1
|
Martinez V, Duran EMI, Kimmitt AA, Russell KE, Jill Heatley J, Grace JK. Chronic stress increases adaptive immune response over six weeks in the house sparrow, Passer domesticus. Gen Comp Endocrinol 2024; 358:114612. [PMID: 39293532 DOI: 10.1016/j.ygcen.2024.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The vertebrate stress response enables an organism to shift energy towards activities that promote immediate survival when facing a threat to homeostasis, but it can also have detrimental effects on organismal health. Acute and chronic stressors generally have contrasting effects on immune responses, but the timeline of this transition between acute and chronic stressors and their effects on immune responses remains unclear. In this study, we investigate changes in immune markers in captive house sparrows (Passer domesticus) after exposure to normal laboratory conditions, an acute stressor, and chronic stressors for 42 days. Specifically, we examined changes in baseline and stress-induced corticosterone concentrations, body condition, heterophil/lymphocyte (H:L) ratio, hemolysis-hemagglutination, and wound healing. We found that individuals exposed to a single acute stressor had significantly higher stress-induced corticosterone concentrations 24 h after stressor exposure, however this effect was reversed after 48 h. Chronic stressor exposure resulted in generally stronger adaptive immune responses, demonstrated by higher baseline and stress-induced lysis, higher baseline hemagglutination, and slower wound healing. Within-trait correlations also increased with chronic stressor exposure, suggesting limitations on phenotypic plasticity. Most of the effects of chronic stressor exposure on immune markers strengthened over the 42 days of the experiment and differences between captivity-only and treatment groups were not apparent until approximately 20 days of chronic stressor exposure. These results highlight the importance of stressor duration in understanding the effects of chronic stressor exposure on immune responses.
Collapse
Affiliation(s)
- Viridiana Martinez
- Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Elena M I Duran
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| | - Abigail A Kimmitt
- Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA; Dept. of Biology, Hofstra University, Hempstead, NY 11549, USA
| | - Karen E Russell
- Dept. of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - J Jill Heatley
- Dept. of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jacquelyn K Grace
- Dept. of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Sutton NM, Suski C, Payne K, O'Dwyer JP. Moving beyond the mean: an analysis of faecal corticosterone metabolites shows substantial variability both within and across white-tailed deer populations. CONSERVATION PHYSIOLOGY 2024; 12:coae062. [PMID: 39252885 PMCID: PMC11381565 DOI: 10.1093/conphys/coae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Glucocorticoid (GC) levels have significant impacts on the health and behaviour of wildlife populations and are involved in many essential body functions including circadian rhythm, stress physiology and metabolism. However, studies of GCs in wildlife often focus on estimating mean hormone levels in populations, or a subset of a population, rather than on assessing the entire distribution of hormone levels within populations. Additionally, explorations of population GC data are limited due to the tradeoff between the number of individuals included in studies and the amount of data per individual that can be collected. In this study, we explore patterns of GC level distributions in three white-tailed deer (Odocoileus virginianus) populations using a non-invasive, opportunistic sampling approach. GC levels were assessed by measuring faecal corticosterone metabolite levels ('fCMs') from deer faecal samples throughout the year. We found both population and seasonal differences in fCMs but observed similarly shaped fCM distributions in all populations. Specifically, all population fCM cumulative distributions were found to be very heavy-tailed. We developed two toy models of acute corticosterone elevation in an effort to recreate the observed heavy-tailed distributions. We found that, in all three populations, cumulative fCM distributions were better described by an assumption of large, periodic spikes in corticosterone levels every few days, as opposed to an assumption of random spikes in corticosterone levels. The analyses presented in this study demonstrate the potential for exploring population-level patterns of GC levels from random, opportunistically sampled data. When taken together with individual-focused studies of GC levels, such analyses can improve our understanding of how individual hormone production scales up to population-level patterns.
Collapse
Affiliation(s)
- Nicholas M Sutton
- Department of Biology, Grinnell College, 1116 8th Avenue, Grinnell, IA, 50112, USA
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Cory Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign, 1102 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Keegan Payne
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign, 1102 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - James P O'Dwyer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL,61801, USA
| |
Collapse
|
3
|
Beattie UK, Mikolajczak L, Fefferman N, Romero LM. Neophobia, but not perch hopping, is sensitive to long-term chronic stress intensity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1036-1043. [PMID: 37653674 DOI: 10.1002/jez.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
To further elucidate the role that wear-and-tear plays in the transition from acute to chronic stress, we manipulated the intensity and duration of applied chronic stress to determine if behavior would respond proportionately. We brought wild house sparrows into captivity and subjected them to high-stress, medium-stress, low-stress, or captivity-only. We varied the number of stressors per day and the duration of stress periods to vary wear-and-tear, and thus the potential to exhibit chronic stress symptoms. The behaviors we assessed were neophobia (the fear of the new; assessed via food approach latency) and perch hopping (activity). We predicted that our birds would show proportionate decreases in neophobia and activity throughout a long-term chronic stress paradigm. Our results indicate that neophobia is sensitive to the intensity of chronic stress, however, the birds became more neophobic, which was the opposite of what we expected. Conversely, perch hopping did not differ across treatment groups and is thus not sensitive to the intensity of chronic stress. Together, these data show that different behavioral measurements are impacted differently by chronic stress.
Collapse
Affiliation(s)
| | | | - Nina Fefferman
- Department of Ecology and Evolutionary Biology, Department of Mathematics, University of Tennessee, Knoxville, Tennessee, USA
| | | |
Collapse
|
4
|
Alquezar RD, Arregui L, Macedo RH, Gil D. Birds living near airports do not show consistently higher levels of feather corticosterone. CONSERVATION PHYSIOLOGY 2023; 11:coad079. [PMID: 37869263 PMCID: PMC10588694 DOI: 10.1093/conphys/coad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Noise represents a threat to human and wildlife health, triggering physiological and behavioral challenges to individuals living close to sources of extreme noise. Here, we considered airport environments as sources of potentially stressful stimuli for birds and tested if those living near airports are under higher physiological stress than birds living in quiet sites. We used measurements of CORT in feathers (CORTf) as a proxy of chronic stress. We evaluated 14 passerine and 1 non-passerine species, living near three Brazilian airports. We found that, across species, individuals with a better body condition had lower CORTf concentration. At the species level, we found that CORTf concentration was not consistently affected by airport noise. Comparing individuals living in quiet sites with those living near airports, we found that 2 species had higher and 2 had lower CORTf concentrations near airports, while 11 species presented no significant differences between sites. At the population level, model selection indicated that the direction and strength of these differences are weakly related to species' song frequency (peak frequency), as lower-frequency singers tended to present higher CORTf levels at airport-affected sites. In summary, we were unable to find a consistent response among species, probably due to species-specific differences in their response to anthropogenic disturbances. Instead, we found that species might be affected differently according to their singing spectral frequency and that individuals in good body condition show lower CORTf, suggesting that this measure is consistent with lower physiological stress.
