1
|
Zotti M, Bussani R, Maglione M. Impaction of third molars and localized cancer of the oral cavity: A simple occasional finding? A retrospective case series and literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102307. [PMID: 40043806 DOI: 10.1016/j.jormas.2025.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES The aim of this study is to analyze, through a literature review and the description of four clinical cases, whether prolonged tooth impaction may represent a trigger for the onset of oral carcinoma. MATERIALS E METHODS In this report, four cases of patients needing the extraction of third molars in complete mucosal or bone impaction are described, which, due to the presence of an unusual radiographic and/or clinical aspect, were found to represent cases of oral carcinomas on histologic analysis. Patients were then referred to the ENT department for further care. A review of the literature has been performed as well. RESULTS Literature analysis revealed the presence of only few case reports on the topic, suggesting therefore a lack of evidence on the correlation between tooth impaction and the onset of oral carcinomas. CONCLUSIONS Further studies are needed in order to give valid hypotheses. The concept of inflammation, that is at the base of oral carcinogenesis mechanism and tooth-related pathologies, such as pericoronitis, may be a common substrate to link these two phenomena. CLINICAL RELEVANCE A thorough analysis of the radiographic and clinical signs is strongly recommended prior and during surgical procedures, such as tooth extraction.
Collapse
Affiliation(s)
- Matteo Zotti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy.
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| | - Michele Maglione
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34149, Trieste, Italy
| |
Collapse
|
2
|
Kan SA, Zhang LW, Wang YC, Chiang CY, Chen MH, Huang SH, Chen MH, Liu TY. Bacterial Outer Membrane Vesicle (OMV)-Encapsulated TiO 2 Nanoparticles: A Dual-Action Strategy for Enhanced Radiotherapy and Immunomodulation in Oral Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2045. [PMID: 39728581 DOI: 10.3390/nano14242045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO2) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO2 nanoparticles (TiO2@OMV) to combine these effects for improved OSCC treatment. TiO2 nanoparticles were synthesized using a hydrothermal method and encapsulated within OMVs derived from Escherichia coli. The TiO2@OMV carriers were evaluated for their ability to enhance radiosensitivity and stimulate immune responses in OSCC cell lines. Reactive oxygen species (ROS) production, macrophage recruitment, and selective cytotoxicity toward cancer cells were assessed. TiO2@OMV demonstrated significant radiosensitization and immune activation compared to unencapsulated TiO2 nanoparticles. The system selectively induced cytotoxicity in OSCC cells, sparing normal cells, and enhanced ROS generation and macrophage-mediated antitumor responses. This study highlights TiO2@OMV as a dual-action therapeutic platform that synergizes radiotherapy and immunomodulation, offering a targeted and effective strategy for OSCC treatment. The approach could improve therapeutic outcomes and reduce the adverse effects associated with conventional therapies.
Collapse
Affiliation(s)
- Shun-An Kan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Li-Wen Zhang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Yu Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Mei-Hsiu Chen
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan
| | - Shih-Hao Huang
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei 220, Taiwan
- Department of Healthcare Administration, Asia Eastern University of Science and Technology, New Taipei 220, Taiwan
| | - Ming-Hong Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei 220, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
3
|
Togni L, Furlani M, Belloni A, Riberti N, Giuliani A, Notarstefano V, Santoni C, Giorgini E, Rubini C, Santarelli A, Mascitti M. Biomolecular alterations temporally anticipate microarchitectural modifications of collagen in oral tongue squamous cell carcinoma. iScience 2024; 27:110303. [PMID: 39040062 PMCID: PMC11261445 DOI: 10.1016/j.isci.2024.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024] Open
Abstract
High resolution analysis of collagen bundles could provide information on tumor onset and evolution. This study was focused on the microarchitecture and biomolecular organization of collagen bundles in oral tongue squamous cell carcinoma (OTSCC). Thirty-five OTSCC biopsy samples were analyzed by synchrotron-based phase-contrast microcomputed tomography and Fourier transform infrared imaging (FTIRI) spectroscopy. PhC-microCT evidenced the presence of reduced and disorganized collagen in the tumor area compared to the extratumoral (ExtraT) one. FTIRI also revealed a reduction of folded secondary structures in the tumor area, and highlighted differences in the peritumoral (PeriT) areas in relation with the OTSCC stage, whereby a significantly lower amount of collagen with less organized fibers was found in the PeriT stroma of advanced-OTSCC stages. Interestingly, no significant morphometrical mismatches were detected in the same region by PhC-microCT analysis. These results suggest that biomolecular alterations in the OTSCC stroma temporally anticipate structural modifications of collagen bundle microarchitecture.
Collapse
Affiliation(s)
- Lucrezia Togni
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Michele Furlani
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Alessia Belloni
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Nicole Riberti
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, via dei Vestini 31, 66013 Chieti, Italy
| | - Alessandra Giuliani
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| | - Valentina Notarstefano
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Chiara Santoni
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Science, Marche Polytechnic University, via Brecce Bianche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, via Tronto 10, Ancona, Italy
| | - Andrea Santarelli
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
- Dentistry Clinic, National Institute of Health and Science of Aging, IRCCS INRCA, via Tronto 10, 60126 Ancona, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, via Tronto 10, 60126 Ancona, Italy
| |
Collapse
|
4
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Farzaneh Moammer, ; Mohammad Reza Zolfaghari, ; Hamed Mirzaei, ;
| |
Collapse
|
5
|
Marín-Payá JC, Clara-Trujillo S, Cordón L, Gallego Ferrer G, Sempere A, Gómez Ribelles JL. Protein-Functionalized Microgel for Multiple Myeloma Cells’ 3D Culture. Biomedicines 2022; 10:biomedicines10112797. [PMID: 36359316 PMCID: PMC9687145 DOI: 10.3390/biomedicines10112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma is a hematologic neoplasm caused by an uncontrolled clonal proliferation of neoplastic plasma cells (nPCs) in the bone marrow. The development and survival of this disease is tightly related to the bone marrow environment. Proliferation and viability of nPCs depend on their interaction with the stromal cells and the extracellular matrix components, which also influences the appearance of drug resistance. Recapitulating these interactions in an in vitro culture requires 3D environments that incorporate the biomolecules of interest. In this work, we studied the proliferation and viability of three multiple myeloma cell lines in a microgel consisting of biostable microspheres with fibronectin (FN) on their surfaces. We also showed that the interaction of the RPMI8226 cell line with FN induced cell arrest in the G0/G1 cell cycle phase. RPMI8226 cells developed a significant resistance to dexamethasone, which was reduced when they were treated with dexamethasone and bortezomib in combination.
