and reduced the sensitivity of GC cells to 5-FU, as evidenced by the increase in multidrug resistance 1 gene, P-glycoprotein, hypoxia-inducible factor-1α (HIF-1α) and G6P levels, glucose consumption, lactate production, as well as cell survival. Silencing of circNRIP1 enhanced the sensitivity of GC cells to 5-FU under a hypoxic condition. microRNA (miR)-138-5p was confirmed as a downstream target gene of circNRIP1, and upregulation of miR-138-5p could reverse the effect of circNRIP1 on hypoxia-induced 5-FU resistance. Additionally, HIF-1α was a target gene of miR-138-5p. More significantly, the effect of circNRIP1 on hypoxia-induced 5-FU resistance was markedly blocked by 2-DG treatment. Conclusion circNRIP1 functioned as a miR-138-5p sponge to enhance hypoxia-induced resistance to 5-FU through modulation of HIF-1α-dependent glycolysis, which provides a novel potential approach to overcome hypoxia-induced 5-FU resistance in GC.
Collapse
Affiliation(s)
- Guangsong Xu
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Mingliang Li
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Jiang Wu
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Chunhong Qin
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Yin Tao
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Hongjie He
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| |
Collapse
|
20
|
Abánades Lázaro I, Wells CJR, Forgan RS. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew Chem Int Ed Engl 2020; 59:5211-5217. [PMID: 31950568 PMCID: PMC7154787 DOI: 10.1002/anie.201915848] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging as leading candidates for nanoscale drug delivery, as a consequence of their high drug capacities, ease of functionality, and the ability to carefully engineer key physical properties. Despite many anticancer treatment regimens consisting of a cocktail of different drugs, examples of delivery of multiple drugs from one MOF are rare, potentially hampered by difficulties in postsynthetic loading of more than one cargo molecule. Herein, we report a new strategy, multivariate modulation, which allows incorporation of up to three drugs in the Zr MOF UiO-66 by defect-loading. The drugs are added to one-pot solvothermal synthesis and are distributed throughout the MOF at defect sites by coordination to the metal clusters. This tight binding comes with retention of crystallinity and porosity, allowing a fourth drug to be postsynthetically loaded into the MOFs to yield nanoparticles loaded with cocktails of drugs that show enhancements in selective anticancer cytotoxicity against MCF-7 breast cancer cells in vitro. We believe that multivariate modulation is a significant advance in the application of MOFs in biomedicine, and anticipate the protocol will also be adopted in other areas of MOF chemistry, to easily produce defective MOFs with arrays of highly functionalised pores for potential application in gas separations and catalysis.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Connor J. R. Wells
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| | - Ross S. Forgan
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black BuildingUniversity AvenueGlasgowG12 8QQUK
| |
Collapse
|
21
|
Abánades Lázaro I, Wells CJR, Forgan RS. Multivariate Modulation of the Zr MOF UiO‐66 for Defect‐Controlled Combination Anticancer Drug Delivery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915848] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Connor J. R. Wells
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black Building University Avenue Glasgow G12 8QQ UK
| | - Ross S. Forgan
- WestCHEM School of ChemistryUniversity of GlasgowJoseph Black Building University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
22
|
Schoonjans CA, Gallez B. Metabolic Plasticity of Tumor Cells: How They Do Adapt to Food Deprivation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:109-123. [PMID: 32130696 DOI: 10.1007/978-3-030-34025-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulated metabolism is a key hallmark of cancer cells and an enticing target for cancer treatment. Since the last 10 years, research on cancer metabolism has moved from pathway attention to network consideration. This metabolic complexity continuously adapt to new constraints in the tumor microenvironment. In this review, we will highlight striking changes in cancer cell metabolism compared to normal cells. Understanding this tumor metabolic plasticity suggests potential new targets and innovative combinatorial treatments for fighting cancer.
Collapse
Affiliation(s)
- Céline A Schoonjans
- Université catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Brussels, Belgium
| | | |
Collapse
|
23
|
Atas E, Oberhuber M, Kenner L. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Front Oncol 2020. [PMID: 33384955 DOI: 10.3389/fonc.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
A metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis-known as the Warburg effect-is characteristic for many cancers. It gives the cancer cells a survival advantage in the hypoxic tumor microenvironment and protects them from cytotoxic effects of oxidative damage and apoptosis. The main regulators of this metabolic shift are the pyruvate dehydrogenase complex and pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK is known to be overexpressed in several cancers and is associated with bad prognosis and therapy resistance. Whereas the expression of PDK1-3 is tissue specific, PDK4 expression is dependent on the energetic state of the whole organism. In contrast to other PDK isoforms, not only oncogenic, but also tumor suppressive functions of PDK4 have been reported. In tumors that profit from high OXPHOS and high de novo fatty acid synthesis, PDK4 can have a protective effect. This is the case for prostate cancer, the most common cancer in men, and makes PDK4 an interesting therapeutic target. While most work is focused on PDK in tumors characterized by high glycolytic activity, little research is devoted to those cases where PDK4 acts protective and is therefore highly needed.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Oberhuber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area 'Data & Technologies', CBmed-Center for Biomarker Research in Medicine GmbH, Graz, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Area 'Data & Technologies', CBmed-Center for Biomarker Research in Medicine GmbH, Graz, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL AM), Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Huang CY, Huang CY, Pai YC, Lin BR, Lee TC, Liang PH, Yu LCH. Glucose Metabolites Exert Opposing Roles in Tumor Chemoresistance. Front Oncol 2019; 9:1282. [PMID: 31824857 PMCID: PMC6881467 DOI: 10.3389/fonc.2019.01282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Reprogrammed glucose metabolism and increased glycolysis have been implicated in tumor chemoresistance. The aim was to investigate the distinct roles of the glucose metabolites pyruvate and ATP in chemoresistance mechanisms, including cell death and proliferation. Our data showed higher glucose transporters in colorectal cancer (CRC) from non-responsive patients than those responsive to chemotherapy. Human CRC cell lines exposed to 5-fluorouracil (5-FU) displayed elevated cell viability and larger tumors in xenograft mouse models if cultured in high-glucose medium. Glucose conferred resistance to 5-FU-induced necroptosis via pyruvate scavenging of mitochondrial free radicals, whereas ATP replenishment had no effect on cell death. Glucose attenuated the 5-FU-induced G0/G1 shift but not the S phase arrest. Opposing effects were observed by glucose metabolites; ATP increased while pyruvate decreased the G0/G1 shift. Lastly, 5-FU-induced tumor spheroid destruction was prevented by glucose and pyruvate, but not by ATP. Our finding argues against ATP as the main effector for glucose-mediated chemoresistance and supports a key role of glycolytic pyruvate as an antioxidant for dual modes of action: necroptosis reduction and a cell cycle shift to a quiescent state.
