1
|
Gaytán-Tocavén L, Aguilar-Moreno A, Ortiz J, Alcauter S, Antonio-Cabrera E, Paredes RG. Identification of neural circuits controlling male sexual behavior and sexual motivation by manganese-enhanced magnetic resonance imaging. Front Behav Neurosci 2023; 17:1301406. [PMID: 38187924 PMCID: PMC10768062 DOI: 10.3389/fnbeh.2023.1301406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Different techniques have been used to identify the brain regions that control sexual motivation and sexual behavior. However, the influence of sexual experience on the activation of these brain regions in the same subject is unknown. Using manganese-enhanced magnetic resonance imaging (MEMRI), we analyzed the activation of brain regions in the sexual incentive motivation (SIM) and the partner preference PP (tests) on weeks 1, 5, and 10 in male rats tested for 10 weeks. AIM. In experiment 1, we analyzed the possible toxic effects of 16 mg/kg of MnCl2 on male sexual behavior, running wheel, and motor execution. In experiment 2, subjects were tested for SIM and PP using MEMRI. Methods In both experiments, a dose of 16 mg/kg (s.c) of chloride manganese (MnCl2) was administered 24 h before subjects were tested and placed immediately thereafter in a 7-Tesla Bruker scanner. Results In experiment 1, the dose of 16 mg/kg of MnCl2 did not induce behavioral alterations that could interfere with interpreting the imaging data. In experiment 2, we found a clear preference for the female in both the SIM and PP tests. We found a higher signal intensity in the olfactory bulb (OB) in week 1 of the SIM test compared to the control group. We also found increased signal intensity in the socio-sexual behavior and mesolimbic reward circuits in the SIM test in week 1. In the PP test, we found a higher signal intensity in the ventral tegmental area (VTA) in week 10 compared to the control group. In the same test, we found increased signal intensity in the socio-sexual and mesolimbic reward circuits in week 5 compared to the control group. Cohen's d analysis of the whole brain revealed that as the subjects gained sexual experience we observed a higher brain activation in the OB in the SIM group. The PP group showed higher brain activation in the cortex and subcortical structures as they acquired sexual experience. Discussion As the subjects gain sexual experience, more structures of the reward and socio-sexual circuits are recruited, resulting in different, and large brain activations.
Collapse
Affiliation(s)
| | | | - Juan Ortiz
- Instituto de Neurobiología, UNAM, Querétaro, Mexico
| | | | | | - Raúl G. Paredes
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Querétaro, Mexico
- Instituto de Neurobiología, UNAM, Querétaro, Mexico
| |
Collapse
|
2
|
Mier Quesada Z, Portillo W, Paredes RG. Behavioral evidence of the functional interaction between the main and accessory olfactory system suggests a large olfactory system with a high plastic capability. Front Neuroanat 2023; 17:1211644. [PMID: 37908970 PMCID: PMC10613685 DOI: 10.3389/fnana.2023.1211644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Olfaction is fundamental in many species of mammals. In rodents, the integrity of this system is required for the expression of parental and sexual behavior, mate recognition, identification of predators, and finding food. Different anatomical and physiological evidence initially indicated the existence of two anatomically distinct chemosensory systems: The main olfactory system (MOS) and the accessory olfactory system (AOS). It was originally conceived that the MOS detected volatile odorants related to food, giving the animal information about the environment. The AOS, on the other hand, detected non-volatile sexually relevant olfactory cues that influence reproductive behaviors and neuroendocrine functions such as intermale aggression, sexual preference, maternal aggression, pregnancy block (Bruce effect), puberty acceleration (Vandenbergh effect), induction of estrous (Whitten effect) and sexual behavior. Over the last decade, several lines of evidence have demonstrated that although these systems could be anatomically separated, there are neuronal areas in which they are interconnected. Moreover, it is now clear that both the MOS and the AOS process both volatile and no-volatile odorants, indicating that they are also functionally interconnected. In the first part of the review, we will describe the behavioral evidence. In the second part, we will summarize data from our laboratory and other research groups demonstrating that sexual behavior in male and female rodents induces the formation of new neurons that reach the main and accessory olfactory bulbs from the subventricular zone. Three factors are essential for the neurons to reach the AOS and the MOS: The stimulation frequency, the stimulus's temporal presentation, and the release of opioids induced by sexual behavior. We propose that the AOS and the MOS are part of a large olfactory system with a high plastic capability, which favors the adaptation of species to different environmental signals.
Collapse
Affiliation(s)
- Zacnite Mier Quesada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raúl G. Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
3
|
Kavaliers M, Bishnoi IR, Ossenkopp KP, Choleris E. Odor-based mate choice copying in deer mice is not affected by familiarity or kinship. Anim Cogn 2021; 25:241-248. [PMID: 34398314 DOI: 10.1007/s10071-021-01550-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Individuals pay attention to the social and mate decisions of others and use these to determine their own choices, displaying mate choice copying. The present study with deer mice, Peromyscus maniculatus, showed that females copied the odor preferences and appetitive components of the mate choice of other females. It was found that an association between male and female odors, which is indicative of the apparent interest expressed by a female in a male, enhanced the preference of another female for the odors of that male. This socially learned odor preference lasted for at least 24 h and extended to a preference for the actual male that was the odor source. Neither kinship nor prior familiarity with the female whose odor was presented had a significant influence on the degree of odor-based mate choice copying displayed. These findings show that female deer mice can engage in mate choice copying using the odor-based social interest and mate choice of other females.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Graduate Program in Neuroscience, University of Western Ontario, London, Canada. .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
4
|
Trova S, Bovetti S, Bonzano S, De Marchis S, Peretto P. Sex Steroids and the Shaping of the Peripubertal Brain: The Sexual-Dimorphic Set-Up of Adult Neurogenesis. Int J Mol Sci 2021; 22:ijms22157984. [PMID: 34360747 PMCID: PMC8347822 DOI: 10.3390/ijms22157984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Steroid hormones represent an amazing class of molecules that play pleiotropic roles in vertebrates. In mammals, during postnatal development, sex steroids significantly influence the organization of sexually dimorphic neural circuits underlying behaviors critical for survival, such as the reproductive one. During the last decades, multiple studies have shown that many cortical and subcortical brain regions undergo sex steroid-dependent structural organization around puberty, a critical stage of life characterized by high sensitivity to external stimuli and a profound structural and functional remodeling of the organism. Here, we first give an overview of current data on how sex steroids shape the peripubertal brain by regulating neuroplasticity mechanisms. Then, we focus on adult neurogenesis, a striking form of persistent structural plasticity involved in the control of social behaviors and regulated by a fine-tuned integration of external and internal cues. We discuss recent data supporting that the sex steroid-dependent peripubertal organization of neural circuits involves a sexually dimorphic set-up of adult neurogenesis that in turn could be relevant for sex-specific reproductive behaviors.
