1
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:1392. [PMID: 37510297 PMCID: PMC10379323 DOI: 10.3390/genes14071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Increasing alcohol consumption by women of childbearing age contributes to more frequent cases of fetal alcohol spectrum disorder. The cause of the syndrome is fetal alcohol exposure, particularly what is referred to as high prenatal alcohol exposure. Low metabolic activity of fetal enzymes shifts the burden of ethanol removal to maternal metabolism. One of the factors influencing the pathogenesis of FASD is the genetic background. It can determine the rate of elimination of ethanol, thus increasing or decreasing the time of fetal exposure to ethanol and also decreasing its concentration. Genetic polymorphisms could potentially play a significant role in these processes. In the present study, we considered three polymorphisms of genes implicated in the synthesis of enzymes involved in ethanol metabolism, i.e., ADH1b (rs1229984), ADH1b/c (rs1789891), and CYP2E1 (rs3813867). The studied group consisted of 303 children and 251 mothers. Both mothers' and children's genotypes were considered in our analysis. There were no statistically significant differences between the respective groups of genotypes of the studied polymorphisms. However, the genetic background of FASD is still elusive.
Collapse
Affiliation(s)
- Arnold Kukowka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Bogusław Brzuchalski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Monika Anna Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| |
Collapse
|
3
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Desregulación inmunológica y fisiopatología del consumo de alcohol y la enfermedad hepática alcohólica. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2023; 88:136-154. [DOI: 10.1016/j.rgmx.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Martinez-Castillo M, Altamirano-Mendoza I, Sánchez-Valle S, García-Islas L, Sánchez-Barragán M, Hernández-Santillán M, Hernández-Barragán A, Pérez-Hernández J, Higuera-de la Tijera F, Gutierrez-Reyes G. Immune dysregulation and pathophysiology of alcohol consumption and alcoholic liver disease. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2023; 88:136-154. [PMID: 36973122 DOI: 10.1016/j.rgmxen.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/13/2023] [Indexed: 03/28/2023] Open
Abstract
Alcoholic liver disease (ALD) is a clinical-pathologic entity caused by the chronic excessive consumption of alcohol. The disease includes a broad spectrum of anomalies at the cellular and tissual level that can cause acute-on-chronic (alcoholic hepatitis) or chronic (fibrosis, cirrhosis, hepatocellular cancer) injury, having a great impact on morbidity and mortality worldwide. Alcohol is metabolized mainly in the liver. During alcohol metabolism, toxic metabolites, such as acetaldehyde and oxygen reactive species, are produced. At the intestinal level, alcohol consumption can cause dysbiosis and alter intestinal permeability, promoting the translocation of bacterial products and causing the production of inflammatory cytokines in the liver, perpetuating local inflammation during the progression of ALD. Different study groups have reported systemic inflammatory response disturbances, but reports containing a compendium of the cytokines and cells involved in the pathophysiology of the disease, from the early stages, are difficult to find. In the present review article, the role of the inflammatory mediators involved in ALD progression are described, from risky patterns of alcohol consumption to advanced stages of the disease, with the aim of understanding the involvement of immune dysregulation in the pathophysiology of ALD.