Collapse
Affiliation(s)
- Renata D Alquezar
- PG em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70919-970, Brasília, DF, Brasil
| | - Lucía Arregui
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Regina H Macedo
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900, Brasília, DF, Brasil
| | - Diego Gil
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
5
|
Beattie UK, Fefferman N, Romero LM. Varying intensities of chronic stress induce inconsistent responses in weight and plasma metabolites in house sparrows ( Passer domesticus). PeerJ 2023; 11:e15661. [PMID: 37456877 PMCID: PMC10340100 DOI: 10.7717/peerj.15661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
One of the biggest unanswered questions in the field of stress physiology is whether variation in chronic stress intensity will produce proportional (a gradient or graded) physiological response. We were specifically interested in the timing of the entrance into homeostatic overload, or the start of chronic stress symptoms. To attempt to fill this knowledge gap we split 40 captive house sparrows (Passer domesticus) into four groups (high stress, medium stress, low stress, and a captivity-only control) and subjected them to six bouts of chronic stress over a 6-month period. We varied the number of stressors/day and the length of each individual bout with the goal of producing groups that would experience different magnitudes of wear-and-tear. To evaluate the impact of chronic stress, at the start and end of each stress bout we measured body weight and three plasma metabolites (glucose, ketones, and uric acid) in both a fasted and fed state. All metrics showed significant differences across treatment groups, with the high stress group most frequently showing the greatest changes. However, the changes did not produce a consistent profile that matched the different chronic stress intensities. We also took samples after a prolonged recovery period of 6 weeks after the chronic stressors ended. The only group difference that persisted after 6 weeks was weight-all differences across groups in metabolites recovered. The results indicate that common blood metabolites are sensitive to stressors and may show signs of wear-and-tear, but are not reliable indicators of the intensity of long-term chronic stress. Furthermore, regulatory mechanisms are robust enough to recover within 6 weeks post-stress.
Collapse
Affiliation(s)
- Ursula K. Beattie
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Nina Fefferman
- Departments of Ecology and Evolution, University of Tennessee—Knoxville, Knoxville, Tennessee, United States
| | - L. Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| |
Collapse
|
6
|
Culbert BM, Border SE, Fialkowski RJ, Bolitho I, Dijkstra PD. Social status influences relationships between hormones and oxidative stress in a cichlid fish. Horm Behav 2023; 152:105365. [PMID: 37119610 DOI: 10.1016/j.yhbeh.2023.105365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
An individual's social environment can have widespread effects on their physiology, including effects on oxidative stress and hormone levels. Many studies have suggested that variation in oxidative stress experienced by individuals of different social statuses might be due to endocrine differences, however, few studies have evaluated this hypothesis. Here, we assessed whether a suite of markers associated with oxidative stress in different tissues (blood/plasma, liver, and gonads) had social status-specific relationships with circulating testosterone or cortisol levels in males of a cichlid fish, Astatotilapia burtoni. Across all fish, blood DNA damage (a global marker of oxidative stress) and gonadal synthesis of reactive oxygen species [as indicated by NADPH-oxidase (NOX) activity] were lower when testosterone was high. However, high DNA damage in both the blood and gonads was associated with high cortisol in subordinates, but low cortisol in dominants. Additionally, high cortisol was associated with greater production of reactive oxygen species (greater NOX activity) in both the gonads (dominants only) and liver (dominants and subordinates). In general, high testosterone was associated with lower oxidative stress across both social statuses, whereas high cortisol was associated with lower oxidative stress in dominants and higher oxidative stress in subordinates. Taken together, our results show that differences in the social environment can lead to contrasting relationships between hormones and oxidative stress.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Shana E Border
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA; Illinois State University, School of Biological Sciences, Normal, IL, USA
| | | | - Isobel Bolitho
- University of Manchester, Department of Earth and Environmental Sciences, Manchester, UK
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA; Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
7
|
Beattie UK, Rosen ES, Fefferman N, Romero LM. House sparrows prioritize skin repair over constitutive innate immunity during long-term chronic stress. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:464-473. [PMID: 36918745 DOI: 10.1002/jez.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
The reactive scope model was created to address two major unanswered questions in stress physiology: how and when does the adaptive acute stress response turn into harmful chronic stress? Previous studies suggest that immunoenhancement should occur in reactive homeostasis (acute stress) and immunosuppression should occur in homeostatic overload (chronic stress). We used this dichotomy of immune function to further elucidate the transition from acute to chronic stress by treating house sparrows (Passer domesticus) with different intensities of chronic stress and then monitoring their immune function. By varying the number of stressors given per day and the length of chronic stress bouts over a period of 6 months, we produced four treatment groups: high, medium, and low stress, and captivity-only. We tracked immunity through the bacterial killing assay and monitored healing of a 4 mm skin biopsy punch. We hypothesized that higher-stress birds would repair their skin more slowly and have lower bacterial killing capacity. The opposite was true-high-stress birds initially repaired their skin fastest. Additionally, all birds dramatically reduced bacterial killing capacity after the biopsy and increased food-derived uric acid, suggesting increased energy acquisition and a shift in immune resources to a more immediate concern (healing). Once healing finished, only the high-stress birds were unable to recover circulating immune function, suggesting that the combination of high stress and an immune challenge pushed these birds into homeostatic overload. Prioritizing healing over other immunological processes might be the best defense for a bird in its natural habitat.
Collapse
Affiliation(s)
- Ursula K Beattie
- Department of Biology, Tufts University, Massachusetts, Medford, USA
| | - Emma S Rosen
- Department of Biology, Tufts University, Massachusetts, Medford, USA
| | - Nina Fefferman
- Department of Ecology and Evolutionary Biology and Department of Mathematics, University of Tennessee, Tennessee, Knoxville, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Massachusetts, Medford, USA
| |
Collapse
|
8
|
Hartzheim AM, Terry JL, Field EK, Haydt NT, Poo S, Neuman-Lee LA. Immune and stress physiology of two captively-housed tortoise species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:220-233. [PMID: 36450699 DOI: 10.1002/jez.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Ecoimmunology affords us the ability to better understand immunological processes through consideration of external factors, such as the thermal microenvironment. This consideration is imperative when examining the immunological processes of ectothermic organisms like reptiles. Reptiles uniquely rely heavily on their innate immune function but remain poorly understood in immunological studies. In this study, we examined innate immunity in two zoo-housed tortoise species, the Indian star tortoise (Geochelone elegans, Schoepff, 1795) and northern spider tortoise (Pyxis arachnoides brygooi, Vuillemin & Domergue, 1972). Bacterial killing assays (BKAs) were optimized and used to assess the monthly immunocompetence of these tortoises to three different bacteria: Escherichia coli, Salmonella enterica, and Staphylococcus aureus. We evaluated differences in blood biochemistry values (lactate and glucose) among months and species as well as fecal corticosterone (CORT) between species. Lastly, we examined the potential influences of individual thermal microenvironments on bactericidal ability. Both G. elegans and P. a. brygooi demonstrated immunocompetence against all bacterial challenges, but only bactericidal ability against E. coli varied over months. Optimal BKA serum dilutions, blood glucose levels, and fecal CORT concentrations differed between the two species. Finally, there was evidence that the thermal microenvironment influenced the tortoises' bactericidal ability against E. coli. Through use of nonmodel organisms, such as tortoises, we are given insight into the inner workings of innate immunity and a better understanding of the complexities of the vertebrate immune system.
Collapse
Affiliation(s)
- Alyssa M Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Jennifer L Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Natalie T Haydt
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Sinlan Poo
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
9
|
Padrones MN, Cid FD, Chediack JG. Effects of corticosterone administration on the body condition and blood parameters of the house sparrow, Passer domesticus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:369-382. [PMID: 36772870 DOI: 10.1002/jez.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Glucocorticoids are steroid hormones produced by the adrenal glands and released into the bloodstream in response to stressful situations. In birds, corticosterone (CORT) is the main glucocorticoid released under stress. Throughout their lives, animals in nature are continually exposed to noxious stimuli known as stressful events. Any alteration of homeostatic stability is a stressful situation and this alteration triggers physiological changes to restore homeostasis. Glucocorticoids are one of the components of the complex set of physiological and behavioral responses to stress. In this work, we use CORT supplied in drinking water to evaluate its effect in blood parameters and physiology in house sparrows (Passer domesticus). To accomplish this, P. domesticus were administered three different doses of CORT in drinking water for 72 h. Body mass, organ mass, pectoral muscle mass, leg muscle mass, and blood parameters (CORT, triglycerides, glucose and uric acid, heterophils/lymphocytes ratio, hematocrit, and serum protein profile) were determined before and after CORT treatment. A 15% decrease in body mass with a significant decrease in pectoral mass were observed after the higher CORT treatment, as well as a decrease in the plasma concentration of uric acid. Lastly, we found a reversal of the heterophils/lymphocytes ratio and a decrease in hematocrit. It was possible to establish first data for baseline and CORT-alteration values in serum protein profile for P. domesticus. Baseline and altered values of blood parameters and serum protein profile could be an important tool in field ecology because they provide important data to assess the physiological condition in wild birds.
