1
|
Grigio V, Guerra LHA, Ruiz TFR, Taboga SR, Vilamaior PSL. Coconut oil reduces steroidogenic enzymes and imbalances estrogen receptors in the adrenal cortex of Mongolian gerbils. Food Chem Toxicol 2025; 196:115248. [PMID: 39793945 DOI: 10.1016/j.fct.2025.115248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aims to verify the effects of prolonged ingestion of coconut oil on the adrenal glands of Mongolian gerbils. Mongolian gerbils were used as an experimental model due to the morphological similarity of the adrenal glands to those of primates. Male Mongolian gerbils, 3 months of age, were divided into three experimental groups (n = 12): an intact control group, which received no treatment, a gavage control group, which received 0.1 ml of water daily by gavage, and a coconut oil-treated group, which received 0.1 ml of coconut oil daily for 12 months. The results showed that prolonged consumption of coconut oil caused an increase in cell area and thickness of the zona reticularis and the accumulation of lipid droplets, as well as reducing the amount of steroidogenic enzymes, such as CYP17, 3BHSD, and 17BHSD. It was also observed that the oil increased the expression of estrogen receptor alpha and their isoforms. These alterations allow us to conclude that changes in the lipid diet can cause alterations in the morphophysiology of the adrenal gland and, consequently, impact its functionality.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Mohanty B. Hypothalamic-pituitary-adrenal axis plasticity across life-history stages of a free-living subtropical finch, Amandava amandava amandava. J Neuroendocrinol 2025; 37:e13459. [PMID: 39477688 DOI: 10.1111/jne.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/08/2024] [Accepted: 10/20/2024] [Indexed: 01/23/2025]
Abstract
The alterations of phenotypic traits (morphology, endocrine physiology, and behavior) in response to predictable environmental cues across life-history stages in seasonally breeding birds enable successful culmination of reproduction. The present study elucidated the plasticity of the hypothalamic-pituitary-adrenal (HPA) axis in a subtropical free-living finch, Amandava amandava amandava, and suggests the crucial role of the baseline corticosterone (CORT) to coordinate energetic readiness across life-history stages. Birds were captured monthly from an area (25.1337° N 82.5644° E) in Uttar Pradesh, India, from June 2014 to May 2015. Only male birds were included in this study corresponding to different life-history stages (6/life-history stage; 2/month): pre-breeding (June-August), breeding (September-November), post-breeding (December-February), and quiescent phases (March-May). The pituitary expression of adrenocorticotropic hormone (ACTH), adrenal interrenal cell morphometry, and plasma level of the CORT showed varied patterns across life-history stages. The density and immunointensity of the ACTH-immunoreactive corticotropes and the interrenal cell number increased along with the significant plasma CORT elevation during the breeding cycle (both pre-breeding and breeding phases). CORT might facilitate the energy demand for the display of sexual behavior (nest-building, courtship), testicular recrudescence, and foraging of food for offspring during the breeding cycle. On the contrary, plasma CORT decrease in the post-breeding and quiescent phases might enable the bird to molt avoiding the protein catabolic effect of the hormone. Given the complexity involved in the study of baseline CORT in free-living birds, more studies are needed to better understand the crucial role of the HPA axis in the modulation of life-history stages in this and other subtropical avian species.
Collapse
Affiliation(s)
- Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Pu LP, Chen JW, Yang HL, Xu HY. MALDI-TOF Mass Spectrometry Reveals the Effect of Acetyl-L-Carnitine on the Lipid Profile of Buffalo Oocytes and Cumulus Cells During In Vitro Maturation. Reprod Domest Anim 2024; 59:e14752. [PMID: 39676216 DOI: 10.1111/rda.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/20/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Lipids in cumulus-oocyte complexes are important actors in molecular signalling pathways and are influenced by maturation conditions. Acetyl-L-carnitine (ALC) is a carrier involved in fatty acid transport and is a promoter of β-oxidation. Although the embryonic development potential of oocytes can be improved when ALC is added to the maturation medium, the effects of ALC on the lipid content and composition of oocytes and cumulus cells remain unknown. In this study, the effect of ALC supplementation on the lipid profiles of buffalo oocytes and cumulus cells after in vitro maturation was evaluated using positive-ion matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Orthogonal projections to latent structures discriminant analysis was used to analyse the data. The lipid profiles of oocytes and cumulus cells differed following ALC treatment. Four lipids were significantly different in oocytes and eight in granulosa cells. ALC treatment significantly reduced the cellular content of these lipids, with the exception of phosphatidylcholine [PC(36:3) + H] + in oocytes and triacylglycerol [TAG(58:8) + NH4] + in granulosa cells. Further staining experiments confirmed that ALC treatment reduced the total lipid content in oocytes. Therefore, ALC treatment alters lipid metabolism in oocytes and cumulus cells during their maturation and accelerates lipid metabolism in oocytes. The findings of this study demonstrate that ALC enhances the rate of oocyte maturation by altering lipid metabolism in oocytes, providing both a clear direction for further research into regulatory mechanisms as well as a foundation for further improving oocyte maturation rates.
Collapse
Affiliation(s)
- Li-Ping Pu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jia-Wen Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hai-Long Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui-Yan Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Zhang Y, Yu L, He Y, Liu C, Abouelfetouh MM, Ju S, Zhou Z, Li Q. Sirtuin 1-mediated autophagy regulates testosterone synthesis in Leydig cells of piglets. Theriogenology 2024; 230:130-141. [PMID: 39298912 DOI: 10.1016/j.theriogenology.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Testosterone is secreted by Leydig cells (LCs), which play an important physiological role in preserving male secondary sex characteristics, protecting male reproductive function, and establishing the blood-testis barrier. Studies have shown that autophagy is particularly active in LCs; however, its involvement in testosterone synthesis in porcine LCs has not been fully explored. Therefore, this experiment aimed to investigate the influence of autophagy on testosterone secretion in porcine LCs and its potential regulatory mechanism. Our results demonstrated that both testicular autophagy and serum testosterone levels increased in piglets during postnatal development from 4 to 18 weeks. In addition, autophagy was found to degrade the Na+/H+ exchange regulatory factor 2 (NHERF2), leading to the up-regulation of scavenger receptor class B type 1 (SRB1). This process resulted in increased cholesterol intake and enhanced testosterone production. The observable level of sirtuin 1 (SIRT1) was directly proportional to the level of autophagy. In vitro investigations have shown that SIRT1 can affect the level of autophagy, cholesterol uptake as well as testosterone release. In conclusion, testosterone synthesis during pig development is regulated by SIRT1. SIRT1 mediates the degradation of NHERF2 through autophagy, thereby weakening its negative regulatory effect on the high-density lipoprotein receptor SRB1 in Leydig cells. This process increases cholesterol uptake and enhances testosterone synthesis.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingyun Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mahmoud M Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Egypt
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Zhang XD, Sun J, Zheng XM, Zhang J, Tan LL, Fan LL, Luo YX, Hu YF, Xu SD, Zhou H, Zhang YF, Li H, Yuan Z, Wei T, Zhu HL, Xu DX, Xiong YW, Wang H. Plin4 exacerbates cadmium-decreased testosterone level via inducing ferroptosis in testicular Leydig cells. Redox Biol 2024; 76:103312. [PMID: 39173539 PMCID: PMC11387904 DOI: 10.1016/j.redox.2024.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2⁺) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⁺ and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
6
|
Kong Y, Yang G, Feng X, Ji Z, Wang X, Shao Y, Meng J, Yao G, Ren C, Yang G. CTBP1 links metabolic syndrome to polycystic ovary syndrome through interruption of aromatase and SREBP1. Commun Biol 2024; 7:1174. [PMID: 39294274 PMCID: PMC11411056 DOI: 10.1038/s42003-024-06857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Some patients with polycystic ovarian syndrome (PCOS) suffered from metabolic syndrome (MetS) including dyslipidemia, hyperinsulinism, but the underlying mechanism is unclear. Although C-terminal Binding Protein 1 (CTBP1) is a transcriptional co-repressor frequently involved in hormone secretion disorders and MetS-associated diseases, the role of CTBP1 in PCOS is rarely reported. In the present study, we found that CTBP1 expression was significantly elevated in primary granulosa cells (pGCs) derived from the PCOS with MetS patients and was positively associated with serum triglyceride, but negatively correlated with serum estradiol (E2) or high-density lipoprotein. Mechanistic study suggested that CTBP1 physically bound to the promoter II of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) to inhibit the aromatase gene transcription and expression, resulting in the reduced E2 synthesis. Moreover, CTBP1 interacted with the phosphorylated SREBP1a at S396 in nuclei, leading to the FBXW7-dependent protein degradation, resulting in the reduced lipid droplets formation in pGCs. Therefore, we conclude that CTBP1 in GCs dysregulates the synthesis of steroid hormones and lipids through suppression of aromatase expression and promotion of SREBP1a protein degradation in PCOS patients, which may offer some fresh insights into the potential pathological mechanism for this tough disease.
Collapse
Affiliation(s)
- Yue Kong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoling Wang
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Yu H, Li X, Zhao J, Wang W, Wei Q, Mao D. NR4A1-mediated regulation of lipid droplets in progesterone synthesis in goat luteal cells†. Biol Reprod 2024; 111:640-654. [PMID: 38936833 DOI: 10.1093/biolre/ioae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Indexed: 06/29/2024] Open
Abstract
Nuclear receptor NR4A1 is a key factor in glycolipid metabolism and steroidogenesis, while lipid droplets serve as crucial dynamic organelles for lipid metabolism in luteal cells. To investigate the effects of NR4A1 on lipid droplet metabolism and progesterone (P4) synthesis in goat corpus luteum in vitro, luteal cells from the middle-cyclic corpus luteum were isolated and treated with Cytosporone B (CSNB, an agonist) or siRNA of NR4A1. Results showed that both low (1 μM) and high (50 μM) concentrations of CSNB promoted lipid droplet accumulation, while NR4A1 knockdown reduced lipid droplet content. CSNB increased while siNR4A1 decreased total cholesterol content; however, CSNB and siNR4A1 did not change triglyceride content. CSNB increased the expression of perilipins at mRNA and protein levels, also increased LDLR, SCARB1, SREBFs, and HMGCR mRNA abundance. Treatment with siNR4A1 revealed opposite results of CSNB, except for HMCGR and SREBF2. For steroidogenesis, 1 μM CSNB increased, but 50 μM CSNB inhibited P4 synthesis, NR4A1 knockdown also reduced the P4 level. Further analysis demonstrated that 1 μM CSNB increased the protein levels of StAR, HSD3B, and P-HSL, while 50 μM CSNB decreased StAR, HSD3B, and CYP11A1 protein levels. Moreover, 50 μM CSNB impaired active mitochondria, reduced the BCL2, and increased DRP1, Caspase 3, and cleaved-Caspase 3 protein levels. siNR4A1 consistently downregulated the P-HSL/HSL ratio and the steroidogenic protein levels. In conclusion, NR4A1-mediated lipid droplets are involved in the regulation of progesterone synthesis in goat luteal cells.