Collapse
|
5
|
Aruna V, Sneha A, Harshitha DS. Hepatocellular carcinoma—An updated review. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:11-31. [DOI: 10.1016/b978-0-323-98806-3.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Cao H, Xi S, He W, Ma X, Liu L, Xu J, Zhang K, Li Y, Jin L. The effects of Gentiana dahurica Fisch on alcoholic liver disease revealed by RNA sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113422. [PMID: 33007391 DOI: 10.1016/j.jep.2020.113422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Gentiana dahurica Fisch (called Qin-Jiao in China), a traditional Chinese medicine, is used in China to treat alcoholic liver disease (ALD), but there has been no scientific report on the treatment of ALD. AIM OF THE STUDY To investigate the therapeutic effects of Gentiana dahurica Fisch ethanol extract (GDEE) on ALD and to reveal its possible mechanism of action using RNA sequencing. MATERIALS AND METHODS The model of ALD was established by continuous gavage with alcohol in mice, and GDEE was used to treat ALD. Pathological observation (HE staining, oil red O staining) and biochemical indicators were performed to evaluate liver tissue lesions and efficacy of GDEE. RNA sequencing analysis of liver tissues was carried out to elucidate the pathogenesis of ALD and the mechanism of hepatoprotective effect by GDEE. The RNA sequencing results were verified by detecting mRNA and protein expressions of acetyl coenzyme A carboxylase α (Acacα), fatty acid synthase (Fasn) and carnitine palmitoyltransferase 1A (Cpt1a) by quantitative real-time polymerase chain reaction (PCR) and Western blot. RESULTS Measurements of biochemical parameters showed that GDEE could inhibit the increased transaminase activities in the serum and lipid levels in the liver caused by alcohol. It was observed that GDEE could alleviate fatty degeneration, edema and cell necrosis caused by alcohol in the liver tissue. RNA sequencing analysis of liver tissues found that 719 genes and 1137 genes were significantly changed by alcohol and GDEE, respectively. GDEE reversed most of the changes in triglycerides synthesis-related genes up-regulated by alcohol. GDEE up-regulated most of the genes involved in the fatty acid degradation in ALD mice, while alcohol had little effect on them. In addition, GDEE suppressed most of the genes involved in cholesterol synthesis that were up-regulated by alcohol. GDEE up-regulated genes related to bile acid synthesis in ALD mice, and down-regulated genes related to bile acid reabsorption, while alcohol had no significant effect on genes related to bile acid metabolism. In the validation experiments, the Acacα, Fasn and Cpt1a expressions quantified by real-time PCR and Western blot were consistent with the RNA sequencing results. CONCLUSIONS GDEE can alleviate liver damage and steatosis in ALD mice, and its mechanism of action may be related to the process of regulating triglycerides and cholesterol.
Collapse
Affiliation(s)
- Houkang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Shaoyang Xi
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Weiwei He
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Xiaohui Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Li Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Jie Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541004, PR China.
| | - Kefeng Zhang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541004, PR China.
| | - Yingdong Li
- College of Integration of Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
7
|
Neuman MG, Mueller J, Mueller S. Non-invasive Biomarkers of Liver Inflammation and Cell Death in Response to Alcohol Detoxification. Front Physiol 2021; 12:678118. [PMID: 34305638 PMCID: PMC8292967 DOI: 10.3389/fphys.2021.678118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Alcohol-related liver disease (ALD) represents the most common liver disease worldwide, however, the underlying molecular mechanisms are still poorly understood. Namely centrilobular inflammation and programmed cell death are characteristic to ALD and it remains to be elucidated why they persist despite the absence of alcohol. Aims To study the effects of alcohol withdrawal in a cohort of heavy drinkers and the role of cirrhosis by using non-invasive biomarkers such as cytokines, apoptotic and angiogenic markers. Methods Caspase 3-cleaved M30, M65, cytokines (IL-6, IL-8), tumor necrosis factor alpha (TNF-α), transforming growth factor (TGF-β) and vascular endothelial growth factor (VEGF) were measured in 114 heavy drinkers. The role of alcohol detoxification was investigated in 45 patients. The liver histology was available in 23 patients. Fibrosis stage and steatosis were assessed by measuring liver stiffness (LS) and controlled attenuation parameter (CAP) in all patients using transient elastography (FibroScan, Echosens, Paris). Mean observation interval between the measurements was 5.7 ± 1.4 days (mean + -SD). Results Patients consumed a mean of 204 ± 148 g/day alcohol with a heavy drinking duration of 15.3 ± 11.0 years. Mean LS was 20.7 ± 24.4 kPa and mean CAP was 303 ± 51 dB/m. Fibrosis distribution was F0-38.1%, F1-2-31%, F3-7.1 and F4-23.9%. Apoptotic markers M30 and M65 