1
|
Hill KB, Mullen GP, Nagareddy PR, Zimmerman KA, Rudolph MC. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. Am J Physiol Endocrinol Metab 2024; 327:E478-E497. [PMID: 39171752 PMCID: PMC11482221 DOI: 10.1152/ajpendo.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.
Collapse
Affiliation(s)
- Kaitlyn B Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gregory P Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
2
|
Haberman M, Menashe T, Cohen N, Kisliouk T, Yadid T, Marco A, Meiri N, Weller A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Sci Rep 2024; 14:19874. [PMID: 39191806 DOI: 10.1038/s41598-024-70438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity poses a public health threat, reaching epidemic proportions. Our hypothesis suggests that some of this epidemic stems from its transmission across generations via paternal epigenetic mechanisms. To investigate this possibility, we focused on examining the paternal transmission of CpG methylation. First-generation male Wistar rats were fed either a high-fat diet (HF) or chow and were mated with females fed chow. We collected sperm from these males. The resulting offspring were raised on a chow diet until day 35, after which they underwent a dietary challenge. Diet-induced obese (DIO) male rats passed on the obesogenic trait to both male and female offspring. We observed significant hypermethylation of the Pomc promoter in the sperm of HF-treated males and in the hypothalamic arcuate nucleus (Arc) of their offspring at weaning. However, these differences in Arc methylation decreased later in life. This hypermethylation is correlated with increased expression of DNMT3B. Further investigating genes in the Arc that might be involved in obesogenic transgenerational transmission, using reduced representation bisulfite sequencing (RRBS) we identified 77 differentially methylated regions (DMRs), highlighting pathways associated with neuronal development. These findings support paternal CpG methylation as a mechanism for transmitting obesogenic traits across generations.
Collapse
Affiliation(s)
- Michal Haberman
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Menashe
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Nir Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tam Yadid
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
West S, Garza V, Cardoso R. Puberty in beef heifers: effects of prenatal and postnatal nutrition on the development of the neuroendocrine axis. Anim Reprod 2024; 21:e20240048. [PMID: 39176002 PMCID: PMC11340802 DOI: 10.1590/1984-3143-ar2024-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 08/24/2024] Open
Abstract
Reproductive maturation is a complex physiological process controlled by the neuroendocrine system and is characterized by an increase in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) pulsatile secretion. Nutrition during early development is a key factor regulating puberty onset, which is defined as first ovulation in females. In heifers, nutrient restriction after weaning delays puberty, whereas elevated levels of nutrition and energy reserves advance reproductive maturation. Recent studies in cattle and other animal models have shown that the dam's nutrition during gestation can also program the neuroendocrine system in the developing fetus and has the potential to alter timing of puberty in the offspring. Among the metabolic signals that modulate brain development and control timing of puberty is leptin, a hormone produced primarily by adipocytes that communicates energy status to the brain. Leptin acts within the arcuate nucleus of the hypothalamus to regulate GnRH secretion via an upstream network of neurons that includes neurons that express neuropeptide Y (NPY), an orexigenic peptide with inhibitory effects on GnRH secretion, and alpha melanocyte-stimulating hormone (αMSH), an anorexigenic peptide with excitatory effects on GnRH neurons. Another important population of neurons are KNDy neurons, neurons in the arcuate nucleus that co-express the neuropeptides kisspeptin, neurokinin B, and dynorphin and have strong stimulatory effects on GnRH secretion. Our studies in beef heifers indicate that increased nutrition between 4 to 8 months of age advances puberty by diminishing NPY inhibitory tone and by increasing excitatory inputs of αMSH and kisspeptin, which collectively lead to increased GnRH/LH pulsatility. Our ongoing studies indicate that different planes of nutrition during gestation can alter maternal leptin concentrations and promote changes in the fetal brain. Nonetheless, at least in Bos indicus-influenced heifers, deficits programmed prenatally can be overcome by adequate postnatal nutrition without negatively impacting age at puberty or subsequent fertility.
Collapse
Affiliation(s)
- Sarah West
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Viviana Garza
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Rodolfo Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Leite JMRS, Pereira JL, Alves de Souza C, Pavan Soler JM, Mingroni-Netto RC, Fisberg RM, Rogero MM, Sarti FM. Novel loci linked to serum lipid traits are identified in a genome-wide association study of a highly admixed Brazilian population - the 2015 ISA Nutrition. Lipids Health Dis 2024; 23:229. [PMID: 39060932 PMCID: PMC11282745 DOI: 10.1186/s12944-024-02085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) comprise major causes of death worldwide, leading to extensive burden on populations and societies. Alterations in normal lipid profiles, i.e., dyslipidemia, comprise important risk factors for CVDs. However, there is lack of comprehensive evidence on the genetic contribution to dyslipidemia in highly admixed populations. The identification of single nucleotide polymorphisms (SNPs) linked to blood lipid traits in the Brazilian population was based on genome-wide associations using data from the São Paulo Health Survey with Focus on Nutrition (ISA-Nutrition). METHODS A total of 667 unrelated individuals had genetic information on 330,656 SNPs available, and were genotyped with Axiom™ 2.0 Precision Medicine Research Array. Genetic associations were tested at the 10- 5 significance level for the following phenotypes: low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein cholesterol (VLDL-c), high-density lipoprotein cholesterol (HDL-c), HDL-c/LDL-c ratio, triglycerides (TGL), total cholesterol, and non-HDL-c. RESULTS There were 19 significantly different SNPs associated with lipid traits, the majority of which corresponding to intron variants, especially in the genes FAM81A, ZFHX3, PTPRD, and POMC. Three variants (rs1562012, rs16972039, and rs73401081) and two variants (rs8025871 and rs2161683) were associated with two and three phenotypes, respectively. Among the subtypes, non-HDL-c had the highest proportion of associated variants. CONCLUSIONS The results of the present genome-wide association study offer new insights into the genetic structure underlying lipid traits in underrepresented populations with high ancestry admixture. The associations were robust across multiple lipid phenotypes, and some of the phenotypes were associated with two or three variants. In addition, some variants were present in genes that encode ncRNAs, raising important questions regarding their role in lipid metabolism.