Collapse
Affiliation(s)
- Juan Carlos Marín-Payá
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sandra Clara-Trujillo
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
| | - Lourdes Cordón
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
| | - Amparo Sempere
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Haematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
- Correspondence:
| |
Collapse
|
6
|
Shetty SS, Padam KSR, Hunter KD, Kudva A, Radhakrishnan R. Biological implications of the immune factors in the tumour microenvironment of oral cancer. Arch Oral Biol 2021; 133:105294. [PMID: 34735925 DOI: 10.1016/j.archoralbio.2021.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this review is to decipher the biological implications of the immune factors in the tumour microenvironment in oral cancer. The restoration of balance between tumour tolerance and tumour eradication by the host immune cells is critical to provide effective therapeutic strategies. DESIGN The specific role of the stromal and the immune components in oral cancer was reviewed with a tailored search strategy using relevant keywords. The articles were retrieved from bibliometric databases indexed in PubMed, Scopus, and Embase. An in silico analysis was performed to identify potential drug candidates for immunotherapy, by accessing the Drug-Gene Interactions Database (DGIdb) using the rDGIdb package. RESULTS There is compelling evidence for the role of the cellular and extracellular components of the tumour microenvironment in inducing immunosuppression and progression of oral cancer. The druggable candidates specifically targeting the immune system are a viable option in the treatment of oral cancer as they can regulate the tumour microenvironment. CONCLUSION A complex interaction between the tumour and the immunological microenvironment influences the disease outcome in oral cancer. Targeting specific components of the immune system might be relevant, as immunotherapy may become the new standard of care for oral cancer.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
7
|
Georgaki M, Theofilou VI, Pettas E, Stoufi E, Younis RH, Kolokotronis A, Sauk JJ, Nikitakis NG. Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:566-579. [PMID: 34518141 DOI: 10.1016/j.oooo.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 01/08/2023]
Abstract
The pathogenesis of oral cancer is a complex and multifactorial process that requires a deep understanding of the underlying mechanisms involved in the development and progress of malignancy. The ever-improving comprehension of the diverse molecular characteristics of cancer, the genetic and epigenetic alterations of tumor cells, and the complex signaling pathways that are activated and frequently cross talk open up promising horizons for the discovery and application of diagnostic molecular markers and set the basis for an era of individualized management of the molecular defects underlying and governing oral premalignancy and cancer. The purpose of this article is to review the key molecular concepts that are implicated in oral carcinogenesis, especially focusing on oral squamous cell carcinoma, and to review selected biomarkers that play a substantial role in controlling the so-called "hallmarks of cancer," with special reference to recent advances that shed light on their deregulation during the different steps of oral cancer development and progression.
Collapse
Affiliation(s)
- Maria Georgaki
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vasileios Ionas Theofilou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Efstathios Pettas
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleana Stoufi
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John J Sauk
- Professor Emeritus and Dean Emeritus, University of Louisville, Louisville, KY, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Li Z, Zhang L, Liu FY, Li P, He J, Kirkwood CL, Sohn J, Chan JM, Magner WJ, Kirkwood KL. MKP-1 is required to limit myeloid-cell mediated oral squamous cell carcinoma progression and regional extension. Oral Oncol 2021; 120:105401. [PMID: 34182221 DOI: 10.1016/j.oraloncology.2021.105401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) require MAPK phosphatases (MKPs) for deactivation of MAPK intracellular signaling. MKP-1 (encoded by Dusp1) is a key negative regulator of MAPKs and prior reports have indicated that MKP-1 regulates oral cancer-associated inflammation and leukocyte infiltration. OBJECTIVE To determine the significance of myeloid-based expression of MKP-1 in oral cancer. METHODS The Cancer Genome Atlas (TCGA) was used to address DUSP1 expression in oral squamous cell carcinoma (OSCC). Syngeneic and carcinogen-induced mouse models using global and myeloid-specific Dusp-1 deficient mice with immunophenotypic, histologic, and transcriptomic analyses and in vitro migration assays. RESULTS Data from TCGA indicates the DUSP1 expression is inversely related to oral cancer burden and nodal involvement. Using murine models of OSCC, the role of MKP-1 signaling in tumor associated macrophages (TAMs) was assessed. Dusp1-deficient mice had increased tumor burden and TAM infiltrate with increased M2 macrophage polarization. Transcriptomic signatures of TAMs from Dusp1-deficent mice indicated a pro-metastatic phenotype as well as concomitant differences in myeloid-associated genes, cytokine/chemokine signaling, and Notch signaling consistent with tumor progression. In vitro and in vivo assays revealed mouse OSCC cells had a higher migration rate using TAM cell-free supernatant from Dusp1 deficiency mice compared to controls with enhanced regional cervical lymph node metastasis, respectively. To validate TAM studies using implantable mouse models, an OSCC progression model with conditional myeloid-specific Dusp-1 deficient mice demonstrated enhanced OSCC disease progression, characterized by advanced onset, histological stage, and tumor burden. CONCLUSION Myeloid-based Dusp1-deficiency increases OSCC burden and metastasis through alteration in TAM recruitment, gene profile, and polarity suggesting that MKP-1 could be a viable target to reprogram TAM to limit local/regional OSCC extension.
Collapse
Affiliation(s)
- Zhenning Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China; Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lixia Zhang
- Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fa-Yu Liu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Peng Li
- Department of Medical Genetics, China Medical University, Shenyang, China, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China,; Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jing He
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Cameron L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jiho Sohn
- Department of Medicine, University at Buffalo, Buffalo, NY, USA
| | - Jon M Chan
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - William J Magner
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
9
|
Kalogirou EM, Tosios KI, Christopoulos PF. The Role of Macrophages in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:611115. [PMID: 33816242 PMCID: PMC8014034 DOI: 10.3389/fonc.2021.611115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a common malignancy worldwide, with high disease-related death rates. Oral squamous cell carcinoma (OSCC) accounts for more than 90% of oral tumors, with surgical management remaining the treatment of choice. However, advanced and metastatic OSCC is still incurable. Thus, emphasis has been given lately in understanding the complex role of the oral tumor microenvironment (TME) in OSCC progression, in order to identify novel prognostic biomarkers and therapeutic targets. Tumor associated macrophages (TAMs) constitute a major population of the OSCC TME, with bipolar role in disease progression depending on their activation status (M1 vs. M2). Here, we provide an up to date review of the current literature on the role of macrophages during oral oncogenesis, as well as their prognostic significance in OSCC survival and response to standard treatment regimens. Finally, we discuss novel concepts regarding the potential use of macrophages as targets for OSCC immunotherapeutics and suggest future directions in the field.
Collapse
Affiliation(s)
- Eleni Marina Kalogirou
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos I Tosios
- Department of Oral Medicine and Pathology, Faculty of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
10
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Detection of Oral Dysplastic and Early Cancerous Lesions by Polarization-Sensitive Optical Coherence Tomography. Cancers (Basel) 2020; 12:cancers12092376. [PMID: 32842568 PMCID: PMC7564531 DOI: 10.3390/cancers12092376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Detection of oral dysplastic and early-stage cancerous lesions is difficult with the current tools. Half of oral cancers are diagnosed in a late stage. Detection of early stromal change to predict malignant transformation is a new direction in the diagnosis of early-stage oral cancer. The application of new optical tools to image stroma in vivo is under investigation, and polarization-sensitive optical coherence tomography (PS-OCT) is potentially one of those tools. This is a preliminary study to sequentially image oral stromal changes from normal, hyperplasia, and dysplasia to early-stage cancer by PS-OCT in vivo. We used 4-Nitroquinoline-1-oxide drinking water to induce dysplasia and early-stage oral cancer in 19 K14-EGFP-miR-211-GFP transgenic mice. A total of 8 normal, 12 hyperplastic, 11 dysplastic, and 4 early-stage cancerous lesions were enrolled. A new analytic process of PS-OCT imaging was proposed, called an en-face birefringence map. From the birefringence map, the sensitivity, specificity, positive predictive value, and negative predictive values to detect dysplasia and early-stage cancer were 100.00%, 95.00%, 93.75%, and 100.00%, respectively, and the kappa value of these images between two investigators was 0.942. The mean size of malignant lesions detected in this study is 1.66 ± 0.93 mm. This pilot animal study validates the use of PS-OCT to detect small and early-stage oral malignancy with high accuracy and consistency.