were almost five times above normal. In contrast, TNF- α a, IL-8 and VEGF were only slightly elevated. Patients with manifest liver cirrhosis (F4) had significantly higher levels of M30, M65, IL-6 and IL-8. Histology features such as hepatocyte ballooning, Mallory-Denk bodies, inflammation and fibrosis were all significantly associated with elevated LS, and serum levels of TNF-alpha, M30 and M65 but not with CAP and other cytokines. During alcohol detoxification, LS, transaminases, TGF- β, IL-6, IL-8 and VEGF decreased significantly. In contrast, no significant changes were observed for M30, M65 and TNF- α and M30 even increased during detoxification in non-cirrhotic patients. Profibrogenic cytokine TGF-beta and pro-angiogenic cytokine VEGF showed a delayed decrease in patients with manifest cirrhosis. Conclusion Patients with alcohol-related cirrhosis have a pronounced apoptotic activity and a distinct inflammatory response that only partly improves after 1 week of alcohol detoxification. Alcohol withdrawal may represent an important approach to better dissect the underlying mechanisms in the setting of alcohol metabolism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine, Salem Medical Center, Heidelberg, Germany
| |
Collapse
|
8
|
Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021; 10:jcm10143011. [PMID: 34300175 PMCID: PMC8303854 DOI: 10.3390/jcm10143011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is known to be an inseparable factor involved in the presentation of liver disorders. Free radicals interfere with DNA, proteins, and lipids, which are crucial in liver metabolism, changing their expression and biological functions. Additionally, oxidative stress modifies the function of micro-RNAs, impairing the metabolism of hepatocytes. Free radicals have also been proven to influence the function of certain transcriptional factors and to alter the cell cycle. The pathological appearance of alcohol-related liver disease (ALD) constitutes an ideal example of harmful effects due to the redox state. Finally, ethanol-induced toxicity and overproduction of free radicals provoke irreversible changes within liver parenchyma. Understanding the underlying mechanisms associated with the redox state in the course of ALD creates new possibilities of treatment for patients. The future of hepatology may become directly dependent on the effective action against reactive oxygen species. This review summarizes current data on the redox state in the natural history of ALD, highlighting the newest reports on this topic.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-601377656; Fax: +48-814796135
| |
Collapse
|
9
|
Benbow JH, Marrero E, McGee RM, Brandon-Warner E, Attal N, Feilen NA, Culberson CR, McKillop IH, Schrum LW. Hepatic stellate cell-derived exosomes modulate macrophage inflammatory response. Exp Cell Res 2021; 405:112663. [PMID: 34051242 DOI: 10.1016/j.yexcr.2021.112663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatic stellate cell (HSC) differentiation/activation is central to liver fibrosis and is innately linked to the immune response to liver injury. Exosomes (EXOs) are important means of communication between cell populations. This study sought to characterize EXO release from HSCs and the effect of HSC-EXOs on macrophage cytokine release/function. METHODS Liver from a rat fibrosis model was analyzed for EXO expression and localization. Quiescent and culture-activated rat and mouse HSCs and activated human HSCs were analyzed for microRNA expression. Mouse, rat, and human HSCs were culture-activated and EXOs purified from culture medium prior to addition to macrophages, and interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) mRNA and protein measured. The effect of activated HSC-EXOs on macrophage migration was assayed. RESULTS Activation of rat HSCs led to increased EXO production in vivo, an effect mirrored by in vitro rat HSC culture-activation. Culture activation of mouse and rat HSCs led to altered EXO microRNA profiles, with a similar microRNA profile detected in activated human HSCs. Addition of activated HSC-EXOs to macrophages stimulated IL-6 and TNFα mRNA expression and protein secretion in mouse and human macrophages, but not for rat HSC-EXO-macrophages. Addition of human EXOs to macrophages stimulated migration, effects mirrored by the direct addition of rhIL-6 and rhTNFα. CONCLUSIONS HSC-EXOs associate with macrophages and stimulate cytokine synthesis-release and macrophage migration. Constructing a comprehensive understanding of EXO interactions between liver cell populations in the setting of inflammation/fibrosis increases the potential for developing new diagnostic/therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer H Benbow
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Emilio Marrero
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Rachel M McGee
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Elizabeth Brandon-Warner
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Neha Attal
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Nicole A Feilen
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Catherine R Culberson
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA.