Collapse
Affiliation(s)
| | | | | | - Júlia M Pavan Soler
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | - Regina M Fisberg
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo M Rogero
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Flavia M Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Liu X, Duan C, Yin X, Zhang L, Chen M, Zhao W, Li X, Liu Y, Zhang Y. Inhibition of Prolactin Affects Epididymal Morphology by Decreasing the Secretion of Estradiol in Cashmere Bucks. Animals (Basel) 2024; 14:1778. [PMID: 38929397 PMCID: PMC11201029 DOI: 10.3390/ani14121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| |
Collapse
|
6
|
Han W, Song Z, Shan D, Shi Q. Fetal origins of obesity: a novel pathway of regulating appetite neurons in the hypothalamus of growth-restricted rat offspring. Arch Gynecol Obstet 2024; 309:2411-2419. [PMID: 37378669 PMCID: PMC11147910 DOI: 10.1007/s00404-023-07108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Fetal growth restriction causes a series of sequelae, some of which, such as hyperphagia, reduced satiety and postnatal obesity, are believed to be associated with embryonic hypothalamic neurons impairment. The mechanisms underlying the linkage of fetal brain injuries to break the energy homeostasis have not been elucidated completely. Here, we aim to investigate the effect of intrauterine energy restriction on remodeling appetite neurons in the hypothalamus of fetal and postnatal infant rats. METHODS Low-protein (8%) diet combined with 75% energy restriction was used to establish an animal model. Rats offspring brain tissues, harvested from embryo day 18 and postnatal infant day 1, were sampled for dependent regulator analyses and master neuron assessment. RESULTS Growth-restricted rats showed the increased expression of Bsx and NPY in the hypothalamus as well as remodeling hypothalamic neurons differentiation compared to controls. Intriguingly, in cells cultured in vitro test, we found that activated effects of Bsx and NPY could be exacerbated by DNMT1 inhibitor. CONCLUSIONS In embryonic and early postnatal stage of FGR rats, we detected high concentrations of orexigenic neurons in the hypothalamus. DNMT1 activity is correlated with early embryonic neurogenesis by mediating the expression of Bsx and NPY. It may be one of the reasons for the abnormal development of the appetite regulation pathway and higher susceptibility to obesity in FGR offspring.
Collapse
Affiliation(s)
- Weiling Han
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Zhaoyi Song
- STI-Zhilian Research Institute for Innovation and Digital Health, Beijing, China
| | - Dan Shan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
- Department of Obstetrics and Gynecology, The People's Hospital of Yongcheng, Dongcheng District, Yongcheng City, Henan Province, China
| | - Qingyun Shi
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, No. 251 Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| |
Collapse
|
7
|
Denisova EI, Makarova EN. Influence of leptin administration to pregnant mice on fetal gene expression and adaptation to sweet and fatty food in adult offspring of different sexes. Vavilovskii Zhurnal Genet Selektsii 2024; 28:288-298. [PMID: 38952707 PMCID: PMC11214896 DOI: 10.18699/vjgb-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 07/03/2024] Open
Abstract
Elevated leptin in pregnant mice improves metabolism in offspring fed high-calorie diet and its influence may be sex-specific. Molecular mechanisms mediating leptin programming action are unknown. We aimed to investigate programming actions of maternal leptin on the signaling function of the placenta and fetal liver and on adaptation to high-calorie diet in male and female offspring. Female C57BL/6J mice received leptin injections in mid-pregnancy. Gene expression was assessed in placentas and in the fetal brain and liver at the end of pregnancy. Metabolic parameters and gene expression in the liver, brown fat and hypothalamus were assessed in adult male and female offspring that had consumed sweet and fatty diet (SFD: chow, lard, sweet biscuits) for 2 weeks. Females had lower blood levels of leptin, glucose, triglycerides and cholesterol than males. Consuming SFD, females had increased Ucp1 expression in brown fat, while males had accumulated fat, decreased blood triglycerides and liver Fasn expression. Leptin administration to mothers increased Igf1 and Dnmt3b expression in fetal liver, decreased post-weaning growth rate, and increased hypothalamic Crh expression in response to SFD in both sexes. Only in male offspring this administration decreased expression of Fasn and Gck in the mature liver, increased fat mass, blood levels of glucose, triglycerides and cholesterol and Dmnt3a expression in the fetal liver. The results suggest that the influence of maternal leptin on the expression of genes encoding growth factors and DNA methyltransferases in the fetal liver may mediate its programming effect on offspring metabolic phenotypes.
Collapse
Affiliation(s)
- E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Bonet ML, Ribot J, Sánchez J, Palou A, Picó C. Early Life Programming of Adipose Tissue Remodeling and Browning Capacity by Micronutrients and Bioactive Compounds as a Potential Anti-Obesity Strategy. Cells 2024; 13:870. [PMID: 38786092 PMCID: PMC11120104 DOI: 10.3390/cells13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.
Collapse
Affiliation(s)
- M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (M.L.B.); (J.S.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
9
|
Bonell A, Part C, Okomo U, Cole R, Hajat S, Kovats S, Sferruzzi-Perri AN, Hirst JE. An expert review of environmental heat exposure and stillbirth in the face of climate change: Clinical implications and priority issues. BJOG 2024; 131:623-631. [PMID: 37501633 DOI: 10.1111/1471-0528.17622] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Exposure to extreme heat in pregnancy increases the risk of stillbirth. Progress in reducing stillbirth rates has stalled, and populations are increasingly exposed to high temperatures and climate events that may further undermine health strategies. This narrative review summarises the current clinical and epidemiological evidence of the impact of maternal heat exposure on stillbirth risk. Out of 20 studies, 19 found an association between heat and stillbirth risk. Recent studies based in low- to middle-income countries and tropical settings add to the existing literature to demonstrate that all populations are at risk. Additionally, both short-term heat exposure and whole-pregnancy heat exposure increase the risk of stillbirth. A definitive threshold of effect has not been identified, as most studies define exposure as above the 90th centile of the usual temperature for that population. Therefore, the association between heat and stillbirth has been found with exposures from as low as >12.64°C up to >46.4°C. The pathophysiological pathways by which maternal heat exposure may lead to stillbirth, based on human and animal studies, include both placental and embryonic or fetal impacts. Although evidence gaps remain and further research is needed to characterise these mechanistic pathways in more detail, preliminary evidence suggests epigenetic changes, alteration in imprinted genes, congenital abnormalities, reduction in placental blood flow, size and function all play a part. Finally, we explore this topic from a public health perspective; we discuss and evaluate the current public health guidance on minimising the risk of extreme heat in the community. There is limited pregnancy-specific guidance within heatwave planning, and no evidence-based interventions have been established to prevent poor pregnancy outcomes. We highlight priority research questions to move forward in the field and specifically note the urgent need for evidence-based interventions that are sustainable.
Collapse
Affiliation(s)
- Ana Bonell
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Cherie Part
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Uduak Okomo
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca Cole
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Shakoor Hajat
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Sari Kovats
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jane E Hirst
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- The George Institute for Global Health, Imperial College London, London, UK
| |
Collapse
|
10
|
Liang B, Wang Y, Huang J, Lin S, Mao G, Zhou Z, Yan W, Shan C, Wu H, Etcheverry A, He Y, Liu F, Kang H, Yin A, Zhang S. Genome-wide DNA methylation analysis identifies potent CpG signature for temzolomide response in non-G-CIMP glioblastomas with unmethylated MGMT promoter: MGMT-dependent roles of GPR81. CNS Neurosci Ther 2024; 30:e14465. [PMID: 37830163 PMCID: PMC11017469 DOI: 10.1111/cns.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/14/2023] Open
Abstract
PURPOSES To identify potent DNA methylation candidates that could predict response to temozolomide (TMZ) in glioblastomas (GBMs) that do not have glioma-CpGs island methylator phenotype (G-CIMP) but have an unmethylated promoter of O-6-methylguanine-DNA methyltransferase (unMGMT). METHODS The discovery-validation approach was planned incorporating a series of G-CIMP-/unMGMT GBM cohorts with DNA methylation microarray data and clinical information, to construct multi-CpG prediction models. Different bioinformatic and experimental analyses were performed for biological exploration. RESULTS By analyzing discovery sets with radiotherapy (RT) plus TMZ versus RT alone, we identified a panel of 64 TMZ efficacy-related CpGs, from which a 10-CpG risk signature was further constructed. Both the 64-CpG panel and the 10-CpG risk signature were validated showing significant correlations with overall survival of G-CIMP-/unMGMT GBMs when treated with RT/TMZ, rather than RT alone. The 10-CpG risk signature was further observed for aiding TMZ choice by distinguishing differential outcomes to RT/TMZ versus RT within each risk subgroup. Functional studies on GPR81, the gene harboring one of the 10 CpGs, indicated its distinct impacts on TMZ resistance in GBM cells, which may be dependent on the status of MGMT expression. CONCLUSIONS The 64 TMZ efficacy-related CpGs and in particular the 10-CpG risk signature may serve as promising predictive biomarker candidates for guiding optimal usage of TMZ in G-CIMP-/unMGMT GBMs.
