1
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Xie Y, Cen H, Wang L, Cheng K, Huang L, Lu H, Ji L, Chen Y, Zhou Z, Yang Z, Jing S, Zhu H, Chen K, Chen S, He W. Relationships Between Inflammatory Parameters Derived From Complete Blood Count and Quantitative Flow Ratio in Patients With Stable Coronary Artery Disease. Angiology 2023:33197231197804. [PMID: 37632217 DOI: 10.1177/00033197231197804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
To investigate the relationships between inflammatory parameters, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR) and systemic immune-inflammation index (SII), and quantitative flow ratio (QFR) in stable coronary artery disease (CAD) patients (n = 450) enrolled in this cross-sectional study. Logistic regression was performed to evaluate the associations of NLR, PLR, MLR, and SII evaluated as continuous and binary variables with QFR ≤0.80. When treated as continuous variables, lnNLR was associated with QFR ≤0.80 with borderline significance in univariable (odds ratio (OR) = 1.60, p = .05) and multivariable analysis (OR = 1.72, p = .05), while lnMLR was associated with QFR ≤0.80 significantly in univariable analysis (OR = 1.87, p = .03) and with borderline significance in multivariable analysis (OR = 1.91, p = .05). When treated as binary variables, high levels of MLR and SII were significantly associated with QFR ≤0.80 in univariable (MLR: OR = 1.91, p = .02; SII: OR = 2.42, p = .006) and multivariable analysis (MLR: OR = 1.83, p = .04; SII: OR = 2.19, p = .02). NLR, MLR, and SII, but not PLR, were significantly associated with the severity of coronary physiology in stable CAD patients.
Collapse
Affiliation(s)
- Yanqing Xie
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Institute of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Han Cen
- Institute of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Keai Cheng
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Li Huang
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haoxuan Lu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lili Ji
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yudan Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhong Zhou
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhuo Yang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Sheng Jing
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haibo Zhu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kan Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Si Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Institute of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Thakur M, Junho CVC, Bernhard SM, Schindewolf M, Noels H, Döring Y. NETs-Induced Thrombosis Impacts on Cardiovascular and Chronic Kidney Disease. Circ Res 2023; 132:933-949. [PMID: 37053273 PMCID: PMC10377271 DOI: 10.1161/circresaha.123.321750] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Arterial and venous thrombosis constitute a major source of morbidity and mortality worldwide. Association between thrombotic complications and cardiovascular and other chronic inflammatory diseases are well described. Inflammation and subsequent initiation of thrombotic events, termed immunothrombosis, also receive growing attention but are still incompletely understood. Nevertheless, the clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is evident by an increased risk of thrombosis and cardiovascular events in patients with inflammatory or infectious diseases. Proinflammatory mediators released from platelets, complement activation, and the formation of NETs (neutrophil extracellular traps) initiate and foster immunothrombosis. In this review, we highlight and discuss prominent and emerging interrelationships and functions between NETs and other mediators in immunothrombosis in cardiovascular disease. Also, with patients with chronic kidney disease suffering from increased cardiovascular and thrombotic risk, we summarize current knowledge on neutrophil phenotype, function, and NET formation in chronic kidney disease. In addition, we elaborate on therapeutic targeting of NETs-induced immunothrombosis. A better understanding of the functional relevance of antithrombotic mediators which do not increase bleeding risk may provide opportunities for successful therapeutic interventions to reduce thrombotic risk beyond current treatment options.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Germany (C.V.C.J., H.N.)
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Germany (C.V.C.J., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (H.N.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany (Y.D.)
| |
Collapse
|
4
|
Seo H, Kang S, Lee D, Yun CW. Regulation of pseurotin A biosynthesis by GliZ and zinc in Aspergillus fumigatus. Sci Rep 2023; 13:2431. [PMID: 36765124 PMCID: PMC9918513 DOI: 10.1038/s41598-023-29753-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Recently, we reported that zinc regulates gliotoxin biosynthesis via ZafA, which is a zinc-responsive transcriptional activator. From an HPLC analysis of culture media of Aspergillus fumigatus, we found a trend of decreasing gliotoxin production but increasing pseurotin A and fumagillin production in proportion to the zinc concentration. The expression of the genes involved in pseurotin A biosynthesis was upregulated under high zinc concentrations. Furthermore, upregulated expression of pseurotin A biosynthetic genes and higher production of pseurotin A were observed in the zafA deletion strain. Interestingly, the deletion of gliZ, a transcriptional activator of gliotoxin biosynthesis genes, resulted in upregulated expression of pseurotin A biosynthetic genes and increased production of pseurotin A. We detected upregulation of fumR expression in the gliZ and zafA deletion mutants. The overexpression of gliZ observed in the zafA deletion mutant resulted in the failure of the mutant to increase pseurotin A production, which is a phenotype of the zafA deletion mutant. These results suggest that ZafA sequentially regulates pseurotin A biosynthesis through GliZ. Finally, we found through a murine virulence test that the gliZ and fumR double-deletion mutants showed a delayed death rate compared with the single-deletion mutants of either gliZ or fumR. Taken together, these results suggested that the biosynthesis of gliotoxin and pseurotin A are regulated in opposite ways by zinc utilization and that each secondary metabolite is synthesized when the synthesis of another secondary metabolite fails to protect it against the defense system of the host.
Collapse
Affiliation(s)
- Hyewon Seo
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Suzie Kang
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea.
- NeuroEsgel Co., Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022; 15:727-745. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED This article reviews the pathophysiological role of platelets, neutrophils and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION Virus-induced platelet, neutrophil and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signalling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.