| | - Laura W Schrum
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Atrium Health, Charlotte, NC, 28203, USA
| |
Collapse
|
10
|
Jichitu A, Bungau S, Stanescu AMA, Vesa CM, Toma MM, Bustea C, Iurciuc S, Rus M, Bacalbasa N, Diaconu CC. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel) 2021; 11:689. [PMID: 33921359 PMCID: PMC8069361 DOI: 10.3390/diagnostics11040689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a growing prevalence in recent years. Its association with cardiovascular disease has been intensively studied, and certain correlations have been identified. The connection between these two entities has lately aroused interest regarding therapeutic management. In order to find the best therapeutic options, a detailed understanding of the pathophysiology that links (NAFLD) to cardiovascular comorbidities is needed. This review focuses on the pathogenic mechanisms that are behind these two diseases and on the therapeutic management available at this time.
Collapse
Affiliation(s)
- Alexandra Jichitu
- Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania; (A.J.); (C.C.D.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Ana Maria Alexandra Stanescu
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (C.B.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.M.V.); (C.B.)
| | - Stela Iurciuc
- Department of Cardiology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Nicolae Bacalbasa
- Department 13, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Surgery, “Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania; (A.J.); (C.C.D.)
- Department 5, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
11
|
Attal N, Sullivan MT, Girardi CA, Thompson KJ, McKillop IH. Fatty acid binding protein-4 promotes alcohol-dependent hepatosteatosis and hepatocellular carcinoma progression. Transl Oncol 2020; 14:100975. [PMID: 33290990 PMCID: PMC7719965 DOI: 10.1016/j.tranon.2020.100975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease (hepatosteatosis) is a hallmark of ALD and NAFLD. FABP4 is normally expressed in adipocytes and macrophages. ALD leads to FABP4 synthesis/release from steatotic hepatocytes. FABP4 stimulates hepatoma cell growth and migration.
Fatty liver disease (hepatosteatosis) is a common early pathology in alcohol-dependent and obese patients. Fatty acid binding protein-4 (FABP4) is normally expressed in adipocytes and macrophages and functions as a regulator of intracellular lipid movement/storage. This study sought to investigate hepatic FABP4 expression and function in alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). Using chronic ethanol fed mouse models and patient samples FABP4 expression was analyzed. Human HCC cells, and HCC cells transfected to express CYP2E1, were exposed to ethanol and analyzed for FABP4 expression, or exposed to rhFABP4 (in the absence/presence of ERK, p38-MAPK or JNK1/2 inhibitors) and cell proliferation and migration measured. Hepatosteatotic-ALD mouse models exhibited increased hepatic FABP4 mRNA and protein levels, with FABP4 expression confirmed in hepatocytes. In HCC cells, CYP2E1-dependent ethanol metabolism induced FABP4 expression in vitro and exogenous rhFABP4 stimulated proliferation and migration, effects abrogated by ERK and JNK1/2 inhibition. Increased FABP4 was also detected in ALD/ALD-HCC patients, but not patients with viral hepatitis/HCC. Collectively these data demonstrate ethanol metabolism induces hepatic FABP4 expression and FABP4 promotes hepatoma cell proliferation/migration. These data suggest liver-derived FABP4 may be an important paracrine-endocrine factor during hepatic foci expansion and/or hepatoma progression in the underlying setting of ALD.
Collapse
Affiliation(s)
- Neha Attal
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203 USA.
| | - Mariel T Sullivan
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203 USA.
| | - Cara A Girardi
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203 USA.