Collapse
Affiliation(s)
- Chung-Yen Huang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Huang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung City, Taiwan
| | - Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Been-Ren Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tsung-Chun Lee
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
25
|
Liang Y, Zhu D, Zhu L, Hou Y, Hou L, Huang X, Li L, Wang Y, Li L, Zou H, Wu T, Yao M, Wang J, Meng X. Dichloroacetate Overcomes Oxaliplatin Chemoresistance in Colorectal Cancer through the miR-543/PTEN/Akt/mTOR Pathway. J Cancer 2019; 10:6037-6047. [PMID: 31762813 PMCID: PMC6856576 DOI: 10.7150/jca.34650] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance is responsible for most colorectal cancer (CRC) related deaths. In this study, we found that dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, can be used as a sensitizer for oxaliplatin (L-OHP) chemoresistant CRC cells. The aim of this study was to explore the ability of DCA to overcome L-OHP resistance in CRC cells and to identify the underlying molecular mechanisms. We found that DCA sensitizes chemoresistant CRC cells to L-OHP-induced cytotoxic effects by inhibiting clone formation capacity and promoting cell apoptosis. A microRNA (miRNA) array was used for screen, and miR-543 was identified and shown to be downregulated after DCA treatment. The expression of miR-543 was higher in chemoresistant CRC cells than in chemosensitive CRC cells. Overexpression of miR-543 increased chemoresistance in CRC cells. The validated target gene, PTEN, was negatively regulated by miR-543 both in vitro and in vivo, and PTEN was upregulated by DCA through miR-543. In addition, overexpression of miR-543 reversed the inhibition of colony formation after DCA treatment. Furthermore, the Akt/mTOR pathway is activated by miR-543 and is involved in the miR-543 induced chemoresistance. There was a significant inverse relationship between miR-543 expression and PTEN level in CRC patients, and high miR-543 expression was associated with worse prognosis. In conclusion, DCA restored chemosensitivity through miR-543/PTEN/Akt/mTOR pathway, and miR-543 may be a potential marker or therapeutic target for chemoresistance in CRC.
Collapse
Affiliation(s)
- Yu Liang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danxi Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linjing Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Zou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Liang Y, Hou L, Li L, Li L, Zhu L, Wang Y, Huang X, Hou Y, Zhu D, Zou H, Gu Y, Weng X, Wang Y, Li Y, Wu T, Yao M, Gross I, Gaiddon C, Luo M, Wang J, Meng X. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2019; 39:469-485. [PMID: 31597953 PMCID: PMC6949190 DOI: 10.1038/s41388-019-1035-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
The development of chemoresistance remains a major challenge that accounts for colorectal cancer (CRC) lethality. Dichloroacetate (DCA) was originally used as a metabolic regulator in the treatment of metabolic diseases; here, DCA was assayed to identify the mechanisms underlying the chemoresistance of CRC. We found that DCA markedly enhanced chemosensitivity of CRC cells to fluorouracil (5-FU), and reduced the colony formation due to high levels of apoptosis. Using the microarray assay, we noted that miR-149-3p was involved in the chemoresistance of CRC, which was modulated by wild-type p53 after DCA treatment. In addition, PDK2 was identified as a direct target of miR-149-3p. Mechanistic analyses showed that overexpression of miR-149-3p enhanced 5-FU-induced apoptosis and reduced glucose metabolism, similar to the effects of PDK2 knockdown. In addition, overexpression of PDK2 partially reversed the inhibitory effect of miR-149-3p on glucose metabolism. Finally, both DCA treatment and miR-149-3p overexpression in 5-FU-resistant CRC cells were found to markedly sensitize the chemotherapeutic effect of 5-FU in vivo, and this effect was also validated in a small retrospective cohort of CRC patients. Taken together, we determined that the p53/miR-149-3p/PDK2 signaling pathway can potentially be targeted with DCA treatment to overcome chemoresistant CRC.
Collapse
Affiliation(s)
- Yu Liang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linjing Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danxi Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Zou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Weng
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Ningbo Aitagene Technology Co. LTD, Shanghai, China
| | - Yingying Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Li
- Pathology Center, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Isabelle Gross
- INSERM UMR_S1113, Strasbourg, F-67200, France.,FMTS, Universite de Strasbourg Strasbourg, Strasbourg, F-67000, France
| | - Christian Gaiddon
- Universite de Strasbourg, Inserm IRFAC UMR_S1113, Laboratory Stress Response and Innovative Therapy "Streinth", Strasbourg, 67200, France.,CLCC Paul Strauss, Strasbourg, France
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers (Basel) 2019; 11:cancers11081210. [PMID: 31434295 PMCID: PMC6721567 DOI: 10.3390/cancers11081210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
Sodium dichloroacetate (DCA) is an investigational medicinal product which has a potential anticancer preparation as a metabolic regulator in cancer cells’ mitochondria. Inhibition of pyruvate dehydrogenase kinases by DCA keeps the pyruvate dehydrogenase complex in the active form, resulting in decreased lactic acid in the tumor microenvironment. This literature review displays the preclinical research data on DCA’s effects on the cell pyruvate dehydrogenase deficiency, pyruvate mitochondrial oxidative phosphorylation, reactive oxygen species generation, and the Na+–K+–2Cl− cotransporter expression regulation in relation to gender. It presents DCA pharmacokinetics and the hepatocarcinogenic effect, and the safety data covers the DCA monotherapy efficacy for various human cancer xenografts in vivo in male and female animals. Preclinical cancer researchers report the synergistic effects of DCA combined with different drugs on cancer by reversing resistance to chemotherapy and promoting cell apoptosis. Researchers note that female and male animals differ in the mechanisms of cancerogenesis but often ignore studying DCA’s effects in relation to gender. Preclinical gender-related differences in DCA pharmacology, pharmacological mechanisms, and the elucidation of treatment efficacy in gonad hormone dependency could be relevant for individualized therapy approaches so that gender-related differences in treatment response and safety can be proposed.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania.