Collapse
Affiliation(s)
- E Falcinelli
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - P Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Liu K, He Y, Lu F. Research Progress on the Immunogenicity and Regeneration of Acellular Adipose Matrix: A Mini Review. Front Bioeng Biotechnol 2022; 10:881523. [PMID: 35733521 PMCID: PMC9207478 DOI: 10.3389/fbioe.2022.881523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acellular adipose matrix (AAM) has received increasing attention for soft tissue reconstruction, due to its abundant source, high long-term retention rate and in vivo adipogenic induction ability. However, the current decellularization methods inevitably affect native extracellular matrix (ECM) properties, and the residual antigens can trigger adverse immune reactions after transplantation. The behavior of host inflammatory cells mainly decides the regeneration of AAM after transplantation. In this review, recent knowledge of inflammatory cells for acellular matrix regeneration will be discussed. These advancements will inform further development of AAM products with better properties.
Collapse
|
7
|
Liu F, Mao Y, Yan J, Sun Y, Xie Z, Li F, Yan F, Zhang H, Zhang P. Bionic Microbubble Neutrophil Composite for Inflammation-Responsive Atherosclerotic Vulnerable Plaque Pluripotent Intervention. RESEARCH 2022; 2022:9830627. [PMID: 35711673 PMCID: PMC9188677 DOI: 10.34133/2022/9830627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Rupture or erosion of inflammatory atherosclerotic vulnerable plaque is essential to acute coronary events, while the target intervene of vulnerable plaque is very challenging, due to the relatively small volume, high hemodynamic shear stress, and multifactorial nature of the lesion foci. Herein, we utilize the biological functionality of neutrophil and the versatility of microbubble in the acoustic field, to form Neu-balloon through CD11b antibody binding. The Neu-balloon inherits the advantage of neutrophils on firming the endothelium adhesion even at shear stress up to 16 dyne/cm2 and also maintains the acoustic enhancement property from the microbubble, to accumulate at atherosclerotic lesions under acoustic in an atherosclerotic Apo E-/- mice model. Interestingly, Neo-balloon also has high and broad drug loading capacity, which enables the delivery of indocyanine green and miR-126a-5p into vulnerable plagues in vivo. Overall, the bionic Neu-balloon holds great potential to boost on-demand drug transportation into plaques in vivo.
Collapse
Affiliation(s)
- Fangfang Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yang Mao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaqi Yan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, And Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Zhihua Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Fei Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Fei Yan
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Hongbo Zhang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, And Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland
| | - Pengfei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Stampouloglou PK, Siasos G, Bletsa E, Oikonomou E, Vogiatzi G, Kalogeras K, Katsianos E, Vavuranakis MA, Souvaliotis N, Vavuranakis M. The Role of Cell Derived Microparticles in Cardiovascular Diseases: Current Concepts. Curr Pharm Des 2022; 28:1745-1757. [DOI: 10.2174/1381612828666220429081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/07/2022]
Abstract
Abstract:
Cardiovascular disease remains the main cause of human morbidity and mortality in the developed countries. Microparticles (MPs) are small vesicles originating from the cell membrane as a result of various stimuli and particularly of biological processes that constitute the pathophysiology of atherosclerosis, such as endothelial damage. They form vesicles that can transfer various molecules and signals to remote target cells without direct cell to cell interaction. Circulating microparticles have been associated with cardiovascular diseases. Therefore, many studies have been designed to further investigate the role of microparticles as biomarkers for diagnosis, prognosis, and disease monitoring. To this concept the pro-thrombotic and atherogenic potential of platelets and endothelial derived MPs has gain research interest especially concerning accelerate atherosclerosis and acute coronary syndrome triggering and prognosis. MPs especially of endothelial origin have been investigated in different clinical scenarios of heart failure and in association of left ventricular loading conditions. Finally, most cardiovascular risk factors present unique patterns of circulating MPs population, highlighting their pathophysiologic link to cardiovascular disease progression. In this review article we present a synopsis of the biogenesis and characteristics of microparticles, as well as the most recent data concerning their implication in the cardiovascular settings.
Collapse
Affiliation(s)
- Panagiota K. Stampouloglou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Evanthia Bletsa
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Georgia Vogiatzi
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Efstratios Katsianos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Nektarios Souvaliotis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| |
Collapse
|
9
|
Cryoprotectants-Free Vitrification and Conventional Freezing of Human Spermatozoa: A Comparative Transcript Profiling. Int J Mol Sci 2022; 23:ijms23063047. [PMID: 35328464 PMCID: PMC8956043 DOI: 10.3390/ijms23063047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Spermatozoa cryopreservation is an important technique to preserve fertility for males. This study aimed at exploring the stability of epigenetics information in human spermatozoa, manipulated by two different technologies, freezing and vitrification. Methods: Spermatozoa samples were distributed into three groups: 1. Fresh spermatozoa (control group), 2. Frozen spermatozoa, 3. Vitrified spermatozoa. Epigenetic differences of fresh and cryopreserved spermatozoa were evaluated using high-throughput RNA sequencing. Results: Differentially expressed genes (DEGs) in frozen (1103 genes) and vitrified (333 genes) spermatozoa were evaluated. The bioinformatical analysis identified 8 and 15 significant pathways in groups of frozen and vitrified spermatozoa, respectively. The majority of these pathways are most relevant to immune and infectious diseases. The DEGs of the fertilization process are not detected during vitrification. The freezing process induces more down-regulation of genes and is relevant to apoptosis changes and immune response. Conclusion: Cryopreservation of human spermatozoa is an epigenetically safe method for male fertility preservation. Cryoprotectant-free vitrification can induce more minor biological changes in human spermatozoa, in comparison with conventional freezing.