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203 USA.
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Blvd, Charlotte, NC 28203 USA.
| |
Collapse
|
12
|
Neuman MG, Seitz HK, French SW, Malnick S, Tsukamoto H, Cohen LB, Hoffman P, Tabakoff B, Fasullo M, Nagy LE, Tuma PL, Schnabl B, Mueller S, Groebner JL, Barbara FA, Yue J, Nikko A, Alejandro M, Brittany T, Edward V, Harrall K, Saba L, Mihai O. Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines 2020; 8:E63. [PMID: 32197424 PMCID: PMC7148515 DOI: 10.3390/biomedicines8030063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Helmut Karl Seitz
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Stephen Malnick
- Department Internal Medicine C, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Heidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-5311, USA;
- Department of Veterans; Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12205, USA;
| | - Laura E. Nagy
- Departments of Pathobiology and Gastroenterology, Center for Liver Disease Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Sebastian Mueller
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Jennifer L. Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - French A. Barbara
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Jia Yue
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Afifiyan Nikko
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Mendoza Alejandro
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Tillman Brittany
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Vitocruz Edward
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Kylie Harrall
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Opris Mihai
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department Family Medicine Clinic CAR, 010164 Bucharest, Romania
| |
Collapse
|
13
|
Abstract
Drug-induced liver injury (DILI) is a comprehensive phenomenon. The injury to the liver may occur as an unexpected and undesired reaction to a therapeutic dose of a drug (idiosyncratic reaction) or as an expected therapeutic effect of the direct (intrinsic) toxicity of a drug taken in a large enough dose to cause liver injury. The direct toxicity (type A) reactions represent an extension of the drug's therapeutic effect; they occur relatively frequently and are typically dose-related and frequency-of-exposure-related. By contrast, idiosyncratic reactions, or type B reactions, are unpredictable, occurring only in susceptible individuals, and are unrelated to the dose or frequency of exposure. DILI encompasses both acute and/or chronic hepatic lesions. The liver injury may be the only clinical manifestation of the adverse drug effect. Otherwise, it may be accompanied by injury to other organs, or by systemic manifestations. The liver injury may be observed in 1-8 days from taking the drug. DILI cases may result in the disapproval of a new drug or in the removal of a useful drug from the market by regulatory agencies. The purpose of this review is to provide guidance to facilitate the detection and assessment of hepatotoxicity induced by therapeutics that received market authorization. This review supports the safe and effective use of drugs by patients and guides laboratory medicine professional in determining the possible drug-induced liver damage.
Collapse
|
14
|
Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci 2019; 236:116464. [PMID: 31078546 DOI: 10.1016/j.lfs.2019.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
The function of liver is highly dependent on mitochondria producing ATP for biosynthetic and detoxifying properties. Accumulating evidence indicates that most hepatic disorders are characterized by profound mitochondrial dysfunction. Mitochondrial dysfunction not only exhibits mitochondrial DNA (mtDNA) damage and depletion, but also releases mtDNA. mtDNA is a closed circular molecule encoding 13 of the polypeptides of the oxidative phosphorylation system. Extensive mtDNA lesions could exacerbate mitochondrial oxidative stress and subsequently cause damage to hepatocytes. When mtDNA leaves the confines of mitochondria to the cytosolic and extracellular environment, it can act as damage-associated molecular patterns (DAMPs) to trigger the inflammatory response through the Toll-like receptor 9, inflammasomes, and stimulator of interferon genes (STING) pathways and further exacerbate hepatocellular damage and even remote organs injury. In addition, mtDNA also plays a vital role in hepatitis B virus (HBV)-related liver injury and hepatocellular carcinoma (HCC). In this review, we describe mtDNA alterations during liver injury, focusing on the mechanisms of mtDNA-mediated liver inflammation and oxidative stress injury.