Collapse
Affiliation(s)
- Hao Yu
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaotong Li
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhao
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
9
|
Plewes MR, Talbott HA, Schott MB, Wood JR, Cupp AS, Davis JS. Unraveling the role of lipid droplets and perilipin 2 in bovine luteal cells. FASEB J 2024; 38:e23710. [PMID: 38822676 PMCID: PMC11347014 DOI: 10.1096/fj.202400260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Steroidogenic tissues contain cytosolic lipid droplets that are important for steroidogenesis. Perilipin 2 (PLIN2), a structural coat protein located on the surface of lipid droplets in mammalian cells, plays a crucial role in regulating lipid droplet formation and contributing to various cellular processes such as lipid storage and energy homeostasis. Herein, we examine the role that PLIN2 plays in regulating progesterone synthesis in the bovine corpus luteum. Utilizing gene array databases and Western blotting, we have delineated the expression pattern of PLIN2 throughout the follicular to luteal transition. Our findings reveal the presence of PLIN2 in both ovarian follicular and steroidogenic luteal cells, demonstrating an increase in its levels as follicular cells transition into the luteal phase. Moreover, the depletion of PLIN2 via siRNA enhanced progesterone production in small luteal cells, whereas adenovirus-mediated overexpression of both PLIN2 and Perilipin 3 (PLIN3) induced an increase in cytosolic lipid droplet accumulation and decreased hormone-induced progesterone synthesis in these cells. Lastly, in vivo administration of the luteolytic hormone prostaglandin F2α resulted in an upregulation of PLIN2 mRNA and protein expression, accompanied by a decline in serum progesterone. Our findings highlight the pivotal role of PLIN2 in regulating progesterone synthesis in the bovine corpus luteum, as supported by its dynamic expression pattern during the follicular to luteal transition and its responsiveness to luteotropic and luteolytic hormones. We suggest PLIN2 as a potential therapeutic target for modulating luteal function.
Collapse
Affiliation(s)
- Michele R. Plewes
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Heather A. Talbott
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer R. Wood
- Department of Animal Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| | - Andrea S. Cupp
- Department of Animal Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Afzal A, Zhang Y, Afzal H, Saddozai UAK, Zhang L, Ji XY, Khawar MB. Functional role of autophagy in testicular and ovarian steroidogenesis. Front Cell Dev Biol 2024; 12:1384047. [PMID: 38827527 PMCID: PMC11140113 DOI: 10.3389/fcell.2024.1384047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.
Collapse
Affiliation(s)
- Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Zhang
- Department of Obstetrics and Gynecology, 988 Hospital of People's Liberation Army, Zhengzhou, Henan, China
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| |
Collapse
|
11
|
Wölk M, Fedorova M. The lipid droplet lipidome. FEBS Lett 2024; 598:1215-1225. [PMID: 38604996 DOI: 10.1002/1873-3468.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Lipid droplets (LDs) are intracellular organelles with a hydrophobic core formed by neutral lipids surrounded by a phospholipid monolayer harboring a variety of regulatory and enzymatically active proteins. Over the last few decades, our understanding of LD biology has evolved significantly. Nowadays, LDs are appreciated not just as passive energy storage units, but rather as active players in the regulation of lipid metabolism and quality control machineries. To fulfill their functions in controlling cellular metabolic states, LDs need to be highly dynamic and responsive organelles. A large body of evidence supports a dynamic nature of the LD proteome and its contact sites with other organelles. However, much less is known about the lipidome of LDs. Numerous examples clearly indicate the intrinsic link between LD lipids and proteins, calling for a deeper characterization of the LD lipidome in various physiological and pathological settings. Here, we reviewed the current state of knowledge in the field of the LD lipidome, providing a brief overview of the lipid classes and their molecular species present within the neutral core and phospholipid monolayer.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| |
Collapse
|
12
|
Vardar US, Bitter JH, Nikiforidis CV. The mechanism of encapsulating curcumin into oleosomes (Lipid Droplets). Colloids Surf B Biointerfaces 2024; 236:113819. [PMID: 38428208 DOI: 10.1016/j.colsurfb.2024.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Organisms have evolved intracellular micron-sized lipid droplets to carry and protect lipids and hydrophobic minor compounds in the hydrophilic environment of cells. These droplets can be utilized as carriers of hydrophobic therapeutics by taking advantage of their biological functions. Here, we focus on the potential of plant-derived lipid droplets, known as oleosomes, as carriers for hydrophobic therapeutics, such as curcumin. By spectroscopy and confocal microscopy, we demonstrate that the oleosome membrane is permeable to hydrophobic curcumin molecules. Fluorescence recovery after photobleaching shows rapid curcumin diffusion towards oleosomes, with a diffusion time in the range of seconds. Following this, quenching probes and dilatational rheology reveal that part of the loaded curcumin molecules can accumulate at the oleosome interface, and the rest settle in the inner core. Our findings shed light on the loading mechanism of the plant-derived lipid droplets and underscore the significance of molecular localization for understanding the mechanism. This work not only enhances the understanding of the loading process but also shows potential for oleosomes use as lipid carriers.
Collapse
Affiliation(s)
- Umay Sevgi Vardar
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands.
| |
Collapse
|
13
|
Pawlicki P, Yurdakok-Dikmen B, Tworzydlo W, Kotula-Balak M. Toward understanding the role of the interstitial tissue architects: Possible functions of telocytes in the male gonad. Theriogenology 2024; 217:25-36. [PMID: 38241912 DOI: 10.1016/j.theriogenology.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Telocytes represent a relatively recently discovered population of interstitial cells with a unique morphological structure that distinguishes them from other neighboring cells. Through their long protrusions extending from the cell body, telocytes create microenvironments via tissue compartmentalization and create homo- and hetero-cellular junctions. These establish a three-dimensional network enabling the maintenance of interstitial compartment homeostasis through regulation of extracellular matrix organization and activity, structural support, paracrine and juxtracrine communication, immunomodulation, immune surveillance, cell survival, and apoptosis. The presence of telocytes has also been confirmed in testicular interstitial tissue of many species of animals. The objective of this review is to summarize recent findings on telocytes in the male gonad, on which conclusions have been deduced that indicate the involvement of telocytes in maintaining the cytoarchitecture of the testicular interstitial tissue, in the processes of spermatogenesis and steroidogenesis, and photoperiod-mediated changes in the testes in seasonally reproductive animals.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland.
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, Ankara, 06110, Dışkapı, Turkey.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-385, Krakow, Poland.
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
14
|
Foster J, McPhee M, Yue L, Dellaire G, Pelech S, Ridgway ND. Lipid- and phospho-regulation of CTP:Phosphocholine Cytidylyltransferase α association with nuclear lipid droplets. Mol Biol Cell 2024; 35:ar33. [PMID: 38170618 PMCID: PMC10916874 DOI: 10.1091/mbc.e23-09-0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Fatty acids stored in triacylglycerol-rich lipid droplets are assembled with a surface monolayer composed primarily of phosphatidylcholine (PC). Fatty acids stimulate PC synthesis by translocating CTP:phosphocholine cytidylyltransferase (CCT) α to the inner nuclear membrane, nuclear lipid droplets (nLD) and lipid associated promyelocytic leukemia (PML) structures (LAPS). Huh7 cells were used to identify how CCTα translocation onto these nuclear structures are regulated by fatty acids and phosphorylation of its serine-rich P-domain. Oleate treatment of Huh7 cells increased nLDs and LAPS that became progressively enriched in CCTα. In cells expressing the phosphatidic acid phosphatase Lipin1α or 1β, the expanded pool of nLDs and LAPS had a proportional increase in associated CCTα. In contrast, palmitate induced few nLDs and LAPS and inhibited the oleate-dependent translocation of CCTα without affecting total nLDs. Phospho-memetic or phospho-null mutations in the P-domain revealed that a 70% phosphorylation threshold, rather than site-specific phosphorylation, regulated CCTα association with nLDs and LAPS. In vitro candidate kinase and inhibitor studies in Huh7 cells identified cyclin-dependent kinase (CDK) 1 and 2 as putative P-domain kinases. In conclusion, CCTα translocation onto nLDs and LAPS is dependent on available surface area and fatty acid composition, as well as threshold phosphorylation of the P-domain potentially involving CDKs.
Collapse
Affiliation(s)
- Jason Foster
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, and
| | - Michael McPhee
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, and
| | - Lambert Yue
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H4R2
| | - Steven Pelech
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5
- Kinexus Bioinformatics Corporation, Vancouver, BC, Canada V6P 6T3
| | - Neale D. Ridgway
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, and
| |
Collapse
|
15
|
Esmaeilian Y, Yusufoglu S, Iltumur E, Bildik G, Oktem O. Visualizing Lipophagy as a New Mechanism of the Synthesis of Sex Steroids in Human Ovary and Testis Using Immunofluorescence Staining Method. Methods Mol Biol 2024. [PMID: 38411886 DOI: 10.1007/7651_2024_520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Immunofluorescence, a transformative tool in cellular biology, is employed to dissect the intricate mechanisms of cholesterol trafficking in human reproductive tissues. Autophagy, a key player in cellular homeostasis, particularly lipophagy, emerges as a free cholesterol source for steroidogenesis. In this chapter, we describe a comprehensive immunofluorescence staining protocol, with details provided for the precise visualization of subcellular dynamics of mitochondria, lysosomes, and lipid droplets in ex vivo testicular tissue and primary luteal granulosa cell culture models, pivotal components in sex steroid biosynthesis. Here, we detail the culture, treatment, and immunofluorescence protocols, providing a comprehensive guide for researchers. The provided immunofluorescence toolkit serves as a valuable resource for researchers, paving way for advancements in human reproductive health to investigate the intricate interplay between autophagy, lipophagy, and cholesterol trafficking.