Collapse
|
12
|
Martinez EF, de Araújo VC, Navarini NF, de Souza IF, Rena GB, Demasi APD, de Paula E, Teixeira LN. Microvesicles derived from squamous cell carcinoma induce cell death, autophagy, and invasion of benign myoepithelial cells. J Oral Pathol Med 2020; 49:761-770. [PMID: 32453894 DOI: 10.1111/jop.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND There has been great interest recently in the mechanisms of cell-to-cell communication through microvesicles (MV). These structures are produced by many different cell types and can modulate cellular activity by induction of epigenetic alterations. These vesicles may promote tumor mass increase either by stimulating cell proliferation via growth factors or by inhibiting apoptosis, which reinforces the role of such vesicles as important modulators of tumor progression. METHODS The present in vitro study aimed to characterize MV derived from malignant neoplastic epithelial cell cultures (EP) and their effect on the expression of apoptosis/autophagy and invasion related genes of benign myoepithelial (Myo) cell cultures. RESULTS The results revealed round structures with a mean size of 153.6 (±0.2) nm, with typical MV morphology. CD63 quantification indicated that EP cell culture at 70%-80% confluence secreted 3.088 × 108 MV/mL. Overall, Myo exposed to MVs derived from EP showed both up- and downregulation of tumorigenesis promoting genes. MVs from EP cells promoted cell death of Myo cells and positively modulate BAX, SURVIVIN, LC3B, MMP-2, and MMP-9 expression. Furthermore, an increasing of MMP-2 and MMP-9 secretion by Myo was observed after MV exposure. CONCLUSIONS These findings suggest that MVs from EP modulate autophagy of Myo cells, which may, in part, explain the disappearance of these cells in in situ areas of invasive carcinoma ex-pleomorphic adenoma. Additionally, the overexpression of MMPs contributes to the development of an invasive phenotype of Myo cells, which could favor the dissolution of the basement membrane during tumorigenesis process.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Bernardo Rena
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Ana Paula Dias Demasi
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Lucas Novaes Teixeira
- Cell Biology and Oral Pathology Division, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
13
|
Chen R, Lu X, Li Z, Sun Y, He Z, Li X. Dihydroartemisinin Prevents Progression and Metastasis of Head and Neck Squamous Cell Carcinoma by Inhibiting Polarization of Macrophages in Tumor Microenvironment. Onco Targets Ther 2020; 13:3375-3387. [PMID: 32425545 PMCID: PMC7188074 DOI: 10.2147/ott.s249046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Polarized M2 macrophages are an important type of tumor-associated macrophage (TAM), with roles in the growth, invasion, and migration of cancer cells in the tumor microenvironment. Dihydroartemisinin (DHA), a traditional Chinese medicine extract, has been shown to inhibit the progression and metastasis of head and neck squamous cell carcinoma (HNSCC); however, the effect of DHA on cancer prevention, and the associated mechanism, has not been investigated in the tumor microenvironment. Materials and Methods First, human Thp-1 monocytes were induced and differentiated into M2 macrophages using phorbol 12-myristate 13-acetate (PMA), interleukin-6 (IL-6), and interleukin-4 (IL-4). Induction success was confirmed by cell morphology evaluation, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Then, DHA was applied to interfere with M2 macrophage polarization, and conditioned medium (CM), including conditioned medium from M2 macrophages (M2-CM) and conditioned medium from M2 macrophages with DHA (M2-DHA-CM), was obtained. CM was applied to Fadu or Cal-27 cells, and its effects on cancer invasion, migration, and angiogenesis were evaluated using transwell, wound-healing, and tube formation assays, respectively. Finally, Western blotting was used to evaluate the relationship between signal transducer and activator of transcription 3 (STAT3) signaling pathway activation and M2 macrophage polarization. Results Human Thp-1 monocytes were successfully polarized into M2-like TAMs using PMA, IL-6, and IL-4. We found that M2-like TAMs promoted the invasion, migration, and angiogenesis of HNSCC cells; however, DHA significantly inhibited IL-4/IL-6-induced M2 macrophage polarization. Additionally, as DHA induced a decrease in the number of M2-like TAMs, M2-DHA-CM inhibited the induction of invasion, migration, and angiogenesis of Fadu and Cal-27 cells. Finally, DHA inhibited M2 macrophage polarization by blocking STAT3 pathway activation in macrophages. Conclusion DHA inhibits the invasion, migration, and angiogenesis of HNSCC by preventing M2 macrophage polarization via blocking STAT3 phosphorylation.
Collapse
Affiliation(s)
- Ran Chen
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China.,Department of Otolaryngology Head and Neck Surgery, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, People's Republic of China
| | - Xiuying Lu
- Department of Otolaryngology Head and Neck Surgery, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, People's Republic of China
| | - Zhen Li
- Department of Otolaryngology Head and Neck Surgery, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, People's Republic of China
| | - Yajing Sun
- Department of Otolaryngology Head and Neck Surgery, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, People's Republic of China
| | - Zhengxin He
- Department of Laboratory Medicine, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, People's Republic of China
| | - Xiaoming Li
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China.,Department of Otolaryngology Head and Neck Surgery, The 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, People's Republic of China
| |
Collapse
|
14
|
|
15
|
Sales de Sá R, Miranda Galvis M, Mariz BALA, Leite AA, Schultz L, Almeida OP, Santos-Silva AR, Pinto CAL, Vargas PA, Gollob KJ, Kowalski LP. Increased Tumor Immune Microenvironment CD3+ and CD20+ Lymphocytes Predict a Better Prognosis in Oral Tongue Squamous Cell Carcinoma. Front Cell Dev Biol 2020; 8:622161. [PMID: 33718347 PMCID: PMC7951138 DOI: 10.3389/fcell.2020.622161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Oral tongue squamous cell carcinoma (OTSCC) causes over 350,000 cases annually and particularly impacts populations in developing countries. Smoking and alcohol consumption are major risk factors. Determining the role of the tumor immune microenvironment (TIME) in OTSCC outcomes can elucidate immune mechanisms behind disease progression, and can potentially identify prognostic biomarkers. Methods: We performed a retrospective study of 48 OTSCC surgical specimens from patients with tobacco and alcohol exposures. A panel of immunoregulatory cell subpopulations including T (CD3, CD4, CD8) and B (CD20) lymphocytes, dendritic cells (CD1a, CD83), macrophages (CD68), and immune checkpoint molecules programmed cell death protein 1 (PD-1) and ligand 1 (PD-L1) were analyzed using immunohistochemistry. The levels of immune effector cell subpopulations and markers were analyzed in relation to overall survival. Results: Pathological characteristics of the tumor microenvironment included inflammatory infiltrates (83.3%), desmoplasia (41.6%), and perineural invasion (50.0%). The TIME contained high levels of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+), as well as immature (CD1a) and mature (CD83) dendritic cells, PD-1, and PD-L1. Higher numbers of TIME infiltrating CD3+ T cells and CD20+ B cells were predictive of better survival, while higher levels of CD83+ mature dendritic cells predicted better survival. CD3+ T cells were identified as an independent prognostic marker for OTSCC. Lastly, CD3+ T cells were strongly correlated with the number of CD8+ cells and PD-L1 expression. Conclusion: Our findings provide evidence that the TIME profile of OTSSC impacted prognosis. The high expression of CD3+ T cells and B cells are predictive of better overall survival and indicative of an immunologically active, inflammatory TIME in patients with better survival. The number of CD3+ T cells was an independent prognostic marker.