Collapse
Affiliation(s)
- Marcelo N Padrones
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, San Luis, Argentina
- Área de Biología, Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Fabricio D Cid
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, San Luis, Argentina
- Área de Biología, Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Juan G Chediack
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET, San Luis, Argentina
- Área de Biología, Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
10
|
Andrews CP. On the use of body mass measures in severity assessment in laboratory passerine birds. Anim Welf 2022. [DOI: 10.7120/09627286.31.1.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Criteria for assessing the severity of scientific procedures in laboratory rodents include the loss of body mass. However, guidance is limited for passerine birds and application of criteria developed for mammals risks poor welfare decisions. Here, I ask whether, and how, body mass
criteria could be incorporated into laboratory welfare assessment of passerines. Passerine birds strategically adjust their body mass to minimise combined mortality risk from starvation and predation. A systematic literature review found that strategic mass changes can be sizeable (sometimes
> 10%) even over short timescales. Many aspects of a bird's current or past environment, including husbandry and experimental procedures, may alter perceived starvation or predation risks and thus drive strategic mass change via evolved mechanisms. Therefore, body mass criteria used for
rodents may be too stringent for passerines, potentially leading to over-estimated severity. Strategic mass changes might obscure those stemming from experimental interventions yet could also offer insights into whether birds perceive an intervention or altered husbandry as a threat. Mass
criteria for severity assessment should be species- and context-specific in order to balance needs for refinement and reduction. To guide the development of appropriate criteria, a future research priority is for greater data collection and sharing based on standardised routine monitoring
of mass variation under a representative range of husbandry conditions and procedures.
Collapse
Affiliation(s)
- CP Andrews
- University of Stirling, Division of Psychology, Faculty of Natural Sciences, Stirling FK9 4LA, UK
| |
Collapse
|
11
|
Bauer C, Oranges M, Firempong G, Romero LM. Corticosterone alters body weight, but not metabolites, during chronic stress. Physiol Biochem Zool 2022; 95:465-473. [DOI: 10.1086/721297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Population density mediates induced immune response, but not physiological condition in a well-adapted urban bird. Sci Rep 2022; 12:9150. [PMID: 35650222 PMCID: PMC9160275 DOI: 10.1038/s41598-022-12910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Thriving under high population density is considered a major feature of urban exploiter species. Nevertheless, population density appears to be a surprisingly overlooked factor in urban ecology studies. High population numbers observed in urban species might promote pathogen transmission and negatively affect health or condition, thus requiring investments in immunocompetence. The feral pigeon Columba livia domestica is an example of a successful city-dweller, found in great abundance in large cities across the globe. We investigated the effects of population density on induced immune response (phytohaemagglutinin skin test) and body condition (blood haemoglobin concentration and size-corrected body mass) in 120 feral pigeons, captured along population density gradient in Łódź (central Poland). We found that stronger immune response was associated with higher population density, but was not related to physiological condition and physiological stress (heterophil/lymphocyte ratio). Moreover, condition indices were not associated with population density. However, since pigeon population density was highly correlated with the level of habitat urbanization, we cannot exclude that any density-dependent effects may be mediated by habitat variation. Our results indicate that urban environment, via population density, might exert different selective pressures on immunocompetence and body condition in this successful urban exploiter.
Collapse
|
13
|
Brandl HB, Pruessner JC, Farine DR. The social transmission of stress in animal collectives. Proc Biol Sci 2022; 289:20212158. [PMID: 35538776 PMCID: PMC9091854 DOI: 10.1098/rspb.2021.2158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 01/04/2023] Open
Abstract
The stress systems are powerful mediators between the organism's systemic dynamic equilibrium and changes in its environment beyond the level of anticipated fluctuations. Over- or under-activation of the stress systems' responses can impact an animal's health, survival and reproductive success. While physiological stress responses and their influence on behaviour and performance are well understood at the individual level, it remains largely unknown whether-and how-stressed individuals can affect the stress systems of other group members, and consequently their collective behaviour. Stressed individuals could directly signal the presence of a stressor (e.g. via an alarm call or pheromones), or an acute or chronic activation of the stress systems could be perceived by others (as an indirect cue) and spread via social contagion. Such social transmission of stress responses could then amplify the effects of stressors by impacting social interactions, social dynamics and the collective performance of groups. As the neuroendocrine pathways of the stress response are highly conserved among vertebrates, transmission of physiological stress states could be more widespread among non-human animals than previously thought. We therefore suggest that identifying the extent to which stress transmission modulates animal collectives represents an important research avenue.
Collapse
Affiliation(s)
- Hanja B. Brandl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Jens C. Pruessner
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Damien R. Farine
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
14
|
Beattie UK, Ysrael MC, Lok SE, Romero LM. The Effect of a Combined Fast and Chronic Stress on Body Mass, Blood Metabolites, Corticosterone, and Behavior in House Sparrows ( Passer domesticus). THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:19-31. [PMID: 35370496 PMCID: PMC8961712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
One aspect of the Reactive Scope Model is wear-and-tear, which describes a decrease in an animal's ability to cope with a stressor, typically because of a period of chronic or repeated stressors. We investigated whether wear-and-tear due to chronic stress would accelerate a transition from phase II to phase III of fasting. We exposed house sparrows (Passer domesticus) to three weeks of daily fasts combined with daily intermittent repeated acute stressors to create chronic stress, followed by two weeks of daily fasts without stressors. We measured circulating glucose, β-hydroxybutyrate (a ketone), and uric acid in both fasted and fed states. We expected birds to be in phase II (high fat breakdown) in a fasted state, but if wear-and-tear accumulated sufficiently, we hypothesized a shift to phase III (high protein breakdown). Throughout the experiment, the birds exhibited elevated β-hydroxybutyrate when fasting but no changes in circulating uric acid, indicating that a transition to phase III did not occur. In both a fasted and fed state, the birds increased glucose mobilization throughout the experiment, suggesting wear-and-tear occurred, but was not sufficient to induce a shift to phase III. Additionally, the birds exhibited a significant decrease in weight, no change in corticosterone, and a transient decrease in neophobia with chronic stress. In conclusion, the birds appear to have experienced wear-and-tear, but our protocol did not accelerate the transition from phase II to phase III of fasting.