Collapse
|
10
|
Kraft JD, Blomgran R, Bergström I, Soták M, Clark M, Rani A, Rajan MR, Dalli J, Nyström S, Quiding‐Järbrink M, Bromberg J, Skoog P, Börgeson E. Lipoxins modulate neutrophil oxidative burst, integrin expression and lymphatic transmigration differentially in human health and atherosclerosis. FASEB J 2022; 36:e22173. [PMID: 35104001 PMCID: PMC9305188 DOI: 10.1096/fj.202101219rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Dysregulated chronic inflammation plays a crucial role in the pathophysiology of atherosclerosis and may be a result of impaired resolution. Thus, restoring levels of specialized pro‐resolving mediators (SPMs) to promote the resolution of inflammation has been proposed as a therapeutic strategy for patients with atherosclerosis, in addition to standard clinical care. Herein, we evaluated the effects of the SPM lipids, lipoxin A4 (LXA4) and lipoxin B4 (LXB4), on neutrophils isolated from patients with atherosclerosis compared with healthy controls. Patients displayed altered endogenous SPM production, and we demonstrated that lipoxin treatment in whole blood from atherosclerosis patients attenuates neutrophil oxidative burst, a key contributor to atherosclerotic development. We found the opposite effect in neutrophils from healthy controls, indicating a potential mechanism whereby lipoxins aid the endogenous neutrophil function in health but reduce its excessive activation in disease. We also demonstrated that lipoxins attenuated upregulation of the high‐affinity conformation of the CD11b/CD18 integrin, which plays a central role in clot activation and atherosclerosis. Finally, LXB4 enhanced lymphatic transmigration of human neutrophils isolated from patients with atherosclerosis. This finding is noteworthy, as impaired lymphatic function is now recognized as an important contributor to atherosclerosis. Although both lipoxins modulated neutrophil function, LXB4 displayed more potent effects than LXA4 in humans. This study highlights the therapeutic potential of lipoxins in atherosclerotic disease and demonstrates that the effect of these SPMs may be specifically tailored to the need of the individual.
Collapse
Affiliation(s)
- Jamie D. Kraft
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
| | - Robert Blomgran
- Division of Inflammation and Infection Department of Biomedical and Clinical Sciences Faculty of Medicine and Health Sciences Linköping University Linköping Sweden
| | - Ida Bergström
- Department of Clinical Immunology and Transfusion Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Matúš Soták
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Madison Clark
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
| | - Alankrita Rani
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Meenu Rohini Rajan
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| | - Jesmond Dalli
- William Harvey Research Institute Barts & The London School of Medicine & Dentistry Queen Mary University of London London UK
- Centre for Inflammation and Therapeutic Innovation Queen Mary University of London London UK
| | - Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Marianne Quiding‐Järbrink
- Department of Microbiology and Immunology Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Jonathan Bromberg
- Department of Surgery University of Maryland School of Medicine Baltimore Maryland USA
- Department of Microbiology and Immunology University of Maryland School of Medicine Baltimore Maryland USA
- Center for Vascular and Inflammatory Diseases University of Maryland School of Medicine Baltimore Maryland USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland Baltimore Maryland USA
| | - Per Skoog
- Department of Vascular Surgery and Institute of Medicine Sahlgrenska University Hospital and Academy Gothenburg Sweden
- Department of Molecular and Clinical Medicine Sahlgrenska University Hospital and Academy Gothenburg Sweden
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine Wallenberg Laboratory Institute of Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine University of Gothenburg Gothenburg Sweden
- Department of Clinical Physiology Region Vaestra Goetaland Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
11
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous
progress in prevention, diagnosis, and treatment strategies. Formation of
atherosclerotic plaque is a chronic process that is developmentally influenced
by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis,
and the fundamental element of inflammation is the immune system. The immune
system involves in the atherosclerosis process by a variety of immune cells and
a cocktail of mediators. It is believed that almost all main components of this
system possess a profound contribution to the atherosclerosis. However, they
play contradictory roles, either protective or progressive, in different stages
of atherosclerosis progression. It is evident that monocytes are the first
immune cells appeared in the atherosclerotic lesion. With the plaque growth,
other types of the immune cells such as mast cells, and T lymphocytes are
gradually involved. Each cell releases several cytokines which cause the
recruitment of other immune cells to the lesion site. This is followed by
affecting the expression of other cytokines as well as altering certain
signaling pathways. All in all, a mix of intertwined interactions determine the
final outcome in terms of mild or severe manifestations, either clinical or
subclinical. Therefore, it is of utmost importance to precisely understand the
kind and degree of contribution which is made by each immune component in order
to stop the growing burden of cardiovascular morbidity and mortality. In this
review, we present a comprehensive appraisal on the role of immune cells in the
atherosclerosis initiation and development.
Collapse
Affiliation(s)
- Iman Razeghian-Jahromi
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
12
|
ChhodenR S, Ferdous M, Adhikary DK, Salim MA, Banerjee SK, Fariduddin M, Biswas SK. Expression of neutrophil elastase and myeloperoxidase genes in coronary atherosclerosis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Uremic serum damages endothelium by provoking excessive neutrophil extracellular trap formation. Sci Rep 2021; 11:21439. [PMID: 34728714 PMCID: PMC8563801 DOI: 10.1038/s41598-021-00863-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, HV-derived neutrophils and differentiated HL-60 cells by retinoic acid were used to determine the effect of uremic serum-induced NETs on human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality, or vascular access failure. In vitro, HD-derived uremic serum significantly increased NET formation both in dHL-60 and isolated neutrophils compared to control serum, and these NETs decreased EC viability and induced their apoptosis. In addition, the level of ICAM-1, E-selectin and von Willebrand factor in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.
Collapse
|
14
|
Tan J, Zhang QY, Huang LP, Huang K, Xie HQ. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci 2021; 9:4803-4820. [PMID: 34018503 DOI: 10.1039/d1bm00470k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response of the host towards a decellularized scaffold is complex. Not only can a number of immune cells influence this process, but also the characteristics, preparation and modification of the decellularized scaffold can significantly impact this reaction. Such factors can, together or alone, trigger immune cells to polarize towards either a pro-healing or pro-inflammatory direction. In this article, we have comprehensively reviewed factors which may influence the immune response of the host towards a decellularized scaffold, including the source of the biomaterial, biophysical properties or modifications of the scaffolds with bioactive peptides, drugs and cytokines. Furthermore, the underlying mechanism has also been recapitulated.