Collapse
Affiliation(s)
- Raísa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marisol Miranda Galvis
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| | | | - Amanda Almeida Leite
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Luciana Schultz
- Department of Anatomic Pathology, Instituto de Anatomia Patologica–IAP, Santa Barbara d'Oeste, Brazil
| | - Oslei Paes Almeida
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Kenneth John Gollob
- International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, São Paulo, Brazil
- Head and Neck Surgery Department, Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Luiz Paulo Kowalski
| |
Collapse
|
16
|
Abstract
The term 'oral cancer' describes a range of malignancies that may arise in and around the oral cavity. Over 90% of such lesions are squamous cell carcinomas, but even these may be divided into different entities based on site, aetiology and prognosis. In particular, squamous carcinomas in the oral cavity (oral cancer) should be regarded as a different disease to carcinomas arising in the oropharynx. Oropharyngeal cancer is associated with infection by human papillomavirus (HPV) and shows different clinical and histological features. This short review summarises the pathology of oral and oropharyngeal cancer, and describes some of the main prognostic factors that pathologists use to assist clinicians in planning appropriate management.
Collapse
Affiliation(s)
- P M Speight
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - P M Farthing
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| |
Collapse
|
17
|
Ding L, Ren J, Zhang D, Li Y, Huang X, Hu Q, Wang H, Song Y, Ni Y, Hou Y. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis 2018; 39:397-406. [PMID: 29346528 DOI: 10.1093/carcin/bgy006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Stromal carcinoma-related fibroblasts (CAFs) are the main type of non-immune cells in the tumor microenvironment (TME). CAFs interact with cancer cells to promote tumor proliferation. Long non-coding RNAs (lncRNAs) are known to regulate cell growth, apoptosis and metastasis of cancer cells, but their role in stromal cells is unclear. Using RNA sequencing, we identified a stromal lncRNA signature during the transformation of CAFs from normal fibroblasts (NFs) in oral squamous cell carcinoma (OSCC). We uncovered an uncharacterized lncRNA, FLJ22447, which was remarkably up-regulated in CAFs, referred to LncRNA-CAF (Lnc-CAF) hereafter. Interleukin-33 (IL-33) was mainly located in the stroma and positively co-expressed with Lnc-CAF to elevate the expression of CAF markers (α-SMA, vimentin and N-cadherin) in fibroblasts. In a co-culture system, IL-33 knockdown impaired Lnc-CAF-mediated stromal fibroblast activation, leading to decreased proliferation of tumor cells. Mechanistically, Lnc-CAF up-regulated IL-33 levels and prevented p62-dependent autophagy-lysosome degradation of IL-33, which was independent of LncRNA-protein scaffold effects. Treatment with the autophagy inducer, rapamycin, impaired the proliferative effect of Lnc-CAF/IL-33 by promoting IL-33 degradation. In turn, tumor cells further increased Lnc-CAF levels in stromal fibroblasts via exosomal Lnc-CAF. In patients with OSCC, high Lnc-CAF/IL-33 expression correlated with high TNM stage (n = 140). Moreover, high Lnc-CAF expression predicted poor prognosis. In vivo, Lnc-CAF knockdown restricted tumor growth and was associated with decreased Ki-67 expression and α-SMA+ CAF in the stroma. In conclusion, we identified a stromal lncRNA signature, which reprograms NFs to CAFs via Lnc-CAF/IL-33 and promotes OSCC development.
Collapse
Affiliation(s)
- Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Qingang Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yanhong Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, PR China
| |
Collapse
|
18
|
Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun 2018; 9:3598. [PMID: 30185791 PMCID: PMC6125363 DOI: 10.1038/s41467-018-05696-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/13/2018] [Indexed: 01/13/2023] Open
Abstract
Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor−node−metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis. Oral cancer has region-specific histopathological and molecular characteristics, complicating its classification by the standard tumor-node-metastasis system. Here, the authors combine discovery and targeted proteomics with IHC to identify region-specific and saliva biomarkers for oral cancer prognosis.
Collapse
|
19
|
ZNF750 inhibited the malignant progression of oral squamous cell carcinoma by regulating tumor vascular microenvironment. Biomed Pharmacother 2018; 105:566-572. [DOI: 10.1016/j.biopha.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
|
20
|
Hoque Apu E, Akram SU, Rissanen J, Wan H, Salo T. Desmoglein 3 - Influence on oral carcinoma cell migration and invasion. Exp Cell Res 2018; 370:353-364. [PMID: 29969588 DOI: 10.1016/j.yexcr.2018.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Desmoglein 3 (Dsg3) is an adhesion receptor in desmosomes, but its role in carcinoma cell migration and invasion is mostly unknown. Our aim was to quantitatively analyse the motion of Dsg3-modified carcinoma cells in 2D settings and in 3D within tumour microenvironment mimicking (TMEM) matrices. We tested mutant constructs of C-terminally truncated Dsg3 (∆238 and ∆560), overexpressed full-length (FL) Dsg3, and empty vector control (Ct) of buccal mucosa squamous cell carcinoma (SqCC/Y1) cells. We captured live cell images and analysed migration velocities and accumulated and Euclidean distances. We compared rodent collagen and Matrigel® with human Myogel TMEM matrices for these parameters in 3D sandwich, in which we also tested the effects of monoclonal antibody AK23, which targets the EC1 domain of Dsg3. In monolayer culture, FL and both truncated constructs migrated faster and had higher accumulated distances than Ct cells. However, in the 3D assays, only the mutants invaded faster relative to Ct cells. Of the mutants, the shorter form (Δ238) exhibited faster migration and invasion than Δ560 cells. In the Transwell, all of the cells invaded faster through Myogel than Matrigel® coated wells. In 3D sandwich, AK23 antibody inhibited only the invasion of FL cells. We conclude that different experimental 2D and 3D settings can markedly influence the movement of oral carcinoma cells with various Dsg3 modifications.
Collapse
Affiliation(s)
- Ehsanul Hoque Apu
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Saad Ullah Akram
- Department of Computer Science and Engineering, University of Oulu, Oulu, Finland
| | - Jouni Rissanen
- Fibre and Particle Engineering, University of Oulu, Oulu, Finland
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland; Medical Research Centre, Oulu University Hospital, Oulu, Finland; HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland; Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Campinas, Brazil.
| |
Collapse
|
21
|
McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:48. [PMID: 29868579 PMCID: PMC5951929 DOI: 10.3389/fcell.2018.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.