Collapse
Affiliation(s)
- Ursula K. Beattie
- To whom all correspondence should be addressed:
Ursula Beattie, Department of Biology, Tufts University, 200 College Avenue,
Medford, MA 02155; ; ORCID iD:
https://orcid.org/0000-0002-7131-3712
| | | | | | | |
Collapse
|
15
|
Shimamoto T. Validation and utility of hair cortisol analysis as a measure of long-term physiological stress in the Pallas's squirrel Callosciurus erythraeus. Gen Comp Endocrinol 2022; 316:113944. [PMID: 34826428 DOI: 10.1016/j.ygcen.2021.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
In various mammalian species, there has been an increase in the use of hair cortisol analysis to evaluate long-term stress. This trend is because of some advantages relative to the standard tools, such as hormone analysis using blood, urine, or feces. Here, I carried out assay validation and adrenocorticotrophic hormone (ACTH) challenge to measure long-term stress in Pallas's squirrel Callosciurus erythraeus. In addition, I investigated the effects of sex, body condition, season, and reproductive conditions on hair cortisol concentrations (HCC) in free-living individuals. The assay validation was reported in this study. Hair cortisol concentrations in squirrels given repeated ACTH injections were significantly higher than those that received a single-ACTH injection and a saline injection. I found a negative effect of body condition on adult HCC. In contrast, body condition had a positive effect on HCC in juveniles. I found no effects of other factors in either adult or juvenile squirrels. Furthermore, although I investigated whether reproductive conditions, such as pregnancy, lactation, and non-breeding in females or testis size in males, affected HCC, I found that there were no effects of reproductive conditions. This study validated the assay and utility of hair cortisol analysis to assess long-term stress, and continuous investigation of the relationship between HCC and fitness is important for determining whether hair cortisol analysis is a reliable method for estimating population health in Pallas's squirrels.
Collapse
Affiliation(s)
- Tatsuki Shimamoto
- Department of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
16
|
Norte AC, Araújo PM, Augusto L, Guímaro H, Santos S, Lopes RJ, Núncio MS, Ramos JA, Lopes de Carvalho I. Effects of stress exposure in captivity on physiology and infection in avian hosts: no evidence of increased Borrelia burgdorferi s.l. infectivity to vector ticks. MICROBIAL ECOLOGY 2022; 83:202-215. [PMID: 33758979 DOI: 10.1007/s00248-021-01738-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Exposure to environmental stressors, an increasingly recurring event in natural communities due to anthropogenic-induced environmental change, profoundly impacts disease emergence and spread. One mechanism through which this occurs is through stress-induced immunosuppression increasing disease susceptibility, prevalence, intensity and reactivation in hosts. We experimentally evaluated how exposure to stressors affected both the physiology of avian hosts and the prevalence of the zoonotic bacteria Borrelia burgdorferi sensu lato (s.l.), in two model species-the blackbird Turdus merula and the robin Erithacus rubecula captured in the wild, using xenodiagnoses and analysis of skin biopsies and blood. Although exposure to stressors in captivity induced physiological stress in birds (increased the number of circulating heterophils), there was no evidence of increased infectivity to xenodiagnostic ticks. However, Borrelia detection in the blood for both experimental groups of blackbirds was higher by the end of the captivity period. The infectivity and efficiency of transmission were higher for blackbirds than robins. When comparing different methodologies to determine infection status, xenodiagnosis was a more sensitive method than skin biopsies and blood samples, which could be attributed to mild levels of infection in these avian hosts and/or dynamics and timing of Borrelia infection relapses and redistribution in tissues.
Collapse
Affiliation(s)
- A C Norte
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - P M Araújo
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Porto, Portugal
| | - L Augusto
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Department of Veterinary Sciences, University of Évora, Évora, Portugal
| | - H Guímaro
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - S Santos
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - R J Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Porto, Portugal
| | - M S Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - J A Ramos
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - I Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
17
|
Edwards PD, Boonstra R, Bosson CO, Jane Harms N, Kukka PM, Willis CKR, Jung TS. Effects of capture on stress-axis measures in endangered little brown bats (Myotis lucifugus). J Mammal 2021. [DOI: 10.1093/jmammal/gyab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Little brown bats (Myotis lucifugus) are a widely distributed species in North America that have been decimated by the fungal disease white-nose syndrome. As such, little brown bats are the focus of monitoring and research initiatives that often include capturing and handling free-ranging individuals. We examined the stress response of 198 adult female little brown bats after being captured from three bat houses, during the summer. Our objective was to inform best practices to researchers capturing and handling bats in the wild. We compared the stress response among bats held for <3 min (baseline), 15–30 min, or >30 min, and then among bats held alone or in a group with conspecifics. We measured the levels of plasma total and free cortisol, maximum corticosteroid binding capacity (MCBC), and blood glucose. Relative to baseline, total and free cortisol levels were significantly higher in bats held for 15–30 min and higher still in those held for > 30 min. Blood glucose levels were elevated after >30 min of holding. MCBC levels showed no differences among holding times. We detected a weak effect of social holding condition, with solitary-held bats having lower total cortisol levels than group-held bats, but MCBC, free cortisol, and blood glucose levels showed no effect of social holding condition. Our findings demonstrate that capture time should be minimized and suggest that little brown bats should be handled and released within 30 min of capture as means of reducing stress. Further, solitary holding did not appear to increase stress measures, which supports holding bats individually after capture, instead of in groups, to reduce risk of pathogen and parasite transmission.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON, Canada
| | - Curtis O Bosson
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON, Canada
| | - N Jane Harms
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
| | - Piia M Kukka
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
| | - Craig K R Willis
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, YT, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Mindus C, van Staaveren N, Bharwani A, Fuchs D, Gostner JM, Kjaer JB, Kunze W, Mian MF, Shoveller AK, Forsythe P, Harlander-Matauschek A. Ingestion of Lactobacillus rhamnosus modulates chronic stress-induced feather pecking in chickens. Sci Rep 2021; 11:17119. [PMID: 34429482 PMCID: PMC8384842 DOI: 10.1038/s41598-021-96615-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Feather pecking (FP) is a stress-induced neuropsychological disorder of birds. Intestinal dysbiosis and inflammation are common traits of these disorders. FP is, therefore, proposed to be a behavioral consequence of dysregulated communication between the gut and the brain. Probiotic bacteria are known to favorably modulate the gut microbiome and hence the neurochemical and immune components of the gut-brain axis. Consequently, probiotic supplementation represents a promising new therapeutic to mitigate widespread FP in domestic chickens. We monitored FP, gut microbiota composition, immune markers, and amino acids related to the production of neurochemicals in chickens supplemented with Lactobacillus rhamnosus or a placebo. Data demonstrate that, when stressed, the incidence of FP increased significantly; however, L. rhamnosus prevented this increase. L. rhamnosus supplementation showed a strong immunological effect by increasing the regulatory T cell population of the spleen and the cecal tonsils, in addition to limiting cecal microbiota dysbiosis. Despite minimal changes in aromatic amino acid levels, data suggest that catecholaminergic circuits may be an interesting target for further studies. Overall, our findings provide the first data supporting the use of a single-strain probiotic to reduce stress-induced FP in chickens and promise to improve domestic birds' welfare.
Collapse
Affiliation(s)
- Claire Mindus
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Aadil Bharwani
- Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Joergen B Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Wolfgang Kunze
- Brain-Body Institute, St. Joseph's Healthcare, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - M Firoz Mian
- Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Paul Forsythe
- Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | | |
Collapse
|
19
|
Vanni L, Cerritelli G, Turchi A, Giunchi D. Migratory restlessness and stopover duration in Wood sandpiper Tringa glareola. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1878282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lorenzo Vanni
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Alessandro Turchi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| |
Collapse
|
20
|
Abstract
Whilst the immune system often varies seasonally and exhibits differences between males and females, the general patterns in seasonality and sex differences across taxa have remained controversial. Birds are excellent model organisms to assess these patterns, because the immune system of many species is well characterised. We conducted a meta-analysis using 41 wild bird species from 24 avian families to investigate sex differences and seasonal (breeding/non-breeding) variations in immune status, including white blood cell counts, phytohaemagglutinin (PHA) test, bacteria-killing ability (BKA), haemolysis and haemagglutination assays. We found male-biased macrophage concentration, BKA and haemolysis titers, but only during the breeding season. Sex-specific heterophil concentrations, heterophil/lymphocyte ratios and PHA responses differed between breeding and non-breeding, suggesting larger changes in males than in females. Importantly, sex differences in immune status are stronger during the breeding period than during the non-breeding period. Taken together, our study suggests that both seasonal variation and sex differences in immune system are common in birds, although their associations are more complex than previously thought.