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 55 Pamplona, Spain.
| |
Collapse
|
28
|
Hao LS, Liu Q, Tian C, Zhang DX, Wang B, Zhou DX, Li ZP, Yuan ZX. Correlation and expression analysis of hypoxia-inducible factor 1α, glucose transporter 1 and lactate dehydrogenase 5 in human gastric cancer. Oncol Lett 2019; 18:1431-1441. [PMID: 31423208 DOI: 10.3892/ol.2019.10457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Abstract
The development and identification of novel potential targeting sites for intervention therapy are essential in the search for improved treatment methods for gastric cancer (GC). Previously, it has been reported that hypoxia inducible factor-1α (HIF-1α) is a potential target gene involved in the endogenous hypoxic response and bioenergetic metabolism of GC cells. In the present study, with the assumption of a close interplay among HIF-1α, glucose transporter 1 (GLUT1) and lactate dehydrogenase-5 (LDH-5), 85 patients with GC were recruited and the protein and gene expression levels of HIF-1α, GLUT1 and LDH-5 in tumor tissues were evaluated in order to assess clinical correlations and co-expression patterns, using Immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that the protein and gene expression levels of HIF-1α were significantly associated with the depth of invasion, nodal metastasis, clinical stage, differentiation and distant metastasis. Consistent with the protein expression results, the mRNA expression levels of the genes coding for GLUT1 and LDH-5 were clearly associated with tumor size, depth of invasion, distant metastasis, clinical stage and differentiation. Correlation analysis of HIF-1α with GLUT1 and LDH-5 at the protein and mRNA expression levels in gastric carcinoma indicated that HIF-1α expression was positively correlated with the expression of GLUT1 (P<0.01, r=0.765 for mRNA expression; P<0.01, r=0.697 for protein expression) and LDH-5 (P<0.01, r=0.892 for mRNA expression; P<0.01, r=0.783 for protein expression) at the mRNA and protein levels. Therefore, it may be concluded that HIF-1α, GLUT1 and LDH-5 are potential target genes involved in the endogenous tumor response to hypoxia and the inhibition of tumor energy metabolism, highlighting a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Lang-Song Hao
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Qi Liu
- Graduate School of Surgery, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Chuan Tian
- Graduate School of Surgery, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Dong-Xing Zhang
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Bo Wang
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Dong-Xu Zhou
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Zhao-Peng Li
- Department of General Surgery, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
29
|
Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 2019; 12:1195-1204. [PMID: 30863087 PMCID: PMC6389007 DOI: 10.2147/ott.s189687] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Junyang Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Chao Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Xiaohuan Tang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| |
Collapse
|
30
|
Zhou YL, Li YM, He WT. Oxygen-laden mesenchymal stem cells enhance the effect of gastric cancer chemotherapy in vitro. Oncol Lett 2018; 17:1245-1252. [PMID: 30655891 DOI: 10.3892/ol.2018.9670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an important factor that results in failure of chemotherapy for the majority of solid tumor types, particularly for gastric cancer. In the present study, mesenchymal stem cells (MSCs), which have the ability to migrate to cancer tissues were used as a vehicle to supply oxygen to gastric cancer. The hemoglobin genes were transfected into MSCs as MSC-hemo groups. Subsequently, MSC-hemo groups were induced by isopropyl-b-D-thiogalactopyranoside and hemin to express hemoglobin. The hemoglobin was detected by western blotting method. Following this, the MSC-hemo groups were placed in an atmosphere containing 100% oxygen and were used to investigate the effect of the function of the oxygen-laden MSC-hemo group on gastric cancer chemotherapy with an MTT assay. As a first approach to investigate the possibility of MSCs as a vehicle to supply oxygen to anoxic cancer types, including gastric, liver, breast cancer, the results indicated that the oxygen-laden MSC-hemo group significantly enhanced the effect of chemotherapeutic treatments on gastric cancer cells. Utilizing MSCs as a svehicle to supply oxygen to the solid tumor may be a novel method to improve the hypoxia conditions of tumor tissues and improve the effect of chemotherapy on tumor cells.