Collapse
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
22
|
Almangush A, Heikkinen I, Bakhti N, Mäkinen LK, Kauppila JH, Pukkila M, Hagström J, Laranne J, Soini Y, Kowalski LP, Grénman R, Haglund C, Mäkitie AA, Coletta RD, Leivo I, Salo T. Prognostic impact of tumour-stroma ratio in early-stage oral tongue cancers. Histopathology 2018; 72:1128-1135. [PMID: 29427291 DOI: 10.1111/his.13481] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
AIMS Oral tongue squamous cell carcinoma (OTSCC) has a relatively poor outcome, and there is a need to identify better prognostic factors. Recently, tumour-stroma ratio (TSR) has been associated with prognosis in several cancers. The aim of this multi-institutional study was to evaluate the prognostic value of TSR from original haematoxylin and eosin (HE)-stained tumour-resection slides in a series of early-stage (cT1-2N0) OTSCC patients. METHODS AND RESULTS A TSR cutoff value of 50% was used to divide the patients into stroma-rich (≥50%) and stroma-poor (<50%) groups. The relationships between TSR and clinicopathological characteristics of 311 early-stage OTSCC cases were analysed. The prognostic value of TSR in OTSCC was calculated separately and in combination with a previously published cancer cell budding and depth of invasion (BD) prognostic model. A total of 89 cases (28.6%) belonged to the stroma-rich group. In a multivariate analysis, the stroma-rich group had worse disease-free survival, with a hazard ratio (HR) of 1.81 [95% confidence interval (CI) 1.17-2.79, P = 0.008], and higher cancer-related mortality (HR 1.71, 95% CI 1.02-2.86, P = 0.03). The combination of the highest-risk parameter scores of TSR and the BD model showed significant correlations with recurrence rate (HR 3.42, 95% CI 1.71-6.82, P = 0.004) and cancer-related mortality (HR 11.63, 95% CI 3.83-35.31, P < 0.001). CONCLUSIONS We conclude that TSR is a simple histopathological feature that is useful for prognostication of early-stage OTSCC, and suggest that TSR analyses in association with BD score could be included in routine clinical pathology reports for HE-stained slides.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Turku, Turku, Finland.,Institute of Dentistry, University of Misurata, Misurata, Libya
| | - Ilkka Heikkinen
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Nassira Bakhti
- Master of Biostatistics, Department of Statistics, Faculty of Sciences, Hasselt University, Hasselt, Belgium
| | - Laura K Mäkinen
- Department of Otorhinolaryngology and Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Joonas H Kauppila
- Cancer and Translational Medicine Research Unit, Medical Research Centre Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Matti Pukkila
- Department of Otorhinolaryngology and Head and Neck Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, Helsinki, Finland.,HUSLAB, Department of Pathology, Helsinki University Hospital, Helsinki, Finland.,Research Programmes Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Jussi Laranne
- Department of Otorhinolaryngology and Head and Neck Surgery, Tampere University Hospital, Tampere, Finland
| | - Ylermi Soini
- Department of Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Luiz P Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Centre, São Paulo-SP, Brazil
| | - Reidar Grénman
- Department of Otorhinolaryngology and Head and Neck Surgery, Turku University Hospital, University of Turku, Turku, Finland
| | - Caj Haglund
- Research Programmes Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti A Mäkitie
- Department of Otorhinolaryngology and Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Ilmo Leivo
- Department of Pathology, University of Turku, Turku, Finland
| | - Tuula Salo
- Department of Pathology, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Centre Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
23
|
Miranda Galvis M, Santos-Silva AR, Freitas Jardim J, Paiva Fonseca F, Lopes MA, de Almeida OP, Lópes Pinto CA, Kaminagakura E, Sawazaki-Calone I, Speight PM, Kowalski LP. Different patterns of expression of cell cycle control and local invasion-related proteins in oral squamous cell carcinoma affecting young patients. J Oral Pathol Med 2017. [DOI: 10.1111/jop.12601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marisol Miranda Galvis
- Department of Oral Diagnosis; Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis; Piracicaba Dental School; University of Campinas; Piracicaba Brazil
- Academic Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - Juscelino Freitas Jardim
- Department of Oral Diagnosis; Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Marcio A. Lopes
- Department of Oral Diagnosis; Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| | - Oslei Paes de Almeida
- Department of Oral Diagnosis; Piracicaba Dental School; University of Campinas; Piracicaba Brazil
| | | | - Estela Kaminagakura
- Departament of Bioscience and Oral Diagnosis; Science and Technology Institute; Universidade Estadual Paulista; São José dos Campos Brazil
| | - Iris Sawazaki-Calone
- Oral Pathology and Oral Medicine; Dentistry School; Western Paraná State University; Cascavel Brazil
| | - Paul M. Speight
- Academic Unit of Oral and Maxillofacial Pathology; School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology; A.C. Camargo Cancer Center; São Paulo Brazil
| |
Collapse
|
24
|
Zhao G, Long L, Zhang L, Peng M, Cui T, Wen X, Zhou X, Sun L, Che L. Smart pH-sensitive nanoassemblies with cleavable PEGylation for tumor targeted drug delivery. Sci Rep 2017; 7:3383. [PMID: 28611459 PMCID: PMC5469818 DOI: 10.1038/s41598-017-03111-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
A new acidly sensitive PEGylated polyethylenimine linked by Schiff base (PEG-s-PEI) was designed to render pH-sensitive PEGylation nanoassemblies through multiple interactions with indomethacin and docetaxel (DTX). DTX nanoassemblies driven by PEG-s-PEI thus formulated exhibited an excellent pH-sensitivity PEGylation cleavage performance at extracellular pH of tumor microenvironment, compared to normal tissues, thereby long circulated in blood but were highly phagocytosed by tumor cells. Consequently, this smart pH-sensitive PEGylation cleavage provided an efficient strategy to target tumor microenvironment, in turn afforded superior therapeutic outcome in anti-tumor activity.
Collapse
Affiliation(s)
- Guanren Zhao
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Ling Long
- Department of oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lina Zhang
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Mingli Peng
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Ting Cui
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Xiaoxun Wen
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China
| | - Xing Zhou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Lijun Sun
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China.
| | - Ling Che
- Department of Pharmacy, Hospital 309 of PLA, Beijing, 100091, China.
| |
Collapse
|
25
|
Sadlecki P, Walentowicz P, Bodnar M, Marszalek A, Grabiec M, Walentowicz-Sadlecka M. Determination of BRAF V600E (VE1) protein expression and BRAF gene mutation status in codon 600 in borderline and low-grade ovarian cancers. Tumour Biol 2017; 39:1010428317706230. [PMID: 28488545 DOI: 10.1177/1010428317706230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epithelial ovarian tumors are a group of morphologically and genetically heterogeneous neoplasms. Based on differences in clinical phenotype and genetic background, ovarian neoplasms are classified as low-grade and high-grade tumor. Borderline ovarian tumors represent approximately 10%-20% of all epithelial ovarian masses. Various histological subtypes of ovarian malignancies differ in terms of their risk factor profiles, precursor lesions, clinical course, patterns of spread, molecular genetics, response to conventional chemotherapy, and prognosis. The most frequent genetic aberrations found in low-grade serous ovarian carcinomas and serous borderline tumors, as well as in mucinous cancers, are mutations in BRAF and KRAS genes. The most commonly observed BRAF mutation is substitution of glutamic acid for valine in codon 600 (V600E) in exon 15. The primary aim of this study was to determine whether fully integrated, real-time polymerase chain reaction-based Idylla™ system may be useful in determination of BRAF gene mutation status in codon 600 in patients with borderline ovarian tumors and low-grade ovarian carcinomas. The study included tissue specimens from 42 patients with histopathologically verified ovarian masses, who were operated on at the Department of Obstetrics and Gynecology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz (Poland). Based on histopathological examination of surgical specimens, 35 lesions were classified as low-grade ovarian carcinomas, and 7 as borderline ovarian tumors. Specimens with expression of BRAF V600E (VE1) protein were tested for mutations in codon 600 of the BRAF gene, using an automated molecular diagnostics platform Idylla™. Cytoplasmic immunoexpression of BRAF V600E (VE1) protein was found in three specimens: serous superficial papilloma, serous papillary cystadenoma of borderline malignancy, and partially proliferative serous cystadenoma. All specimens with the expression of BRAF V600E (VE1) protein were tested positively for BRAF V600E/E2/D mutation. No statistically significant relationship (p > 0.05) was found between the presence of BRAF V600E mutation and the probability of 5-year survival. BRAF mutation testing with a rapid, fully integrated molecular diagnostics system Idylla™ may be also a powerful prognostic tool in subjects with newly diagnosed serous borderline tumors, identifying a subset of patients who are unlikely to progress.