Collapse
Affiliation(s)
- Bao‐Bao Liang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu‐Hong Wang
- The Emergency DepartmentThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jing‐Jing Huang
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Shuai Lin
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Guo‐Chao Mao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhang‐Jian Zhou
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wan‐Jun Yan
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chang‐You Shan
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hui‐Zi Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR)RennesFrance
| | - Ya‐Long He
- Department of Neurosurgery, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fang‐Fang Liu
- Institute of Neurosciences, College of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Hua‐Feng Kang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - An‐An Yin
- Department of Biochemistry and Molecular BiologyAir Force Medical UniversityXi'anChina
- Department of Plastic and Reconstructive Surgery, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shu‐Qun Zhang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
11
|
Marangoni K, Dorneles G, da Silva DM, Pinto LP, Rossoni C, Fernandes SA. Diet as an epigenetic factor in inflammatory bowel disease. World J Gastroenterol 2023; 29:5618-5629. [PMID: 38077158 PMCID: PMC10701328 DOI: 10.3748/wjg.v29.i41.5618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) has as a main characteristic the exacerbation of the immune system against enterocytes, compromising the individual's intestinal microbiota. This inflammatory cascade causes several nutritional deficiencies, which further compromise immunological functioning and, as a result, worsen the prognosis. This vicious cycle can be interrupted as the patient's dietary pattern meets their needs according to their clinical condition, acting directly on the inflammatory process of IBD through the interaction of food, intestinal microbiota, and epigenome. Specific nutritional intervention for IBD has a crucial role in preventing and managing disease activity. This review addresses epigenetic modifications through dietary compounds as a mechanism for modulating the intestinal microbiota of patients with IBD.
Collapse
Affiliation(s)
- Karina Marangoni
- Egas Moniz School of Health and Science, Caparica - Almada, Portugal, Caparica 2820-062, Portugal
- National Institute of Sciences and Technology - Theranostics and Nanobiotechnology, Federal University of Uberlandia - MG, Brazil, Uberlândia 38400-902, Brazil
| | - Gilson Dorneles
- Corporate Social Responsibility, Hospital Moinhos de Vento, Porto Alegre 90035-004, Brazil
| | - Daniella Miranda da Silva
- Postgraduate Program in Gastroenterology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
- Department of Nutrition, Uniasselvi - Group Vitru, Santa Catarina 89082-262, Brazil
| | - Letícia Pereira Pinto
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Carina Rossoni
- Faculty of Medicine, Institute of Environmental Health, University of Lisbon, Lisboa 1649-026, Portugal
- Master in Physical Activity and Health, Polytechnic Institute of Beja, Beja 7800-000, Portugal
- Degree in Nutrition Sciences, Lusófona University, Lisboa 1749-024, Portugal
| | - Sabrina Alves Fernandes
- Postgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
12
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence, a comprehensive review of their molecular mechanisms and diagnostic approach. Eur J Pediatr 2023; 182:4781-4793. [PMID: 37607976 DOI: 10.1007/s00431-023-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital, Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
13
|
Yang C, Li X, Ma X. Idiopathic Isolated Adrenocorticotropic Hormone Deficiency: A Single-Center Retrospective Study. Exp Clin Endocrinol Diabetes 2023; 131:523-531. [PMID: 37683667 DOI: 10.1055/a-2135-7708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Idiopathic isolated adrenocorticotrophic hormone deficiency (IIAD) is rare, with high clinical omission and misdiagnosis rates. This study retrospectively collected information on clinical presentation, laboratory findings, and treatment response of 17 patients with IIAD at Jining No. 1 People's Hospital from January 2014 to December 2022. The clinical characteristics were summarized, and the pertinent data were analyzed. As a result, most of the patients with IIAD were male (94.12%), with age at onset ranging from 13 to 80 years. The primary manifestations were anorexia (88.24%), nausea (70.59%), vomiting (47.06%), fatigue (64.71%), and neurological or psychiatric symptoms (88.24%). The median time to diagnosis was 2 months and the longest was 10 years. Laboratory tests mostly showed hyponatremia (88.24%) and hypoglycemia (70.59%). The symptoms and laboratory indicators returned to normal after supplementing patients with glucocorticoids. IIAD has an insidious onset and atypical symptoms; it was often misdiagnosed as gastrointestinal, neurological, or psychiatric disease. The aim of this study was to improve clinicians' understanding of IIAD, patients with unexplained gastrointestinal symptoms, neurological and psychiatric symptoms, hyponatremia, or hypoglycemia should be evaluated for IIAD and ensure early diagnosis and treatment.