Collapse
Affiliation(s)
- Sara Trova
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.T.); (S.B.); (S.B.); (S.D.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy
- Correspondence:
| |
Collapse
|
5
|
Alshammari TK. Sexual dimorphism in pre-clinical studies of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110120. [PMID: 33002519 DOI: 10.1016/j.pnpbp.2020.110120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Although there is a sex bias in the pathological mechanisms exhibited by brain disorders, investigation of the female brain in biomedical science has long been neglected. Use of the male model has generally been the preferred option as the female animal model exhibits both biological variability and hormonal fluctuations. Existing studies that compare behavioral and/or molecular alterations in animal models of brain diseases are generally underrepresented, and most utilize the male model. Nevertheless, in recent years there has been a trend toward the increased inclusion of females in brain studies. However, current knowledge regarding sex-based differences in depression and stress-related disorders is limited. This can be improved by reviewing preclinical studies that highlight sex differences in depression. This paper therefore presents a review of sex-based preclinical studies of depression. These shed light on the discrepancies between males and females regarding the biological mechanisms that underpin mechanistic alterations in the diseased brain. This review also highlights the conclusions drawn by preclinical studies to advance our understanding of mood disorders, encouraging researchers to promote ways of investigating and managing sexually dimorphic disorders.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Saudi Arabia; Prince Naïf Bin Abdul-Aziz Health Research Center, King Saud University, Saudi Arabia.
| |
Collapse
|
6
|
Kavaliers M, Ossenkopp KP, Choleris E. Pathogens, odors, and disgust in rodents. Neurosci Biobehav Rev 2020; 119:281-293. [PMID: 33031813 PMCID: PMC7536123 DOI: 10.1016/j.neubiorev.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
All animals are under the constant threat of attack by parasites. The mere presence of parasite threat can alter behavior before infection takes place. These effects involve pathogen disgust, an evolutionarily conserved affective/emotional system that functions to detect cues associated with parasites and infection and facilitate avoidance behaviors. Animals gauge the infection status of conspecific and the salience of the threat they represent on the basis of various sensory cues. Odors in particular are a major source of social information about conspecifics and the infection threat they present. Here we briefly consider the origins, expression, and regulation of the fundamental features of odor mediated pathogen disgust in rodents. We briefly review aspects of: (1) the expression of affective states and emotions and in particular, disgust, in rodents; (2) olfactory mediated recognition and avoidance of potentially infected conspecifics and the impact of pathogen disgust and its' fundamental features on behavior; (3) pathogen disgust associated trade-offs; (4) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin, and steroidal hormones, in the expression of pathogen disgust and the regulation of avoidance behaviors and concomitant trade-offs. Understanding the roles of pathogen disgust in rodents can provide insights into the regulation and expression of responses to pathogens and infection in humans.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
7
|
The Role of Urine in Semiochemical Communication between Females and Males of Domestic Dog ( Canis familiaris) during Estrus. Animals (Basel) 2020; 10:ani10112112. [PMID: 33203031 PMCID: PMC7696428 DOI: 10.3390/ani10112112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Canine reproductive behavior can be easily observed; however, the mechanism of semiochemical signaling in this species is still not well understood. Despite numerous studies, no efficient, artificial canine sex pheromones are available. In most studies of canine semiochemical communication, female urine was believed to be a source of volatile compounds that attract males. We hypothesized that urine is also a source of compounds that are very important in the process of the mating decision but are not so volatile. These compounds are collected by licking urine or the vulva and are transferred into the vomeronasal organ. Such behavior always precedes the male’s mating decision. In two experiments, we assessed the reactions of male dogs in response to air containing odor molecules from estrous females’ urine, from a live female in estrus, and from food, as well as during direct sniffing of urine samples from females in estrus, in anestrus, from male dogs and from humans. It was concluded that urine odor is not used for long-distance semiochemical communication in dogs but rather for close distance signaling. Abstract This study aimed to assess the mechanisms of semiochemical signal detection in dogs. In the first experiment, five males were exposed to volatile semiochemicals emitted by a live female in estrus and the female’s urine sample collected during estrus. The odor of canine food and clean air were used as controls. In the second experiment, 25 males could directly sniff and lick the urine samples from females in estrus, from females in anestrus, from males and from humans, placed in a lineup. Sniffing, licking and salivation, as well as keeping dogs at different distances from the source of odor, were recorded in both experiments. Experiment 1 showed that food odor was sniffed by males longer than estrous urine. Volatile semiochemicals from females in estrus evoked interest in males but without visual cues did not cause overt symptoms of sexual arousal. In Experiment 2, the estrous urine evoked interest in males and provoked significantly longer sniffing. Licking accompanied by salivation was observed in all instances only during direct contact with estrous urine. The results suggest a complex character of detection of female reproductive status, in which both volatile and nonvolatile compounds emitted by females and present in female urine are involved.