Collapse
Affiliation(s)
- Pawel Sadlecki
- 1 Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Pawel Walentowicz
- 1 Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Magdalena Bodnar
- 2 Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,3 Department of Otolaryngology and Laryngeal Oncology, K. Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Andrzej Marszalek
- 2 Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.,4 Chair of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - Marek Grabiec
- 1 Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- 1 Department of Obstetrics and Gynecology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
26
|
Magnussen SN, Hadler-Olsen E, Costea DE, Berg E, Jacobsen CC, Mortensen B, Salo T, Martinez-Zubiaurre I, Winberg JO, Uhlin-Hansen L, Svineng G. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion. BMC Cancer 2017; 17:350. [PMID: 28526008 PMCID: PMC5438506 DOI: 10.1186/s12885-017-3349-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. METHODS Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. RESULTS We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. CONCLUSIONS These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Collapse
Affiliation(s)
- Synnove Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eli Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Cristiane Cavalcanti Jacobsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Bente Mortensen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Tuula Salo
- Cancer and Translational Research Medicine Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oral and Maxillofacial diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Helsinki, Helsinki, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjorg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
27
|
Alaeddini M, Abachi H, Abbasi S, Shamshiri AR, Etemad-Moghadam S. Association of Stromal Factors With the Histologic Risk Assessment Model in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2017; 25:129-133. [DOI: 10.1097/pai.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Zaid KW, Chantiri M, Bassit G. Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2017; 17:927-32. [PMID: 27039814 DOI: 10.7314/apjcp.2016.17.3.927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-β superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein?2 (rhBMP?2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Khaled Waleed Zaid
- Department of Oral Histology and Pathology, Faculty of Dentistry, Damascus University, Damascus, Syrian Arab Republic E-mail :
| | | | | |
Collapse
|
29
|
Gough A, Stern AM, Maier J, Lezon T, Shun TY, Chennubhotla C, Schurdak ME, Haney SA, Taylor DL. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS DISCOVERY 2017; 22:213-237. [PMID: 28231035 DOI: 10.1177/2472555216682725] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.
Collapse
Affiliation(s)
- Albert Gough
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Andrew M Stern
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - John Maier
- 3 Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy Lezon
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Tong-Ying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Chakra Chennubhotla
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Steven A Haney
- 5 Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - D Lansing Taylor
- 1 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.,4 University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Alaeddini M, Etemad-Moghadam S. Correlation between invasion mode and the histologic risk assessment model in oral squamous cell carcinoma. Oral Maxillofac Surg 2016; 20:353-358. [PMID: 27502395 DOI: 10.1007/s10006-016-0572-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE The histologic risk assessment (HRA) model was proposed to assess clinical outcome of oral squamous cell carcinomas (SCCs), and its prognostic value has been confirmed in several studies, but its underlying molecular mechanisms has not been fully investigated. The objective of this study was to evaluate the association between immunohistochemical invasion mode of head and neck SCC and the HRA grading system. METHODS The HRA model consisting of risk scores (RSs), based on perineural invasion (PI), lymphocytic infiltration (LI), and worst pattern of invasion (WPOI), was used for grading 80 samples of head and neck SCC, followed by immunohistochemical staining with antibodies against E-cadherin, N-cadherin, and podoplanin. The two major invasion modes were considered as epithelial-mesenchymal-transition (EMT) and collective cell invasion (CCI) with profiles of E-cadherin-/N-cadherin+/podoplanin- and E-cadherin+/N-cadherin-/podoplanin+, respectively. All other immunohistochemical profiles were classified as partial/incomplete EMT. Statistical analysis was performed by Kruskal-Wallis and Mann-Whitney U tests (P < 0.05). RESULTS Invasion pattern was significantly different among the three RSs (P = 0.01) and across the different scores of LI (P = 0.03) but not perineural invasion (PNI) (P = 0.07) and WPOI (P = 0.70). CONCLUSIONS Based on our results, it seems that there is a difference in EMT, CCI, and partial/incomplete EMT among the variables of the HRA model which might help clarify its functioning system.
Collapse
Affiliation(s)
- Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Ghods St, Enghelab Ave, P.O. Box: 14155-5583, 14174, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Ghods St, Enghelab Ave, P.O. Box: 14155-5583, 14174, Tehran, Iran.
| |
Collapse
|
31
|
Xie Y, Zhong Y, Gao T, Zhang X, Li LI, Ruan H, Li D. Human lymphatic endothelial cells contribute to epithelial ovarian carcinoma metastasis by promoting lymphangiogenesis and tumour cell invasion. Exp Ther Med 2016; 11:1587-1594. [PMID: 27168777 PMCID: PMC4840642 DOI: 10.3892/etm.2016.3134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
The microenvironment of a tumour is an important factor in ovarian cancer metastasis. The present study aimed to simulate the in vivo microenvironment of an ovarian carcinoma using a co-culture system consisting of human lymphatic endothelial cells (HLECs) and human ovarian carcinoma cells with directional high lymphatic metastasis (SKOV3-PM4s) in order to investigate the role of both cell types in ovarian carcinoma metastasis. The SKOV3-PM4s cultured in the HLEC-conditioned medium exhibited increased numbers of pseudopodia and mitotic figures, proliferated at a faster rate and exhibited enhanced invasion and migratory abilities. Furthermore, the HLECs cultured in SKOV3-PM4-conditioned medium exhibited significant morphological alterations and vacuolisation of the cytoplasm, as well as increased invasion, migratory and tube forming abilities. In addition, spontaneous fusion of the SKOV3-PM4s and HLECs was observed in the co-culture system using laser confocal microscopy. The gelatin zymography assay demonstrated that matrix metalloproteinase-2, which was downregulated in the SKOV3-PM4s, was upregulated in the co-culture system. The results of the present study suggested that the invasion ability of the SKOV3-PM4s was increased in the in vitro co-culture system of SKOV3-PM4 and HLECs. Therefore, alterations in the cell microenvironment may represent a novel strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yihong Xie
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Zhong
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ting Gao
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinying Zhang
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - L I Li
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Heyun Ruan
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Danrong Li
- Research Department, Affiliated Tumour Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol 2016; 142:101-10. [PMID: 26115960 DOI: 10.1007/s00432-015-2005-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE Oral cancer (OC) patients are at high risk to develop recurrent disease or secondary primary cancers with no available biomarkers to detect these events until a visible lesion is readily present and diagnosed by biopsy. Exosomes secreted by cancer cells are involved in tumor growth, invasion and metastasis. We aimed to determine morphological and molecular differences between oral fluid (OF)-derived exosomes of OC patients and those isolated from healthy individuals (HI). METHODS OF from OC patients (n = 36) and HI (n = 25) was initially assessed by nanoparticle tracking analysis (NTA). Following ultracentrifugation, exosomal pellets of OC patients and HI were morphologically examined by transmission electron microscopy and atomic force microscopy (AFM). Enzyme-linked immunosorbent assay (ELISA) and western blotting (WB) were used to analyze the expression of exosomal markers--CD9, CD81 and CD63. RESULTS NTA showed that OC samples of OF had a significantly higher concentration of nanoparticles/ml (p = 0.01) and modal nanoparticle size (p = 0.002) compared to HI. The difference in size was structurally highlighted by AFM three-dimensional images applied on exosomal pellets. ELISA and WB showed differential expression of exosomal markers in OC exosomes compared to HI: lower expression of CD81 and CD9 in contrast to a higher expression of CD63 (~53 kDa). CONCLUSIONS OF-derived exosomes from OC patients differ both morphologically and molecularly from exosomes present in HI. This study is a baseline that provides a starting point for finding exosomal biomarkers for early detection of malignant changes in high-risk patients without overt clinical signs/lesions.