Collapse
Affiliation(s)
- Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Li-Ping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
15
|
Thakur M, Evans B, Schindewolf M, Baumgartner I, Döring Y. Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells 2021; 10:1689. [PMID: 34359859 PMCID: PMC8305819 DOI: 10.3390/cells10071689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory proteins. NETs are diverse in their ability to alter physiological and pathological processes including infection and inflammation. In this review, we will summarize recent findings on the role of NETs in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic inflammation as well as discussing important questions related to their contribution to pathologies outlined above may pave the way for future research on therapeutic targeting of NETs applicable to specific infections and inflammatory disorders.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Bryce Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
16
|
Blum C, Taskin MB, Shan J, Schilling T, Schlegelmilch K, Teßmar J, Groll J. Appreciating the First Line of the Human Innate Immune Defense: A Strategy to Model and Alleviate the Neutrophil Elastase-Mediated Attack toward Bioactivated Biomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007551. [PMID: 33690981 DOI: 10.1002/smll.202007551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Biointerface engineering is a wide-spread strategy to improve the healing process and subsequent tissue integration of biomaterials. Especially the integration of specific peptides is one promising strategy to promote the regenerative capacity of implants and 3D scaffolds. In vivo, these tailored interfaces are, however, first confronted with the innate immune response. Neutrophils are cells with pronounced proteolytic potential and the first recruited immune cells at the implant site; nonetheless, they have so far been underappreciated in the design of biomaterial interfaces. Herein, an in vitro approach is introduced to model and analyze the neutrophil interaction with bioactivated materials at the example of nano-bioinspired electrospun surfaces that reveals the vulnerability of a given biointerface design to the contact with neutrophils. A sacrificial, transient hydrogel coating that demonstrates optimal protection for peptide-modified surfaces and thus alleviates the immediate cleavage by neutrophil elastase is further introduced.
Collapse
Affiliation(s)
- Carina Blum
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| | - Junwen Shan
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| | - Tatjana Schilling
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| | - Katrin Schlegelmilch
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, Würzburg, 97070, Germany
| |
Collapse
|
17
|
Oh EH, Rhee JK, Shin JH, Cho JW, Kim DS, Park JY, Choi SY, Choi KD, Choi JH. Neutrophil-mediated immune response as a possible mechanism of acute unilateral vestibulopathy. J Vestib Res 2020; 30:363-374. [PMID: 33285659 DOI: 10.3233/ves-200044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to investigate the underlying pathogenesis of acute unilateral vestibulopathy (AUV) using gene expression profiling combined with bioinformatics analysis. METHODS Total RNA was extracted from the peripheral blood mononuclear cells of ten AUV patients in the acute phase and from ten controls. The differentially expressed genes (DEGs) between these two groups were screened using microarray analysis with the cut-off criteria (|fold changes| > 1.5 and p-value < 0.05). Functional enrichment analysis of DEGs was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, and the protein-protein interaction (PPI) network was constructed using the STRING (Search Tool for the Retrieval of Interacting Genes) database. RESULTS There were 57 DEGs (50 up-regulated and 7 down-regulated) identified in the AUV group. Functional enrichment analysis showed that most of the up-regulated DEGs were significantly enriched in terms related to the neutrophil-mediated immune pathway. From the PPI network, the top ten hub genes were extracted by calculating four topological properties, and most of them were related to the innate immune system, inflammatory processes and vascular disorders. The complete blood count tests showed that the neutrophil-to-lymphocyte ratio was significantly higher in the 72 AUV patients than in the age-matched controls (2.93±2.25 vs 1.54±0.61, p < 0.001). CONCLUSIONS This study showed that the neutrophil-mediated immune pathway may contribute to the development of AUV by mediating inflammatory and thrombotic changes in the vestibular organ.
Collapse
Affiliation(s)
- Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Je-Keun Rhee
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jae Wook Cho
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ji-Yun Park
- Department of Neurology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Seo Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
18
|
Robich M, Ryzhov S, Kacer D, Palmeri M, Peterson SM, Quinn RD, Carter D, Sheppard F, Hayes T, Sawyer DB, Rappold J, Prudovsky I, Kramer RS. Prolonged Cardiopulmonary Bypass is Associated With Endothelial Glycocalyx Degradation. J Surg Res 2020; 251:287-295. [PMID: 32199337 DOI: 10.1016/j.jss.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/23/2020] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The endothelial glycocalyx (EG) is involved in critical regulatory mechanisms that maintain endothelial vascular integrity. We hypothesized that prolonged cardiopulmonary bypass (CPB) may be associated with EG degradation. We performed an analysis of soluble syndecan-1 levels in relation to duration of CPB, as well as factors associated with cell stress and damage, such as mitochondrial DNA (mtDNA) and inflammation. METHODS Blood samples from subjects undergoing cardiac surgery with CPB (n = 54) were obtained before and during surgery, 4-8 h and 24 h after completion of CPB, and on postoperative day 4. Flow cytometry was used to determine subpopulations of white blood cells. Plasma levels of mtDNA were determined using quantitative polymerase chain reaction and plasma content of shed syndecan-1 was measured. To determine whether syndecan-1 was signaling white blood cells, the effect of recombinant syndecan-1 on mobilization of neutrophils from bone marrow was tested in mice. RESULTS CPB is associated with increased mtDNA during surgery, increased syndecan-1 blood levels at 4-8 h, and increased white blood cell count at 4-8 h and 24 h. Correlation analysis revealed significant positive associations between time on CPB and syndecan-1 (rs = 0.488, P < 0.001) and level of syndecan-1 and neutrophil count (rs = 0.351, P = 0.038) at 4-8 h. Intravenous administration of recombinant syndecan-1 in mice resulted in a 2.5-fold increase in the number of circulating neutrophils, concurrent with decreased bone marrow neutrophil number. CONCLUSIONS Longer duration of CPB is associated with increased plasma levels of soluble syndecan-1, a signal for EG degradation, which can induce neutrophil egress from the bone marrow. Development of therapy targeting EG shedding may be beneficial in patients with prolonged CPB.