Collapse
Affiliation(s)
- Yashar Esmaeilian
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sevgi Yusufoglu
- The Graduate School of Health Sciences, Koç University, Istanbul, Turkey
| | - Ece Iltumur
- The Graduate School of Health Sciences, Koç University, Istanbul, Turkey
| | - Gamze Bildik
- The Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ozgur Oktem
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey.
- The Graduate School of Health Sciences, Koç University, Istanbul, Turkey.
- Department of Obstetrics and Gynecology, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
16
|
Vega-Vásquez T, Langgartner D, Wang JY, Reber SO, Picard M, Basualto-Alarcón C. Mitochondrial morphology in the mouse adrenal cortex: Influence of chronic psychosocial stress. Psychoneuroendocrinology 2024; 160:106683. [PMID: 38086320 PMCID: PMC10872515 DOI: 10.1016/j.psyneuen.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 01/02/2024]
Abstract
Mitochondria within the adrenal cortex play a key role in synthesizing steroid hormones. The adrenal cortex is organized in three functionally specialized zones (glomerulosa, fasciculata, and reticularis) that produce different classes of steroid hormones in response to various stimuli, including psychosocial stress. Given that the functions and morphology of mitochondria are dynamically related and respond to stress, we applied transmission electron microscopy (TEM) to examine potential differences in mitochondrial morphology under basal and chronic psychosocial stress conditions. We used the chronic subordinate colony housing (CSC) paradigm, a murine model of chronic psychosocial stress. Our findings quantitatively define how mitochondrial morphology differs among each of the three adrenal cortex zones under basal conditions, and show that chronic psychosocial stress mainly affected mitochondria in the zona glomerulosa, shifting their morphology towards the more typical glucocorticoid-producing zona fasciculata mitochondrial phenotype. Analysis of adrenocortical lipid droplets that provide cholesterol for steroidogenesis showed that chronic psychosocial stress altered lipid droplet diameter, without affecting droplet number or inter-organellar mitochondria-lipid droplet interactions. Together, our findings support the hypothesis that each adrenal cortex layer is characterized by morphologically distinct mitochondria and that this adrenal zone-specific mitochondrial morphology is sensitive to environmental stimuli, including chronic psychosocial stressors. Further research is needed to define the role of these stress-induced changes in mitochondrial morphology, particularly in the zona glomerulosa, on stress resilience and related behaviors.
Collapse
Affiliation(s)
- Tamara Vega-Vásquez
- Laboratory of Cellular Physiology and Metabolism, Health Sciences Department, University of Aysén, Coyhaique, Chile
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Jennifer Y Wang
- School of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA; Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA
| | - Carla Basualto-Alarcón
- Laboratory of Cellular Physiology and Metabolism, Health Sciences Department, University of Aysén, Coyhaique, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Liu L, Zhou S, Zaufel A, Xie Z, Racedo S, Wagner M, Zollner G, Fickert P, Zhang Q. Bile acids regulate SF-1 to alter cholesterol balance in adrenocortical cells via S1PR2. Biochem Biophys Res Commun 2024; 692:149342. [PMID: 38061283 DOI: 10.1016/j.bbrc.2023.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Glucocorticoid synthesis typically occurs in adrenal cortex and is influenced by cholesterol balance, since cholesterol is the sole precursor of steroids. Bile acids as the signaling molecules, have been shown to promote steroidogenesis in steroidogenic cells. However, whether bile acids directly regulate cholesterol balance remains elusive. In this study, we prepared cholestatic mouse models and cultured human adrenocortical cells (H295R) treated with taurochenodeoxycholic acid (TCDCA) to determine transcription levels of cholesterol metabolism associated genes and cholesterol concentrations in adrenocortical cells. Results showed that common bile duct ligation (CBDL) and chenodeoxycholic acid (CDCA) feeding elevated the mRNA levels of Abca1, Cyp51, Hmgcr, Srb1, and Mc2r in adrenals of mice. Meanwhile, the concentrations of total cholesterol and cholesteryl ester in adrenals of CBDL and CDCA-fed mice were dramatically lowered. The total and phosphorylation levels of HSL in adrenal glands of CBDL mice were also enhanced. Similarly, TCDCA treatment in H295R cells decreased intracellular concentrations of total cholesterol and cholesteryl ester and increased transcription levels of SRB1, MC2R, and HSL as well. Inhibition of bile acids' receptor sphingosine 1-phosphate receptor 2 (S1PR2), extracellular signal-regulated kinase (ERK) phosphorylation, and steroidogenic factor 1 (SF-1) respectively successfully abolished effect of TCDCA on H295R cells. SF-1s was found to be phosphorylated at Thr75 in TCDCA-treated H295R cells. While a mild increase of intracellular cAMP concentration was detected upon TCDCA treatment, inhibition of PKA activity with Rp-Isomer in H295R cells failed to decrease the expression of SF-1 and its target genes. Our findings suggest that conjugated bile acids affect cholesterol balance through regulation of SF-1 in adrenocortical cells so as to provide an adequate cholesterol supply for glucocorticoid synthesis, which improves and enriches our understanding of the mechanism whereby bile acids regulate cholesterol balance to affect adrenal function.
Collapse
Affiliation(s)
- Lei Liu
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China.
| | - Shufan Zhou
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Alex Zaufel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Zhenhui Xie
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
| | - Silvia Racedo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Peter Fickert
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Qiu Zhang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China.
| |
Collapse
|
18
|
Gao L, Zhang L, Zhang Y, Madaniyati M, Shi S, Huang L, Song X, Pang W, Chu G, Yang G. miR-10a-5p inhibits steroid hormone synthesis in porcine granulosa cells by targeting CREB1 and inhibiting cholesterol metabolism. Theriogenology 2023; 212:19-29. [PMID: 37683501 DOI: 10.1016/j.theriogenology.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mielie Madaniyati
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
19
|
Shao X, Yang Y, Liu Y, Wang Y, Zhao Y, Yu X, Liu J, Li YX, Wang YL. Orchestrated feedback regulation between melatonin and sex hormones involving GPER1-PKA-CREB signaling in the placenta. J Pineal Res 2023; 75:e12913. [PMID: 37746893 DOI: 10.1111/jpi.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Maintaining placental endocrine homeostasis is crucial for a successful pregnancy. Pre-eclampsia (PE), a gestational complication, is a leading cause of maternal and perinatal morbidity and mortality. Aberrant elevation of testosterone (T0 ) synthesis, reduced estradiol (E2 ), and melatonin productions have been identified in preeclamptic placentas. However, the precise contribution of disrupted homeostasis among these hormones to the occurrence of PE remains unknown. In this study, we established a strong correlation between suppressed melatonin production and decreased E2 as well as elevated T0 synthesis in PE placentas. Administration of the T0 analog testosterone propionate (TP; 2 mg/kg/day) to pregnant mice from E7.5 onwards resulted in PE-like symptoms, along with elevated T0 production and reduced E2 and melatonin production. Notably, supplementation with melatonin (10 mg/kg/day) in TP-treated mice had detrimental effects on fetal and placental development and compromised hormone synthesis. Importantly, E2 , but not T0 , actively enhanced melatonin synthetase AANAT expression and melatonin production in primary human trophoblast (PHT) cells through GPER1-PKA-CREB signaling pathway. On the other hand, melatonin suppressed the level of estrogen synthetase aromatase while promoting the expressions of androgen synthetic enzymes including 17β-HSD3 and 3β-HSD1 in PHT cells. These findings reveal an orchestrated feedback mechanism that maintains homeostasis of placental sex hormones and melatonin. It is implied that abnormal elevation of T0 synthesis likely serves as the primary cause of placental endocrine disturbances associated with PE. The suppression of melatonin may represent an adaptive strategy to correct the imbalance in sex hormone levels within preeclamptic placentas. The findings of this study offer novel evidence that identifies potential targets for the development of innovative therapeutic strategies for PE.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yun Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongqing Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
20
|
Miglietta S, Cristiano L, Battaglione E, Macchiarelli G, Nottola SA, De Marco MP, Costanzi F, Schimberni M, Colacurci N, Caserta D, Familiari G. Heavy Metals in Follicular Fluid Affect the Ultrastructure of the Human Mature Cumulus-Oocyte Complex. Cells 2023; 12:2577. [PMID: 37947655 PMCID: PMC10650507 DOI: 10.3390/cells12212577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
It is known that exposure to heavy metal such as lead (Pb) and cadmium (Cd) has several adverse effects, particularly on the human reproductive system. Pb and Cd have been associated with infertility in both men and women. In pregnant women, they have been associated with spontaneous abortion, preterm birth, and impairment of the development of the fetus. Since these heavy metals come from both natural and anthropogenic activities and their harmful effects have been observed even at low levels of exposure, exposure to them remains a public health issue, especially for the reproductive system. Given this, the present study aimed to investigate the potential reproductive effects of Pb and Cd levels in the follicular fluid (FF) of infertile women and non-smokers exposed to heavy metals for professional reasons or as a result of living in rural areas near landfills and waste disposal areas in order to correlate the intrafollicular presence of these metals with possible alterations in the ultrastructure of human cumulus-oocyte complexes (COCs), which are probably responsible for infertility. Blood and FF metals were measured using atomic absorption spectrometry. COCs corresponding to each FF analyzed were subjected to ultrastructural analyses using transmission electron microscopy. We demonstrated for the first time that intrafollicular levels of Pb (0.66 µg/dL-0.85 µg/dL) and Cd (0.26 µg/L-0.41 µg/L) could be associated with morphological alterations of both the oocyte and cumulus cells' (CCs) ultrastructure. Since blood Cd levels (0.54 µg/L-1.87 µg/L) were above the current reference values established by the guidelines of the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA) (0.4 µg/L), whereas blood Pb levels (1.28 µg/dL-3.98 µg/dL) were below the ATSDR reference values (≤5 µg/dL), we believe that these alterations could be due especially to Cd, even if we cannot exclude a possible additional effect of Pb. Our results highlighted that oocytes were affected in maturation and quality, whereas CCs showed scarcely active steroidogenic elements. Regressing CCs, with cytoplasmic alterations, were also numerous. According to Cd's endocrine-disrupting activity, the poor steroidogenic activity of CCs might correlate with delayed oocyte cytoplasmic maturation. So, we conclude that levels of heavy metals in the blood and the FF might negatively affect fertilization, embryo development, and pregnancy, compromising oocyte competence in fertilization both directly and indirectly, impairing CC steroidogenic activity, and inducing CC apoptosis.