Collapse
|
8
|
Eckstein E, Pyrski M, Pinto S, Freichel M, Vennekens R, Zufall F. Cyclic regulation of Trpm4 expression in female vomeronasal neurons driven by ovarian sex hormones. Mol Cell Neurosci 2020; 105:103495. [PMID: 32298804 DOI: 10.1016/j.mcn.2020.103495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/13/2020] [Accepted: 04/11/2020] [Indexed: 01/29/2023] Open
Abstract
The vomeronasal organ (VNO), the sensory organ of the mammalian accessory olfactory system, mediates the activation of sexually dimorphic reproductive behavioral and endocrine responses in males and females. It is unclear how sexually dimorphic and state-dependent responses are generated by vomeronasal sensory neurons (VSNs). Here, we report the expression of the transient receptor potential (TRP) channel Trpm4, a Ca2+-activated monovalent cation channel, as a second TRP channel present in mouse VSNs, in addition to the diacylglycerol-sensitive Trpc2 channel. The expression of Trpm4 in the mouse VNO is sexually dimorphic and, in females, is tightly linked to their reproductive cycle. We show that Trpm4 protein expression is upregulated specifically during proestrus and estrus, when female mice are about to ovulate and become sexually active and receptive. The cyclic regulation of Trpm4 expression in female VSNs depends on ovarian sex hormones and is abolished by surgical removal of the ovaries (OVX). Trpm4 upregulation can be restored in OVX mice by systemic treatment with 17ß-estradiol, requires endogenous activity of aromatase enzyme, and is strongly reduced during late pregnancy. This cyclic regulation of Trpm4 offers a neural mechanism by which female mice could regulate the relative strength of sensory signals in their VSNs, depending on hormonal state. Trpm4 is likely to participate in sex-specific, estrous cycle-dependent and sex hormone-regulated functions of the VNO, and may serve as a previously unknown genetic substrate for dissecting mammalian sexually dimorphic cellular and behavioral responses.
Collapse
Affiliation(s)
- Eugenia Eckstein
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Silvia Pinto
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
9
|
Kavaliers M, Choleris E. The role of social cognition in parasite and pathogen avoidance. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0206. [PMID: 29866919 DOI: 10.1098/rstb.2017.0206] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/22/2022] Open
Abstract
The acquisition and use of social information are integral to social behaviour and parasite/pathogen avoidance. This involves social cognition which encompasses mechanisms for acquiring, processing, retaining and acting on social information. Social cognition entails the acquisition of social information about others (i.e. social recognition) and from others (i.e. social learning). Social cognition involves assessing other individuals and their infection status and the pathogen and parasite threat they pose and deciding about when and how to interact with them. Social cognition provides a framework for examining pathogen and parasite avoidance behaviours and their associated neurobiological mechanisms. Here, we briefly consider the relationships between social cognition and olfactory-mediated pathogen and parasite avoidance behaviours. We briefly discuss aspects of (i) social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on mate and social partner choice; (ii) the roles of 'out-groups' (strangers, unfamiliar individuals) and 'in-groups' (familiar individuals) in the expression of parasite/pathogen avoidance behaviours; (iii) individual and social learning, i.e. the utilization of the pathogen recognition and avoidance responses of others; and (iv) the neurobiological mechanisms, in particular the roles of the nonapeptide, oxytocin and steroid hormones (oestrogens) associated with social cognition and parasite/pathogen avoidance.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, Social Science Centre, University of Western Ontario, London, Ontario, Canada N6A 5C2 .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
10
|
Zhang YT, Hong WS, Qiu HT, Wang Q, Chen SX. Androgen induces olfactory expression of prostaglandin E 2 receptor Ep1 in the burrow-living fish Bostrychus sinensis. J Steroid Biochem Mol Biol 2019; 188:156-165. [PMID: 30659898 DOI: 10.1016/j.jsbmb.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
It is well documented that androgens modify olfactory processing in vertebrates. In fish, several lines of evidence indicate that androgens increase olfactory sensitivity to prostaglandin pheromone, but the molecular mechanism is still unclear. Our previous studies showed that prostaglandin E2 (PGE2) is a sex pheromone in the burrowing-living fish Chinese black sleeper (Bostrychus sinensis) and that the PGE2 receptor 1 (Ep1) in the olfactory rosette is a candidate receptor for sensing sex pheromone PGE2. In the present study, we found that testosterone (T) and 11-ketotestosterone (11-KT) exhibited stimulatory effects on the expression of ep1 in the olfactory rosette in vivo and ex vivo. Moreover, the androgen receptor (Ar) agonist R1881 had similar effects to 11-KT on the expression of ep1 ex vivo, suggesting the up-regulatory effect is mediated by Ar. The amount of arα transcripts (˜1500 copies/100 ng total RNA) was greater than that of arβ (˜300 copies/100 ng total RNA) in the olfactory rosette, and the expression levels of arα increased with spermatogenesis and peaked at late meiosis stage. Moreover, activated Arα but not Arβ transactivated a 2k bp ep1 promoter in HEK293T cell, and some OSNs exhibited co-localization of arα mRNA and Ep1 protein signals. Taken together, our results suggest that Arα, but not Arβ, plays a crucial role in mediating the androgen-induced up-regulation of ep1 expression in B. sinensis. The present study is the first to shed light on the molecular mechanisms whereby androgens enhance responsiveness to prostaglandin sex pheromones in teleosts.
Collapse
Affiliation(s)
- Yu Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Heng Tong Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Qiong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian, 361102, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Fujian, 361102, PR China.