Collapse
Affiliation(s)
- Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | - Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Zhiwu Hong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | -
- Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| |
Collapse
|
15
|
Lu Q, Song J, Wu P, Li C, Thiel W. Mechanistic Insights into the Directing Effect of Thr303 in Ethanol Oxidation by Cytochrome P450 2E1. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Jinshuai Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Peng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Miyanishi K, Tanaka S, Sakamoto H, Kato J. The role of iron in hepatic inflammation and hepatocellular carcinoma. Free Radic Biol Med 2019; 133:200-205. [PMID: 30017991 DOI: 10.1016/j.freeradbiomed.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Iron is an essential for organisms and the liver plays a major role in its storage. In pathologic conditions, where iron absorption from the intestine or iron uptake into the hepatocytes is increased, excess iron accumulates in the hepatocytes, leading to hepatocyte injury through the production of free radicals. Iron exerts its toxicity by catalyzing the generation of reactive oxygen species (ROS). ROS causes cell injury by inducing damage to the lysosomal, cytoplasmic, nuclear and mitochondrial membranes, apoptosis through activation of the caspase cascade, and hyperoxidation of fatty chains. In this manuscript, we reviewed the articles regarding role of iron in hepatic inflammation and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan.
| | - Shingo Tanaka
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan; Department of Infection Control, and Laboratory Medicine, Sapporo Medical University, School of Medicine, Japan
| | - Hiroki Sakamoto
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
17
|
Thursz M, Gual A, Lackner C, Mathurin P, Moreno C, Spahr L, Sterneck M, Cortez-Pinto H. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69:154-181. [PMID: 29628280 DOI: 10.1016/j.jhep.2018.03.018] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
|
18
|
Dumitrascu DL, Neuman MG. Non-alcoholic fatty liver disease: an update on diagnosis. ACTA ACUST UNITED AC 2018; 91:147-150. [PMID: 29785151 PMCID: PMC5958978 DOI: 10.15386/cjmed-993] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Abstract
Background and aim The non-alcoholic fatty liver disease (NAFLD) and its sub-entity, the non-alcoholic steatohepatitis (NASH) represent a field of a tremendous progress in recent years. Clinicians need to remain updated with new data on pathogenesis and therapy. The present mini review aims to present some new scientific reports on the diagnosis of NAFLD and NASH for clinical practitioners. Methods A systematic literature search of the main international databases was performed. We looked for seminal and innovative papers published in main international languages. A narrative review of the topic was consequently written. Results This review describes new data on the diagnosis of NAFLD including NASH. Liver punction biopsy remains the gold standard. However many patients and clinicians prefer to use noninvasive methods. We present the serological tests and the imaging methods used to diagnose inflammation and fibrosis occurring in NAFLD and NASH. Conclusions NAFLD-NASH are multifaceted entities that have to be diagnosed and treated by skilled and informed practitioners.
Collapse
Affiliation(s)
- Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Manuela G Neuman
- In Vitro Drug Safety and Biotechnology; Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Wang F, Zhou RJ, Zhao X, Ye H, Xie ML. Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
20
|
Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4287890. [PMID: 29456571 PMCID: PMC5804110 DOI: 10.1155/2017/4287890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/28/2017] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD). Alcohol was administered to healthy female rats starting from 6% (v/v) and gradually increased to 20% (v/v) by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity). Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.