Collapse
Affiliation(s)
- Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Loredana Cristiano
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Ezio Battaglione
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Guido Macchiarelli
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.C.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| | - Maria Paola De Marco
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Flavia Costanzi
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Mauro Schimberni
- GENERA Centers for Reproductive Medicine, Clinica Valle Giulia, 00197 Rome, Italy;
| | - Nicola Colacurci
- Department of Woman Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy; (M.P.D.M.); (F.C.); (D.C.)
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00165 Rome, Italy; (E.B.); (S.A.N.); (G.F.)
| |
Collapse
|
21
|
Wang Y, Liang Y, Yuan Z, Mai W, Leng Y, Zhang R, Chen J, Lai C, Chen H, Wu X, Sheng C, Zhang Q. Cadmium facilitates the formation of large lipid droplets via PLCβ2-DAG-DGKε-PA signal pathway in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115610. [PMID: 37866036 DOI: 10.1016/j.ecoenv.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCβ2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCβ2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCβ2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCβ2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCβ2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zansheng Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Caiyong Lai
- Department of Urology, The sixth affiliated hospital of Jinan University, Dongguan 523570, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China.
| |
Collapse
|
22
|
Zhang Y, Zhou J, Zeng L, Xiong Y, Wang X, Xiang W, Su P. Paternal cadmium exposure affects estradiol synthesis by impairing intracellular cholesterol homeostasis and mitochondrial function in offspring female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115280. [PMID: 37481860 DOI: 10.1016/j.ecoenv.2023.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal commonly found in nature and an endocrine disrupting chemical (EDC). Previous studies found that Cd can damage several organs, including the kidneys, bones, cardiovascular system and reproductive system. However, the effect of paternal Cd exposure on the offspring is unclear. In this study, 1 mg/kg of cadmium chloride (CdCl2) was injected intraperitoneally every other day in 8-week-old C57BL/6 J male mice to study the effects on their female offspring. Our results showed an increase in body weight, water intake and food intake in F1 female mice from the Cd-exposed group. The development of secondary follicles and antral follicles in the ovaries of Cd-treated was inhibited. Serum estradiol (E2) was found to be decreased. Further analysis revealed significant downregulation of StAR, P450scc, 17β-HSD, CYP17A1 and CYP19A1, which are related to E2 synthesis. Serum total cholesterol was increased and free cholesterol was reduced. Total cholesterol in ovarian tissue was decreased. qRT-PCR and Western blot analysis revealed a decrease in the mRNA and protein expression of HMGCR, LDLR, and ABCA1, which are associated with cholesterol homeostasis. Oil red O staining indicated that lipid droplets (LDs) were accumulated in ovarian tissues, while the expression of ATGL and HSL proteins associated with lipid droplet degradation was significantly downregulated. In juvenile female mice, ultrastructural alterations of mitochondria in the ovaries were observed by transmission electron microscopy (TEM). In adult female mice, the expression of proteins associated with mitochondrial dynamics (DRP1 and MFN2) was significantly reduced in the ovaries. Overall, our study suggests that paternal Cd exposure inhibits follicular development, and affects serum E2 synthesis by impairing cholesterol homeostasis and affecting mitochondrial function.
Collapse
Affiliation(s)
- Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yifan Xiong
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan Huake Reproductive Hospital, Wuhan, Hubei 430013, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Wuhan Huake Reproductive Hospital, Wuhan, Hubei 430013, China.
| |
Collapse
|
23
|
Buda A, Forss-Petter S, Hua R, Jaspers Y, Lassnig M, Waidhofer-Söllner P, Kemp S, Kim P, Weinhofer I, Berger J. ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis. Biomolecules 2023; 13:1333. [PMID: 37759733 PMCID: PMC10526550 DOI: 10.3390/biom13091333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD.
Collapse
Affiliation(s)
- Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Rong Hua
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Lassnig
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
24
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
25
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Dalen KT, Li Y. Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. VITAMINS AND HORMONES 2023; 124:79-136. [PMID: 38408810 DOI: 10.1016/bs.vh.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.
Collapse
Affiliation(s)
- Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
27
|
Arıcı A, Erdemir F. A Determination of p97/VCP (Valosin Containing Protein) and SVIP (Small VCP Interacting Protein) Expression Patterns in Human Testis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1079. [PMID: 37374283 DOI: 10.3390/medicina59061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: The ubiquitin proteosome system (UPS) is a non-lysosomal pathway that functions in all eukaryotes. The transport of polyubiquitinated proteins to proteosomes takes place via the p97/Valosin-containing protein (VCP) chaperone protein. The p97/VCP binds to polyubiquitinated proteins, allowing these proteins to reach the proteasome and, thus, their destruction. In the case of p97/VCP deficiency, ubiquitinated proteins accumulate in the cell cytoplasm, and their subsequent failure to break down produces various pathological conditions. Small VCP interacting protein (SVIP) and p97/VCP proteins have not been studied in human testicular tissues from different postnatal periods. Therefore, in our study, we aimed to examine the expression of SVIP and p97/VCP in postnatal human testicular tissues. Our study aimed to contribute to further studies on the use of these proteins as testicular cell biomarkers in cases of unexplained male infertility. Materials and Methods: Immunohistochemical studies with the aim of determining the expression of p97/VCP and SVIP proteins in neonatal, prepubertal, pubertal, adult, and geriatric human testis tissues were performed. Results: In testicular sections obtained from a neonatal group, p97/VCP and SVIP were localized in different testicular and interstitial cells, and the lowest expression was observed in this group. While the expressions of these proteins were low in the neonatal period, they increased gradually in the prepubertal, pubertal and adult periods. The expression of p97/VCP and SVIP, which peaked in adulthood, showed a significant decrease in the geriatric period. Conclusions: As a result, the expression of p97/VCP and SVIP correlated with the increase in age, but it decreased significantly in older groups.
Collapse
Affiliation(s)
- Akgül Arıcı
- Department of Medical Pathology, Tokat Gaziosmanpasa University, 60100 Tokat, Turkey
| | - Fikret Erdemir
- Department of Urology, Tokat Gaziosmanpasa University, 60100 Tokat, Turkey
| |
Collapse
|
28
|
Abdulova A, Purelku M, Sahin H, Tanrıverdi G. Human ovarian granulosa cells use clathrin-mediated endocytosis for LDL uptake: immunocytochemical and electron microscopic study. Ultrastruct Pathol 2023:1-12. [PMID: 37036899 DOI: 10.1080/01913123.2023.2200532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The steroidogenic activity of the granulosa cells is important for the reproductive cycle, and lipoproteins are involved in this process. The clathrin-mediated endocytosis pathway for LDL transport is considered to be the main one in eukaryotic cells. However, there are no studies that elucidate LDL internalization in human granulosa cells clarifying whether the clathrin-mediated endocytic pathway is functional in this process. The aim of this study is to investigate the role of clathrin and v-SNARE proteins in the formation of vesicles in human granulosa cells. In this study, the COV434 human granulosa cells were cultured and divided into four groups where in some of the groups Dil-conjugated LDL and Icarugamycin (ICA) a clathrin-mediated endocytosis inhibitor were added. From the collected mediums pregnenolone and progesterone levels were measured using ELISA. Oil red O staining was performed to show the intracellular lipids in the cells. Clathrin-coated vesicles believed to be responsible for carrying LDL, and v-SNARE proteins that direct the vesicles to their target molecules were also labeled and investigated by histological and ultrastructural methods. Our results show that human granulosa cells as well use the LDL cholesterol for steroid biosynthesis and they may prefer the clathrin-mediated endocytotic pathway to internalize it.
Collapse
Affiliation(s)
- Aynur Abdulova
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Merjem Purelku
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Hakan Sahin
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Gamze Tanrıverdi
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| |
Collapse
|
29
|
Cashikar AG, Toral-Rios D, Timm D, Romero J, Strickland M, Long JM, Han X, Holtzman DM, Paul SM. Regulation of astrocyte lipid metabolism and ApoE secretionby the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res 2023; 64:100350. [PMID: 36849076 PMCID: PMC10060115 DOI: 10.1016/j.jlr.2023.100350] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.