| |
Collapse
|
11
|
Bayless DW, Yang T, Mason MM, Susanto AAT, Lobdell A, Shah NM. Limbic Neurons Shape Sex Recognition and Social Behavior in Sexually Naive Males. Cell 2019; 176:1190-1205.e20. [PMID: 30712868 PMCID: PMC6453703 DOI: 10.1016/j.cell.2018.12.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Sexually naive animals have to distinguish between the sexes because they show species-typical interactions with males and females without meaningful prior experience. However, central neural pathways in naive mammals that recognize sex of other individuals remain poorly characterized. We examined the role of the principal component of the bed nucleus of stria terminalis (BNSTpr), a limbic center, in social interactions in mice. We find that activity of aromatase-expressing BNSTpr (AB) neurons appears to encode sex of other animals and subsequent displays of mating in sexually naive males. Silencing these neurons in males eliminates preference for female pheromones and abrogates mating success, whereas activating them even transiently promotes male-male mating. Surprisingly, female AB neurons do not appear to control sex recognition, mating, or maternal aggression. In summary, AB neurons represent sex of other animals and govern ensuing social behaviors in sexually naive males.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew M Mason
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Albert A T Susanto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Lobdell
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Kavaliers M, Ossenkopp KP, Choleris E. Social neuroscience of disgust. GENES BRAIN AND BEHAVIOR 2018; 18:e12508. [DOI: 10.1111/gbb.12508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program; University of Western Ontario; London Ontario Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
13
|
Van der Linden A, Balthazart J. Rapid changes in auditory processing in songbirds following acute aromatase inhibition as assessed by fMRI. Horm Behav 2018; 104:63-76. [PMID: 29605635 DOI: 10.1016/j.yhbeh.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This review introduces functional MRI (fMRI) as an outstanding tool to assess rapid effects of sex steroids on auditory processing in seasonal songbirds. We emphasize specific advantages of this method as compared to other more conventional and invasive methods used for this purpose and summarize an exemplary auditory fMRI study performed on male starlings exposed to different types of starling song before and immediately after the inhibition of aromatase activity by an i.p. injection of Vorozole™. We describe how most challenges that relate to the necessity to anesthetize subjects and minimize image- and sound-artifacts can be overcome in order to obtain a voxel-based 3D-representation of changes in auditory brain activity to various sound stimuli before and immediately after a pharmacologically-induced depletion of endogenous estrogens. Analysis of the fMRI data by assumption-free statistical methods identified fast specific changes in activity in the auditory brain regions that were stimulus-specific, varying over different seasons, and in several instances lateralized to the left side of the brain. This set of results illustrates the unique features of fMRI that provides opportunities to localize and quantify the brain responses to rapid changes in hormonal status. fMRI offers a new image-guided research strategy in which the spatio-temporal profile of fast neuromodulations can be identified and linked to specific behavioral inputs or outputs. This approach can also be combined with more localized invasive methods to investigate the mechanisms underlying the observed neural changes.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Laboratory, University of Antwerp, CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
14
|
Zancan M, Cunha RSR, Schroeder F, Xavier LL, Rasia‐Filho AA. Remodeling of the number and structure of dendritic spines in the medial amygdala: From prepubertal sexual dimorphism to puberty and effect of sexual experience in male rats. Eur J Neurosci 2018; 48:1851-1865. [DOI: 10.1111/ejn.14052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rick Shandler R. Cunha
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
| | - Francielle Schroeder
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Léder L. Xavier
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
15
|
Yang L, Comninos AN, Dhillo WS. Intrinsic links among sex, emotion, and reproduction. Cell Mol Life Sci 2018; 75:2197-2210. [PMID: 29619543 PMCID: PMC5948280 DOI: 10.1007/s00018-018-2802-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/27/2018] [Accepted: 03/20/2018] [Indexed: 01/23/2023]
Abstract
Species survival is dependent on successful reproduction. This begins with a desire to mate, followed by selection of a partner, copulation and in monogamous mammals including humans, requires emotions and behaviours necessary to maintain partner bonds for the benefit of rearing young. Hormones are integral to all of these stages and not only mediate physiological and endocrine processes involved in reproduction, but also act as neuromodulators within limbic brain centres to facilitate the expression of innate emotions and behaviours required for reproduction. A significant body of work is unravelling the roles of several key hormones in the modulation of mood states and sexual behaviours; however, a full understanding of the integration of these intrinsic links among sexual and emotional brain circuits still eludes us. This review summarises the evidence to date and postulates future directions to identify potential psycho-neuroendocrine frameworks linking sexual and emotional brain processes with reproduction.
Collapse
Affiliation(s)
- Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK.
| |
Collapse
|
16
|
Kavaliers M, Choleris E. Social Cognition and the Neurobiology of Rodent Mate Choice. Integr Comp Biol 2017; 57:846-856. [DOI: 10.1093/icb/icx042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Mate-choice copying, social information processing, and the roles of oxytocin. Neurosci Biobehav Rev 2016; 72:232-242. [PMID: 27923732 DOI: 10.1016/j.neubiorev.2016.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
Abstract
Social and sexual behaviors, including that of mate choice, are dependent on social information. Mate choice can be modified by prior and ongoing social factors and experience. The mate choice decisions of one individual can be influenced by either the actual or potential mate choice of another female or male. Such non-independent mate choice, where individuals gain social information and socially learn about and recognizes potential mates by observing the choices of another female or male, has been termed "mate-choice copying". Here we first briefly review how, why, and under what circumstances individuals engage in mate-choice copying. Secondly, we review the neurobiological mechanisms underlying mate-choice copying. In particular, we consider the roles of the nonapeptide, oxytocin, in the processing of social information and the expression of mate-choice copying.
Collapse
|
18
|
Zancan M, Dall'Oglio A, Quagliotto E, Rasia‐Filho AA. Castration alters the number and structure of dendritic spines in the male posterodorsal medial amygdala. Eur J Neurosci 2016; 45:572-580. [DOI: 10.1111/ejn.13460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Aline Dall'Oglio
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Edson Quagliotto
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/Physiology Federal University of Health Sciences Sarmento Leite 245 Porto Alegre RS 90050‐170 Brazil
- Graduation Program in Neuroscience Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
19
|
Chung KC, Springer I, Kogler L, Turetsky B, Freiherr J, Derntl B. The influence of androstadienone during psychosocial stress is modulated by gender, trait anxiety and subjective stress: An fMRI study. Psychoneuroendocrinology 2016; 68:126-39. [PMID: 26970712 DOI: 10.1016/j.psyneuen.2016.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022]
Abstract
Androstadienone (ANDR), a bodily secreted steroid compound, is a socially relevant chemosignal that modulates subjective and (neuro)physiological responses, predominantly in females. The impact of ANDR on stress responses in males and females has not been explored. Therefore, this fMRI study aimed to examine psychosocial stress reactions induced by mental arithmetic and social evaluation on behavioral and hormonal levels (46 participants: 15 naturally cycling females in their early follicular phase (EF), 15 females on hormonal contraceptives (HC) and 16 males); and on a neural level (40 participants: 13 EF-females, 13 HC-females and 14 males) in an ANDR and placebo treatment repeated-measures design. While no gender differences emerged in subjective ratings and performance during stress, neural activation patterns differed significantly. Besides, ANDR attenuated the post-stress increase of negative mood in all participants. Region of interest analyses showed that irrespective of treatment, males showed stronger activation of the dorsolateral prefrontal cortex (DLPFC) than females. At the whole brain level, gender differences emerged indicating stronger fronto-parietal activation in males compared to HC-females on both treatments. Males showed stronger visual and fusiform activation than EF-females under ANDR. Both female groups did not show stronger activation than males. Further, error ratio in the ANDR-stress condition was positively associated with their post-stress cortisol level and increase in subjective stress in males; and male DLPFC activity in the ANDR-stress condition was negatively associated with trait anxiety. Surprisingly, compared to HC-females, EF-female only showed stronger activation of arousal-related areas under placebo treatment. Taken together, these findings suggest that the male stress reaction under social evaluative threat was stronger than female stress reactions as a function of ANDR. More specifically, this effect on behavioral and neural stress reactions seems to depend on trait anxiety in males only. The study highlights the significance of a chemosignal in enhancing social threat that may facilitate adaptive stress responses.