Collapse
Affiliation(s)
- Michael Robich
- Maine Medical Center Cardiovascular Institute, Portland, Maine; Maine Medical Center Research Institute, Scarborough, Maine
| | - Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Doreen Kacer
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Monica Palmeri
- Maine Medical Center Cardiovascular Institute, Portland, Maine; Maine Medical Center Research Institute, Scarborough, Maine
| | | | - Reed D Quinn
- Maine Medical Center Cardiovascular Institute, Portland, Maine
| | - Damien Carter
- Maine Medical Center Research Institute, Scarborough, Maine; Maine Medical Center, Department of Surgery, Portland, Maine
| | - Forest Sheppard
- Maine Medical Center, Department of Surgery, Portland, Maine
| | - Timothy Hayes
- Maine Medical Center, Department of Pathology, Portland, Maine
| | - Douglas B Sawyer
- Maine Medical Center Cardiovascular Institute, Portland, Maine; Maine Medical Center Research Institute, Scarborough, Maine
| | - Joseph Rappold
- Maine Medical Center Cardiovascular Institute, Portland, Maine; Maine Medical Center Research Institute, Scarborough, Maine; Maine Medical Center, Department of Surgery, Portland, Maine
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Robert S Kramer
- Maine Medical Center Cardiovascular Institute, Portland, Maine; Maine Medical Center Research Institute, Scarborough, Maine.
| |
Collapse
|
19
|
Guo Y, Liu R, Chen L, Wu W, Zhang S. Neutrophil activation and neutrophil derived neutrophil extracellular trap formation in patients with coronary artery ectasia. BMC Cardiovasc Disord 2020; 20:101. [PMID: 32122307 PMCID: PMC7050139 DOI: 10.1186/s12872-020-01398-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study investigated neutrophil activation and neutrophil-derived extracellular traps formation in coronary artery ectasia. METHODS We enrolled 90 patients who underwent coronary angiography, and included 30 patients with coronary artery ectasia (CAE), 30 patients with obstructive coronary artery disease (CAD) and 30 patients with normal coronary arteries (CON). Intra-neutrophil mean myeloperoxidase index (MPXI) was determined using an automated blood cell counter (ADVIA2120 Hematology System). Serum concentrations of plasma adhesion molecules, cytokines, and neutrophil-derived extracellular traps were quantified. RESULTS The intra-neutrophil mean myeloperoxidase index was reduced in CAE patients compared to CAD and CON patients (1.02 ± 3.01, 3.22 ± 3.03, 3.52 ± 4.25, respectively; CAE vs CAD, p = 0.016 and CAE vs CON, p = 0.007). Multiple logistic regression analysis showed that MPXI and dsDNA were independent factors that predicted the presence of CAE. CAE patients had higher levels of plasma adhesion molecules (P-selectin glycoprotein ligand-1, E-selectin, L-selectin) and interleukin 1 beta levels. Neutrophil extracellular trap concentrations were significantly higher in the CAE group compared to CAD and CON patients (284.31(258.33-449.91) ng/mL, 225.12(203.34-257.13) ng/mL, and 247.37(231.04-273.01) ng/mL, respectively; CAE vs CAD, p = 0.000 and CAE vs CON, p = 0.001). CONCLUSIONS Peripheral neutrophils from CAE patients were activated and neutrophil extracellular traps were elevated in the plasma. IL-1β and soluble adhesion molecules may be the causal factors for neutrophil activation.
Collapse
Affiliation(s)
- Yuchao Guo
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China
| | - Ruifeng Liu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Beijing, 100050, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China.
| |
Collapse
|
20
|
Gisonno RA, Prieto ED, Gorgojo JP, Curto LM, Rodriguez ME, Rosú SA, Gaddi GM, Finarelli GS, Cortez MF, Schinella GR, Tricerri MA, Ramella NA. Fibrillar conformation of an apolipoprotein A-I variant involved in amyloidosis and atherosclerosis. Biochim Biophys Acta Gen Subj 2020; 1864:129515. [PMID: 31904503 DOI: 10.1016/j.bbagen.2020.129515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions. Thus mutations result in increased protein aggregation. Here we set up to characterize the folding of a natural variant with a mutation leading to a deletion at position 107 (apoA-I Lys107-0). Patients carrying this variant show amyloidosis and severe atherosclerosis. METHODS We oxidized this variant under controlled concentrations of hydrogen peroxide and analyzed the structure obtained after 30-day incubation by fluorescence, circular dichroism and microscopy approaches. Neutrophils activation was characterized by confocal microscopy. RESULTS We obtained a high yield of well-defined stable fibrillar structures of apoA-I Lys107-0. In an in vitro neutrophils system, we were able to detect the induction of Neutrophils Extracellular Traps (NETs) when we incubated with oxidized apoA-I variants. This effect was exacerbated by the fibrillar structure of oxidized Lys 107-0. CONCLUSIONS We conclude that a pro-inflammatory microenvironment could result in the formation of aggregation-prone species, which, in addition may induce a positive feed-back in the activation of an inflammatory response. GENERAL SIGNIFICANCE These events may explain a close association between amyloidosis due to apoA-I Lys107-0 and atherosclerosis.
Collapse
Affiliation(s)
- Romina A Gisonno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Eduardo D Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| | - Juan P Gorgojo
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Lucrecia M Curto
- Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB) y Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, Argentina
| | - M Eugenia Rodriguez
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Silvana A Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Gisela M Gaddi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | | | - M Fernanda Cortez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| |
Collapse
|
21
|
Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in Psoriasis. Front Immunol 2019; 10:2376. [PMID: 31649677 PMCID: PMC6794444 DOI: 10.3389/fimmu.2019.02376] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant innate immune cells. The pathogenic roles of neutrophils are related to chronic inflammation and autoimmune diseases. Psoriasis is a chronic systemic inflammatory disease affecting ~2–3% of the world population. The abundant presence of neutrophils in the psoriatic skin lesions serves as a typical histopathologic hallmark of psoriasis. Recent reports indicated that oxidative stress, granular components, and neutrophil extracellular traps from psoriatic neutrophils are related to the initial and maintenance phases of psoriasis. This review provides an overview on the recent (up to 2019) advances in understanding the role of neutrophils in the pathophysiology of psoriasis, including the effects of respiratory burst, degranulation, and neutrophil extracellular trap formation on psoriatic immunity and the clinical relationships.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Supervisor Board, Taoyuan Chinese Medicine Association, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
22
|
Platelet-to-neutrophil ratio is a prognostic marker for 90-days outcome in acute ischemic stroke. J Clin Neurosci 2019; 63:110-115. [DOI: 10.1016/j.jocn.2019.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/18/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
|
23
|
Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38:1901-1912. [PMID: 29976772 PMCID: PMC6202190 DOI: 10.1161/atvbaha.118.311150] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1β-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.