Collapse
Affiliation(s)
- Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - David Timm
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin M Long
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
30
|
Bello UM, Madekurozwa MC, Groenewald HB, Arukwe A, Aire TA. Changes in testicular histomorphometry and ultrastructure of Leydig cells in adult male Japanese quail exposed to di (n-butyl) phthalate (DBP) during the prepubertal period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55402-55413. [PMID: 36894732 PMCID: PMC10121545 DOI: 10.1007/s11356-023-25767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters, such as di(n-butyl) phthalate, (DBP), are synthetic chemical pollutants commonly used as plasticizers in the manufacture of plastics. In the present study, we investigated the effects of DBP in the testes of adult male quails (Coturnix cortunix japonica) exposed by oral gavage to variable doses of DBP (0 [control], 1, 10, 50, 200, and 400 mg/kgbw-d), for 30 days during the prepubertal period, using histo-morphometric and ultrastructural techniques. Generally, significant decreases in seminiferous tubular diameter (STD) and epithelial height (SEH) were observed predominantly at the highest DBP doses (200 and 400 mg/kg), as compared to medium (50 mg/kg), and lowest doses (1 and 10 mg/kg) as well as the control group. Ultrastructurally, apparent dose-specific degenerative changes were observed in the Leydig cells. The lowest DBP doses (1 and 10 mg/kg) did not produce significant effects on Leydig cell ultrastructure, whereas, at the highest doses (200 and 400 mg/kg), the Leydig cells were remarkably conspicuous in the interstitium and appeared foamy. There was a preponderance of electron-lucent lipid droplets which crowded out the normal organelles of the cell, as well as increases in the number of dense bodies in the cytoplasm. The smooth endoplasmic reticulum (sER) was less obvious, compacted, and wedged between the abundant lipid droplets and mitochondria. Taken together, these findings indicate that pre-pubertal exposure of precocious quail birds to DBP, produced parameter-specific histometric tubular changes, as well as dose-dependent cyto-structural derangement of the Leydig cells; which consequently may lead to overt reproductive impairments in the adult bird in the environment.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Mary-Cathrine Madekurozwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Hermanus B Groenewald
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491, Trondheim, Norway
| | - Tom A Aire
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True-Blue, St. George's, Grenada
| |
Collapse
|
31
|
Sakr N, Glazova O, Shevkova L, Onyanov N, Kaziakhmedova S, Shilova A, Vorontsova MV, Volchkov P. Characterizing and Quenching Autofluorescence in Fixed Mouse Adrenal Cortex Tissue. Int J Mol Sci 2023; 24:3432. [PMID: 36834842 PMCID: PMC9968082 DOI: 10.3390/ijms24043432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue autofluorescence of fixed tissue sections is a major concern of fluorescence microscopy. The adrenal cortex emits intense intrinsic fluorescence that interferes with signals from fluorescent labels, resulting in poor-quality images and complicating data analysis. We used confocal scanning laser microscopy imaging and lambda scanning to characterize the mouse adrenal cortex autofluorescence. We evaluated the efficacy of tissue treatment methods in reducing the intensity of the observed autofluorescence, such as trypan blue, copper sulfate, ammonia/ethanol, Sudan Black B, TrueVIEWTM Autofluorescence Quenching Kit, MaxBlockTM Autofluorescence Reducing Reagent Kit, and TrueBlackTM Lipofuscin Autofluorescence Quencher. Quantitative analysis demonstrated autofluorescence reduction by 12-95%, depending on the tissue treatment method and excitation wavelength. TrueBlackTM Lipofuscin Autofluorescence Quencher and MaxBlockTM Autofluorescence Reducing Reagent Kit were the most effective treatments, reducing the autofluorescence intensity by 89-93% and 90-95%, respectively. The treatment with TrueBlackTM Lipofuscin Autofluorescence Quencher preserved the specific fluorescence signals and tissue integrity, allowing reliable detection of fluorescent labels in the adrenal cortex tissue. This study demonstrates a feasible, easy-to-perform, and cost-effective method to quench tissue autofluorescence and improve the signal-to-noise ratio in adrenal tissue sections for fluorescence microscopy.
Collapse
Affiliation(s)
- Nawar Sakr
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Olga Glazova
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Liudmila Shevkova
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Nikita Onyanov
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Samira Kaziakhmedova
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Alena Shilova
- Faculty of Medicine, M.V. Lomonosov Moscow State University, 27-1, Lomonosovsky Prospect, Moscow 117192, Russia
| | - Maria V. Vorontsova
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| | - Pavel Volchkov
- Endocrinology Research Centre, Moscow 117292, Russia
- Genome Engineering Lab, Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia
| |
Collapse
|
32
|
Ran M, Hu S, Ouyang Q, Xie H, Zhang X, Lin Y, Li X, Hu J, Li L, He H, Liu H, Wang J. miR-202-5p Inhibits Lipid Metabolism and Steroidogenesis of Goose Hierarchical Granulosa Cells by Targeting ACSL3. Animals (Basel) 2023; 13:ani13030325. [PMID: 36766213 PMCID: PMC9913746 DOI: 10.3390/ani13030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
miRNAs are critical for steroidogenesis in granulosa cells (GCs) during ovarian follicular development. We have previously shown that miR-202-5p displays a stage-dependent expression pattern in GCs from goose follicles of different sizes, suggesting that this miRNA could be involved in the regulation of the functions of goose GCs; therefore, in this study, the effects of miR-202-5p on lipid metabolism and steroidogenesis in goose hierarchical follicular GCs (hGCs), as well as its mechanisms of action, were evaluated. Oil Red O staining and analyses of intracellular cholesterol and triglyceride contents showed that the overexpression of miR-202-5p significantly inhibited lipid deposition in hGCs; additionally, miR-202-5p significantly inhibited progesterone secretion in hGCs. A bioinformatics analysis and luciferase reporter assay indicated that Acyl-CoA synthetase long-chain family member 3 (ACSL3), which activates long-chain fatty acids for the synthesis of cellular lipids, is a potential target of miR-202-5p. ACSL3 silencing inhibited lipid deposition and estrogen secretion in hGCs. These data suggest that miR-202-5p exerts inhibitory effects on lipid deposition and steroidogenesis in goose hGCs by targeting the ACSL3 gene.
Collapse
|
33
|
Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. J Biochem Mol Toxicol 2022; 37:e23292. [PMID: 36527247 DOI: 10.1002/jbt.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Shiv K. Yadav
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| | - Vandana Bijalwan
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| | - Suresh Yadav
- ICMR‐National Institute for Implementation Research on Non‐Communicable Disease (NIIRNCD) Jodhpur Rajasthan India
| | - Kamalesh Sarkar
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
- ICMR‐National Institute of Cholera & Enteric Diseases (NICED) Kolkata West Bengal India
| | - Santasabuj Das
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
- ICMR‐National Institute of Cholera & Enteric Diseases (NICED) Kolkata West Bengal India
| | - Dhirendra P. Singh
- ICMR‐National Institute of Occupational Health (NIOH) Ahmedabad Gujarat India
| |
Collapse
|
34
|
Identification of the Role of TGR5 in the Regulation of Leydig Cell Homeostasis. Int J Mol Sci 2022; 23:ijms232315398. [PMID: 36499726 PMCID: PMC9738292 DOI: 10.3390/ijms232315398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the regulation of the testicular endocrine function leading to testosterone production is a major objective as the alteration of endocrine function is associated with the development of many diseases such as infertility. In the last decades, it has been demonstrated that several endogenous molecules regulate the steroidogenic pathway. Among them, bile acids have recently emerged as local regulators of testicular physiology and particularly endocrine function. Bile acids act through the nuclear receptor FXRα (Farnesoid-X-receptor alpha; NR1H4) and the G-protein-coupled bile acid receptor (GPBAR-1; TGR5). While FXRα has been demonstrated to regulate testosterone synthesis within Leydig cells, no data are available regarding TGR5. Here, we investigated the potential role of TGR5 within Leydig cells using cell culture approaches combined with pharmacological exposure to the TGR5 agonist INT-777. The data show that activation of TGR5 results in a decrease in testosterone levels. TGR5 acts through the PKA pathway to regulate steroidogenesis. In addition, our data show that TGR5 activation leads to an increase in cholesterol ester levels. This suggests that altered lipid homeostasis may be a mechanism explaining the TGR5-induced decrease in testosterone levels. In conclusion, the present work highlights the impact of the TGR5 signaling pathway on testosterone production and reinforces the links between bile acid signaling pathways and the testicular endocrine function. The testicular bile acid pathways need to be further explored to increase our knowledge of pathologies associated with impaired testicular endocrine function, such as fertility disorders.