Collapse
|
21
|
de Bruijn R, Romero LM. Chronic stress reverses enhanced neophobia following an acute stressor in European starlings. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:265-274. [PMID: 33231919 DOI: 10.1002/jez.2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022]
Abstract
Neophobia is an animal's avoidance of novelty. Animals tend to respond to novel objects by increasing their latency to approach the objects, and they eventually habituate after repeated exposure by attenuating this increased approach latency. Interestingly, the physiological stress response does not appear to have a causal link to neophobia, although acute stress can prevent animals from habituating to novel objects, possibly through a permissive effect. Chronic stress can induce an anxiety-like state in animals, while often disrupting the ability to respond to acute stress. We thus hypothesized that chronic stress may increase neophobia and tested this by inducing chronic stress in wild-caught European starlings (Sturnus vulgaris). Four distinct anthropogenic stressors were administered daily for 30 min each in a randomized order for 21 days. We then evaluated whether exposure to chronic stress altered the latency to approach a novel object placed on or near a food dish presented after overnight fasting. Chronically stressed birds and nonstressed controls exhibited similar initial neophobic responses to novel objects and showed similar habituation in response to repeated exposure. However, when birds were exposed to 15 min of restraint before repeated exposure to the same object, habituation was eliminated in control birds (i.e., they continued to respond with neophobia), whereas chronically stressed birds continued to show habituation as measured by attenuated approach latencies. These results demonstrate that an acute stress response (restraint) has a different impact on neophobia depending upon whether the bird is or is not concurrently exposed to chronic stress.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
22
|
Gormally BMG, Romero LM. What are you actually measuring? A review of techniques that integrate the stress response on distinct time‐scales. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13648] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Neuman-Lee LA, Hudson SB, Webb AC, French SS. Investigating the relationship between corticosterone and glucose in a reptile. ACTA ACUST UNITED AC 2020; 223:jeb.203885. [PMID: 31767736 DOI: 10.1242/jeb.203885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
The glucocorticoid hormone corticosterone (CORT) has classically been used in ecophysiological studies as a proxy for stress and energy mobilization, but rarely are CORT and the energy metabolites themselves concurrently measured. To examine CORT's role in mobilizing glucose in a wild reptile, we conducted two studies. The first study measured natural baseline and stress-induced blood-borne CORT and glucose levels in snakes during spring emergence and again when snakes return to the denning sites in autumn. The second study manipulated the hypothalamic-pituitary-adrenal (HPA) axis in male snakes in the autumn by taking a baseline blood sample, then subjecting individuals to one of five treatments (no injection, saline, CORT, adrenocorticotropin hormone and metyrapone). Subsequent samples were taken at 30 and 60 min. In both studies, we found that glucose levels do increase with acute stress, but that the relationship was not directly related to CORT elevation. In the second study, we found that none of the HPA axis manipulations directly affected blood glucose levels, further indicating that CORT may play a complex but not direct role in glucose mobilization in snakes. This study highlights the need for testing mechanisms in wild organisms by combining in situ observations with manipulative studies.
Collapse
Affiliation(s)
- Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Alison C Webb
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
24
|
Kozlowski CP, Clawitter H, Guglielmino A, Schamel J, Baker S, Franklin AD, Powell D, Coonan TJ, Asa CS. Factors Affecting Glucocorticoid and Thyroid Hormone Production of Island Foxes. J Wildl Manage 2019. [DOI: 10.1002/jwmg.21808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Corinne P. Kozlowski
- Department of Reproductive and Behavioral SciencesSaint Louis Zoo St. Louis MO 63110 USA
| | - Helen Clawitter
- Department of Reproductive and Behavioral SciencesSaint Louis Zoo St. Louis MO 63110 USA
| | - Angela Guglielmino
- Department of Ecology and Evolutionary BiologyUniversity of California Los Angeles CA 90095 USA
| | | | - Stacy Baker
- Channel Islands National Park Ventura CA 93001 USA
| | | | - David Powell
- Department of Reproductive and Behavioral SciencesSaint Louis Zoo St. Louis MO 63110 USA
| | | | - Cheryl S. Asa
- Department of Reproductive and Behavioral SciencesSaint Louis Zoo St. Louis MO 63110 USA
| |
Collapse
|
25
|
Baloun DE, Webber QMR, McGuire LP, Boyles JG, Shrivastav A, Willis CKR. Testing the "Fasting While Foraging" Hypothesis: Effects of Recent Feeding on Plasma Metabolite Concentrations in Little Brown Bats ( Myotis lucifugus). Physiol Biochem Zool 2019; 92:373-380. [PMID: 31120325 DOI: 10.1086/704080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plasma metabolite concentrations can be used to understand nutritional status and foraging behavior across ecological contexts including prehibernation fattening, migration refueling, and variation in foraging habitat quality. Generally, high plasma concentrations of the ketone β-hydroxybutyrate, a product of fat catabolism, indicate fasting, while triglycerides indicate recent feeding and fat accumulation. In recent studies of insectivorous bats, triglyceride concentration increased after feeding as expected, but β-hydroxybutyrate also unexpectedly increased rather than decreased. An aerial-hawking foraging strategy is energetically demanding, and thus it has been hypothesized that foraging by insectivorous bats requires catabolism of stored fat. We tested this hypothesis by quantifying plasma β-hydroxybutyrate and triglyceride concentration following feeding in little brown bats (Myotis lucifugus) that were temporarily housed in individual cages to prevent flight. We provided a fixed amount of food and collected blood samples at different intervals after feeding to produce variation in plasma metabolite concentrations. Plasma triglyceride concentration responded as predicted, but similar to previous studies and contrary to our prediction, when flight was eliminated plasma β-hydroxybutyrate concentration responded similarly to triglyceride. Thus, it is unlikely that the unexpected plasma β-hydroxybutyrate patterns observed in previous studies were related to flight. The mechanism underlying this unexpected pattern remains unknown, but the response has been consistent in all studies to date. Thus, plasma metabolite analysis provides an effective tool for studies of nutritional status, although more work is needed to understand why insectivorous bats respond differently than other taxa.
Collapse
|
26
|
Will A, Wynne‐Edwards K, Zhou R, Kitaysky A. Of 11 candidate steroids, corticosterone concentration standardized for mass is the most reliable steroid biomarker of nutritional stress across different feather types. Ecol Evol 2019; 9:11930-11943. [PMID: 31695898 PMCID: PMC6822065 DOI: 10.1002/ece3.5701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
Measuring corticosterone in feathers has become an informative tool in avian ecology, enabling researchers to investigate carry-over effects and responses to environmental variability. Few studies have, however, explored whether corticosterone is the only hormone expressed in feathers and is the most indicative of environmental stress. Essential questions remain as to how to compare hormone concentrations across different types of feathers and whether preening adds steroids, applied after feather growth.We used liquid chromatography coupled to tandem mass spectrometry to quantify a suite of 11 steroid hormones in back, breast, tail, and primary feathers naturally grown at overlapping time intervals by rhinoceros auklet Cerorhinca monocerata captive-reared fledglings and wild-caught juveniles. The captive-reared birds were raised on either a restricted or control diet. Measured steroids included intermediates in the adrenal steroidogenesis pathway to glucocorticoids and the sex steroids pathway to androgens and estrogens.Corticosterone was detected in the majority of feathers of each type. We also detected cortisone in back feathers, androstenedione in breast feathers, and testosterone in primary feathers. Captive fledglings raised on a restricted diet had higher concentrations of corticosterone in all four feather types than captive fledglings raised on a control diet. Corticosterone concentrations were reliably repeatable across feather types when standardized for feather mass, but not for feather length. Of the seven hormones looked for in uropygial gland secretions, only corticosterone was detected in one out of 23 samples.We conclude that corticosterone is the best feather-steroid biomarker for detection of developmental nutritional stress, as it was the only hormone to manifest a signal of nutritional stress, and that exposure to stress can be compared among different feather types when corticosterone concentrations are standardized by feather mass.