Collapse
Affiliation(s)
- Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gavriel Chaushu
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tel Aviv University and Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Tuula Salo
- Departments of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu and Oulu University Hospital, Oulu, Finland
- Medical Research Center, Oulu, Finland
- Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| |
Collapse
|
33
|
Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of Invasion in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1334-48. [PMID: 26046491 DOI: 10.5858/arpa.2014-0498-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed. OBJECTIVES To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion. DATA SOURCES A literature review of peer-reviewed articles in PubMed on HNSCC invasion. CONCLUSIONS Histologic features of HNSCC tumors can help predict prognosis and influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for patients by reducing the rate of spread and increasing responsiveness to chemoradiation.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Mss Jimenez and Jayakar, and Drs Ow and Segall) and Anatomy and Structural Biology (Mss Jimenez and Jayakar, and Dr Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
34
|
Li W, Zhou Y, Yang J, Zhang X, Zhang H, Zhang T, Zhao S, Zheng P, Huo J, Wu H. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:52. [PMID: 25986392 PMCID: PMC4443537 DOI: 10.1186/s13046-015-0172-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/08/2015] [Indexed: 01/26/2023]
Abstract
Background Bone marrow mesenchymal stem cells (BM-MSCs) have been identified to be closely associated with tumor growth and progression. However, the roles of tumor-resident MSCs in cancer have not been thoroughly clarified. This study was to investigate the regulating effect of gastric cancer-derived MSCs (GC-MSCs) on gastric cancer and elucidate the underlying mechanism. Methods GC-MSCs were isolated from primary human gastric cancer tissues and characterized. The effect of GC-MSCs on gastric cancer cell proliferation was analyzed by MTT assay and colony formation assay. Transwell migration assay was performed to evaluate the influence of GC-MSCs in gastric cancer cell migration. The regulating effects of interactions between gastric cancer cells and GC-MSCs on their pro-angiogenic abilities were analyzed in a co-culture system, with the expression, and secretion of pro-angiogenic factors detected by RT-PCR and Luminex assay. Tube formation assay was used to further validate the angiogenic capability of gastric cancer cells or GC-MSCs. Cytokine profiles in the supernatant of GC-MSCs were screened by Luminex assay and neutralizing antibody was used to identify the key effective cytokines. The activations of Akt and Erk1/2 in gastric caner cells were detected by Western blot. Results GC-MSC treatment enhanced the proliferation and migration of BGC-823 and MKN-28 cells, which was more potently than MSCs from adjacent non-cancerous tissues (GCN-MSCs) or bone marrow (BM-MSCs). Higher expression levels of pro-angiogenic factors were detected in GC-MSCs than GCN-MSCs or BM-MSCs. After 10 % GC-MSC-CM treatment, BGC-823, and MKN-28 cells expressed increased levels of pro-angiogenic factors and facilitated tube formation more potently than cancer cells alone. Furthermore, GC-MSCs produced an extremely higher level of interleukin-8 (IL-8) than GCN-MSCs or BM-MSCs. Blockade of IL-8 by neutralizing antibody significantly attenuated the tumor-promoting effect of GC-MSCs. In addition, 10 % CM of IL-8-secreted GC-MSCs induced the activations of Akt or Erk1/2 pathway in BGC-823 and MKN-28 cells. Conclusion Tumor-resident GC-MSCs promote gastric cancer growth and progression more efficiently than GCN-MSCs or BM-MSCs through a considerable secretion of IL-8, which could be a possible target for gastric cancer therapy.
Collapse
Affiliation(s)
- Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China. .,Department of Pathology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Ying Zhou
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Jin Yang
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Xu Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Huanhuan Zhang
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Ting Zhang
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Shaolin Zhao
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Ping Zheng
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Juan Huo
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Huiyi Wu
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| |
Collapse
|
35
|
Sawazaki-Calone I, Rangel A, Bueno AG, Morais CF, Nagai HM, Kunz RP, Souza RL, Rutkauskis L, Salo T, Almangush A, Coletta RD. The prognostic value of histopathological grading systems in oral squamous cell carcinomas. Oral Dis 2015; 21:755-61. [PMID: 25825335 DOI: 10.1111/odi.12343] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study evaluated the association of four histopathological grading systems (WHO grading system, malignancy grading of the deep invasive margins (MG), histological risk (HR) model, and tumor budding and depth of invasion (BD) model) with clinicopathological parameters and outcome of 113 oral squamous cell carcinomas to identify their roles in prognosis. METHODS Demographic and clinical features were obtained from patients' records. Sections from all paraffin-embedded blocks were evaluated according to the four grading systems. Demographic and clinical associations were analyzed using chi-square test, and correlations between the grading systems were established with the Spearman's rank correlation test. Survival curves were performed with Kaplan-Meier method, and multivariate analysis based on Cox proportional hazard model was calculated. RESULTS Significant associations with survival were observed for WHO grading system and BD model in the univariate analysis, but only the BD model was significantly associated with disease outcome as an independent prognostic marker. Age, tumor size, and presence of regional metastasis were also independent markers of reduced survival. CONCLUSION A significant association between the BD model and outcome of OSCC patients was observed, indicating this new histopathological grading system as a possible prognostic tool.
Collapse
Affiliation(s)
- I Sawazaki-Calone
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, Brazil.,Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Alca Rangel
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, Brazil
| | - A G Bueno
- ANATOM Anatomic Pathology Laboratory, Cascavel, Brazil
| | - C F Morais
- APC Anatomic Pathology Laboratory, Cascavel, Brazil
| | - H M Nagai
- UOPECCAN Cancer Hospital, Cascavel, Brazil
| | - R P Kunz
- Oncology Center of Cascavel (CEONC), Cascavel, Brazil
| | - R L Souza
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, Brazil
| | - L Rutkauskis
- Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, Brazil
| | - T Salo
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.,Department of Diagnostics and Oral Medicine, Institute of Dentistry and Oulu University Hospital, University of Oulu, Oulu, Finland.,Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - A Almangush
- Department of Diagnostics and Oral Medicine, Institute of Dentistry and Oulu University Hospital, University of Oulu, Oulu, Finland.,Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - R D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
36
|
Pirilä E, Väyrynen O, Sundquist E, Päkkilä K, Nyberg P, Nurmenniemi S, Pääkkönen V, Pesonen P, Dayan D, Vered M, Uhlin-Hansen L, Salo T. Macrophages modulate migration and invasion of human tongue squamous cell carcinoma. PLoS One 2015; 10:e0120895. [PMID: 25811194 PMCID: PMC4374792 DOI: 10.1371/journal.pone.0120895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/27/2015] [Indexed: 12/29/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF-kappaB activity.