Collapse
Affiliation(s)
- Eduardo J Folco
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Thomas L Mawson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Amélie Vromman
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Breno Bernardes-Souza
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Grégory Franck
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Oscar Persson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Momotaro Nakamura
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Gail Newton
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francis W Luscinskas
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| |
Collapse
|
24
|
Dąbrowska D, Jabłońska E, Garley M, Sawicka-Powierza J, Nowak K. The Phenomenon of Neutrophil Extracellular Traps in Vascular Diseases. Arch Immunol Ther Exp (Warsz) 2018; 66:273-281. [PMID: 29404659 PMCID: PMC6061175 DOI: 10.1007/s00005-018-0505-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
Vascular diseases constitute a global health issue due to the increasing number of cases of patients with these diseases. The pathogenesis of the majority of these diseases, including atherosclerosis and thrombosis, is complex and not yet fully understood. One of the major causes for their occurrence can be immune disorders resulting in the development of a chronic inflammation within the vessels. In recent years, studies have placed emphasis on the role of neutrophils in the development of these diseases, i.e., the discovery of neutrophil extracellular traps (NETs) demonstrated that the structures released by the cells may contribute to the enhancement of inflammatory reactions and cell damage. This article summarizes current knowledge on the role of NETs during atherosclerosis, thrombosis and small-vessel vasculitis, especially in antineutrophil cytoplasmic antibody (ANCA)-associated small-vessel vasculitis (AAV).
Collapse
Affiliation(s)
- Dorota Dąbrowska
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Jolanta Sawicka-Powierza
- Department of Family Medicine, Medical University of Bialystok, Mieszka I 4B, 15-054, Bialystok, Poland
| | - Karolina Nowak
- Department of Immunology, Medical University of Bialystok, J. Waszyngtona 15A, 15-269, Bialystok, Poland
| |
Collapse
|
25
|
Gonçalves-de-Albuquerque CF, Rohwedder I, Silva AR, Ferreira AS, Kurz ARM, Cougoule C, Klapproth S, Eggersmann T, Silva JD, de Oliveira GP, Capelozzi VL, Schlesinger GG, Costa ER, Estrela Marins RDCE, Mócsai A, Maridonneau-Parini I, Walzog B, Macedo Rocco PR, Sperandio M, de Castro-Faria-Neto HC. The Yin and Yang of Tyrosine Kinase Inhibition During Experimental Polymicrobial Sepsis. Front Immunol 2018; 9:901. [PMID: 29760707 PMCID: PMC5936983 DOI: 10.3389/fimmu.2018.00901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophils are the first cells of our immune system to arrive at the site of inflammation. They release cytokines, e.g., chemokines, to attract further immune cells, but also actively start to phagocytose and kill pathogens. In the case of sepsis, this tightly regulated host defense mechanism can become uncontrolled and hyperactive resulting in severe organ damage. Currently, no effective therapy is available to fight sepsis; therefore, novel treatment targets that could prevent excessive inflammatory responses are warranted. Src Family tyrosine Kinases (SFK), a group of tyrosine kinases, have been shown to play a major role in regulating immune cell recruitment and host defense. Leukocytes with SFK depletion display severe spreading and migration defects along with reduced cytokine production. Thus, we investigated the effects of dasatinib, a tyrosine kinase inhibitor, with a strong inhibitory capacity on SFKs during sterile inflammation and polymicrobial sepsis in mice. We found that dasatinib-treated mice displayed diminished leukocyte adhesion and extravasation in tumor necrosis factor-α-stimulated cremaster muscle venules in vivo. In polymicrobial sepsis, sepsis severity, organ damage, and clinical outcome improved in a dose-dependent fashion pointing toward an optimal therapeutic window for dasatinib dosage during polymicrobial sepsis. Dasatinib treatment may, therefore, provide a balanced immune response by preventing an overshooting inflammatory reaction on the one side and bacterial overgrowth on the other side.
Collapse
Affiliation(s)
- Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany.,Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ina Rohwedder
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Angela R M Kurz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Klapproth
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Tanja Eggersmann
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Johnatas D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Pena de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Laboratório de Genômica Pulmonar, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edlaine Rijo Costa
- Laboratorio de Farmacologia, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita de Cassia Elias Estrela Marins
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Attila Mócsai
- MTA-SE "Lendület" Inflammation Physiology Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Barbara Walzog
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Markus Sperandio
- Walter Brendel Centre, Department of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians University München, Munich, Germany
| | | |
Collapse
|
26
|
Zuiderwijk M, Geerts M, van Rhijn CJ, van den Bogaerdt A, Hamming JF, van Dijk RA, Lindeman JH. Leukocyte Dynamics during the Evolution of Human Coronary Atherosclerosis: Conclusions from a Sevenfold, Chromogen-Based, Immunohistochemical Evaluation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1524-1529. [PMID: 29684365 DOI: 10.1016/j.ajpath.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a complex process with strong inflammatory component. We developed a straightforward sevenfold staining protocol for simultaneous assessment of dominant leukocyte classes, vascularization, and expression of the putative foam cell maker CD36. The method was applied on human coronaries covering the full spectrum of atherosclerotic disease. Results confirm the progressive association of macrophages and T cells with the process and a global presence of mast cells. B cells are exclusively present in adventitial follicles that accompany the process plaque destabilization (thin cap and ruptured lesions) and are otherwise absent. Neutrophils are only present as part of the hemorrhage that accompanies plaque rupture. This study does not classify CD36 as a key factor in foam cell formation. Observed macrophage accumulation in the neointima of stabilized fibrous calcified plaques is consistent with a process of neoatherosclerosis. This study on human coronaries shows a progressive association of macrophage and T-cell abundance with plaque progression. Follicle-like structures are transiently present during the process of plaque destabilization. Plaque healing is accompanied by cessation of the inflammatory response but followed by a new cycle of atherosclerosis.