Collapse
Affiliation(s)
- Ya-Li Zhou
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yu-Min Li
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Wen-Ting He
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
31
|
Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Marshall RJ, Sastre B, Del Pozo V, Fairen-Jimenez D, Forgan RS. Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31146-31157. [PMID: 30136840 DOI: 10.1021/acsami.8b11652] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs), network structures wherein metal ions or clusters link organic ligands into porous materials, are being actively researched as nanoscale drug delivery devices as they offer tunable structures with high cargo loading that can easily be further functionalized for targeting and enhanced physiological stability. The excellent biocompatibility of Zr has meant that its MOFs are among the most studied to date, in particular the archetypal Zr terephthalate UiO-66. In contrast, the isoreticular analog linked by fumarate (Zr-fum) has received little attention, despite the endogenous linker being part of the Krebs cycle. Herein, we report a comprehensive study of Zr-fum in the context of drug delivery. Reducing particle size is shown to increase uptake by cancer cells while reducing internalization by macrophages, immune system cells that remove foreign objects from the bloodstream. Zr-fum is compatible with defect loading of the drug dichloroacetate (DCA) as well as surface modification during synthesis, through coordination modulation and postsynthetically. DCA-loaded, PEGylated Zr-fum shows selective in vitro cytotoxicity toward HeLa and MCF-7 cancer cells, likely as a consequence of its enhanced caveolae-mediated endocytosis compared to uncoated precursors, and it is well tolerated by HEK293 kidney cells, J774 macrophages, and human peripheral blood lymphocytes. Compared to UiO-66, Zr-fum is more efficient at transporting the drug mimic calcein into HeLa cells, and DCA-loaded, PEGylated Zr-fum is more effective at reducing HeLa and MCF-7 cell proliferation than the analogous UiO-66 sample. In vitro examination of immune system response shows that Zr-fum samples induce less reactive oxygen species than UiO-66 analogs, possibly as a consequence of the linker being endogenous, and do not activate the C3 and C4 complement cascade pathways, suggesting that Zr-fum can avoid phagocytic activation. The results show that Zr-fum is an attractive alternative to UiO-66 for nanoscale drug delivery, and that a wide range of in vitro experiments is available to greatly inform the design of drug delivery systems prior to early stage animal studies.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , U.K
| | - Salame Haddad
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge CB3 0AS , U.K
| | - Jose M Rodrigo-Muñoz
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz , Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid , Spain
| | - Ross J Marshall
- WestCHEM School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , U.K
| | - Beatriz Sastre
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz , Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid , Spain
| | - Victoria Del Pozo
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz , Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid , Spain
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology , University of Cambridge , Philippa Fawcett Drive , Cambridge CB3 0AS , U.K
| | - Ross S Forgan
- WestCHEM School of Chemistry , University of Glasgow , Joseph Black Building, University Avenue , Glasgow G12 8QQ , U.K
| |
Collapse
|
32
|
Gong T, Cui L, Wang H, Wang H, Han N. Knockdown of KLF5 suppresses hypoxia-induced resistance to cisplatin in NSCLC cells by regulating HIF-1α-dependent glycolysis through inactivation of the PI3K/Akt/mTOR pathway. J Transl Med 2018; 16:164. [PMID: 29898734 PMCID: PMC6000925 DOI: 10.1186/s12967-018-1543-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxia-mediated chemoresistance has been regarded as an important obstacle in the development of cancer treatment. Knockdown of krüppel-like factor 5 (KLF5) was reported to inhibit hypoxia-induced cell survival and promote cell apoptosis in non-small cell lung cancer (NSCLC) cells via direct regulation of hypoxia inducible factor-1α (HIF-1α) expression. However, the roles of KLF5 in the development of hypoxia-induced cisplatin (DDP) resistance and its underlying mechanism in NSCLC cells remain to be further elucidated. METHODS Western blot was performed to determine the protein levels of KLF5, P-glycoprotein (P-gp) and HIF-1α in treated NSCLC cells. Cell survival was examined by MTT assay. The effect of KLF5 knockdown on hypoxia-induced glycolysis was assessed by measuring glucose consumption and lactate production. The effect of KLF5 knockdown on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway was analyzed by western blot. RESULTS Hypoxia upregulated the expression of KLF5 in NSCLC cells. KLF5 knockdown suppressed hypoxia-induced DDP resistance in NSCLC cells, as demonstrated by the increased cytotoxic effects of DDP and reduced P-gp expression in NSCLC cells in hypoxia. Moreover, KLF5 knockdown inhibited hypoxia-induced HIF-1α expression and glycolysis, and KLF5 knockdown suppressed hypoxia-induced DDP resistance by inhibiting HIF-1α-dependent glycolysis in NSCLC cells. Furthermore, KLF5 knockdown suppressed hypoxia-induced activation of the PI3K/Akt/mTOR pathway in NSCLC cells and KLF5 overexpression promoted hypoxia-induced DDP resistance in NSCLC cells through activation of the PI3K/Akt/mTOR pathway. CONCLUSIONS KLF5 knockdown could suppress hypoxia-induced DDP resistance, and its mechanism may be due to the inhibition of HIF-1α-dependent glycolysis via inactivation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Tianxiao Gong
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Haili Wang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Haoxun Wang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Na Han
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| |
Collapse
|
33
|
Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Orellana-Tavra C, Del Pozo V, Fairen-Jimenez D, Forgan RS. Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5255-5268. [PMID: 29356507 DOI: 10.1021/acsami.7b17756] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The high drug-loading and excellent biocompatibilities of metal-organic frameworks (MOFs) have led to their application as drug-delivery systems (DDSs). Nanoparticle surface chemistry dominates both biostability and dispersion of DDSs while governing their interactions with biological systems, cellular and/or tissue targeting, and cellular internalization, leading to a requirement for versatile and reproducible surface functionalization protocols. Herein, we explore not only the effect of introducing different surface functionalities to the biocompatible Zr-MOF UiO-66 but also the efficacy of three surface modification protocols: (i) direct attachment of biomolecules [folic acid (FA) and biotin (Biot)] introduced as modulators for UiO-66 synthesis, (ii) our previously reported "click-modulation" approach to covalently attach polymers [poly(ethylene glycol) (PEG), poly-l-lactide, and poly-N-isopropylacrylamide] to the surface of UiO-66 through click chemistry, and (iii) surface ligand exchange to postsynthetically coordinate FA, Biot, and heparin to UiO-66. The innovative use of a small molecule with metabolic anticancer activity, dichloroacetate (DCA), as a modulator during synthesis is described, and it is found to be compatible with all three protocols, yielding surface-coated, DCA-loaded (10-20 w/w %) nano-MOFs (70-170 nm). External surface modification generally enhances the stability and colloidal dispersion of UiO-66. Cellular internalization routes and efficiencies of UiO-66 by HeLa cervical cancer cells can be tuned by surface chemistry, and anticancer cytotoxicity of DCA-loaded MOFs correlates with the endocytosis efficiency and mechanisms. The MOFs with the most promising coatings (FA, PEG, poly-l-lactide, and poly-N-isopropylacrylamide) were extensively tested for selectivity of anticancer cytotoxicity against MCF-7 breast cancer cells and HEK293 healthy kidney cells as well as for cell proliferation and reactive oxygen species production against J774 macrophages and peripheral blood lymphocytes isolated from the blood of human donors. DCA-loaded, FA-modified UiO-66 selectively kills cancer cells without harming healthy ones or provoking immune system response in vitro, suggesting a significant targeting effect and great potential in anticancer drug delivery. The results provide mechanistic insight into the design and functionalization of MOFs for drug delivery and underline the availability of various in vitro techniques to potentially minimize early-stage in vivo animal studies following the three Rs: reduction, refinement, and replacement.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of Chemistry, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Salame Haddad
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, U.K
| | - José M Rodrigo-Muñoz
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid, Spain
| | - Claudia Orellana-Tavra
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, U.K
| | - Victoria Del Pozo
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid, Spain
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, U.K
| | - Ross S Forgan
- WestCHEM School of Chemistry, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
34
|
Abánades Lázaro I, Abánades Lázaro S, Forgan RS. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun (Camb) 2018; 54:2792-2795. [DOI: 10.1039/c7cc09739e] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual delivery of dichloroacetate and 5-fluorouracil from Zr MOFs into cancer cells is found to enhance in vitro cytotoxicity.