Collapse
|
35
|
Koganti PP, Tu LN, Selvaraj V. Functional metabolite reserves and lipid homeostasis revealed by the MA-10 Leydig cell metabolome. PNAS NEXUS 2022; 1:pgac215. [PMID: 36714831 PMCID: PMC9802464 DOI: 10.1093/pnasnexus/pgac215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
In Leydig cells, intrinsic factors that determine cellular steroidogenic efficiency is of functional interest to decipher and monitor pathophysiology in many contexts. Nevertheless, beyond basic regulation of cholesterol storage and mobilization, systems biology interpretation of the metabolite networks in steroidogenic function is deficient. To reconstruct and describe the different molecular systems regulating steroidogenesis, we profiled the metabolites in resting MA-10 Leydig cells. Our results identified 283-annotated components (82 neutral lipids, 154 membrane lipids, and 47 other metabolites). Neutral lipids were represented by an abundance of triacyglycerols (97.1%), and low levels of cholesterol esters (2.0%). Membrane lipids were represented by an abundance of glycerophospholipids (77.8%), followed by sphingolipids (22.2%). Acylcarnitines, nucleosides, amino acids and their derivatives were the other metabolite classes identified. Among nonlipid metabolites, we recognized substantial reserves of aspartic acid, choline, creatine, betaine, glutamine, homoserine, isoleucine, and pantothenic acid none of which have been previously considered as a requirement in steroidogenic function. Individually limiting use of betaine, choline, or pantothenic acid, during luteinizing hormone-induced steroidogenesis in MA-10 cells resulted in substantial decreases to acute steroidogenic capacity, explained by intermediary metabolite imbalances affecting homeostasis. As such, our dataset represents the current level of baseline characterization and unravels the functional resting state of steroidogenic MA-10 Leydig cells. In identifying metabolite stockpiles and causal mechanisms, these results serve to further comprehend the cellular setup and regulation of steroid biosynthesis.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Koganti PP, Zhao AH, Selvaraj V. Exogenous cholesterol acquisition signaling in LH-responsive MA-10 Leydig cells and in adult mice. J Endocrinol 2022; 254:187-199. [PMID: 35900012 PMCID: PMC9840751 DOI: 10.1530/joe-22-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
MA-10 cells, established 4 decades ago from a murine Leydig cell tumor, has served as a key model system for studying steroidogenesis. Despite a precipitous loss in their innate ability to respond to luteinizing hormone (LH), the use of a cell-permeable cAMP analog for induction ensured their continued use. In parallel, a paradigm that serum-free conditions are essential for trophic steroidogenic stimulation was rationalized. Through the selection of LH-responsive single-cell MA-10Slip clones, we uncovered that Leydig cells remain responsive in the presence of serum in vitro and that exogenous cholesterol delivery by lipoproteins provided a significantly elevated steroid biosynthetic response (>2-fold). In scrutinizing the underlying regulation, systems biology of the MA-10 cell proteome identified multiple Rho-GTPase signaling pathways as highly enriched. Testing Rho function in steroidogenesis revealed that its modulation can negate the specific elevation in steroid biosynthesis observed in the presence of lipoproteins/serum. This signaling modality primarily linked to the regulation of endocytic traffic is evident only in the presence of exogenous cholesterol. Inhibiting Rho function in vivo also decreased hCG-induced testosterone production in mice. Collectively, our findings dispel a long-held view that the use of serum could confound or interfere with trophic stimulation and underscore the need for exogenous lipoproteins when dissecting physiological signaling and cholesterol trafficking for steroid biosynthesis in vitro. The LH-responsive MA-10Slip clones derived in this study present a reformed platform enabling biomimicry to study the cellular and molecular basis of mammalian steroidogenesis.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Amy H. Zhao
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
- Correspondence should be addressed to: Vimal Selvaraj, Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853; ; Tel. 607-255-6138; Fax. 607-255-9829
| |
Collapse
|
37
|
Zhou J, Zhang Y, Zeng L, Wang X, Mu H, Wang M, Pan H, Su P. Paternal cadmium exposure affects testosterone synthesis by reducing the testicular cholesterol pool in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113947. [PMID: 35999762 DOI: 10.1016/j.ecoenv.2022.113947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Cadmium(Cd) is a heavy metal that is harmful to human health. Early studies have shown that cadmium can damage testicular structure, affecting testosterone synthesis and spermatogenesis. However, the effect of paternal Cd exposure on the reproductive system of offspring remains unclear. In this study, male 8-week C57BL/6 J mice were used as research objects, and Cd was injected intraperitoneally every other day at a dose of 1 mg/kg for 5 weeks, after which the effect on the reproductive system of offspring male mice was studied. Our results showed that the body weight of the offspring male mice increased faster, with increases of the testicular and epididymis indices under Cd exposure. At the same time, the serum testosterone and free cholesterol decreased, total cholesterol increased, and the sperm concentration decreased. Further qRT-PCR and western blot analyses showed that the expressions of StAR, P450scc, 3β-HSD and 17β-HSD, which are related to testosterone synthesis, was significantly downregulated. Additionally, ATGL, LDLR and SR-BI, which are related to the intracellular cholesterol pool were downregulated, leading to the reduction of the cholesterol pool and the accumulation of lipid droplets. Oil red O and BODIPY staining revealed an increase in the abundance of lipid droplets in testicular tissue of newborn and adult mice. Prediction of tsRNA target genes in the sperm of parents and testicular transcriptome of newborn mice showed that the differentially expressed genes were associated with catabolism of fatty acids, cholesterol and ion channels, while the mitochondrial and lysosome functions of testicular tissue of adult offspring mice were decreased. Overall, our results suggest that paternal Cd exposure reduced the intracellular cholesterol pool of testicular of offspring, affected testosterone synthesis and reproductive system development.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and echnology, Wuhan, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
38
|
Actis Dato V, Benitez-Amaro A, Garcia E, Claudi L, Lhoëst MTL, Iborra A, Escola-Gil JC, Guerra JM, Samouillan V, Enrich C, Chiabrando G, Llorente-Cortés V. Targeting cholesteryl ester accumulation in the heart improves cardiac insulin response. Biomed Pharmacother 2022; 152:113270. [PMID: 35709652 DOI: 10.1016/j.biopha.2022.113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Antibodies against the P3 sequence (Gly1127-Cys1140) of LRP1 (anti-P3 Abs) specifically block cholesteryl ester (CE) accumulation in vascular cells. LRP1 is a key regulator of insulin receptor (InsR) trafficking in different cell types. The link between CE accumulation and the insulin response are largely unknown. Here, the effects of P3 peptide immunization on the alterations induced by a high-fat diet (HFD) in cardiac insulin response were evaluated. METHODS Irrelevant (IrP)- or P3 peptide-immunized rabbits were randomized into groups fed either HFD or normal chow. Cardiac lipid content was characterized by thin-layer chromatography, confocal microscopy, and electron microscopy. LRP1, InsR and glucose transporter type 4 (GLUT4) levels were determined in membranes and total lysates from rabbit heart. The interaction between InsR and LRP1 was analyzed by immunoprecipitation and confocal microscopy. Insulin signaling activity and glucose uptake were evaluated in HL-1 cells exposed to rabbit serum from the different groups. FINDINGS HFD reduces cardiac InsR and GLUT4 membrane levels and the interactions between LRP1/InsR. Targeting the P3 sequence on LRP1 through anti-P3 Abs specifically reduces CE accumulation in the heart independently of changes in the circulating lipid profile. This restores InsR and GLUT4 levels in cardiac membranes as well as the LRP1/InsR interactions of HFD-fed rabbits. In addition, anti-P3 Abs restores the insulin signaling cascade and glucose uptake in HL-1 cells exposed to hypercholesterolemic rabbit serum. INTERPRETATION LRP1-immunotargeting can block CE accumulation within the heart with specificity, selectivity, and efficacy, thereby improving the cardiac insulin response; this has important therapeutic implications for a wide range of cardiac diseases. FUNDING Fundació MARATÓ TV3: grant 101521-10, Instiuto de Salud Carlos III (ISCIII) and ERDFPI18/01584, Fundación BBVA Ayudas a Equipos de Investigación 2019. SECyT-UNC grants PROYECTOS CONSOLIDAR 2018-2021; FONCyT, Préstamo BID PICT grant 2015-0807 and grant 2017-4497.
Collapse
Affiliation(s)
- Virginia Actis Dato
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Aleyda Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Lene Claudi
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Maria Teresa LaChica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Antoni Iborra
- SCAC, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan Carles Escola-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau. CIBER de Diabetes y enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona. Spain
| | - Jose Maria Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autonoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Valerie Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, 31062 Toulouse, France
| | - Carlos Enrich
- Unitat de Biologia Cel·lular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gustavo Chiabrando
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
39
|
Duranova H, Fialkova V, Valkova V, Bilcikova J, Olexikova L, Lukac N, Massanyi P, Knazicka Z. Human adrenocortical carcinoma cell line (NCI-H295R): An in vitro screening model for the assessment of endocrine disruptors' actions on steroidogenesis with an emphasis on cell ultrastructural features. Acta Histochem 2022; 124:151912. [PMID: 35661985 DOI: 10.1016/j.acthis.2022.151912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Cell lines as an in vitro model for xenobiotic screening and toxicity studies provide a very important tool in the field of scientific research at the level of molecular pathways and gene expression. Good cell culture practice and intracellular characterization, as well as physiological properties of the cell line are of critical importance for in vitro reproductive toxicity testing of various endocrine-disrupting chemicals. The NCI-H295R, human adrenocarcinoma cell line, is the most widely used in vitro cellular system to study the human adrenal steroidogenic pathway at the level of hormone production and gene expression, as it expresses genes that encode for all the key enzymes for steroidogenesis. In this review, we aim to highlight the information considering the origin, development, physiological and ultrastructural characteristics of the NCI-H295R cell line. The review also creates a broad overview of the cell line usage in various range of studies related to the steroidogenesis issues. To our best knowledge, the paper provides the first report of quantitative data (ex novo) from stereological estimates of component (volume, surface) densities of nuclei, mitochondria, and lipid droplets of the NCI-H295R cells. Such ultrastructural measurements can be valuable in the assessment of underlying mechanisms of changes in the cell steroid hormone production induced by the action of diverse endocrine disruptors. Thus, they can significantly contribute to complexity of structure-function relationships in association with steroidogenesis.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
40
|
Zhu Q, Guo L, An W, Huang Z, Liu H, Zhao J, Lu W, Wang J. Melatonin inhibits testosterone synthesis in Roosters Leydig cells by regulating lipolysis of lipid droplets. Theriogenology 2022; 189:118-126. [PMID: 35753225 DOI: 10.1016/j.theriogenology.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Leydig cells are important component of testis cells, which can synthesize testosterone with free cholesterol derived from lipid droplets (LDs). It is well known that melatonin could regulate synthesis of testosterone. However, it is still unclear whether melatonin participates in the synthesis of testosterone by regulating the lipolysis of LDs in Leydig cells. The purpose of this study was to elucidate the effect of melatonin on synthesis of testosterone in roosters Leydig cells by regulating lipolysis of LDs. The results showed that melatonin decreased synthesis of testosterone and intracellular free cholesterol in roosters Leydig cells. Exogenous addition of 22-OH-Cholesterol counteracted the inhibitory effect of melatonin on synthesis of testosterone. Furthermore, melatonin increased the LDs content and expression of perilipin 1 (PLIN1), and decreased expression of hormone-sensitive lipase (HSL) and triacylglycerol hydrolase (ATGL) in roosters Leydig cells. In addition, silencing PLIN1 reversed the inhibitory effect of melatonin on synthesis of testosterone in roosters Leydig cells by increasing free cholesterol content and expression of HSL and ATGL, and decreasing the lipid droplet content. Activation of cAMP/PKA pathway by using the pathway activators Forskolin and 8-Bromo-cAMP attenuated the inhibitory effect of melatonin on synthesis of testosterone accompanied by increasing level of free cholesterol content and expression of HSL and ATGL, and decreasing level of lipid droplet content and expression of PLIN1 in roosters Leydig cells. These results suggested that melatonin could inhibit the synthesis of testosterone in roosters Leydig cells by reducing the content of intracellular free cholesterol in which expression of PLIN1 and cAMP/PKA pathway were inhibited to reduce the lipolysis of LDs.