Collapse
Affiliation(s)
| | - Xinpei Li
- Jining Medical University, Jining, China
| | - Xiaoqing Ma
- Jining No 1 People's Hospital, Jining, China
| |
Collapse
|
14
|
Naomi R, Teoh SH, Halim S, Embong H, Hasain Z, Bahari H, Kumar J. Unraveling Obesity: Transgenerational Inheritance, Treatment Side Effects, Flavonoids, Mechanisms, Microbiota, Redox Balance, and Bioavailability-A Narrative Review. Antioxidants (Basel) 2023; 12:1549. [PMID: 37627544 PMCID: PMC10451614 DOI: 10.3390/antiox12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is known as a transgenerational vicious cycle and has become a global burden due to its unavoidable complications. Modern approaches to obesity management often involve the use of pharmaceutical drugs and surgeries that have been associated with negative side effects. In contrast, natural antioxidants, such as flavonoids, have emerged as a promising alternative due to their potential health benefits and minimal side effects. Thus, this narrative review explores the potential protective role of flavonoids as a natural antioxidant in managing obesity. To identify recent in vivo studies on the efficiency of flavonoids in managing obesity, a comprehensive search was conducted on Wiley Online Library, Scopus, Nature, and ScienceDirect. The search was limited to the past 10 years; from the search, we identified 31 articles to be further reviewed. Based on the reviewed articles, we concluded that flavonoids offer novel therapeutic strategies for preventing obesity and its associated co-morbidities. This is because the appropriate dosage of flavonoid compounds is able to reduce adipose tissue mass, the formation of intracellular free radicals, enhance endogenous antioxidant defences, modulate the redox balance, and reduce inflammatory signalling pathways. Thus, this review provides an insight into the domain of a natural product therapeutic approach for managing obesity and recapitulates the transgenerational inheritance of obesity, the current available treatments to manage obesity and its side effects, flavonoids and their sources, the molecular mechanism involved, the modulation of gut microbiota in obesity, redox balance, and the bioavailability of flavonoids. In toto, although flavonoids show promising positive outcome in managing obesity, a more comprehensive understanding of the molecular mechanisms responsible for the advantageous impacts of flavonoids-achieved through translation to clinical trials-would provide a novel approach to inculcating flavonoids in managing obesity in the future as this review is limited to animal studies.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology Mara (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Zubaidah Hasain
- Unit of Physiology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Scorrano G, La Bella S, Matricardi S, Chiarelli F, Giannini C. Neuroendocrine Effects on the Risk of Metabolic Syndrome in Children. Metabolites 2023; 13:810. [PMID: 37512517 PMCID: PMC10383317 DOI: 10.3390/metabo13070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The endocrine and nervous systems reciprocally interact to manage physiological individual functions and homeostasis. The nervous system modulates hormone release through the hypothalamus, the main cerebrally specialized structure of the neuroendocrine system. The hypothalamus is involved in various metabolic processes, administering hormone and neuropeptide release at different levels. This complex activity is affected by the neurons of various cerebral areas, environmental factors, peripheral organs, and mediators through feedback mechanisms. Therefore, neuroendocrine pathways play a key role in metabolic homeostasis control, and their abnormalities are associated with the development of metabolic syndrome (MetS) in children. The impaired functioning of the genes, hormones, and neuropeptides of various neuroendocrine pathways involved in several metabolic processes is related to an increased risk of dyslipidaemia, visceral obesity, insulin resistance, type 2 diabetes mellitus, and hypertension. This review examines the neuroendocrine effects on the risk of MetS in children, identifying and underlying several conditions associated with neuroendocrine pathway disruption. Neuroendocrine systems should be considered in the complex pathophysiology of MetS, and, when genetic or epigenetic mutations in "hot" pathways occur, they could be studied for new potential target therapies in severe and drug-resistant paediatric forms of MetS.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
16
|
Luo H, Jiao Q, Shen C, Shao C, Xie J, Chen Y, Feng X, Zhang X. Unraveling the roles of endoplasmic reticulum-associated degradation in metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1123769. [PMID: 37455916 PMCID: PMC10339828 DOI: 10.3389/fendo.2023.1123769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Misfolded proteins retained in the endoplasmic reticulum cause many human diseases. ER-associated degradation (ERAD) is one of the protein quality and quantity control system located at ER, which is responsible for translocating the misfolded proteins or properly folded but excess proteins out of the ER for proteasomal degradation. Recent studies have revealed that mice with ERAD deficiency in specific cell types exhibit impaired metabolism homeostasis and metabolic diseases. Here, we highlight the ERAD physiological functions in metabolic disorders in a substrate-dependent and cell type-specific manner.
Collapse
Affiliation(s)
- Hui Luo
- *Correspondence: Hui Luo, ; Xingwei Zhang,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Harmancıoğlu B, Kabaran S. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. Front Genet 2023; 14:1158089. [PMID: 37252665 PMCID: PMC10211392 DOI: 10.3389/fgene.2023.1158089] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is associated with rapid weight gain and fetal fat mass increase at an early stage. Also, HFD during pregnancy can cause the activation of proinflammatory cytokines. Maternal insulin resistance and inflammation lead to increased adipose tissue lipolysis, and also increased free fatty acid (FFA) intake during pregnancy (˃35% of energy from fat) cause a significant increase in FFA levels in the fetus. However, both maternal insulin resistance and HFD have detrimental effects on adiposity in early life. As a result of these metabolic alterations, excess fetal lipid exposure may affect fetal growth and development. On the other hand, increase in blood lipids and inflammation can adversely affect the development of the liver, adipose tissue, brain, skeletal muscle, and pancreas in the fetus, increasing the risk for metabolic disorders. In addition, maternal HFD is associated with changes in the hypothalamic regulation of body weight and energy homeostasis by altering the expression of the leptin receptor, POMC, and neuropeptide Y in the offspring, as well as altering methylation and gene expression of dopamine and opioid-related genes which cause changes in eating behavior. All these maternal metabolic and epigenetic changes may contribute to the childhood obesity epidemic through fetal metabolic programming. Dietary interventions, such as limiting dietary fat intake <35% with appropriate fatty acid intake during the gestation period are the most effective type of intervention to improve the maternal metabolic environment during pregnancy. Appropriate nutritional intake during pregnancy should be the principal goal in reducing the risks of obesity and metabolic disorders.
Collapse
|
18
|
Garza V, West SM, Cardoso RC. Review: Gestational and postnatal nutritional effects on the neuroendocrine control of puberty and subsequent reproductive performance in heifers. Animal 2023; 17 Suppl 1:100782. [PMID: 37567667 DOI: 10.1016/j.animal.2023.100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Pubertal attainment is an intricate biological process that involves maturation of the reproductive neuroendocrine axis and increased pulsatile release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone. Nutrition is a critical environmental factor controlling the timing of puberty attainment. Nutrient restriction during early postnatal development delays puberty, whereas increased feed intake and adiposity during this period hasten pubertal maturation by imprinting the hypothalamus. Moreover, the dam's nutrition during gestation can program the neuroendocrine system in the developing fetus and has the potential to advance or delay puberty in the offspring. Leptin, a hormone produced primarily by adipose cells, plays an important role in communicating energy status to the brain and regulating sexual maturation. Leptin's regulation of GnRH release is mediated by an upstream neuronal network since GnRH neurons do not contain the leptin receptor. Two groups of neurons located in the arcuate nucleus of the hypothalamus that express neuropeptide Y (NPY), an orexigenic peptide, and alpha melanocyte-stimulating hormone (αMSH), an anorexigenic peptide, are central elements of the neural circuitry that relay inhibitory (NPY) and excitatory (αMSH) inputs to GnRH neurons. Moreover, KNDy neurons, neurons in the arcuate nucleus that co-express kisspeptin, neurokinin B (NKB), and dynorphin, also play a role in the metabolic regulation of puberty. Our studies in beef heifers demonstrate that increased rates of BW gain during early postweaning (4-9 mo of age) result in reduced expression of NPY mRNA, increased expression of proopiomelanocortin and kisspeptin receptor mRNA, reduced NPY inhibitory inputs to GnRH neurons, and increased excitatory αMSH inputs to KNDy neurons. Finally, our most recent data demonstrate that nutrition of the cow during the last two trimesters of gestation can also induce transcriptional and structural changes in hypothalamic neurocircuitries in the heifer progeny that likely persist long-term after birth. Managerial approaches, such as supplementation of the dam during gestation (fetal programming), creep feeding, early weaning, and stair-step nutritional regimens have been developed to exploit brain plasticity and advance pubertal maturation in heifers.