Collapse
Affiliation(s)
| | | | - Ross S. Forgan
- WestCHEM
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow
| |
Collapse
|
35
|
Ward NP, Poff AM, Koutnik AP, D’Agostino DP. Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells. PLoS One 2017. [PMID: 28644886 PMCID: PMC5482478 DOI: 10.1371/journal.pone.0180061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The robust glycolytic metabolism of glioblastoma multiforme (GBM) has proven them susceptible to increases in oxidative metabolism induced by the pyruvate mimetic dichloroacetate (DCA). Recent reports demonstrate that the anti-diabetic drug metformin enhances the damaging oxidative stress associated with DCA treatment in cancer cells. We sought to elucidate the role of metformin's reported activity as a mitochondrial complex I inhibitor in the enhancement of DCA cytotoxicity in VM-M3 GBM cells. Metformin potentiated DCA-induced superoxide production, which was required for enhanced cytotoxicity towards VM-M3 cells observed with the combination. Similarly, rotenone enhanced oxidative stress resultant from DCA treatment and this too was required for the noted augmentation of cytotoxicity. Adenosine monophosphate kinase (AMPK) activation was not observed with the concentration of metformin required to enhance DCA activity. Moreover, addition of an activator of AMPK did not enhance DCA cytotoxicity, whereas an inhibitor of AMPK heightened the cytotoxicity of the combination. Our data indicate that metformin enhancement of DCA cytotoxicity is dependent on complex I inhibition. Particularly, that complex I inhibition cooperates with DCA-induction of glucose oxidation to enhance cytotoxic oxidative stress in VM-M3 GBM cells.
Collapse
Affiliation(s)
- Nathan P. Ward
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
| | - Angela M. Poff
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
| | - Dominic P. D’Agostino
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhang J, Zhou L, Zhao S, Dicker DT, El-Deiry WS. The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle 2017; 16:1193-1200. [PMID: 28486050 DOI: 10.1080/15384101.2017.1320005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an inherent impediment to cancer therapy. Palbociclib, a highly selective inhibitor for CDK4/6, has been tested in numerous clinical trials and has been approved by the FDA. We previously reported that CDK inhibitors can destabilize HIF1α regardless of the presence of hypoxia and can sensitize tumor cells to TRAIL through dual blockade of CDK1 and GSK-3β. To translate this knowledge into a cancer therapeutic strategy, we investigated the therapeutic effects and molecular mechanisms of CDK inhibition against colon cancer cells under normoxia and hypoxia. We found that palbociclib sensitizes colon cancer cells to hypoxia-induced apoptotic resistance via deregulation of HIF-1α accumulation. In addition to inhibition of cell proliferation, we observed that palbociclib promotes colon cancer cell death regardless of the presence of hypoxia at a comparatively high concentration via regulating ERK/GSK-3β signaling and GSK-3β expression. Furthermore, palbociclib synergized with irinotecan in a variety of colon cancer cell lines with various molecular subtypes via deregulating irinotecan-induced Rb phosphorylation and reducing HIF-1α accumulation under normoxia or hypoxia. Collectively, our findings provide a novel combination therapy strategy against hypoxic colon cancer cells that may be further translated in the clinic.
Collapse
Affiliation(s)
- Jun Zhang
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Lanlan Zhou
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Shuai Zhao
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - David T Dicker
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Wafik S El-Deiry
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|
37
|
Bell H, Parkin E. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.42.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Zhang Y, Zhang Y, Geng L, Yi H, Huo W, Talmon G, Kim YC, Wang SM, Wang J. Transforming Growth Factor β Mediates Drug Resistance by Regulating the Expression of Pyruvate Dehydrogenase Kinase 4 in Colorectal Cancer. J Biol Chem 2016; 291:17405-16. [PMID: 27330076 DOI: 10.1074/jbc.m116.713735] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Drug resistance is one of the main causes of colon cancer recurrence. However, our understanding of the underlying mechanisms and availability of therapeutic options remains limited. Here we show that expression of pyruvate dehydrogenase kinase 4 (PDK4) is positively correlated with drug resistance of colon cancer cells and induced by 5-fluorouracil (5-FU) treatment in drug-resistant but not drug-sensitive cells. Knockdown of PDK4 expression sensitizes colon cancer cells to 5-FU or oxaliplatin-induced apoptosis in vitro and increases the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo In addition, we demonstrate for the first time that TGFβ mediates drug resistance by regulating PDK4 expression and that 5-FU induces PDK4 expression in a TGFβ signaling-dependent manner. Mechanistically, knockdown or inhibition of PDK4 significantly increases the inhibitory effect of 5-FU on expression of the anti-apoptotic factors Bcl-2 and survivin. Importantly, studies of patient samples indicate that expression of PDK4 and phosphorylation of Smad2, an indicator of TGFβ pathway activation, show a strong correlation and that both positively associate with chemoresistance in colorectal cancer. These findings indicate that the TGFβ/PDK4 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of PDK4 may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, which warrants the development of PDK4-specific inhibitors.