Collapse
Affiliation(s)
- Qingyu Zhu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wen An
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhuncheng Huang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
41
|
Leitner N, Hlavaty J, Heider S, Ertl R, Gabriel C, Walter I. Lipid droplet dynamics in healthy and pyometra-affected canine endometrium. BMC Vet Res 2022; 18:221. [PMID: 35689217 PMCID: PMC9188128 DOI: 10.1186/s12917-022-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulation of lipid droplets (LDs) was recently observed in pyometra-affected uteri. As data about their nature and function are missing we intended to compare the localization, quality and quantity of LDs in canine healthy and pyometra-affected tissues and in an in vitro model. METHODS AND RESULTS We characterized LDs in healthy and pyometra uterine tissue samples as well as in canine endometrial epithelial cells (CEECs) in vitro by means of histochemistry, immunohistochemistry, transmission electron microscopy, western blot, and RT-qPCR. Oil Red O (ORO) staining and quantification as well as p-phenylenediamine staining showed a higher number of LDs in epithelial cells of pyometra samples. Immunohistochemistry revealed that the amount of LDs coated by perilipin2 (PLIN2) protein was also higher in pyometra samples. Transmission electron microscopy showed an increase of LD size in surface and glandular epithelial cells of pyometra samples. In cell culture experiments with CEECs, supplementation with oleic acid alone or in combination with cholesterol lead to an increased LD accumulation. The expression of PLIN2 at protein and mRNA level was also higher upon oleic acid supplementation. Most LDs were double positive for ORO and PLIN2. However, ORO positive LDs lacking PLIN2 coating or LDs positive for PLIN2 but containing a lipid class not detectable by ORO staining were identified. CONCLUSIONS We found differences in the healthy and pyometra-affected endometrium with respect to LDs size. Moreover, several kinds of LDs seem to be present in the canine endometrium. In vitro studies with CEECs could show their responsiveness to external lipids. Since epithelial cells reacted only to oleic acid stimulation, we assume that the cyclic lipid accumulation in the canine endometrium is based mainly on triglycerides and might serve as energy provision for the developing early embryo. Further studies are necessary to verify the complex role of lipids in the healthy and pyometra-affected canine endometrium.
Collapse
Affiliation(s)
- Natascha Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Juraj Hlavaty
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Susanne Heider
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Reinhard Ertl
- VetCORE Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Cordula Gabriel
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria. .,VetCORE Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
42
|
Zhang J, Nie J, Sun H, Li J, Andersen JP, Shi Y. De novo labeling and trafficking of individual lipid species in live cells. Mol Metab 2022; 61:101511. [PMID: 35504533 PMCID: PMC9114690 DOI: 10.1016/j.molmet.2022.101511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Lipids exert dynamic biological functions which are determined both by their fatty acyl compositions and spatiotemporal distributions inside the cell. However, it remains a daunting task to investigate any of these features for each of the more than 1000 lipid species due to a lack of a universal labeling method for individual lipid moieties in live cells. Here we report a de novo lipid labeling method for individual lipid species with precise acyl compositions in live cells. The method is based on the principle of de novo lipid remodeling of exogenously added lysolipids with fluorescent acyl-CoA, leading to the re-synthesis of fluorescence-labeled lipids which can be imaged by confocal microscopy. METHODS The cells were incubated with lysolipids and a nitro-benzoxadiazolyl (NBD) labeled acyl-CoA. The newly remodeled NBD-labeled lipids and their subcellular localization were analyzed by confocal imaging in live cells. Thin layer chromatography was carried out to verify the synthesis of NBD-labeled lipids. The mitochondrial trafficking of NBD-labeled lipids was validated in live cells with targeted deletion of phospholipids transporters, including TRIAP1/PRELI protein complex and StarD7. RESULTS Incubation cells with lysolipids and NBD-acyl-CoA successfully labeled major lipid species with precise acyl compositions, including phospholipids, cholesterol esters, and neutral lipids, which can be analyzed by confocal imaging in live cells. In contrast to exogenously labeled lipids, the de novo labeled lipids retained full biological properties of their endogenous counterparts, including subcellular localization, trafficking, and recognition by lipid transporters. This method also uncovered some unexpected features of newly remodeled lipids and their transporters. CONCLUSIONS The de novo lipid labeling method not only provides a powerful tool for functional analysis of individual lipid species and lipid transporters, but also calls for re-evaluation of previously published results using exogenously labeled lipids.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA,Perenna Pharmceuticals Inc., 14785 Omicron Drive, Ste 100, San Antonio, TX, 78245, USA
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - John-Paul Andersen
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
43
|
Kamnate A, Sirisin J, Watanabe M, Kondo H, Hipkaeo W, Chomphoo S. Mitochondrial Localization of CB1 in Progesterone-producing Cells of Ovarian Interstitial Glands of Adult Mice. J Histochem Cytochem 2022; 70:251-257. [PMID: 34915761 PMCID: PMC8832628 DOI: 10.1369/00221554211063516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Localization of cannabinoid receptor type 1 (CB1) immunoreactivity on mitochondrial membranes, at least their outer membranes distinctly, was detected in progesterone-producing cells characterized by mitochondria having tubular cristae and aggregations of lipid droplets in ovarian interstitial glands in situ of adult mice. Both immunoreactive and immunonegative mitochondria were contained in one and the same cell. Considering that the synthesis of progesterone is processed in mitochondria, the mitochondrial localization of CB1 in the interstitial gland cells suggests the possibility that endocannabinoids modulate the synthetic process of progesterone in the cells through CB1.
Collapse
Affiliation(s)
- Anussara Kamnate
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Department of Anatomy, Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Juthathip Sirisin
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand,Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surang Chomphoo
- Surang Chomphoo, Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. E-mail:
| |
Collapse
|
44
|
Wang Y, Li T, Li H, Liang Y, Mai W, Liu C, Chen H, Huang Y, Zhang Q. CORO1A regulates lipoprotein uptake in Leydig cells exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113255. [PMID: 35121256 DOI: 10.1016/j.ecoenv.2022.113255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is one of the most common environmental pollutants, which has a long biological half-life. Maternal Cd-exposure in the natural environment causes steroidogenesis defects resulting in spermatogenesis disorder in male offspring. For better understanding its underlying mechanism, we have employed iTRAQ to screen the differentially expressed protein and found that the expression of CORO1A and Cofilin 1 was up-regulated approximately 2 fold in Leydig cells of maternal Cd-exposure offspring. As the major source of steroid hormone, cholesterol is transported to cells via receptor-mediated endocytosis which relies on the remodel of cytoskeleton, then stores in lipid droplets (LDs). However, few studies have focused on the role of cytoskeleton in abnormal steroidogenesis. This study was performed to explore the role of CORO1A in androgen deficiency caused by Cd exposure and its involvement of low-density lipoprotein (LDL) uptake and effects on LDs. We found that Cd resulted in the up-regulation of CORO1A and Cofilin 1, and down-regulation of Profilin 1 in the testis of male offspring with maternal exposure. The structure of filamentous actin was broken, disordered and even crumpled up in Cd-treated R2C cells. F-actin disassembly led to a low uptake of LDL with a reduced number of LDs, followed by decreased total cholesterol and low progesterone production. When CORO1A was silenced, the expression of Cofilin 1 was down-regulated and Profilin 1 was up-regulated in Cd-treated R2C cells. The filamentous actin was rescued and the integrated cytoskeleton prompted LDL uptake, which resulted in the increased total cholesterol and high progesterone production. These findings highlight the crucial role of CORO1A as a cytoskeleton regulatory protein in steroidogenesis, which may help to better understand Cd-induced steroid hormone deficiency in children.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Teng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Haoji Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Chen Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
McPhee MJ, Salsman J, Foster J, Thompson J, Mathavarajah S, Dellaire G, Ridgway ND. Running 'LAPS' Around nLD: Nuclear Lipid Droplet Form and Function. Front Cell Dev Biol 2022; 10:837406. [PMID: 35178392 PMCID: PMC8846306 DOI: 10.3389/fcell.2022.837406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The nucleus harbours numerous protein subdomains and condensates that regulate chromatin organization, gene expression and genomic stress. A novel nuclear subdomain that is formed following exposure of cells to excess fatty acids is the nuclear lipid droplet (nLD), which is composed of a neutral lipid core surrounded by a phospholipid monolayer and associated regulatory and lipid biosynthetic enzymes. While structurally resembling cytoplasmic LDs, nLDs are formed by distinct but poorly understood mechanisms that involve the emergence of lipid droplets from the lumen of the nucleoplasmic reticulum and de novo lipid synthesis. Luminal lipid droplets that emerge into the nucleoplasm do so at regions of the inner nuclear membrane that become enriched in promyelocytic leukemia (PML) protein. The resulting nLDs that retain PML on their surface are termed lipid-associated PML structures (LAPS), and are distinct from canonical PML nuclear bodies (NB) as they lack key proteins and modifications associated with these NBs. PML is a key regulator of nuclear signaling events and PML NBs are sites of gene regulation and post-translational modification of transcription factors. Therefore, the subfraction of nLDs that form LAPS could regulate lipid stress responses through their recruitment and retention of the PML protein. Both nLDs and LAPS have lipid biosynthetic enzymes on their surface suggesting they are active sites for nuclear phospholipid and triacylglycerol synthesis as well as global lipid regulation. In this review we have summarized the current understanding of nLD and LAPS biogenesis in different cell types, their structure and composition relative to other PML-associated cellular structures, and their role in coordinating a nuclear response to cellular overload of fatty acids.
Collapse
Affiliation(s)
- Michael J McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jason Foster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jordan Thompson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
46
|
Motomura N, Yamazaki Y, Koga D, Harashima S, Gao X, Tezuka Y, Omata K, Ono Y, Morimoto R, Satoh F, Nakamura Y, Kwon GE, Choi MH, Ito A, Sasano H. The Association of Cholesterol Uptake and Synthesis with Histology and Genotype in Cortisol-Producing Adenoma (CPA). Int J Mol Sci 2022; 23:ijms23042174. [PMID: 35216289 PMCID: PMC8875534 DOI: 10.3390/ijms23042174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cortisol-producing adenoma (CPA) is composed of clear and compact cells. Clear cells are lipid abundant, and compact ones lipid poor but associated with higher production of steroid hormones. PRKACA mutation (PRKACA mt) in CPA patients was reported to be associated with more pronounced clinical manifestation of Cushing's syndrome. In this study, we examined the association of histological features and genotypes with cholesterol uptake receptors and synthetic enzymes in 40 CPA cases, and with the quantitative results obtained by gas chromatography-mass spectrometry (GC-MS) analysis in 33 cases to explore their biological and clinical significance. Both cholesterol uptake receptors and synthetic enzymes were more abundant in compact cells. GC-MS analysis demonstrated that the percentage of compact cells was inversely correlated with the concentrations of cholesterol and cholesterol esters, and positively with the activity of cholesterol biosynthesis from cholesterol esters. In addition, hormone-sensitive lipase (HSL), which catalyzes cholesterol biosynthesis from cholesterol esters, tended to be more abundant in compact cells of PRKACA mt CPAs. These results demonstrated that both cholesterol uptake and biosynthesis were more pronounced in compact cells in CPA. In addition, more pronounced HSL expression in compact cells of PRKACA mt CPA could contribute to their more pronounced clinical manifestation.