Collapse
Affiliation(s)
- Viviana Garza
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
| | - Sarah M West
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
| | - Rodolfo C Cardoso
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Baltes-Flueckiger L, Steinauer R, Meyer M, Vogel M, Walter M. Effects of cannabis regulation in Switzerland: Study protocol of a randomized controlled trial. Front Psychiatry 2023; 14:1139325. [PMID: 37032954 PMCID: PMC10076568 DOI: 10.3389/fpsyt.2023.1139325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Background Cannabis is the most widely used illicit substance. Various countries have legalized cannabis for recreational use. Evidence on the health effects of cannabis regulation remains unclear and is mainly based on observational studies. To date, there is no randomized controlled study evaluating the impact of cannabis regulation for recreational use compared to the illicit market on relevant health indicators. The present study ("Weed Care") is the first to evaluate the impact of regulated cannabis access in pharmacies versus a waiting list control group representing the illicit market on problematic cannabis use as well as on mental and physical health. Methods The study is divided into two parts-a randomized controlled study of 6 months followed by an observational study of 2 years. Participants (N = 374) are randomly assigned to either the experimental group with access to legal cannabis in pharmacies or to the waiting list control group representing the current legal framework in Switzerland, namely the illicit market. After 6 months, all participants will have access to legal cannabis for the following 2 years (observational study). The primary outcome is problematic cannabis use as measured with the Cannabis Use Disorders Identification Test-Revised (CUDIT-R). Secondary outcomes are cannabis use patterns, mental disorders (e.g., depression, anxiety, and psychosis) and physical health (e.g., respiratory symptoms). Primary and secondary outcomes will be assessed online every 6 months. The study is approved by the responsible ethics committee as well as by the Swiss Federal Office of Public Health. Discussion Findings from this study may provide a scientific basis for future discussions about addiction medicine and cannabis policy in Switzerland. Clinical Trial Registration ClinicalTrials.gov (NCT05522205). https://clinicaltrials.gov/ct2/show/NCT05522205.
Collapse
Affiliation(s)
| | | | - Maximilian Meyer
- Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Marc Vogel
- Psychiatric University Clinics Basel, University of Basel, Basel, Switzerland
| | - Marc Walter
- Psychiatric and Psychotherapeutic Clinic, Psychiatric Services Aargau, Windisch, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Maier HB, Moschny N, Eberle F, Jahn K, Folsche T, Schülke R, Bleich S, Frieling H, Neyazi A. DNA Methylation of POMC and NR3C1-1F and Its Implication in Major Depressive Disorder and Electroconvulsive Therapy. PHARMACOPSYCHIATRY 2023; 56:64-72. [PMID: 36944329 PMCID: PMC10070046 DOI: 10.1055/a-2034-6536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Precision medicine in psychiatry is still in its infancy. To establish patient-tailored treatment, adequate indicators predicting treatment response are required. Electroconvulsive therapy (ECT) is considered one of the most effective options for pharmacoresistant major depressive disorder (MDD), yet remission rates were reported to be below 50%. METHODS Since epigenetics of the stress response system seem to play a role in MDD, we analyzed the DNA methylation (DNAm) of genes encoding the glucocorticoid receptor (NR3C1) and proopiomelanocortin (POMC) through Sanger Sequencing. For analysis, blood was taken before and after the first and last ECT from MDD patients (n=31), unmedicated depressed controls (UDC; n=19, baseline), and healthy controls (HC; n=20, baseline). RESULTS Baseline DNAm in NR3C1 was significantly lower in UDCs compared to both other groups (UDC: 0.014(±0.002), ECT: 0.031(±0.001), HC: 0.024(±0.002); p<0.001), whereas regarding POMC, ECT patients had the highest DNAm levels (ECT: 0.252(±0.013), UDC: 0.156(±0.015), HC: 0.162(±0.014); p<0.001). NR3C1m and POMCm decreased after the first ECT (NR3C1: p<0.001; POMC: p=0.001), and responders were less methylated compared to non-responders in NR3C1(p<0.001). DISCUSSION Our findings indicate that both genes might play a role in the chronification of depression and NR3C1 may be relevant for ECT response prediction.
Collapse
Affiliation(s)
- Hannah B Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Nicole Moschny
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Franziska Eberle
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kirsten Jahn
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thorsten Folsche
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Rasmus Schülke
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Laboratory for Molecular Neuroscience, Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg (OVGU), Germany
| |
Collapse
|
21
|
Zhang J, Li S, Luo X, Zhang C. Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal obesity. Front Nutr 2023; 10:1094616. [PMID: 36819678 PMCID: PMC9928869 DOI: 10.3389/fnut.2023.1094616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Maternal obesity has a significant impact on the metabolism of offspring both in childhood and adulthood. The metabolic regulation of offspring is influenced by the intrauterine metabolic programming induced by maternal obesity. Nevertheless, the precise mechanisms remain unclear. The hypothalamus is the primary target of metabolic programming and the principal regulatory center of energy metabolism. Accumulating evidence has indicated the crucial role of hypothalamic regulation in the metabolism of offspring exposed to maternal obesity. This article reviews the development of hypothalamus, the role of the hypothalamic regulations in energy homeostasis, possible mechanisms underlying the developmental programming of energy metabolism in offspring, and the potential therapeutic approaches for preventing metabolic diseases later in life. Lastly, we discuss the challenges and future directions of hypothalamic regulation in the metabolism of children born to obese mothers.
Collapse
|
22
|
Petti M, Alfano C, Farina L. Molecular network analysis of hormonal contraceptives side effects via database integration. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Zahir FR. Epigenomic impacts of meditative practices. Epigenomics 2022; 14:1593-1608. [PMID: 36891912 DOI: 10.2217/epi-2022-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Meditative practices (MPs) are an inherent lifestyle and healing practice employed in Eastern medicine and spirituality. Integrating MPs into world mainstream medicine (WMM) requires effective empirical investigation of psychophysiological impacts. Epigenomic regulation is a probable mechanism of action that is empirically assessable. Recently, WMM-styled studies have screened the epigenomic impacts of MPs with early encouraging results. This article discusses the variety of MPs extant across three major Eastern religio-spiritual-healing traditions and their integration into WMM via the lens of epigenomic modulation. MPs unanimously report positive impacts on stress-reduction pathways, known to be epigenomically sensitive. Early high-resolution assays show MPs are potent in altering the epigenome - dynamically and by inducing long-term changes. This suggests the importance of integrating MPs into WMM.
Collapse
Affiliation(s)
- Farah R Zahir
- Irfa'a Foundation, 5063 North Service Road, Burlington, ON, L7L 5H6 Canada
- Departent of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1 Canada
| |
Collapse
|
24
|
Hinney A, Körner A, Fischer-Posovszky P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol 2022; 18:623-637. [PMID: 35902734 PMCID: PMC9330928 DOI: 10.1038/s41574-022-00716-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.