Collapse
Affiliation(s)
- K C Chung
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - I Springer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - L Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA, Translational Brain Medicine, Aachen, Germany; Institute for Neuroscience and Medicine, INM-1, Research Center Jülich, Jülich, Germany
| | - B Turetsky
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - J Freiherr
- Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauserstr. 35, 85354 Freising, Germany
| | - B Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA, Translational Brain Medicine, Aachen, Germany; Institute for Neuroscience and Medicine, INM-1, Research Center Jülich, Jülich, Germany; Department of Psychiatry and Psychotherapy, Medical Faculty, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Rendon NM, Soini HA, Scotti MAL, Weigel ER, Novotny MV, Demas GE. Photoperiod and aggression induce changes in ventral gland compounds exclusively in male Siberian hamsters. Horm Behav 2016; 81:1-11. [PMID: 26944610 DOI: 10.1016/j.yhbeh.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/12/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Helena A Soini
- Department of Chemistry, Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| | - Melissa-Ann L Scotti
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Ellen R Weigel
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Milos V Novotny
- Department of Chemistry, Institute for Pheromone Research, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Chung KC, Peisen F, Kogler L, Radke S, Turetsky B, Freiherr J, Derntl B. The Influence of Menstrual Cycle and Androstadienone on Female Stress Reactions: An fMRI Study. Front Hum Neurosci 2016; 10:44. [PMID: 26909031 PMCID: PMC4754653 DOI: 10.3389/fnhum.2016.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/26/2016] [Indexed: 01/03/2023] Open
Abstract
Communicating threats and stress via biological signaling is common in animals. In humans, androstadienone (ANDR), a synthetic male steroid, is a socially relevant chemosignal exhibited to increase positive mood and cortisol levels specifically in (periovulatory) females in positively arousing contexts. In a negative context, we expected that such effects of ANDR could amplify social evaluative threat depending on the stress sensitivity, which differs between menstrual cycle phases. Therefore, this fMRI study aimed to examine psychosocial stress reactions on behavioral, hormonal and neural levels in 31 naturally cycling females, between 15 early follicular (EF) and 16 mid-luteal (ML) females tested with ANDR and placebo treatment in a repeated-measures design. Regardless of odor stimulation, psychosocial stress (i.e., mental arithmetic task with social evaluative threat) led to elevated negative mood and anxiety in all females. A negative association of social threat related amygdala activation and competence ratings appeared in ML-females, indicating enhanced threat processing by ANDR, particularly in ML-females who felt less competent early in the stress experience. Further, ML-females showed reduced performance and stronger stress-related hippocampus activation compared to EF-females under ANDR. Hippocampal activation in ML-females also correlated positively with post-stress subjective stress. Contrarily, such patterns were not observed in EF-females or under placebo in either group. Strikingly, unlike passive emotional processing, ANDR in a stressful context decreased cortisol concentration in all females. This points to a more complex interaction of ovarian/gonadal hormones in social threat processing and stress reactivity. Our findings suggest that ANDR enhanced initial evaluation of self-related social threat in ML-females. Female stress reactions are related to stress sensitivity through enhanced awareness and processing of social cues in a stressful context, with menstrual cycle phase being a critical factor.
Collapse
Affiliation(s)
- Ka Chun Chung
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University Aachen, Germany
| | - Felix Peisen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University Aachen, Germany
| | - Lydia Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen UniversityAachen, Germany; Jülich Aachen Research Alliance - Translational Brain MedicineAachen, Germany; Department of Psychiatry and Psychotherapy, Medical Faculty, University of TübingenTübingen, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen UniversityAachen, Germany; Jülich Aachen Research Alliance - Translational Brain MedicineAachen, Germany
| | - Bruce Turetsky
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania Philadelphia, PA USA
| | - Jessica Freiherr
- Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University Aachen, Germany
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen UniversityAachen, Germany; Jülich Aachen Research Alliance - Translational Brain MedicineAachen, Germany; Department of Psychiatry and Psychotherapy, Medical Faculty, University of TübingenTübingen, Germany; Institute for Neuroscience and Medicine, INM-1, Research Center JülichJülich, Germany
| |
Collapse
|
22
|
Bayless DW, Shah NM. Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150109. [PMID: 26833830 DOI: 10.1098/rstb.2015.0109] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/12/2022] Open
Abstract
The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
23
|
Kubo H, Otsuka M, Kadokawa H. Sexual polymorphisms of vomeronasal 1 receptor family gene expression in bulls, steers, and estrous and early luteal-phase heifers. J Vet Med Sci 2015; 78:271-9. [PMID: 26477467 PMCID: PMC4785117 DOI: 10.1292/jvms.15-0300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vomeronasal 1 receptors (V1R) are a family of receptors for intraspecies chemosignals, including pheromones,
and are expressed in the olfactory epithelium (OE) and vomeronasal organ (VO). Even in the well-studied
rodents, it is unclear which members of the V1R family cause sexual polymorphisms, as there are numerous genes
and it is difficult to quantify their expressions individually. Bovine species carry only 34 V1R homologs, and
the OE and VOs are large enough to sample. Here, V1R expression was quantified in the OE and VOs of individual
bovines. Based on the 34 gene sequences, we obtained a molecular dendrogram consisting of four clusters and
six independent branches. Semi-quantitative RT-PCR was used to obtain gene expression profiles in the VOs and
OE of 5 Japanese Black bulls, 5 steers, 7 estrous heifers and 6 early luteal-phase heifers. Ten genes showed
significant between-group differences, and 22 showed high expression in VOs than in OE. The bulls showed
higher expression of one gene more in OE and another in VOs (both P<0.05) than did steers;
both genes belonged to the first cluster. No genes were expressed more abundantly in steers than in bulls. The
estrous heifers showed higher expression of a gene of the second cluster in OE, and a gene of the third
cluster in VOs (both P<0.05) than did early luteal-phase heifers. These results suggest
V1R expression exhibits sexual polymorphisms in cattle.