Collapse
Affiliation(s)
- Alexis Will
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| | | | - Ruokun Zhou
- Veterinary Medicine & Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlberta
| | - Alexander Kitaysky
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| |
Collapse
|
27
|
Gormally BMG, Estrada R, Yin H, Romero LM. Recovery from repeated stressors: Physiology and behavior are affected on different timescales in house sparrows. Gen Comp Endocrinol 2019; 282:113225. [PMID: 31330125 DOI: 10.1016/j.ygcen.2019.113225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
For decades, researchers across disciplines have been captivated by classifying, diagnosing, and avoiding the consequences of chronic stress. Despite the vast body of literature this has generated, we still lack the ability to predict which individuals or populations may be susceptible to stress-related pathologies. One critical unanswered question is whether the impacts of repeated stressors are reversible, or if instead they permanently alter an individual. In this study, we exposed house sparrows (Passer domesticus) to 6 days of random, repeated stressors, permitted them 0, 1, 3, or 6 days to recover, and then assessed changes in their body mass, hypothalamic-pituitaryadrenal (HPA) axis (baseline, stress-induced corticosterone, negative feedback strength), immune function, uric acid concentrations, DNA damage levels, and perch hopping activity. Body mass did not vary between groups after recovery. We found that the HPA axis and perch hopping were not significantly impacted by the 6 days of stressors, but that uric acid and DNA damage increased. Short recovery periods tended to negatively affect the HPA axis and reduced uric acid levels, but these were reversed with longer recovery periods. Following the recovery periods, the birds experienced an additional 6 days of random stressors and their responses were assessed again. All recovery times reduced perch hopping and immune function, but paradoxically, DNA damage was highest in the birds that had the longest amount of time to recover. These results show that recovery time affects responses to subsequent chronic stress in complex ways, and highlight the importance of multimodal, interdisciplinary approaches to studying stress physiology.
Collapse
Affiliation(s)
| | - Rodolfo Estrada
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Hannah Yin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
28
|
MacDougall-Shackleton SA, Bonier F, Romero LM, Moore IT. Glucocorticoids and "Stress" Are Not Synonymous. Integr Org Biol 2019; 1:obz017. [PMID: 33791532 PMCID: PMC7671118 DOI: 10.1093/iob/obz017] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reference to glucocorticoids as “stress hormones” has been growing in prevalence in the literature, including in comparative and environmental endocrinology. Although glucocorticoids are elevated in response to a variety of stressors in vertebrate animals, the primary functions of glucocorticoids are not responding to stressors and they are only one component of complex suite of physiological and behavioral responses to stressors. Thus, the use of the short-hand phrase “stress hormone” can be misleading. Further, simply measuring glucocorticoids is not equivalent to measuring a stress response, nor is manipulating glucocorticoids equivalent to exposing an animal to a stressor. In this commentary we highlight the problems with using functional names for hormones, and of treating cortisol or corticosterone as synonymous with stress. We provide recommendations to add clarity to the presentation of research on this topic, and to avoid conflation of glucocorticoids with stressors and the stress response in the design of experiments.
Collapse
Affiliation(s)
| | - F Bonier
- Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - L M Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - I T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Gormally BMG, Ramos S, Yin H, Romero LM. Recovery periods during repeated stress impact corticosterone and behavioral responses differently in house sparrows. Horm Behav 2019; 112:81-88. [PMID: 30986400 DOI: 10.1016/j.yhbeh.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/10/2023]
Abstract
A number of studies have shown that chronic stress can negatively impact both physiology and behavior in a variety of organisms. What has yet to be extensively explored is whether these changes permanently alter an animal's functioning, or if they can be reversed. In this study, we used wild-caught house sparrows (Passer domesticus) to assess how recovery periods influence the physiological and behavioral impacts of an initial four days and subsequent four days of repeated stressors. Birds were randomly assigned to a recovery group and either experienced 0, 24, or 72 h of recovery between the two sets of stressors (cage rolling and cage tapping). We measured the regulation of the hypothalamic pituitary adrenal (HPA) axis by quantifying baseline and stress-induced corticosterone as well as negative feedback strength. We also assessed behavior using neophobia trials to measure how birds altered their approach towards novel objects and their overall activity. Both behavior and corticosterone responses were assessed before the experiment, after the recovery time, and following the final 4 days of stressors. We found that birds that experienced 24 h of recovery had reduced stress-induced corticosterone, but enhanced negative feedback relative to the pre-experiment sample. Additionally, 4 days of stressors was enough to significantly reduce approach latency towards novel objects; however, pre-experiment levels returned with longer periods of recovery. Finally, recovery time did not significantly influence responses to the second 4 days of stressors. Our results indicate that brief recovery periods partially ameliorate the hormonal and behavioral effects of repeated stress.
Collapse
Affiliation(s)
| | - Sarah Ramos
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Hannah Yin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
30
|
Gao S, Deviche PJ. The causative effects of corticosterone on innate immunity during the stress response in the House Sparrow, Passer domesticus. Gen Comp Endocrinol 2019; 275:30-37. [PMID: 30721660 DOI: 10.1016/j.ygcen.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/13/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Stress-induced inhibition of innate immune activity has been observed in a variety of wild birds and may increase chances of infection because this activity constitutes the first line of defense against pathogens. We previously reported that the transient elevation of plasma corticosterone (CORT; the primary avian glucocorticoid) that occurs during stress is necessary for stress-induced suppression of natural antibody-mediated, complement-mediated, and bactericidal activity. Here, we further investigated the regulatory role of CORT during this suppression. To this end, we treated House Sparrows (Passer domesticus) with mitotane to block endogenous CORT production, administered CORT at one of three doses (HI: 1.34 mg/kg; LO: 1.00 mg/kg; CON: vehicle), and assessed natural antibody-mediated, complement-mediated, and bactericidal activity during acute stress induced by handling and restraint. Mitotane administration eliminated the endogenous plasma CORT increase that normally takes place during stress, and corticosterone treatment increased plasma CORT to levels similar to those measured in intact birds during acute stress. As predicted, mitotane-treated birds receiving CON injections did not exhibit stress-induced suppression of complement-mediated and bactericidal activity, and CORT administration at both LO and HI doses restored this suppression. Contrary to expectations, mitotane-treated birds receiving CON injections demonstrated stress-induced suppression of natural antibody-mediated activity. Furthermore, CORT administration did not influence this parameter. These results suggest that stress inhibits innate immune activity through both CORT-dependent and CORT-independent mechanisms, but the contribution of these mechanisms can vary. This variation may result from effects of environmental factors, the identity and role of which warrant further research.