Collapse
Affiliation(s)
- Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy and University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Antje Körner
- Leipzig University, Medical Faculty, Hospital for Children and Adolescents, Centre of Paediatric Research (CPL), Leipzig, Germany
- LIFE Child, Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | |
Collapse
|
25
|
Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M, Pirrotta F, Abate V, Calabrese M, Falchetti A. Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 2022; 10:932065. [PMID: 36035996 PMCID: PMC9412102 DOI: 10.3389/fcell.2022.932065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Studies over the past two decades have led to major advances in the pathogenesis of Paget’s disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome “Inclusion Body Myopathy, PDB, Fronto-temporal Dementia,” characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Cavati
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Roberta Cosso
- Unit of Rehabilitation Medicine, San Giuseppe Hospital, Istituto Auxologico Italiano, Piancavallo, Italy
| | - Maria Materozzi
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Filippo Pirrotta
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Calabrese
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Alberto Falchetti
- Experimental Research Laboratory on Bone Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milano, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| |
Collapse
|
26
|
Liu Y, Yao C, Cui K, Hao T, Yin Z, Xu W, Huang W, Mai K, Ai Q. Nutritional programming of large yellow croaker ( Larimichthys crocea) larvae by dietary vegetable oil: effects on growth performance, lipid metabolism and antioxidant capacity. Br J Nutr 2022; 129:1-14. [PMID: 35811407 DOI: 10.1017/s0007114522001726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nutritional status experienced in the early development of life plays a vital role in the long-term metabolic state of the individual, which is known as nutritional programming. The present study investigated the long-term effects of vegetable oil (VO) nutritional programming during the early life of large yellow croaker. First, larvae were fed either a fish oil (FO) diet or a VO diet for 30 d. Subsequently, under the same conditions, all fish were fed a commercial diet for 90 d and thereafter challenged with an FO or VO diet for 30 d. The results showed that growth performance was significantly lower in larvae fed the VO diet than in those in fed the FO diet in the stimulus phase. Notably, VO nutritional history fish showed lower levels of liver lipids liver total triglycerides and serum nonesterified free fatty acids than the FO nutritional history fish when juveniles were challenged with the VO diet, which was consistent with the expression of lipogenesis-related genes and proteins. Moreover, the VO nutritional history fish showed lower liver damage and higher antioxidant capacity than FO nutritional history fish when challenged with the VO diet. In summary, this study showed that a short VO stimulus during the early life stage of large yellow croaker, had a long-term effect on lipid metabolism and the antioxidant system. Specifically, VO nutritional programming had a positive effect on alleviating abnormal lipid deposition on the liver, liver damage, and the reduction of hepatic antioxidant capacity caused by a VO diet.
Collapse
Affiliation(s)
- Yongtao Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Chuanwei Yao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Tingting Hao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Zhaoyang Yin
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Wenxuan Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Wenxing Huang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong266003, People's Republic of China
| | - Qinghui Ai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
- Key laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong266003, People's Republic of China
| |
Collapse
|
27
|
Zambrano-Zaragoza JF, Vázquez-Reyes A, Durán-Avelar MDJ, Gutiérrez-Franco J, Vibanco-Pérez N, Agraz-Cibrián JM, Pérez-Cambero H, Ayón-Pérez MF. Deleted genes associated with obesity in Mexican patients diagnosed with nonalcoholic fatty liver disease. Ann Hum Genet 2022; 86:237-244. [PMID: 35343586 DOI: 10.1111/ahg.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
Abstract
AIM Nonalcoholic fatty liver disease (NAFLD) is a complex metabolic condition in which both lifestyle and genetic factors have a pathogenic role. The LEP gene encodes leptin, which regulates appetite, body weight, and several metabolic functions. Proopiomelanocortin (POMC), regulates food intake and energy balance. The aim of the study was to determine partial or complete deletions of genes associated with obesity in patients diagnosed with NAFLD. MATERIAL AND METHODS Blood samples and DNA from 43 individuals diagnosed with NAFLD by ultrasonographic technique (Fibroscan) were obtained. The partial or complete deletions of genes were determined by MLPA (Multiplex Ligation-dependent Probe Amplification) using the SALSA probemix P220-B2 Obesity only on 43 individuals. Fifty blood samples from healthy individuals were included. RESULTS Eleven out of 43 individuals analyzed by MLPA presented some deletion of the genes analyzed: six were female and five were male. The partial or complete deletion of the LEPR and POMC genes was observed in eight patients (18.6%), SIM1 in six patients (13.9%), GRIK2 and SH2B1 in two patients (4.7%), SEZGL2 in four patients (9.3%), and MCR4 in one patient (2.3%). CONCLUSION Partial deletion was observed in LEPR, POMC, SIM1, GRIK2, SH2B1, SEZGL2, and MCR4 genes in 26% of the cases, and we suggest that these alterations probably has a potential relationship for the development of NAFLD.
Collapse
Affiliation(s)
- José Francisco Zambrano-Zaragoza
- Laboratorio de Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Alejandro Vázquez-Reyes
- Laboratorios de Investigación en Biología Molecular e Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Ma de Jesús Durán-Avelar
- Laboratorios de Investigación en Biología Molecular e Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Jorge Gutiérrez-Franco
- Laboratorio de Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Norberto Vibanco-Pérez
- Laboratorios de Investigación en Biología Molecular e Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Juan Manuel Agraz-Cibrián
- Laboratorio de Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Horacio Pérez-Cambero
- Comisión Estatal para la Protección Contra Riesgo Sanitario de Nayarit, Servicios de Salud de Nayarit, Tepic, Nayarit, México
| | - Miriam Fabiola Ayón-Pérez
- Laboratorios de Investigación en Biología Molecular e Inmunología. Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| |
Collapse
|
28
|
The Systematic Analysis of Exercise Mechanism in Human Diseases. Genet Res (Camb) 2022; 2022:8555020. [PMID: 35387180 PMCID: PMC8970951 DOI: 10.1155/2022/8555020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background As a part of a healthy lifestyle, exercise has been proven to be beneficial for the treatment of diseases and the prognosis of patients. Based on this, our research focuses on the impact of exercise on human health. Methods To study and analyze the samples in the GSE18966 gene expression profile, we first performed an analysis on the differential expressed genes (DEGs) through GEO2R, and then the DEGs enrichment in Gene Ontology functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways through the Database for Annotation, Visualization and Integrated Discovery database was conducted. Then, we delved into the gene set enrichment in KEGG through gene set enrichment analysis. After that, we achieved the construction of the protein-protein interaction (PPI) network of DEGs based on the Search Tool for the Retrieval of Interacting Genes online database, and the hub genes were screened and identified. Results We identified 433 upregulated DEGs and 186 downregulated DEGs from the samples before and after exercise in GSE18966. Through analysis, it was found that these DEGs-enriched pathways, such as the VEGF signaling pathway, the Wnt signaling pathway, and the insulin signaling pathway, were all involved in the regulation of various diseases. Then, GSEA analysis revealed that glycosaminoglycan biosynthesis chondroitin sulfate, type II diabetes mellitus, and basal cell carcinoma were related with exercise samples. The effects of these pathways on various diseases could be improved through exercise. Finally, 3 upregulated hub genes (VEGFA, POMC, and NRAS) and 3 downregulated hub genes (HRAS, NCOR1, and CAV1) were identified through the PPI network. Conclusions The bioinformatic analysis of samples before and after exercise provides key pathways and genes related to exercise to regulate various diseases, which confirms that exercise has an important influence on the treatment of many diseases.