Collapse
Affiliation(s)
- Haruna Kubo
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | | | | |
Collapse
|
24
|
Ervin KSJ, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, Choleris E. Estrogen involvement in social behavior in rodents: Rapid and long-term actions. Horm Behav 2015; 74:53-76. [PMID: 26122289 DOI: 10.1016/j.yhbeh.2015.05.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/16/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
This article is part of a Special Issue ("Estradiol and cognition"). Estrogens have repeatedly been shown to influence a wide array of social behaviors, which in rodents are predominantly olfactory-mediated. Estrogens are involved in social behavior at multiple levels of processing, from the detection and integration of socially relevant olfactory information to more complex social behaviors, including social preferences, aggression and dominance, and learning and memory for social stimuli (e.g. social recognition and social learning). Three estrogen receptors (ERs), ERα, ERβ, and the G protein-coupled ER 1 (GPER1), differently affect these behaviors. Social recognition, territorial aggression, and sexual preferences and mate choice, all requiring the integration of socially related olfactory information, seem to primarily involve ERα, with ERβ playing a lesser, modulatory role. In contrast, social learning consistently responds differently to estrogen manipulations than other social behaviors. This suggests differential ER involvement in brain regions important for specific social behaviors, such as the ventromedial and medial preoptic nuclei of the hypothalamus in social preferences and aggression, the medial amygdala and hippocampus in social recognition, and the prefrontal cortex and hippocampus in social learning. While the long-term effects of ERα and ERβ on social behavior have been extensively investigated, our knowledge of the rapid, non-genomic, effects of estrogens is more limited and suggests that they may mediate some social behaviors (e.g. social learning) differently from long-term effects. Further research is required to compare ER involvement in regulating social behavior in male and female animals, and to further elucidate the roles of the more recently described G protein-coupled ERs, both the GPER1 and the Gq-mER.
Collapse
Affiliation(s)
- Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | | | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Affiliation(s)
- Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
26
|
Perna JC, Wotjak CT, Stork O, Engelmann M. Timing of presentation and nature of stimuli determine retroactive interference with social recognition memory in mice. Physiol Behav 2015; 143:10-4. [DOI: 10.1016/j.physbeh.2015.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 01/09/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
|
27
|
Noack J, Murau R, Engelmann M. Consequences of temporary inhibition of the medial amygdala on social recognition memory performance in mice. Front Neurosci 2015; 9:152. [PMID: 25972782 PMCID: PMC4413668 DOI: 10.3389/fnins.2015.00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Different lines of investigation suggest that the medial amygdala is causally involved in the processing of information linked to social behavior in rodents. Here we investigated the consequences of temporary inhibition of the medial amygdala by bilateral injections of lidocaine on long-term social recognition memory as tested in the social discrimination task. Lidocaine or control NaCl solution was infused immediately before learning or before retrieval. Our data show that lidocaine infusion immediately before learning did not affect long-term memory retrieval. However, intra-amygdalar lidocaine infusions immediately before choice interfered with correct memory retrieval. Analysis of the aggressive behavior measured simultaneously during all sessions in the social recognition memory task support the impression that the lidocaine dosage used here was effective as it—at least partially—reduced the aggressive behavior shown by the experimental subjects toward the juveniles. Surprisingly, also infusions of NaCl solution blocked recognition memory at both injection time points. The results are interpreted in the context of the importance of the medial amygdala for the processing of non-volatile odors as a major contributor to the olfactory signature for social recognition memory.
Collapse
Affiliation(s)
- Julia Noack
- Center for Behavioral Brain Sciences, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| | - Rita Murau
- Center for Behavioral Brain Sciences, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| | - Mario Engelmann
- Center for Behavioral Brain Sciences, Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität Magdeburg Magdeburg, Germany
| |
Collapse
|
28
|
Baum MJ, Cherry JA. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 2015; 68:53-64. [PMID: 24929017 DOI: 10.1016/j.yhbeh.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.
Collapse
Affiliation(s)
- Michael J Baum
- Departments of Biology, Boston University, Boston, MA 02215, USA.
| | - James A Cherry
- Departments of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
29
|
Martín-Sánchez A, McLean L, Beynon RJ, Hurst JL, Ayala G, Lanuza E, Martínez-Garcia F. From sexual attraction to maternal aggression: when pheromones change their behavioural significance. Horm Behav 2015; 68:65-76. [PMID: 25161057 DOI: 10.1016/j.yhbeh.2014.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/31/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". This paper reviews the role of chemosignals in the socio-sexual interactions of female mice, and reports two experiments testing the role of pup-derived chemosignals and the male sexual pheromone darcin in inducing and promoting maternal aggression. Female mice are attracted to urine-borne male pheromones. Volatile and non-volatile urine fractions have been proposed to contain olfactory and vomeronasal pheromones. In particular, the male-specific major urinary protein (MUP) MUP20, darcin, has been shown to be rewarding and attractive to females. Non-urinary male chemosignals, such as the lacrimal protein ESP1, promote lordosis in female mice, but its attractive properties are still to be tested. There is evidence indicating that ESP1 and MUPs are detected by vomeronasal type 2 receptors (V2R). When a female mouse becomes pregnant, she undergoes dramatic changes in her physiology and behaviour. She builds a nest for her pups and takes care of them. Dams also defend the nest against conspecific intruders, attacking especially gonadally intact males. Maternal behaviour is dependent on a functional olfactory system, thus suggesting a role of chemosignals in the development of maternal behaviour. Our first experiment demonstrates, however, that pup chemosignals are not sufficient to induce maternal aggression in virgin females. In addition, it is known that vomeronasal stimuli are needed for maternal aggression. Since MUPs (and other molecules) are able to promote intermale aggression, in our second experiment we test if the attractive MUP darcin also promotes attacks on castrated male intruders by lactating dams. Our findings demonstrate that the same chemosignal, darcin, promotes attraction or aggression according to female reproductive state.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Lynn McLean
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jane L Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Guillermo Ayala
- Department of Statistics and Operative Research, Faculty of Mathematics, Avda. Vicent Andrés Estellés, 1, 46100 Burjassot, Spain
| | - Enrique Lanuza
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Fernando Martínez-Garcia
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain.