Collapse
|
21
|
Zhao H, Cheng N, He L, Peng G, Xue X, Wu L, Cao W. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice. Food Res Int 2017; 101:35-44. [DOI: 10.1016/j.foodres.2017.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023]
|
22
|
Anesthetic implications of recreational drug use. Can J Anaesth 2017; 64:1236-1264. [PMID: 28956316 DOI: 10.1007/s12630-017-0975-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 07/10/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE As the use of recreational drugs increases, the likelihood of an anesthesiologist perioperatively encountering patients using or addicted to these drugs will also increase. PRINCIPAL FINDINGS Addicted patients may present for anesthetic care in a variety of circumstances in everyday elective surgeries or in acute or life-saving situations, such as emergency Cesarean delivery or trauma surgery. Therefore, it is important for anesthesiologists to know about the most common illicit drugs being used, their clinical presentation and side effects, and the anesthetic options that are beneficial or detrimental to these patients. The most frequently used illicit substances, apart from alcohol and tobacco, are cannabis, cocaine, heroin, prescription opioids, methamphetamine, and hallucinogens. When planning anesthetic care, it is important for anesthesiologists to understand the effects of these agents, including various drug interactions, to predict tolerance to some anesthetic agents, to recognize drug withdrawal signs and symptoms, and to be prepared to manage all these factors in the perioperative period. CONCLUSIONS For optimal patient care through the perioperative period, it is critical to obtain information about patient drug use and other associated treatment in order to construct an appropriate anesthetic plan, including specific considerations during surgery, emergence, and in the postanesthesia care unit.
Collapse
|
23
|
Wang F, Liu JC, Zhou RJ, Zhao X, Liu M, Ye H, Xie ML. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact 2017; 275:171-177. [DOI: 10.1016/j.cbi.2017.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
|
24
|
Zhao L, Jiang Y, Ni Y, Zhang T, Duan C, Huang C, Zhao Y, Gao L, Li S. Protective effects of Lactobacillus plantarum C88 on chronic ethanol-induced liver injury in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Stickel F, Datz C, Hampe J, Bataller R. Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut Liver 2017; 11:173-188. [PMID: 28274107 PMCID: PMC5347641 DOI: 10.5009/gnl16477] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of cirrhosis, liver cancer, and acute and chronic liver failure and as such causes significant morbidity and mortality. While alcohol consumption is slightly decreasing in several European countries, it is rising in others and remains high in many countries around the world. The pathophysiology of ALD is still incompletely understood but relates largely to the direct toxic effects of alcohol and its main intermediate, acetaldehyde. Recently, novel putative mechanisms have been identified in systematic scans covering the entire human genome and raise new hypotheses on previously unknown pathways. The latter also identify host genetic risk factors for significant liver injury, which may help design prognostic risk scores. The diagnosis of ALD is relatively easy with a panel of well-evaluated tests and only rarely requires a liver biopsy. Treatment of ALD is difficult and grounded in abstinence as the pivotal therapeutic goal; once cirrhosis is established, treatment largely resembles that of other etiologies of advanced liver damage. Liver transplantation is a sound option for carefully selected patients with cirrhosis and alcoholic hepatitis because relapse rates are low and prognosis is comparable to other etiologies. Still, many countries are restrictive in allocating donor livers for ALD patients. Overall, few therapeutic options exist for severe ALD. However, there is good evidence of benefit for only corticosteroids in severe alcoholic hepatitis, while most other efforts are of limited efficacy. Considering the immense burden of ALD worldwide, efforts of medical professionals and industry partners to develop targeted therapies in ALF has been disappointingly low.