Collapse
Affiliation(s)
- Melissa Zuiderwijk
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Marlieke Geerts
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Connie J van Rhijn
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | | | - Jaap F Hamming
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Rogier A van Dijk
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden
| | - Jan H Lindeman
- Einthoven Laboratory for Cardiovascular Medicine, Division of Vascular Surgery, Department of Surgery, Leiden University Medical Center, Leiden.
| |
Collapse
|
27
|
Marino F, Scanzano A, Pulze L, Pinoli M, Rasini E, Luini A, Bombelli R, Legnaro M, de Eguileor M, Cosentino M. β 2 -Adrenoceptors inhibit neutrophil extracellular traps in human polymorphonuclear leukocytes. J Leukoc Biol 2018; 104:603-614. [PMID: 29668114 DOI: 10.1002/jlb.3a1017-398rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
This study tests the hypothesis that in isolated human polymorphonuclear leukocytes (PMN) adrenergic ligands can affect neutrophil extracellular trap (NET) formation. We have previously shown that, in PMN, adrenaline (A), through the activation of adrenergic receptors (AR), reduces stimulus-dependent cell activation; we have, therefore, planned to investigate if AR are involved in NET production. PMN were obtained from venous blood of healthy subject. The ability of adrenergic ligands to affect reactive oxygen species (ROS) production, NET production, and cell migration was investigated in cells cultured under resting conditions or after activation with N-formyl-methionyl-leucyl-phenylalanine (fMLP), LPS, or IL-8. Stimuli-induced NET production measured as ROS, microscopic evaluation, and elastase production was reverted by A and this effect was blocked by the selective β2 -AR antagonist ICI-118,551. The stimulus-induced ROS generation and migration was prevented by A and by isoprenaline (ISO), and these effects were counteracted only by ICI-118,551 and not by the other two selective ligands for the β1 and β3 -AR. Finally, the presence of the β-ARs on PMN was confirmed, by means of microscopy and flow cytometry. The data of the present study suggest that adrenergic compounds, through the interaction of mainly β2 -AR, are able to affect neutrophil functions. These data are suggestive of a possible therapeutic role of β2 -AR ligands (in addition to their classical use), promoting the possible therapeutic relevance of adrenergic system in the modulation of innate immunity proposing their possible use as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Franca Marino
- Center of Research in Medical Pharmacology, Varese, Italy
| | | | - Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Monica Pinoli
- Center of Research in Medical Pharmacology, Varese, Italy
| | | | | | | | | | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | |
Collapse
|
28
|
Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN. The role of monocytosis and neutrophilia in atherosclerosis. J Cell Mol Med 2018; 22:1366-1382. [PMID: 29364567 PMCID: PMC5824421 DOI: 10.1111/jcmm.13462] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cell Differentiation
- Cell Proliferation
- Cholesterol/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/immunology
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/immunology
- Mice
- Monocytes/immunology
- Monocytes/pathology
- Multipotent Stem Cells/immunology
- Multipotent Stem Cells/pathology
- Neutrophils/immunology
- Neutrophils/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of NeurochemistryDivision of Basic and Applied NeurobiologySerbsky Federal Medical Research Center of Psychiatry and NarcologyMoscowRussia
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and RehabilitationMoscowRussia
| | - Veronika A. Myasoedova
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexandra A. Melnichenko
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexander N. Orekhov
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| |
Collapse
|
29
|
Abstract
Neutrophils are the most abundant leukocytes in the circulation, and have been regarded as first line of defense in the innate arm of the immune system. They capture and destroy invading microorganisms, through phagocytosis and intracellular degradation, release of granules, and formation of neutrophil extracellular traps after detecting pathogens. Neutrophils also participate as mediators of inflammation. The classical view for these leukocytes is that neutrophils constitute a homogenous population of terminally differentiated cells with a unique function. However, evidence accumulated in recent years, has revealed that neutrophils present a large phenotypic heterogeneity and functional versatility, which place neutrophils as important modulators of both inflammation and immune responses. Indeed, the roles played by neutrophils in homeostatic conditions as well as in pathological inflammation and immune processes are the focus of a renovated interest in neutrophil biology. In this review, I present the concept of neutrophil phenotypic and functional heterogeneity and describe several neutrophil subpopulations reported to date. I also discuss the role these subpopulations seem to play in homeostasis and disease.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
30
|
Kliger E, Kristal B, Shapiro G, Chezar J, Sela S. Primed polymorphonuclear leukocytes from hemodialysis patients enhance monocyte transendothelial migration. Am J Physiol Heart Circ Physiol 2017; 313:H974-H987. [DOI: 10.1152/ajpheart.00122.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
Increased counts and priming of peripheral polymorphonuclear leukocytes (PMNLs) are associated with future or ongoing atherosclerosis; however, the role of PMNLs in enhancing monocyte transendothelial migration is still unclear. Our aims were to examine endothelial and monocyte activation, transmigration, and posttransmigration activation induced ex vivo by in vivo primed PMNLs and the effect of antioxidants on the activation. A unique ex vivo coculture system of three cell types was developed in this study, enabling interactions among the following: primary human umbilical vein endothelial cells (HUVECs), monocytes (THP-1 cell line), and in vivo primed PMNLs from hemodialysis (HD) patients and healthy control (HC) subjects. The interactions among these cells were examined, and an intervention with superoxide dismutase and catalase was performed. Preexposed HUVECs to HD/HC PMNLs showed a significant monocyte transmigration yield, 120–170% above HCs. Monocyte exposure to HD PMNLs induced pre- and posttransmigration activation. When the three cell types were cocultivated at the same time, monocyte chemoattractant protein-1 protein levels released from HUVECs, and activation markers on HUVECs [CD54 and chemokine (C-X3-C motif) ligand 1] and monocytes [chemokine (C-X3-C) receptor 1 and chemokine (C-C motif) receptor 2] were increased. Monocyte transmigration yield decreased to 70% (compared with HC subjects) due to adherence and accumulation of monocytes to HUVECs. When superoxide dismutase and catalase were used, reduced HUVEC and monocyte activation markers brought the transmigration yields to control levels and abolished accumulation of monocytes, emphasizing the role of superoxide in this process. We conclude that peripheral primed PMNLs play a pivotal role in enhancing monocyte transendotelial migration, the hallmark of the atherosclerotic process. Primed PMNLs can be used as a mediator and a biomarker of atherosclerosis even before plaque formation.NEW & NOTEWORTHY Primed polymorphonuclear leukocytes are key mediators in monocyte transendothelial migration, a new understanding of the initiation of endothelial dysfunction and monocyte activation, transmigration, and accumulation in the subendothelial layer.