Collapse
Affiliation(s)
- Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Pierre J Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
31
|
Roast MJ, Aulsebrook AE, Fan M, Hidalgo Aranzamendi N, Teunissen N, Peters A. Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective. Physiol Biochem Zool 2019; 92:140-151. [PMID: 30689489 DOI: 10.1086/702310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Investment in immune function can be costly, and life-history theory predicts trade-offs between immune function and other physiological demands. Environmental heterogeneity may constrain or change the optimal strategy and thereby alter baseline immune function (possibly mediated by stress responses). We tested several hypotheses relating variation in climatic, ecological, and social environments to chronic stress and levels of baseline innate immunity in a wild, cooperatively breeding bird, the purple-crowned fairy-wren (Malurus coronatus coronatus). From samples collected biannually over 5 yr, we quantified three indexes of constitutive innate immune function (haptoglobin/PIT54, natural antibodies, complement activity) and one index of chronic stress (heterophil-lymphocyte ratio; <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>513</mml:mn><mml:mtext>-</mml:mtext><mml:mn>647</mml:mn></mml:mrow></mml:math> ). Using an information-theoretic and multimodel inference statistical approach, we found that habitat quality and social group size did not affect any immune index, despite hypothesized links to resource abundance and parasite pressure. Rather, short-term variation in temperature and rainfall was related to immune function, while overall differences between seasons were small or absent, despite substantial seasonal variation in climate. Contrary to our expectation, we found no evidence that physiological stress mediated any effects of short-term climatic variables on immune indexes, and alternative mechanisms may be involved. Our results may be interpreted from the perspective of reactive scope models, whereby predictive homeostasis maintains standing immune function relative to long-term demands, while short-term environmental change, being less predictable, has a greater influence on baseline immune function.
Collapse
|
32
|
Gormally BMG, Fuller R, McVey M, Romero LM. DNA damage as an indicator of chronic stress: Correlations with corticosterone and uric acid. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:116-122. [PMID: 30336278 DOI: 10.1016/j.cbpa.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023]
Abstract
Corticosterone does not change in consistent ways across species and contexts, making it challenging to use as an indicator of chronic stress. We assessed DNA damage as a potential metric that could be a more integrative stress measurement with direct links to health. We captured free-living house sparrows, took an immediate blood sample, and transferred them to the laboratory, exposing them to the chronic stress of captivity. Biweekly blood and weight samples were then taken for 4 weeks. We immediately assessed DNA damage in red blood cells using the comet assay and later quantified corticosterone. Uric acid was analyzed in a separate group of birds. We found that birds initially lost, but began to regain weight over the course of captivity. DNA damage peaked within the first 10 days of captivity, and mostly remained elevated. However, the cellular distribution of damage changed considerably over time; most cells showed low levels of damage early, a bimodal distribution of high and low DNA damage during the peak of damage, and a wide unimodal distribution of damage at the end of the 4 weeks. Furthermore, corticosterone increased and remained elevated and uric acid decreased and remained depleted over the same period. Although both a molecular (DNA damage) and an endocrine (corticosterone) marker showed similar response profiles over the 4 weeks, they were not correlated, suggesting they reflect different aspects of the underlying physiology. These data provide convincing preliminary evidence that DNA damage has potential to be an additional indicator of chronic stress.
Collapse
Affiliation(s)
| | - Rory Fuller
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | |
Collapse
|
33
|
Gormally BMG, Romero LM. House sparrows (Passer domesticus) adjusted hypothalamic-pituitary-adrenal axis negative feedback and perch hopping activities in response to a single repeated stimulus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:597-605. [PMID: 30238686 DOI: 10.1002/jez.2229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Chronic stress has been extensively studied in both laboratory and field settings; however, a conclusive and consistent phenotype has not been reached. Several studies have reported attenuation of the hypothalamic-pituitary-adrenal axis during experiments intended to cause chronic stress. We sought to determine whether this attenuation could be indicative of habituation. Importantly, we were not investigating habituation to a specific stimulus-as many stress physiology studies do-but rather we assessed how the underlying physiology and behavior changed in response to repeated stressor presentation. We exposed house sparrows (Passer domesticus) to a single stimulus twice per day at random times for 8 consecutive days. We predicted that this period of time would be long enough for the birds to determine that these acute stressors were not, in fact, dangerous and they would, therefore, acclimate. A second control group remained undisturbed for the same period of time. We measured baseline, stress-induced, negative feedback strength, and maximum production of corticosterone as well as neophobic behavior before, during, and after this 8-day experiment. When birds experienced a stimulus for 4 days, their negative feedback strength was significantly diminished, but recovered after the second 4 days. Additionally, perch hopping decreased and recovered in this same time frame. These data suggest that distinct physiological and behavioral responses arise when house sparrows are exposed to the same stressor for several consecutive days as opposed to many stressors layered on top of one another. Furthermore, they indicate that habituation-as with chronic stress-can appear differently depending on the metric being examined.
Collapse
|
34
|
Gormally BMG, Wright-Lichter J, Reed JM, Romero LM. Physiological and behavioral responses of house sparrows to repeated stressors. PeerJ 2018; 6:e4961. [PMID: 29892510 PMCID: PMC5994160 DOI: 10.7717/peerj.4961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Despite decades of research, we still lack a complete understanding of what factors influence the transition of the necessary and adaptive acute stress response to what has become known as chronic stress. This gap in knowledge has illuminated the necessity for studies that examine the thresholds between these two sides of the stress response. Here, we determine how repeated exposure to acute stressors influences physiological and behavioral responses. In this repeated measures study, house sparrows (Passer domesticus) were exposed to a chronic stress protocol. We took physiological and behavioral measurements before, during, and after the protocol. Blood samples were used to assess four aspects of hypothalamic-pituitary-adrenal (HPA) axis function: baseline corticosterone, stress-induced corticosterone, negative feedback, and the maximal capacity to secrete corticosterone. We also assessed bacterial killing capacity and changes in uric acid concentration. Neophobia trials were used to assess behavioral changes throughout the protocol. We found no significant changes in HPA axis regulation in any of the four aspects we tested. However, we found that uric acid concentrations and neophobia significantly decreased after only four days of the chronic stress protocol, while bacterial killing capacity did not decrease until after eight days of exposure. These results indicate that different components of the stress response can be impacted by chronic stress on different timescales. Our results further indicate the importance of assessing multiple aspects of both physiology and behavior in order to understand how exposure to chronic stress may influence ability to cope with future challenges.
Collapse
Affiliation(s)
- Brenna M G Gormally
- Department of Biology, Tufts University, Medford, MA, United States of America
| | | | - J Michael Reed
- Department of Biology, Tufts University, Medford, MA, United States of America
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA, United States of America
| |
Collapse
|
35
|
Social thermoregulation as a potential mechanism linking sociality and fitness: Barbary macaques with more social partners form larger huddles. Sci Rep 2018; 8:6074. [PMID: 29666428 PMCID: PMC5904170 DOI: 10.1038/s41598-018-24373-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
Individuals with more or stronger social bonds experience enhanced survival and reproduction in various species, though the mechanisms mediating these effects are unclear. Social thermoregulation is a common behaviour across many species which reduces cold stress exposure, body heat loss, and homeostatic energy costs, allowing greater energetic investment in growth, reproduction, and survival, with larger aggregations providing greater benefits. If more social individuals form larger thermoregulation aggregations due to having more potential partners, this would provide a direct link between sociality and fitness. We conducted the first test of this hypothesis by studying social relationships and winter sleeping huddles in wild Barbary macaques (Macaca sylvanus), wherein individuals with more social partners experience greater probability of winter survival. Precipitation and low temperature increased huddle sizes, supporting previous research that huddle size influences thermoregulation and energetics. Huddling relationships were predicted by social (grooming) relationships. Individuals with more social partners therefore formed larger huddles, suggesting reduced energy expenditure and exposure to environmental stressors than less social individuals, potentially explaining how sociality affects survival in this population. This is the first evidence that social thermoregulation may be a direct proximate mechanism by which increased sociality enhances fitness, which may be widely applicable across taxa.