Collapse
Affiliation(s)
- Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich,
Switzerland
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Oberndorf,
Austria
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, Dresden,
Germany
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA
| |
Collapse
|
26
|
Testoni I, Milo V, Ronconi L, Feltrin A, Zamperini A, Rodelli M, Germani G, Cillo U. Courage and representations of death in patients who are waiting for a liver transplantation. COGENT PSYCHOLOGY 2017. [DOI: 10.1080/23311908.2017.1294333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ines Testoni
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, Via Venezia 14, 35131 Padova, Italy
| | - Valentina Milo
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, Via Venezia 14, 35131 Padova, Italy
| | - Lucia Ronconi
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, Via Venezia 14, 35131 Padova, Italy
| | - Alessandra Feltrin
- Psychological Unit, Padova University Hospital, Via Giustiniani 2, 35131 Padova, Italy
| | - Adriano Zamperini
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, Via Venezia 14, 35131 Padova, Italy
| | - Maddalena Rodelli
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, Via Venezia 14, 35131 Padova, Italy
| | - Giacomo Germani
- Multivisceral Transplant Unit, Padova University Hospital, Via Giustiniani 2, 35131 Padova, Italy
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Padova University Hospital, Via Giustiniani 2, 35131 Padova, Italy
| |
Collapse
|
27
|
Neuman MG, French SW, Zakhari S, Malnick S, Seitz HK, Cohen LB, Salaspuro M, Voinea-Griffin A, Barasch A, Kirpich IA, Thomes PG, Schrum LW, Donohue TM, Kharbanda KK, Cruz M, Opris M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 2017; 102:162-180. [PMID: 28077318 DOI: 10.1016/j.yexmp.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Stephen Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Andreea Voinea-Griffin
- Public Health Science Texas A&M University, College of Dentistry, Dallas University, TX, USA
| | - Andrei Barasch
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marcus Cruz
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Opris
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| |
Collapse
|
28
|
Torok NJ. Dysregulation of redox pathways in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G667-G674. [PMID: 27562057 PMCID: PMC5142204 DOI: 10.1152/ajpgi.00050.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species are implicated in physiological signaling and cell fate decisions. In chronic liver diseases persistent and increased production of oxidative radicals drives a fibrogenic response that is a common feature of disease progression. Despite our understanding the biology of the main prooxidant enzymes, their targets, and antioxidant mechanisms in the liver, there is still lack of knowledge concerning their precise role in the pathogenesis of fibrosis. This review will examine the role of physiological redox signaling in the liver, provide an overview on recent advances in prooxidant and antioxidant pathways that are dysregulated during fibrosis, and highlight possible novel treatment targets.
Collapse
Affiliation(s)
- Natalie J. Torok
- UC Davis Medical Center, Sacramento, California; and Northern California VA System, Mather, California
| |
Collapse
|
29
|
Sun Q, Zhang W, Zhong W, Sun X, Zhou Z. Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function. Biochim Biophys Acta Gen Subj 2016; 1861:2912-2921. [PMID: 27634671 DOI: 10.1016/j.bbagen.2016.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the development of alcoholic liver disease (ALD), however effective pharmacological treatment for oxidative injury is still lacking. The objective of this study was to determine whether inhibition of NADPH oxidase activity could reverse alcohol-induced liver injury via protecting mitochondrial functions. METHODS C57BL/6J mice were pair-fed with Lieber-DeCarli control or ethanol diet for four week with or without administration with 30mg/kg/d GKT137831, a NOX4 inhibitor for the last two weeks. H4IIEC3 cells were transfected with scrambled or NOX4 shRNA. Cells were then treated with 200mM ethanol for 48h. RESULTS Alcohol exposure induced NOX4 expression in the liver and mitochondrial fraction. GKT137831 partially reversed alcohol-induced liver injury and elevation of serum H2O2. The levels of mitochondrial ROS, mitochondrial DNA, respiratory chain complex IV, and hepatic ATP were partially reversed by GKT137831 after alcohol exposure. Furthermore GKT137831 ameliorated alcohol-induced lipid accumulation and increased HNF-4α and β-oxidation enzymes. GKT137831 also decreased alcohol-induced apoptosis coupled with decreased insertion of Bax into mitochondria and decreased activation of cleaved caspase-9 and cleaved PARP. Mechanistic study shows that ethanol induced expression of NOX4 in H4IIEC3 cells. Knockdown of NOX4 caused an increased mitochondrial membrane potential, decreased mitochondrial superoxide levels, reduced number of apoptotic cells, decreased lipid accumulation, and improved ATP levels and NAD+/NADH ratio after ethanol treatment. CONCLUSION Pharmacological inhibition of NOX4 activity protects against alcohol-induced fat accumulation and activation of intrinsic apoptosis via improving mitochondrial function. GENERAL SIGNIFICANCE Pharmacological inhibition of NOX4 could be a promising treatment for ALD.
Collapse
Affiliation(s)
- Qian Sun
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Zhanxiang Zhou
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|