Collapse
|
29
|
Chen L, Cong D, Wang G, Sun J, Ji Y, Zhong Z, Liu T, Liu J, Chu Y, Wu X. Tuina combined with diet and exercise for simple obesity: A protocol for systematic review. Medicine (Baltimore) 2022; 101:e28833. [PMID: 35147126 PMCID: PMC8830820 DOI: 10.1097/md.0000000000028833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The incidence of simple obesity is increasing annually, with the number of obese people in all age groups increasing significantly. Obesity has become an important public health concern. Simple obesity affects not only appearance but also health. Obesity has an increasing impact on individuals, families, and society. Therefore, the treatment of obesity is becoming increasingly important. Prior studies have shown that Tuina combined with diet and exercise is capable of producing improvements in body weight and fasted health markers. In recent years, there are many clinical studies on the intervention of simple obesity by Tuina combined with diet and exercise, however, no study systematically evaluated the clinical efficacy. The purpose of this study is to evaluate its effects of Tuina combined with diet and exercise on people with simple obesity. METHODS We will search the following electronic databases: PubMed, EMBASE, MEDLINE, Web of science, Cochrane Library, WanFang Data, CBM, CNKI, and VIP from the inception of the coverage of these databases to December 2021. Randomized controlled clinical trials related to Tuina combined with diet and exercise intervention on simple obesity will be included. Cochrane's collaboration tool will be used to assess the quality of the studies. RevMan 5.3 software will be used for the data analysis. RESULTS This study will provide a standardized evaluation for the efficacy of Tuina combined with diet and exercise for simple obesity. CONCLUSION The conclusion of this study will provide evidence for the safety and effectiveness of Tuina combined with diet and exercise on weight loss. ETHICS AND DISSEMINATION Ethical approval is not required for systematic review and meta- analysis. The results of this review will be disseminated in a peer-review journal. PROSPERO REGISTRATION NUMBER INPLASY202210079.
Collapse
Affiliation(s)
- Lili Chen
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Deyu Cong
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Gaofeng Wang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | | | - Yuanyuan Ji
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhen Zhong
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Tong Liu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayi Liu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Yunjie Chu
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xingquan Wu
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
30
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
31
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
32
|
Grzęda E, Matuszewska J, Ziarniak K, Gertig-Kolasa A, Krzyśko- Pieczka I, Skowrońska B, Sliwowska JH. Animal Foetal Models of Obesity and Diabetes - From Laboratory to Clinical Settings. Front Endocrinol (Lausanne) 2022; 13:785674. [PMID: 35197931 PMCID: PMC8858803 DOI: 10.3389/fendo.2022.785674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
The prenatal period, during which a fully formed newborn capable of surviving outside its mother's body is built from a single cell, is critical for human development. It is also the time when the foetus is particularly vulnerable to environmental factors, which may modulate the course of its development. Both epidemiological and animal studies have shown that foetal programming of physiological systems may alter the growth and function of organs and lead to pathology in adulthood. Nutrition is a particularly important environmental factor for the pregnant mother as it affects the condition of offspring. Numerous studies have shown that an unbalanced maternal metabolic status (under- or overnutrition) may cause long-lasting physiological and behavioural alterations, resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various diets are used in laboratory settings in order to induce maternal obesity and metabolic disorders, and to alter the offspring development. The most popular models are: high-fat, high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are also used, which results in metabolic problems in offspring. Similarly to animal data, human studies have shown the influence of mothers' diets on the development of children. There is a strong link between the maternal diet and the birth weight, metabolic state, changes in the cardiovascular and central nervous system of the offspring. The mechanisms linking impaired foetal development and adult diseases remain under discussion. Epigenetic mechanisms are believed to play a major role in prenatal programming. Additionally, sexually dimorphic effects on offspring are observed. Therefore, further research on both sexes is necessary.
Collapse
Affiliation(s)
- Emilia Grzęda
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Julia Matuszewska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- Molecular and Cell Biology Unit, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Gertig-Kolasa
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Izabela Krzyśko- Pieczka
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Bogda Skowrońska
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna H. Sliwowska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Joanna H. Sliwowska,
| |
Collapse
|
33
|
Frayre J, Frayre P, Wong I, Mithani A, Bishop S, Mani C, Ponce-Rubio K, Virk R, Morris MJ, Na ES. Perinatal exposure to high fat diet alters expression of MeCP2 in the hypothalamus. Behav Brain Res 2021; 415:113518. [PMID: 34391798 DOI: 10.1016/j.bbr.2021.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022]
Abstract
Obesity is a complex disease that is the result of a number of different factors including genetic, environmental, and endocrine abnormalities. Given that monogenic forms of obesity are rare, it is important to identify other mechanisms that contribute to its etiology. Methyl-Cp-G binding protein 2 (MeCP2) is a neuroepigenetic factor that binds to methylated regions of DNA to influence transcription. Past studies demonstrate that disruption in MeCP2 function produces obesity in mice. Using a diet-induced obesity mouse model, we show that perinatal exposure to high fat diet significantly decreases MeCP2 protein expression in the hypothalamus of female mice, effects not seen when high fat diet is given to mice during adulthood. Moreover, these effects are seen specifically in a subregion of the hypothalamus known as the arcuate nucleus with females having decreased MeCP2 expression in rostral areas and males having decreased MeCP2 expression in intermediate regions of the arcuate nucleus. Interestingly, mice gain more weight when exposed to high fat diet during adulthood relative to mice exposed to high fat diet perinatally, suggesting that perhaps high fat diet exposure during adulthood may be affecting mechanisms independent of MeCP2 function. Collectively, our data demonstrate that there are developmentally sensitive periods in which MeCP2 expression is influenced by high fat diet exposure and this occurs in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Jessica Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Priscila Frayre
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ida Wong
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Anusha Mithani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Stephanie Bishop
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Chelsy Mani
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Karen Ponce-Rubio
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Ruvaid Virk
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Michael J Morris
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| | - Elisa S Na
- Department of Psychology & Philosophy, Texas Woman's University, 304 Administration Dr., Denton, TX, USA.
| |
Collapse
|
34
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
35
|
Schumacher R, Rossetti MF, Lazzarino GP, Canesini G, García AP, Stoker C, Andreoli MF, Ramos JG. Temporary effects of neonatal overfeeding on homeostatic control of food intake involve alterations in POMC promoter methylation in male rats. Mol Cell Endocrinol 2021; 522:111123. [PMID: 33338550 DOI: 10.1016/j.mce.2020.111123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
A small litter (SL) model was used to determine how neonatal overfeeding affects the homeostatic control of food intake in male rats at weaning and postnatal day (PND) 90. At PND4, litters were reduced to small (4 pups/dam) or normal (10 pups/dam) litters. At weaning, SL rats showed higher body weight and characteristic features of the metabolic syndrome. Gene expression of pro-opiomelanocortin (POMC), cocaine and amphetamine regulated transcript, neuropeptide Y (NPY) and leptin and ghrelin (GHSR) receptors were increased and POMC promoter was hypomethylated in arcuate nucleus, indicating that the early development of obesity may involve the GHSR/NPY system and changes in POMC methylation state. At PND90, body weight, metabolic parameters and gene expression were restored; however, POMC methylation state remained altered. This work provides insight into the effects of neonatal overfeeding, showing the importance of developmental plasticity in restoring early changes in central pathways involved in metabolic programming.