| |
Collapse
|
30
|
deCatanzaro D. Sex steroids as pheromones in mammals: the exceptional role of estradiol. Horm Behav 2015; 68:103-16. [PMID: 25125222 DOI: 10.1016/j.yhbeh.2014.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/18/2022]
Abstract
This article is part of a Special Issue (Chemosignals and Reproduction). Whether from endogenous or exogenous sources, 17β-estradiol (E2) has very powerful influences over mammalian female reproductive physiology and behavior. Given its highly lipophilic nature and low molecular mass, E2 readily enters excretions and can be absorbed from exogenous sources via nasal, cutaneous, and other modes of exposure. Indeed, systemic injection of tritiated estradiol ((3)H-E2) into a male mouse or bat has been shown to produce significant levels of radioactivity in the reproductive tissues and brain of cohabiting female conspecifics. Bioactive E2 and other steroids are naturally found in male mouse urine and other excretions, and males actively direct their urine at proximate females. Very low doses of E2 can mimic the Bruce effect (disruption of peri-implantation pregnancy by novel males), the Vandenbergh effect (early reproductive maturation induced by novel males), and male-induced estrus and ovulation. Males' capacities to induce the Bruce and Vandenbergh effects can both be diminished by manipulations that reduce their urinary E2. Uterine dynamics during the Bruce and Vandenbergh effects are consistent with the actions of E2. Collectively, these data demonstrate a critical role of male-sourced E2 in these major mammalian pheromonal effects.
Collapse
Affiliation(s)
- Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
31
|
Unger EK, Burke KJ, Yang CF, Bender KJ, Fuller PM, Shah NM. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep 2015; 10:453-62. [PMID: 25620703 DOI: 10.1016/j.celrep.2014.12.040] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/13/2014] [Accepted: 12/17/2014] [Indexed: 01/24/2023] Open
Abstract
Aromatase-expressing neuroendocrine neurons in the vertebrate male brain synthesize estradiol from circulating testosterone. This locally produced estradiol controls neural circuits underlying courtship vocalization, mating, aggression, and territory marking in male mice. How aromatase-expressing neuronal populations control these diverse estrogen-dependent male behaviors is poorly understood, and the function, if any, of aromatase-expressing neurons in females is unclear. Using targeted genetic approaches, we show that aromatase-expressing neurons within the male posterodorsal medial amygdala (MeApd) regulate components of aggression, but not other estrogen-dependent male-typical behaviors. Remarkably, aromatase-expressing MeApd neurons in females are specifically required for components of maternal aggression, which we show is distinct from intermale aggression in pattern and execution. Thus, aromatase-expressing MeApd neurons control distinct forms of aggression in the two sexes. Moreover, our findings indicate that complex social behaviors are separable in a modular manner at the level of genetically identified neuronal populations.
Collapse
Affiliation(s)
- Elizabeth K Unger
- Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth J Burke
- Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cindy F Yang
- Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nirao M Shah
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
Apps PJ, Weldon PJ, Kramer M. Chemical signals in terrestrial vertebrates: search for design features. Nat Prod Rep 2015; 32:1131-53. [DOI: 10.1039/c5np00029g] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review current information on intraspecific chemical signals and search for patterns in signal chemistry among modern terrestrial vertebrates (Amniota), including tortoises, squamate reptiles (amphisbaenians, lizards, and snakes), birds, and mammals.
Collapse
Affiliation(s)
- Peter J. Apps
- Paul G. Allen Family Foundation Laboratory for Wildlife Chemistry
- Botswana Predator Conservation Trust
- Maun
- Botswana
| | - Paul J. Weldon
- Smithsonian Conservation Biology Institute
- National Zoological Park
- Front Royal
- USA
| | | |
Collapse
|
33
|
deCatanzaro D, Pollock T, Greville LJ, Faure PA. Estradiol transfer from male big brown bats (Eptesicus fuscus) to the reproductive and brain tissues of cohabiting females, and its action as a pheromone. Gen Comp Endocrinol 2014; 208:126-33. [PMID: 25263951 DOI: 10.1016/j.ygcen.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/12/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The powerful estrogen, 17β-estradiol, has been found to pass from male excretions to the reproductive organs, brain, and other tissues of cohabiting females in laboratory mice. The current studies were designed to examine whether this phenomenon also occurs in big brown bats (Eptesicus fuscus), a mammal appropriate for testing cross-species generality because of its phylogenetic distance from mice. When tritiated estradiol ((3)H-E2) was administered directly on the nasal area of adult female bats, radioactivity was reliably observed in the uterus and ovaries, and also in the brain and other tissues. When (3)H-E2 was applied to the skin, radioactivity was observed in reproductive and other peripheral tissues. We injected male bats with minute quantities of (3)H-E2 and housed each of them directly with groups of adult females for 48h. We then measured radioactivity in male and female bat tissues. In each of several replications of one male housed with three females, radioactivity was reliably observed in the uterus of all females, and in many other tissues in almost every female. Measurement in the organs of males directly exposed to (3)H-E2 showed high levels of radioactivity in the testes and especially the epididymides. These data indicate that estradiol is transferred from males to females, likely via absorptions from males' excretions and potentially also via intravaginal exposure during mating. Given the potency of estradiol in regulating female reproductive physiology and behavior, our data strongly suggest the potential for pheromonal action whereby male mammals induce sexual receptivity and ovulation in females.