Collapse
Affiliation(s)
- Yang Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, and Departments of Genetics, Cell Biology, and Anatomy
| | - Yi Zhang
- the Department of Cell Biology, Third Military Medical University, Chongqing 400038, China, and
| | - Liying Geng
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, and
| | - Haowei Yi
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, and Departments of Genetics, Cell Biology, and Anatomy
| | - Wei Huo
- Department of Oncology, Dalian Central Hospital, Dalian 116033, China
| | - Geoffrey Talmon
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Yeong C Kim
- Departments of Genetics, Cell Biology, and Anatomy
| | | | - Jing Wang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, and Departments of Genetics, Cell Biology, and Anatomy, Biochemistry and Molecular Biology, and
| |
Collapse
|
39
|
Pópulo H, Caldas R, Lopes JM, Pardal J, Máximo V, Soares P. Overexpression of pyruvate dehydrogenase kinase supports dichloroacetate as a candidate for cutaneous melanoma therapy. Expert Opin Ther Targets 2016; 19:733-45. [PMID: 25976231 DOI: 10.1517/14728222.2015.1045416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We aimed to verify if there is evidence to consider dichloroacetate (DCA), which inhibits the pyruvate dehydrogenase kinase (PDK) and reverts the metabolic shift of cancer cells from glycolysis to oxidative phosphorylation, as a promising drug for therapy of cutaneous melanoma (CM) patients. RESEARCH DESIGN AND METHODS We assessed the expression profile of PDK 1, 2 and 3 in a series of melanoma samples, to verify if melanoma tumors express the DCA targets, if this expression correlates with the activation of important signaling cascades for melanomagenesis and also with the prognosis of melanoma patients. We also established the sensitivity of melanoma cell lines to DCA treatment, by assessing their metabolic alterations, proliferation and survival. RESULTS We observed that both PDK 1 and 2 isoforms are overexpressed in CM compared to nevi, this expression being associated with the expression of the mTOR pathway effectors and independent of the BRAF mutational status. Melanoma cell lines treated with DCA showed a shift in metabolism, that is, a decrease in glucose consumption and lactate production, downregulation of proliferation, an increase of apoptosis and a decrease in mTOR pathway activation. CONCLUSION Our results suggest that PDK expression may play a role in melanoma development and that DCA can be useful for CM therapy, alone or in combination with mTOR inhibitors.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto , Porto , Portugal +22 557 0700 ; +22 557 0799 ;
| | | | | | | | | | | |
Collapse
|
40
|
Zajac J, Kostrhunova H, Novohradsky V, Vrana O, Raveendran R, Gibson D, Kasparkova J, Brabec V. Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin. J Inorg Biochem 2015; 156:89-97. [PMID: 26780576 DOI: 10.1016/j.jinorgbio.2015.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
The molecular and cellular mechanisms of enhanced toxic effects in tumor cells of the Pt(IV) derivatives of antitumor oxaliplatin containing axial dichloroacetate (DCA) ligands were investigated. DCA ligands were chosen because DCA has shown great potential as an apoptosis sensitizer and anticancer agent reverting the Wartburg effect. In addition, DCA reverses mitochondrial changes in a wide range of cancers, promoting tumor cell apoptosis in a mitochondrial-dependent pathway. We demonstrate that (i) the transformation of oxaliplatin to its Pt(IV) derivatives containing axial DCA ligands markedly enhances toxicity in cancer cells and helps overcome inherent and acquired resistance to cisplatin and oxaliplatin; (ii) a significant fraction of the intact molecules of DCA conjugates with Pt(IV) derivative of oxaliplatin accumulates in cancer cells where it releases free DCA; (iii) mechanism of biological action of the Pt(IV) derivatives of oxaliplatin containing DCA ligands is connected with the effects of DCA released in cancer cells from the Pt(IV) prodrugs on mitochondria and metabolism of glucose; (iv) treatments with the Pt(IV) derivatives of oxaliplatin containing DCA ligands activate an autophagic response in human colorectal cancer cells; (v) the toxic effects in cancer cells of the Pt(IV) derivatives of oxaliplatin containing DCA ligands can be potentiated if cells are treated with these prodrugs in combination with 5-fluorouracil. These properties of the Pt(IV) derivatives of oxaliplatin containing DCA ligands provide opportunities for further development of new platinum-based agents with the capability of killing cancer cells resistant to conventional antitumor platinum drugs used in the clinic.
Collapse
Affiliation(s)
- Juraj Zajac
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Raji Raveendran
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem 91120, Israel
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| |
Collapse
|
41
|
Degwert N, Latuske E, Vohwinkel G, Stamm H, Klokow M, Bokemeyer C, Fiedler W, Wellbrock J. Deoxycytidine kinase is downregulated under hypoxic conditions and confers resistance against cytarabine in acute myeloid leukaemia. Eur J Haematol 2015; 97:239-44. [PMID: 26613208 DOI: 10.1111/ejh.12711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Leukaemia initiating cells reside within specialised niches in the bone marrow where they undergo complex interactions with different stromal cell types. The bone marrow niche is characterised by a low oxygen content resulting in high expression of hypoxia-inducible factor 1 α in leukaemic cells conferring a negative prognosis to patients with acute myeloid leukaemia (AML). METHODS AND RESULTS In the current study, we investigated the impact of hypoxic vs. normoxic conditions on the sensitivity of AML cell lines and primary AML blasts to cytarabine. AML cells cultured under 6% oxygen were significantly more resistant against cytarabine compared to cells cultured under normoxic conditions in proliferation and colony-formation assays. Interestingly upon cultivation under hypoxia, the expression of the cytarabine-activating enzyme deoxycytidine kinase was downregulated in all analysed AML cell lines and primary AML samples representing a possible mechanism for resistance to chemotherapy. Furthermore, the downregulation of deoxycytidine kinase could be associated with hypoxia-inducible factor 1 α as treatment with its inhibitor BAY87-2243 hampered the downregulation of deoxycytidine kinase expression under hypoxic conditions. CONCLUSIONS In conclusion, our data reveal that hypoxia-induced downregulation of deoxycytidine kinase represents one stroma-cell-independent mechanism of drug resistance to cytarabine in acute myeloid leukaemia.