Collapse
Affiliation(s)
- Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina.
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Centro de Neurociencia Social y Afectiva, Departamento de Medicina Clínica y Experimental, Universidad de Linköping, 58x xx, Linköping, Suecia.
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina.
| | - Ana Paula García
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina.
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), Hospital de niños de La Plata y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), 1900, La Plata, Argentina.
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, 3000, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina.
| |
Collapse
|
36
|
Toorie AM, Vassoler FM, Qu F, Schonhoff CM, Bradburn S, Murgatroyd CA, Slonim DK, Byrnes EM. A history of opioid exposure in females increases the risk of metabolic disorders in their future male offspring. Addict Biol 2021; 26:e12856. [PMID: 31782234 DOI: 10.1111/adb.12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
Worldwide consumption of opioids remains at historic levels. Preclinical studies report intergenerational effects on the endogenous opioid system of future progeny following preconception morphine exposure. Given the role of endogenous opioids in energy homeostasis, such effects could impact metabolism in the next generation. Thus, we examined diet-induced modifications in F1 male progeny of morphine-exposed female rats (MORF1). When fed a high fat-sugar diet (FSD) for 6 weeks, MORF1 males display features of emerging metabolic syndrome; they consume more food, gain more weight, and develop fasting-induced hyperglycemia and hyperinsulinemia. In the hypothalamus, proteins involved in energy homeostasis are modified and RNA sequencing revealed down-regulation of genes associated with neuronal plasticity, coupled with up-regulation of genes associated with immune, inflammatory, and metabolic processes that are specific to FSD-maintained MORF1 males. Thus, limited preconception morphine exposure in female rats increases the risk of metabolic syndrome/type 2 diabetes in the next generation.
Collapse
Affiliation(s)
- Anika M. Toorie
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine Tufts University North Grafton Massachusetts
- Department of Biology Rhode Island College North Providence Rhode Island
| | - Fair M. Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine Tufts University North Grafton Massachusetts
| | - Fangfang Qu
- Department of Computer Science Tufts University Medford Massachusetts
| | - Christopher M. Schonhoff
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine Tufts University North Grafton Massachusetts
| | - Steven Bradburn
- Division of Biomedical Sciences Manchester Metropolitan University Manchester UK
| | | | - Donna K. Slonim
- Department of Computer Science Tufts University Medford Massachusetts
| | - Elizabeth M. Byrnes
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine Tufts University North Grafton Massachusetts
| |
Collapse
|
37
|
Wiss DA, Avena N, Gold M. Food Addiction and Psychosocial Adversity: Biological Embedding, Contextual Factors, and Public Health Implications. Nutrients 2020; 12:E3521. [PMID: 33207612 PMCID: PMC7698089 DOI: 10.3390/nu12113521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The role of stress, trauma, and adversity particularly early in life has been identified as a contributing factor in both drug and food addictions. While links between traumatic stress and substance use disorders are well documented, the pathways to food addiction and obesity are less established. This review focuses on psychosocial and neurobiological factors that may increase risk for addiction-like behaviors and ultimately increase BMI over the lifespan. Early childhood and adolescent adversity can induce long-lasting alterations in the glucocorticoid and dopamine systems that lead to increased addiction vulnerability later in life. Allostatic load, the hypothalamic-pituitary-adrenal axis, and emerging data on epigenetics in the context of biological embedding are highlighted. A conceptual model for food addiction is proposed, which integrates data on the biological embedding of adversity as well as upstream psychological, social, and environmental factors. Dietary restraint as a feature of disordered eating is discussed as an important contextual factor related to food addiction. Discussion of various public health and policy considerations are based on the concept that improved knowledge of biopsychosocial mechanisms contributing to food addiction may decrease stigma associated with obesity and disordered eating behavior.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Nicole Avena
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Mark Gold
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
38
|
|
39
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
40
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
41
|
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol 2020; 16:407-420. [PMID: 32427949 PMCID: PMC8852368 DOI: 10.1038/s41574-020-0363-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Hypothalamic kisspeptin neurons serve as the nodal regulatory centre of reproductive function. These neurons are subjected to a plethora of regulatory factors that ultimately affect the release of kisspeptin, which modulates gonadotropin-releasing hormone (GnRH) release from GnRH neurons to control the reproductive axis. The presence of sufficient energy reserves is critical to achieve successful reproduction. Consequently, metabolic factors impose a very tight control over kisspeptin synthesis and release. This Review offers a synoptic overview of the different steps in which kisspeptin neurons are subjected to metabolic regulation, from early developmental stages to adulthood. We cover an ample array of known mechanisms that underlie the metabolic regulation of KISS1 expression and kisspeptin release. Furthermore, the novel role of kisspeptin neurons as active players within the neuronal circuits that govern energy balance is discussed, offering evidence of a bidirectional role of these neurons as a nexus between metabolism and reproduction.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Graduate Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
42
|
Yeo H, Ahn SS, Lee YH, Shin SY. Regulation of pro-opiomelanocortin (POMC) gene transcription by interleukin-31 via early growth response 1 (EGR-1) in HaCaT keratinocytes. Mol Biol Rep 2020; 47:5953-5962. [DOI: 10.1007/s11033-020-05668-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
|
43
|
Wiegand S, Kühnen P. [Obesity is rarely curable: individual concepts and therapy programs for children and adolescents]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:821-830. [PMID: 32564111 DOI: 10.1007/s00103-020-03164-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity in children has an increased risk to persist in adulthood. In most cases, obesity starts to develop in children at school age. Lower social economic status and migration background are severe risk factors for obesity. Additionally, genetic predisposition for the development of obesity plays an especially important role in children and adolescents. However, the individual cause for obesity is heterogeneous and complex. This is the reason why only a systematic analysis of individually existing problems is necessary for a differentiated and realistic planning of the treatment. Long-lasting therapy concepts need to be based on current available evidence.The treatment of childhood obesity should rely on multiprofessional lifestyle programs. An exception might be rare monogenic or syndromic forms of obesity, because defects within the central regulatory pathways of body weight regulation could be present. In general, a key component of the treatment strategy should include an improvement of nutrition, physical exercise and self-esteem combined with a reduction of stress. Moreover, the inclusion of parents into the treatment strategy has shown to be beneficial and necessary. Long-term follow-up studies on the development of associated comorbidities are rare. Unfortunately, patient groups at risk are currently not necessarily reached with available treatment programs.A multiprofessional analysis of individual problems and differentiated treatment planning with a participative approach (acknowledging the cultural background and involving members of the family) should lead to long-lasting improvement of the therapeutic outcome. The individual main treatment aim should also include - apart from the reduction of body weight - the improvement of associated comorbidities and quality of life, especially by avoiding any stigmatization. A health-promoting environment is desirable for this salutogenetic approach.
Collapse
Affiliation(s)
- Susanna Wiegand
- SPZ für chronisch kranke Kinder, Adipositas-Zentrum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland.
| | - Peter Kühnen
- Institut für experimentelle pädiatrische Endokrinologie, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
44
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|