Collapse
Affiliation(s)
- Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Lucas J Greville
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
34
|
Drummer C, König J, Eildermann K, Fuchs E, Behr R, Hoffmann K. Core body temperature is not a reliable parameter to follow the reproductive cycle in female marmoset monkey (<i>Callithrix jacchus</i>). Primate Biol 2014. [DOI: 10.5194/pb-1-11-2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract. Marmosets represent an attractive and widely used animal species in biomedical research, and the routine monitoring of female reproductive cycles is often mandatory in the fields of reproductive biology and stem cell research. Today, the established method for the reliable detection of ovulation is the determination of progesterone concentrations from blood samples. This method is based on relatively frequent handling and blood collections; therefore, less invasive alternatives would help to reduce stress on the animals. Here, we investigated whether the core body temperature of marmosets would show a correlation with cycle-dependent hormonal fluctuations, as has been described for humans and other primate species. In particular, the objective was to investigate whether the telemetric recording of core body temperature could replace progesterone measurements as a reliable, less invasive method for the detection of ovulation in these animals. Here we show that the core body temperature parameters in female marmosets were characterized by frequent variations, but they were not related to particular days or phases during the reproductive cycle. Therefore, the recording of core body temperature in our controlled standard experimental setting is not an appropriate method to monitor the reproductive cycle in female marmosets, and cannot replace serum progesterone measurement as a state-of-the-art method.
Collapse
|
35
|
Asaba A, Hattori T, Mogi K, Kikusui T. Sexual attractiveness of male chemicals and vocalizations in mice. Front Neurosci 2014; 8:231. [PMID: 25140125 PMCID: PMC4122165 DOI: 10.3389/fnins.2014.00231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 12/04/2022] Open
Abstract
Male-female interaction is important for finding a suitable mating partner and for ensuring reproductive success. Male sexual signals such as pheromones transmit information and social and sexual status to females, and exert powerful effects on the mate preference and reproductive biology of females. Likewise, male vocalizations are attractive to females and enhance reproductive function in many animals. Interestingly, females' preference for male pheromones and vocalizations is associated with their genetic background, to avoid inbreeding. Moreover, based on acoustic cues, olfactory signals have significant effects on mate choice in mice, suggesting mate choice involves multisensory integration. In this review, we synopsize the effects of both olfactory and auditory cues on female behavior and neuroendocrine functions. We also discuss how these male signals are integrated and processed in the brain to regulate behavior and reproductive function.
Collapse
Affiliation(s)
- Akari Asaba
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Tatsuya Hattori
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| |
Collapse
|
36
|
Parker MR, Mason RT. A novel mechanism regulating a sexual signal: the testosterone-based inhibition of female sex pheromone expression in garter snakes. Horm Behav 2014; 66:509-16. [PMID: 25058443 DOI: 10.1016/j.yhbeh.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Vertebrates communicate their sex to conspecifics through the use of sexually dimorphic signals, such as ornaments, behaviors and scents. Furthermore, the physiological connection between hormones and secondary sexual signal expression is key to understanding their dimorphism, seasonality and evolution. The red-sided garter snake (Thamnophis sirtalis parietalis) is the only reptile for which a described pheromone currently exists, and because garter snakes rely completely on the sexual attractiveness pheromone for species identification and mate choice, they constitute a unique model species for exploring the relationship between pheromones and the endocrine system. We recently demonstrated that estrogen can activate female pheromone production in male garter snakes. The purpose of this study was to determine the mechanism(s) acting to prevent female pheromone production in males. We found that castrated males (GX) are courted by wild males in the field and produce appreciable amounts of female sex pheromone. Furthermore, pheromone production is inhibited in castrates given testosterone implants (GX+T), suggesting that pheromone production is actively inhibited by the presence of testosterone. Lastly, testosterone supplementation alone (T) increased the production of several saturated methyl ketones in the pheromone but not the unsaturated ketones; this may indicate that saturated ketones are testosterone-activated components of the garter snake's skin lipid milieu. Collectively, our research has shown that pheromone expression in snakes results from two processes: activation by the feminizing steroid estradiol and inhibition by testosterone. We suggest that basal birds and garter snakes share common pathways of activation that modulate crucial intraspecific signals that originate from skin.
Collapse
Affiliation(s)
- M Rockwell Parker
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.
| | - Robert T Mason
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
37
|
Coronas-Sámano G, Portillo W, Beltrán Campos V, Medina-Aguirre GI, Paredes RG, Diaz-Cintra S. Deficits in odor-guided behaviors in the transgenic 3xTg-AD female mouse model of Alzheimer׳s disease. Brain Res 2014; 1572:18-25. [PMID: 24842003 DOI: 10.1016/j.brainres.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/15/2022]
Abstract
Alzheimer׳s disease (AD) is characterized by a number of alterations including those in cognition and olfaction. An early symptom of AD is decreased olfactory ability, which may affect odor-guided behaviors. To test this possibility we evaluated alterations in sexual incentive motivation, sexual olfactory preference, sexual olfactory discrimination, nursing-relevant olfactory preference and olfactory discrimination in female mice. We tested 3xTg-AD (a triple transgenic model, which is a "knock in" of PS1M146V, APPSwe, and tauP300L) and wild type (WT) female mice when receptive (estrous) and non-receptive (anestrous). Subjects were divided into three groups of different ages: (1) 4-5 months, (2) 10-11 months, and (3) 16-18 months. In the sexual incentive motivation task, the receptive 3xTg-AD females showed no preference for a sexually active male at any age studied, in contrast to the WT females. In the sexual olfactory preference test, the receptive WT females were able to identify sexually active male secretions at all ages, but the oldest (16-18 months old) 3xTg-AD females could not. In addition, the oldest 3xTg-AD females showed no preference for nursing-relevant odors in dam secretions and were unable to discriminate between cinnamon and strawberry odors, indicating olfactory alterations. Thus, the present study suggests that the olfactory deficits in this mouse model are associated with changes in sexual incentive motivation and discrimination of food-related odors.
Collapse
Affiliation(s)
- G Coronas-Sámano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - V Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Campus Celaya Salvatierra, Mexico
| | - G I Medina-Aguirre
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - S Diaz-Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico.
| |
Collapse
|
38
|
|
39
|
Balthazart J. Sex steroid modulation of sensory processing. Front Neuroendocrinol 2013; 34:253-4. [PMID: 23973436 DOI: 10.1016/j.yfrne.2013.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/09/2023]
|