Collapse
Affiliation(s)
- Nicole Degwert
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emily Latuske
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Stamm
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Klokow
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Haematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Huang CY, Yu LCH. Pathophysiological mechanisms of death resistance in colorectal carcinoma. World J Gastroenterol 2015; 21:11777-11792. [PMID: 26557002 PMCID: PMC4631976 DOI: 10.3748/wjg.v21.i41.11777] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Colon cancers develop adaptive mechanisms to survive under extreme conditions and display hallmarks of unlimited proliferation and resistance to cell death. The deregulation of cell death is a key factor that contributes to chemoresistance in tumors. In a physiological context, balance between cell proliferation and death, and protection against cell damage are fundamental processes for maintaining gut epithelial homeostasis. The mechanisms underlying anti-death cytoprotection and tumor resistance often bear common pathways, and although distinguishing them would be a challenge, it would also provide an opportunity to develop advanced anti-cancer therapeutics. This review will outline cell death pathways (i.e., apoptosis, necrosis, and necroptosis), and discuss cytoprotective strategies in normal intestinal epithelium and death resistance mechanisms of colon tumor. In colorectal cancers, the intracellular mechanisms of death resistance include the direct alteration of apoptotic and necroptotic machinery and the upstream events modulating death effectors such as tumor suppressor gene inactivation and pro-survival signaling pathways. The autocrine, paracrine and exogenous factors within a tumor microenvironment can also instigate resistance against apoptotic and necroptotic cell death in colon cancers through changes in receptor signaling or transporter uptake. The roles of cyclooxygenase-2/prostaglandin E2, growth factors, glucose, and bacterial lipopolysaccharides in colorectal cancer will be highlighted. Targeting anti-death pathways in the colon cancer tissue might be a promising approach outside of anti-proliferation and anti-angiogenesis strategies for developing novel drugs to treat refractory tumors.
Collapse
|
43
|
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6:148-61. [PMID: 26322173 PMCID: PMC4549759 DOI: 10.4331/wjbc.v6.i3.148] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/26/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.
Collapse
|
44
|
Amorim R, Pinheiro C, Miranda-Gonçalves V, Pereira H, Moyer MP, Preto A, Baltazar F. Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells. Cancer Lett 2015; 365:68-78. [PMID: 26021766 DOI: 10.1016/j.canlet.2015.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/29/2015] [Accepted: 05/10/2015] [Indexed: 01/02/2023]
Abstract
Cancer cells rely mostly on glycolysis to meet their energetic demands, producing large amounts of lactate that are extruded to the tumour microenvironment by monocarboxylate transporters (MCTs). The role of MCTs in the survival of colorectal cancer (CRC) cells is scarce and poorly understood. In this study, we aimed to better understand this issue and exploit these transporters as novel therapeutic targets alone or in combination with the CRC classical chemotherapeutic drug 5-Fluorouracil. For that purpose, we characterized the effects of MCT activity inhibition in normal and CRC derived cell lines and assessed the effect of MCT inhibition in combination with 5-FU. Here, we demonstrated that MCT inhibition using CHC (α-cyano-4-hydroxycinnamic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and quercetin decreased cell viability, disrupted the glycolytic phenotype, inhibited proliferation and enhanced cell death in CRC cells. These results were confirmed by specific inhibition of MCT1/4 by RNA interference. Notably, we showed that 5-FU cytotoxicity was potentiated by lactate transport inhibition in CRC cells, either by activity inhibition or expression silencing. These findings provide novel evidence for the pivotal role of MCTs in CRC maintenance and survival, as well as for the use of these transporters as potential new therapeutic targets in combination with CRC conventional therapy.
Collapse
Affiliation(s)
- Ricardo Amorim
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil; Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, Sao Paulo, Brazil
| | - Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Pereira
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | | | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA)/Department of Biology, University of Minho, Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
45
|
Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:166-77. [PMID: 26001024 DOI: 10.5507/bp.2015.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/07/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The aim of this review is to provide the information about molecular basis of hypoxia-induced chemoresistance, focusing on the possibility of diagnostic and therapeutic use. RESULTS Hypoxia is a common feature of tumors and represents an independent prognostic factor in many cancers. It is the result of imbalances in the intake and consumption of oxygen caused by abnormal vessels in the tumor and the rapid proliferation of cancer cells. Hypoxia-induced resistance to cisplatin, doxorubicin, etoposide, melphalan, 5-flouoruracil, gemcitabine, and docetaxel has been reported in a number of experiments. Adaptation of tumor cells to hypoxia has important biological effects. The most studied factor responsible for these effects is hypoxia-inducible factor-1 (HIF-1) that significantly contributes to the aggressiveness and chemoresistance of different tumors. The HIF-1 complex, induced by hypoxia, binds to target genes, thereby increasing the expression of many genes. In addition, the expression of hundreds of genes can be also decreased in response to hypoxia in HIF-1 dependent manner, but without the detection of HIF-1 in these genes' promoters. HIF-1 independent mechanisms for drug resistance in hypoxia have been described, however, they are still rarely reported. The first clinical studies focusing on diagnosis of hypoxia and on inhibition of hypoxia-induced changes in cancer cells are starting to yield results. CONCLUSIONS The adaptation to hypoxia requires many genetic and biochemical responses that regulate one another. Hypoxia-induced resistance is a very complex field and we still know very little about it. Different approaches to circumvent hypoxia in tumors are under development.
Collapse
Affiliation(s)
- Helena Doktorova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Mohamed Ashraf Khalil
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
46
|
Chu QSC, Sangha R, Spratlin J, Vos LJ, Mackey JR, McEwan AJB, Venner P, Michelakis ED. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest New Drugs 2015; 33:603-10. [PMID: 25762000 DOI: 10.1007/s10637-015-0221-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Purpose Preclinical evidence suggests dichloroacetate (DCA) can reverse the Warburg effect and inhibit growth in cancer models. This phase 1 study was undertaken to assess the safety, recommended phase 2 dose (RP2D), and pharmacokinetic (PK) profile of oral DCA in patients with advanced solid tumors. Patients and Methods Twenty-four patients with advanced solid malignancies were enrolled using a standard 3 + 3 protocol at a starting dose of 6.25 mg/kg twice daily (BID). Treatment on 28 days cycles was continued until progression, toxicity, or consent withdrawal. PK samples were collected on days 1 and 15 of cycle 1, and day 1 of subsequent cycles. PET imaging ((18) F-FDG uptake) was investigated as a potential biomarker of response. Results Twenty-three evaluable patients were treated with DCA at two doses: 6.25 mg/kg and 12.5 mg/kg BID (median of 2 cycles each). No DLTs occurred in the 6.25 mg/kg BID cohort so the dose was escalated. Three of seven patients had DLTs (fatigue, vomiting, diarrhea) at 12.5 mg/kg BID. Thirteen additional patients were treated at 6.25 mg/kg BID. Most toxicities were grade 1-2 with the most common being fatigue, neuropathy and nausea. No responses were observed and eight patients had stable disease. The DCA PK profile in cancer patients was consistent with previously published data. There was high variability in PK values and neuropathy among patients. Progressive increase in DCA trough levels and a trend towards decreased (18) F-FDG uptake with length of DCA therapy was observed. Conclusions The RP2D of oral DCA is 6.25 mg/kg BID. Toxicities will require careful monitoring in future trials.