Collapse
Affiliation(s)
- Emma Pirilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Otto Väyrynen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Elias Sundquist
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kaisa Päkkilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Pia Nyberg
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sini Nurmenniemi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Virve Pääkkönen
- Department of Pedodontics, Cariology and Endodontology, University of Oulu, Oulu, Finland
| | - Paula Pesonen
- Department of Community Dentistry, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Lars Uhlin-Hansen
- Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Pathology, University Hospital of Northern Norway, Tromsø, Tromsø, Norway
| | - Tuula Salo
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| |
Collapse
|
37
|
Vered M, Lehtonen M, Hotakainen L, Pirilä E, Teppo S, Nyberg P, Sormunen R, Zlotogorski-Hurvitz A, Salo T, Dayan D. Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: an in-vivo and in-vitro study. BMC Cancer 2015; 15:25. [PMID: 25633184 PMCID: PMC4318139 DOI: 10.1186/s12885-015-1030-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Background Caveolin-1 (CAV1) may be upregulated by hypoxia and acts in a tumor-dependent manner. We investigated CAV1 in tongue squamous cell carcinoma (TSCC) and its association with clinical outcomes, and studied in vitro possible ways for CAV1 accumulation in the tumor microenvironment (TME). Methods TSCC cases (N = 64) were immunohistochemically stained for CAV1. Scores were separately assessed in the tumor and TME and plotted for association with recurrence and survival (univariate analysis with log-rank test). In vitro studies were performed on a 3D myoma organotypic model, a mimicker of TME. Prior to monoculturing HSC-3 tongue cancer cells, the model underwent modifications in oxygenation level (1%O2 hypoxia to upregulate CAV1) and/or in the amount of natural soluble factors [deleted by 14-day rinsing (rinsed myoma, RM), to allow only HSC-3-derived factors to act]. Controls included normoxia (21%O2) and naturally occurring soluble factors (intact myoma, IM). HSC-3 cells were also co-cultured with CaDEC12 cells (fibroblasts exposed to human tongue cancer). CAV1 expression and cellular distribution were examined in different cellular components in hypoxic and rinsed myoma assays. Twist served as a marker for the process of epithelial-mesenchymal transition (EMT). Exosomes isolated from HSC-3 media were investigated for containing CAV1. Results Expression of CAV1 in TSCC had a higher score in TME than in the tumor cells and a negative impact on recurrence (p = 0.01) and survival (p = 0.003). Monocultures of HSC-3 revealed expression of CAV1 mainly in the TME-like myoma assay, similar to TSCC. CAV1+, alpha-smooth muscle actin (αSMA) + and Twist + CAF-like cells were observed surrounding the invading HSC-3, possibly reflecting EMT. RM findings were similar to IM, inferring action of HSC-3 derived factors, and no differences were seen when hypoxia was induced. HSC-3-CaDEC12 co-cultures revealed CAV1+, αSMA+ and cytokeratin-negative CAF-like cells, raising the possibility of CaDEC12 cells gaining a CAF phenotype. HSC-3-derived exosomes were loaded with CAV1. Conclusions Accumulation of CAV1-TME in TSCC had a negative prognostic value. In vitro studies showed the presence of CAV1 in cancer cells undergoing EMT and in fibroblasts undergoing trans-differentiation to CAFs. CAV1 delivery to the TME involved cancer cell-derived exosomes.
Collapse
Affiliation(s)
- Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel. .,Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | - Meri Lehtonen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Lari Hotakainen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Emma Pirilä
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Susanna Teppo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Pia Nyberg
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland. .,Oulu University Hospital, Oulu, Finland.
| | - Raija Sormunen
- Biocenter Oulu, University of Oulu, Oulu, Finland. .,Medical Research Center, Oulu, Finland.
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland. .,Oulu University Hospital, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland. .,Medical Research Center, Oulu, Finland. .,Institute of Dentistry, University of Helsinki, Helsinki, Finland.
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
38
|
Almangush A, Salo T, Hagström J, Leivo I. Tumour budding in head and neck squamous cell carcinoma - a systematic review. Histopathology 2014; 65:587-94. [PMID: 24897954 DOI: 10.1111/his.12471] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
Tumour budding is a specific type of invasive growth in carcinomas characterized by invading single tumour cells or small clusters of tumour cells (<5 cells) at the invasive front (IF). It has been documented in numerous publications during the past few decades, but its value as a prognostic marker in head and neck squamous cell carcinoma (HNSCC) has been analysed only recently. In this review we aimed to address the question of whether or not tumour budding has an impact upon the progression and prognosis of HNSCC. We systematically reviewed the databases of PubMed, Scopus and Web of Science for articles that studied tumour budding in squamous cell carcinoma of the head and neck region. The search was limited to articles published in the English literature before March 2014. A total of 122 hits were retrieved; however, only five reports met the inclusion criteria. The findings of these reports suggested a strong association between tumour budding and tumour progression, in addition to strong correlation with patient prognosis. Standardization of the scoring method and the risk stratification cut-off point is necessary before the inclusion of tumour budding in pathological reports during daily practice.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland; Institute of Dentistry, University of Misurata, Misurata, Libya
| | | | | | | |
Collapse
|
39
|
Kim MJ, Kim KM, Kim J, Kim KN. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One 2014; 9:e108170. [PMID: 25271422 PMCID: PMC4182698 DOI: 10.1371/journal.pone.0108170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2)-containing bone grafts are useful regenerative materials for oral and maxillofacial surgery; however, several in vitro and in vivo studies previously reported cancer progression-related adverse effects caused by BMP-2. In this study, by quantifying the rhBMP-2 content released from bone grafts, the rhBMP-2 concentration that did not show cytotoxicity in each cell line was determined and applied to the in vitro monoculture or coculture model in the invasion assay. Our results showed that 1 ng/ml rhBMP-2, while not affecting cancer cell viability, significantly increased the invasion ability of the cancer cells cocultured with fibroblasts. Cocultured medium with rhBMP-2 also contained increased levels of matrix metalloproteinases. rhBMP-2-treated cocultured fibroblasts did not show a prominent difference in mRNA expression profile. Some cytokines, however, were detected in the conditioned medium by a human cytokine antibody array. Among them, the cancer invasion-related factor CCL5 was quantified by ELISA. Interestingly, CCL5 neutralizing antibodies significantly reduced the invasion of oral cancer cells. In conclusion, our results suggest that 1 ng/ml rhBMP-2 may induce invasion of oral squamous cell carcinoma (OSCC) cells by CCL5 release in coculture models. Therefore, we propose that a careful clinical examination before the use of rhBMP-2-containing biomaterials is indispensable for using rhBMP-2 treatment to prevent cancer progression.
Collapse
Affiliation(s)
- Mi-joo Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Dental Devices Testing & Evaluation Center, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Kwang-mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Dental Devices Testing & Evaluation Center, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Kyoung-nam Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Dental Devices Testing & Evaluation Center, Brain Korea 21 Plus project, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|