Collapse
Affiliation(s)
- Naoki Motomura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (N.M.); (D.K.); (S.H.); (X.G.); (H.S.)
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (N.M.); (D.K.); (S.H.); (X.G.); (H.S.)
- Correspondence:
| | - Daiki Koga
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (N.M.); (D.K.); (S.H.); (X.G.); (H.S.)
| | - Shogo Harashima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (N.M.); (D.K.); (S.H.); (X.G.); (H.S.)
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (N.M.); (D.K.); (S.H.); (X.G.); (H.S.)
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (Y.T.); (K.O.); (Y.O.); (F.S.)
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai 980-8574, Japan;
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (Y.T.); (K.O.); (Y.O.); (F.S.)
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai 980-8574, Japan;
| | - Yoshikiyo Ono
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (Y.T.); (K.O.); (Y.O.); (F.S.)
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai 980-8574, Japan;
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai 980-8574, Japan;
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (Y.T.); (K.O.); (Y.O.); (F.S.)
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Hospital, Sendai 980-8574, Japan;
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan;
| | - Go Eun Kwon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; (G.E.K.); (M.H.C.)
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; (G.E.K.); (M.H.C.)
| | - Akihiro Ito
- Department of Urology, Tohoku University School of Medicine, Sendai 980-8574, Japan;
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (N.M.); (D.K.); (S.H.); (X.G.); (H.S.)
| |
Collapse
|
47
|
Zhou X, Mo Z, Li Y, Huang L, Yu S, Ge L, Hu Y, Shi S, Zhang L, Wang L, Gao L, Yang G, Chu G. Oleic acid reduces steroidogenesis by changing the lipid type stored in lipid droplets of ovarian granulosa cells. J Anim Sci Biotechnol 2022; 13:27. [PMID: 35130983 PMCID: PMC8822748 DOI: 10.1186/s40104-021-00660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Oleic acid is an abundant free fatty acid present in livestock that are in a negative energy-balance state, and it may have detrimental effects on female reproduction and fertility. Oleic acid induces lipid accumulation in bovine granulosa cells, which leads to a foam cell-like morphology and reduced steroidogenesis. However, why oleic acid increases lipid accumulation but decreases steroidogenesis remains unclear. This study focused on oleic acid’s effects on lipid type and steroidogenesis. Results Oleic acid increased the lipid accumulation in a concentration-dependent manner and mainly increased the triglyceride level and decreased the cholesterol ester level. Oleic acid also led to a decline in estradiol and progesterone production in porcine granulosa cells in vitro. In addition, oleic acid up-regulated the expression of CD36 and diacylglycerol acyltransferase 2, but down-regulated the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, scavenger receptor class B member 1 and acetyl-Coenzyme A acetyltransferase 2, as well as steroidogenesis-related genes, including cytochrome P450 family 11 subfamily A member 1, cytochrome P450 family 19 subfamily A member 1 and 3 as well as steroidogenic acute regulatory protein at the mRNA and protein levels. An oleic acid-rich diet also enhanced the triglyceride levels and reduced the cholesterol levels in ovarian tissues of female mice, which resulted in lower estradiol levels than in control-fed mice. Compared with the control, decreases in estrus days and the numbers of antral follicles and corpora lutea, as well as an increase in the numbers of the atretic follicles, were found in the oleic acid-fed female mice. Conclusions Oleic acid changed the lipid type stored in lipid droplets of ovarian granulosa cells, and led to a decrease in steroidogenesis. These results improve our understanding of fertility decline in livestock that are in a negative energy-balance state.
Collapse
Affiliation(s)
- Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yankun Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Sihai Yu
- College of veterinary medicine, Northwest A&F University, Yangling, 712100, China
| | - Lan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yamei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liguang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China. .,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China. .,Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
48
|
Wang X, Luu T, Beal MA, Barton-Maclaren TS, Robaire B, Hales BF. The Effects of Organophosphate Esters Used as Flame Retardants and Plasticizers on Granulosa, Leydig, and Spermatogonial Cells Analyzed Using High-Content Imaging. Toxicol Sci 2022; 186:269-287. [PMID: 35135005 PMCID: PMC8963303 DOI: 10.1093/toxsci/kfac012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The replacement of regulated brominated flame retardants and plasticizers with organophosphate esters (OPEs) has led to their pervasive presence in the environment and in biological matrices. Further, there is evidence that exposure to some of these chemicals is associated with reproductive toxicity. Using a high-content imaging approach, we assessed the effects of exposure to 9 OPEs on cells related to reproductive function: KGN human granulosa cells, MA-10 mouse Leydig cells, and C18-4 mouse spermatogonial cells. The effects of OPEs were compared with those of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a legacy brominated flame retardant. Alterations in several important cell features, including cell survival, mitochondrial dynamics, oxidative stress, lysosomes, and lipid droplets, were analyzed. Most of the OPEs tested displayed higher cytotoxicity than BDE-47 in all 3 cell lines. Effects on phenotypic parameters were specific for each cell type. Several OPEs increased total mitochondria, decreased lysosomes, increased the total area of lipid droplets, and induced oxidative stress in KGN cells; these endpoints were differentially affected in MA-10 and C18-4 cells. Alterations in cell phenotypes were highly correlated in the 2 steroidogenic cell lines for a few triaryl OPEs. Potency ranking using 2 complementary approaches, Toxicological Prioritization Index analyses and the lowest benchmark concentration/administered equivalent dose method, revealed that while most of the OPEs tested were more potent than BDE-47, others showed little to no effect. We propose that these approaches serve as lines of evidence in a screening strategy to identify the potential for reproductive and endocrine effects of emerging chemicals and assist in regulatory decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Trang Luu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marc A Beal
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- To whom correspondence should be addressed at Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 110, Montreal, QC H3G1Y6, Canada. E-mail:
| |
Collapse
|
49
|
Carr SN, Crites BR, Pate JL, Hughes CHK, Matthews JC, Bridges PJ. Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows. Animals (Basel) 2022; 12:313. [PMID: 35158637 PMCID: PMC8833813 DOI: 10.3390/ani12030313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se)-deficient soils necessitate supplementation of this mineral to the diet of forage-grazing cattle. Functionally, Se is incorporated into selenoproteins, some of which function as important antioxidants. We have previously shown that the source of supplemental Se; inorganic (sodium selenite or sodium selenate; ISe), organic (selenomethionine or selenocysteine; OSe) or 1:1 mix of ISe and OSe (MIX), provided to Angus-cross cows affects concentrations of progesterone (P4) during the early luteal phase of the estrous cycle. In this study, we sought to investigate (1) the effect of form of Se on the expression of mRNA encoding selenoproteins in the corpus luteum (CL), and (2) whether this previously reported MIX-induced increase in P4 is the result of increased luteal expression of key steroidogenic transcripts. Following a Se depletion and repletion regimen, 3-year-old, non-lactating, Angus- cross cows were supplemented with either ISe as the industry standard, or MIX for at least 90 days, with the CL then retrieved on Day 7 post-estrus. Half of each CL was used for analysis of targeted mRNA transcripts and the remainder was dissociated for culture with select agonists. The expression of three selenoprotein transcripts and one selenoprotein P receptor was increased (p < 0.05), with an additional five transcripts tending to be increased (p < 0.10), in cows supplemented with MIX versus ISe. In cultures of luteal cells, hCG-induced increases in P4 (p < 0.05) were observed in CL obtained from ISe-supplemented cows. The abundance of steroidogenic transcripts in the CL was not affected by the form of Se, however, the abundance of mRNA encoding 2 key transcripts regulating cholesterol availability (Ldlr and Hsl) was increased (p < 0.05) in MIX-supplemented cows. Overall, the form of Se provided to cows is reported to affect the expression of mRNA encoding several selenoproteins in the CL, and that the form of Se-induced effects on luteal production of P4 appears to be the result of changes in cholesterol availability rather than a direct effect on the expression of steroidogenic enzymes within the CL.
Collapse
Affiliation(s)
- Sarah N. Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| | - Benjamin R. Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| | - Joy L. Pate
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, USA; (J.L.P.); (C.H.K.H.)
| | - Camilla H. K. Hughes
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, USA; (J.L.P.); (C.H.K.H.)
| | - James C. Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| |
Collapse
|
50
|
McKay TB, Priyadarsini S, Karamichos D. Sex Hormones, Growth Hormone, and the Cornea. Cells 2022; 11:cells11020224. [PMID: 35053340 PMCID: PMC8773647 DOI: 10.3390/cells11020224] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/31/2022] Open
Abstract
The growth and maintenance of nearly every tissue in the body is influenced by systemic hormones during embryonic development through puberty and into adulthood. Of the ~130 different hormones expressed in the human body, steroid hormones and peptide hormones are highly abundant in circulation and are known to regulate anabolic processes and wound healing in a tissue-dependent manner. Of interest, differential levels of sex hormones have been associated with ocular pathologies, including dry eye disease and keratoconus. In this review, we discuss key studies that have revealed a role for androgens and estrogens in the cornea with focus on ocular surface homeostasis, wound healing, and stromal thickness. We also review studies of human growth hormone and insulin growth factor-1 in influencing ocular growth and epithelial regeneration. While it is unclear if endogenous hormones contribute to differential corneal wound healing in common animal models, the abundance of evidence suggests that systemic hormone levels, as a function of age, should be considered as an experimental variable in studies of corneal health and disease.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Cell Biology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA;
| | | | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|