Collapse
Affiliation(s)
- Quincy Siu-Chung Chu
- Department of Oncology, University of Alberta and Division of Medical Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada,
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Metabolic modulation of cancer: a new frontier with great translational potential. J Mol Med (Berl) 2015; 93:127-42. [DOI: 10.1007/s00109-014-1250-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
|
48
|
Sborov DW, Haverkos BM, Harris PJ. Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opin Investig Drugs 2015; 24:79-94. [PMID: 25224845 PMCID: PMC4434605 DOI: 10.1517/13543784.2015.960077] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Malignant cell transformation and tumor progression are associated with alterations in glycolysis, fatty acid synthesis, amino acid delivery and production of reactive oxygen species. With increased understanding of the role of metabolism in tumors, there has been interest in developing agents that target tumor specific metabolic pathways. Numerous promising agents targeting altered metabolic pathways are currently in Phase I - III clinical trials. Areas covered: This paper reviews the early phase clinical trial development of these agents and provides perspective on the future direction of this emerging field. Specifically, the authors describe novel and repurposed therapies, focusing on the effects of each agent on tumor metabolism and results from relevant Phase I and II clinical trials. Expert opinion: Metabolism modulating agents, alone and in combinations with other classes of agents, have shown efficacy in the treatment of neoplasm, which, the authors believe, will bear positive results in future studies. Because of the significant crosstalk between metabolic pathways and oncogenic signaling pathways, the authors also believe that combining metabolic modifiers with targeted agents will be an important strategy. An increased understanding of cancer metabolism, in addition to the continued study of metabolic modulators, should lead to further advances in this nascent therapeutic field in the future.
Collapse
Affiliation(s)
- Douglas W Sborov
- Ohio State University, Department of Internal Medicine, Columbus, OH, USA
| | - Bradley M Haverkos
- Ohio State University, Department of Internal Medicine, Columbus, OH, USA
| | - Pamela J Harris
- National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rockville, MD 20850-9739, USA Tel: +1 240 276 6565; Fax: +1 240 276 7894;
| |
Collapse
|
49
|
Chen F, Zhuang M, Zhong C, Peng J, Wang X, Li J, Chen Z, Huang Y. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway. Oncol Rep 2014; 33:457-63. [PMID: 25333894 DOI: 10.3892/or.2014.3550] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 01/25/2023] Open
Abstract
Cancer cells can survive under hypoxia by metabolic reprogramming to achieve a high level of glycolysis, which contributes to the development of chemoresistance. Therefore, inhibition of glycolysis would be a novel strategy for overcoming hypoxia‑induced drug resistance. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to exert strong antitumor activity toward various types of cancer. In the present study, we evaluated the effect of baicalein on hypoxia-induced 5-fluorouracil (5-FU) resistance in gastric cancer AGS cells and investigated the possible molecular mechanisms. We found that baicalein increased the sensitivity of AGS cells to 5-FU treatment under hypoxia. In addition, the hypoxia-enhanced glycolytic flux and expression of several critical glycolysis-associated enzymes (HK2, LDH-A and PDK1) in the AGS cells were suppressed by baicalein. Furthermore, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-1α (HIF-1α) expression in AGS cells. These results together suggest that inhibition of glycolysis via regulation of the PTEN/Akt/HIF-1α signaling pathway may be one of the mechanisms whereby baicalein reverses 5-FU resistance in cancer cells under hypoxia.
Collapse
Affiliation(s)
- Fenglin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Mingkai Zhuang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Canmei Zhong
- College of Union Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Xiaozhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jianying Li
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhixin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yuehong Huang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
50
|
Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta Rev Cancer 2014; 1846:617-29. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
We reviewed the anti-cancer effects of DCA, an orphan drug long used as an investigational treatment for various acquired and congenital disorders of mitochondrial intermediary metabolism. Inhibition by DCA of mitochondrial pyruvate dehydrogenase kinases and subsequent reactivation of the pyruvate dehydrogenase complex and oxidative phosphorylation is the common mechanism accounting for the drug's anti-neoplastic effects. At least two fundamental changes in tumor metabolism are induced by DCA that antagonize tumor growth, metastases and survival: the first is the redirection of glucose metabolism from glycolysis to oxidation (reversal of the Warburg effect), leading to inhibition of proliferation and induction of caspase-mediated apoptosis. These effects have been replicated in both human cancer cell lines and in tumor implants of diverse germ line origin. The second fundamental change is the oxidative removal of lactate, via pyruvate, and the co-incident buffering of hydrogen ions by dehydrogenases located in the mitochondrial matrix. Preclinical studies demonstrate that DCA has additive or synergistic effects when used in combination with standard agents designed to modify tumor oxidative stress, vascular remodeling, DNA integrity or immunity. These findings and limited clinical results suggest that potentially fruitful areas for additional clinical trials include 1) adult and pediatric high grade astrocytomas; 2) BRAF-mutant cancers, such as melanoma, perhaps combined with other pro-oxidants; 3) tumors in which resistance to standard platinum-class drugs alone may be overcome with combination therapy; and 4) tumors of endodermal origin, in which extensive experimental research has demonstrated significant anti-proliferative, pro-apoptotic effects of DCA, leading to improved host survival.
Collapse
Affiliation(s)
- Shyam Kankotia
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States; Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|