Collapse
Affiliation(s)
- Eynav Kliger
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, and Bar-Ilan University Faculty of Medicine in the Galilee, Safed, Israel
| | - Batya Kristal
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, and Bar-Ilan University Faculty of Medicine in the Galilee, Safed, Israel
- Nephrology Department, Galilee Medical Center, Nahariya, Israel; and
| | - Galina Shapiro
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, and Bar-Ilan University Faculty of Medicine in the Galilee, Safed, Israel
| | - Judith Chezar
- Hematology Laboratory, Galilee Medical Center, Nahariya, Israel
| | - Shifra Sela
- Eliachar Research Laboratory, Galilee Medical Center, Nahariya, and Bar-Ilan University Faculty of Medicine in the Galilee, Safed, Israel
| |
Collapse
|
31
|
Cravedi P, Farouk S, Angeletti A, Edgar L, Tamburrini R, Duisit J, Perin L, Orlando G. Regenerative immunology: the immunological reaction to biomaterials. Transpl Int 2017; 30:1199-1208. [PMID: 28892571 DOI: 10.1111/tri.13068] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023]
Abstract
Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes.
Collapse
Affiliation(s)
- Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samira Farouk
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Angeletti
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Experimental, Diagnostic, Specialty Medicine, Nephrology, Dialysis, and Renal Transplant Unit, S. Orsola University Hospital, Bologna, Italy
| | - Lauren Edgar
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Riccardo Tamburrini
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Jerome Duisit
- Pôle de Chirurgie Expérimentale (CHEX), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Plastic and Reconstructive Surgery, Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Laura Perin
- Division of Urology, GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
32
|
Qi H, Yang S, Zhang L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol 2017; 8:928. [PMID: 28824648 PMCID: PMC5545592 DOI: 10.3389/fimmu.2017.00928] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality and morbidity worldwide. Neutrophils are a component of the innate immune system which protect against pathogen invasion; however, the contribution of neutrophils to cardiovascular disease has been underestimated, despite infiltration of leukocyte subsets being a known driving force of atherosclerosis and thrombosis. In addition to their function as phagocytes, neutrophils can release their extracellular chromatin, nuclear protein, and serine proteases to form net-like fiber structures, termed neutrophil extracellular traps (NETs). NETs can entrap pathogens, induce endothelial activation, and trigger coagulation, and have been detected in atherosclerotic and thrombotic lesions in both humans and mice. Moreover, NETs can induce endothelial dysfunction and trigger proinflammatory immune responses. Overall, current data indicate that NETs are not only present in plaques and thrombi but also have causative roles in triggering formation of atherosclerotic plaques and venous thrombi. This review is focused on published findings regarding NET-associated endothelial dysfunction during atherosclerosis, atherothrombosis, and venous thrombosis pathogenesis. The NET structure is a novel discovery that will find its appropriate place in our new understanding of cardiovascular disease. In addition, NETs have high potential to be further explored toward much better treatment of atherosclerosis and venous thromboembolism in clinic.
Collapse
Affiliation(s)
- Haozhe Qi
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Lin QS, Huang YL, Fan XX, Zheng XL, Chen XL, Zhan XQ, Zheng H. A ratiometric fluorescent probe for hypochlorous acid determination: Excitation and the dual-emission wavelengths at NIR region. Talanta 2017; 170:496-501. [DOI: 10.1016/j.talanta.2017.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/30/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
|
34
|
Montecucco F, Liberale L, Bonaventura A, Vecchiè A, Dallegri F, Carbone F. The Role of Inflammation in Cardiovascular Outcome. Curr Atheroscler Rep 2017; 19:11. [PMID: 28194569 DOI: 10.1007/s11883-017-0646-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 2017; 4:55-68. [PMID: 28149530 PMCID: PMC5274707 DOI: 10.1093/rb/rbw041] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil’s numerous, important roles in both inflammation and resolution, and subsequently, their role in biomaterial integration. Neutrophils function in three primary capacities: generation of oxidative bursts, release of granules and formation of neutrophil extracellular traps (NETs); these combined functions enable neutrophil involvement in inflammation, macrophage recruitment, M2 macrophage differentiation, resolution of inflammation, angiogenesis, tumor formation and immune system activation. Neutrophils exhibit great flexibility to adjust to the prevalent microenvironmental conditions in the tissue; thus, the biomaterial composition and fabrication will potentially influence neutrophil behavior following confrontation. This review serves to highlight the neutrophil’s plasticity, reiterating that neutrophils are not just simple suicidal killers, but the true maestros of resolution and regeneration.
Collapse
Affiliation(s)
- Gretchen S Selders
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA, 858 Madison Ave, Room 201 Molecular Science Building, Memphis, TN 38163, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| |
Collapse
|
36
|
Fisetin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:213-244. [DOI: 10.1007/978-3-319-41334-1_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|