Collapse
|
36
|
Crocker-Buta SP, Leary CJ. Bidirectionality of hormone-behavior relationships and satellite-caller dynamics in green treefrogs. Behav Ecol 2018. [DOI: 10.1093/beheco/ary047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Coppes J, Kämmerle JL, Willert M, Kohnen A, Palme R, Braunisch V. The importance of individual heterogeneity for interpreting faecal glucocorticoid metabolite levels in wildlife studies. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13140] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joy Coppes
- Wildlife Ecology; Forest Research Institute of Baden-Wuerttemberg FVA; Freiburg Germany
| | - Jim-Lino Kämmerle
- Wildlife Ecology; Forest Research Institute of Baden-Wuerttemberg FVA; Freiburg Germany
- Wildlife Ecology and Wildlife Management; University of Freiburg; Freiburg Germany
| | - Mirjam Willert
- Wildlife Ecology; Forest Research Institute of Baden-Wuerttemberg FVA; Freiburg Germany
| | - Annette Kohnen
- Wildlife Ecology; Forest Research Institute of Baden-Wuerttemberg FVA; Freiburg Germany
| | - Rupert Palme
- Department of Biomedical Sciences; University of Veterinary Medicine; Vienna Austria
| | - Veronika Braunisch
- Wildlife Ecology; Forest Research Institute of Baden-Wuerttemberg FVA; Freiburg Germany
- Conservation Biology; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| |
Collapse
|
38
|
Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community. Proc Natl Acad Sci U S A 2018; 115:E648-E657. [PMID: 29311304 DOI: 10.1073/pnas.1709200115] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic noise is a pervasive pollutant that decreases environmental quality by disrupting a suite of behaviors vital to perception and communication. However, even within populations of noise-sensitive species, individuals still select breeding sites located within areas exposed to high noise levels, with largely unknown physiological and fitness consequences. We use a study system in the natural gas fields of northern New Mexico to test the prediction that exposure to noise causes glucocorticoid-signaling dysfunction and decreases fitness in a community of secondary cavity-nesting birds. In accordance with these predictions, and across all species, we find strong support for noise exposure decreasing baseline corticosterone in adults and nestlings and, conversely, increasing acute stressor-induced corticosterone in nestlings. We also document fitness consequences with increased noise in the form of reduced hatching success in the western bluebird (Sialia mexicana), the species most likely to nest in noisiest environments. Nestlings of all three species exhibited accelerated growth of both feathers and body size at intermediate noise amplitudes compared with lower or higher amplitudes. Our results are consistent with recent experimental laboratory studies and show that noise functions as a chronic, inescapable stressor. Anthropogenic noise likely impairs environmental risk perception by species relying on acoustic cues and ultimately leads to impacts on fitness. Our work, when taken together with recent efforts to document noise across the landscape, implies potential widespread, noise-induced chronic stress coupled with reduced fitness for many species reliant on acoustic cues.
Collapse
|
39
|
de Bruijn R, Reed JM, Romero LM. Chronic repeated exposure to weather-related stimuli elicits few symptoms of chronic stress in captive molting and non-molting European starlings (Sturnus vulgaris). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:493-503. [PMID: 29356445 DOI: 10.1002/jez.2134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/10/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Repeated exposure to acute stressors causes dramatic changes in an animal's stress physiology and the cumulative effects are often called chronic stress. Recently we showed that short-term exposure to weather-related stimuli, such as temperature change, artificial precipitation, and food restriction, cause acute responses in captive European starlings (Sturnus vulgaris). Here, we examined the effect of repeated exposure to weather-related stressors on heart rate and corticosterone (CORT) of captive non-molting and molting European starlings. Four times every day for 3 weeks, birds were exposed to either 30 min of a subtle (3°C) decrease in temperature, a short bout of simulated rain, or 2 hr of food removal. The order and time of presentation were randomly assigned on each day. We found no differences in heart rate or heart rate variability. Furthermore, there were no changes in baseline CORT levels, CORT negative feedback efficacy, or maximal adrenal capacity. Mass increased across the experimental period only in molting birds. CORT responses to restraint were decreased in both groups following treatment, suggesting the birds had downregulated their responses to acute stress. Molting birds showed evidence of suppression of the HPA axis compared with non-molting birds, which is consistent with previous research. Overall, our data show that repeated exposure to weather-related stressors does not elicit most of the symptoms normally associated with chronic stress.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - J Michael Reed
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
40
|
Selechnik D, West AJ, Brown GP, Fanson KV, Addison B, Rollins LA, Shine R. Effects of invasion history on physiological responses to immune system activation in invasive Australian cane toads. PeerJ 2017; 5:e3856. [PMID: 29018604 PMCID: PMC5633027 DOI: 10.7717/peerj.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The cane toad (Rhinella marina) has undergone rapid evolution during its invasion of tropical Australia. Toads from invasion front populations (in Western Australia) have been reported to exhibit a stronger baseline phagocytic immune response than do conspecifics from range core populations (in Queensland). To explore this difference, we injected wild-caught toads from both areas with the experimental antigen lipopolysaccharide (LPS, to mimic bacterial infection) and measured whole-blood phagocytosis. Because the hypothalamic-pituitary-adrenal axis is stimulated by infection (and may influence immune responses), we measured glucocorticoid response through urinary corticosterone levels. Relative to injection of a control (phosphate-buffered saline), LPS injection increased both phagocytosis and the proportion of neutrophils in the blood. However, responses were similar in toads from both populations. This null result may reflect the ubiquity of bacterial risks across the toad’s invaded range; utilization of this immune pathway may not have altered during the process of invasion. LPS injection also induced a reduction in urinary corticosterone levels, perhaps as a result of chronic stress.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Kerry V Fanson
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - BriAnne Addison
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Lee A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun 2017; 65:274-283. [PMID: 28546058 PMCID: PMC5537020 DOI: 10.1016/j.bbi.2017.05.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 12/13/2022] Open
Abstract
Prenatal stress exposure is associated with adverse psychiatric outcomes, including autism and ADHD, as well as locomotor and social inhibition and anxiety-like behaviors in animal offspring. Similarly, maternal immune activation also contributes to psychiatric risk and aberrant offspring behavior. The mechanisms underlying these outcomes are not clear. Offspring microglia and the pro-inflammatory cytokine interleukin-6 (IL-6), known to influence microglia, may serve as common mechanisms between prenatal stress and prenatal immune activation. To evaluate the role of prenatal IL-6 in prenatal stress, microglia morphological analyses were conducted at embryonic days 14 (E14), E15, and in adult mice. Offspring microglia and behavior were evaluated after repetitive maternal restraint stress, repetitive maternal IL-6, or maternal IL-6 blockade during stress from E12 onwards. At E14, novel changes in cortical plate embryonic microglia were documented-a greater density of the mutivacuolated morphology. This resulted from either prenatal stress or IL-6 exposure and was prevented by IL-6 blockade during prenatal stress. Prenatal stress also resulted in increased microglia ramification in adult brain, as has been previously shown. As with embryonic microglia, prenatal IL-6 recapitulated prenatal stress-induced changes in adult microglia. Furthermore, prenatal IL-6 was able to recapitulate the delay in GABAergic progenitor migration caused by prenatal stress. However, IL-6 mechanisms were not necessary for this delay, which persisted after prenatal stress despite IL-6 blockade. As we have previously demonstrated, behavioral effects of prenatal stress in offspring, including increased anxiety-like behavior, decreased sociability, and locomotor inhibition, may be related to these GABAergic delays. While adult microglia changes were ameliorated by IL-6 blockade, these behavioral changes were independent of IL-6 mechanisms, similar to GABAergic delays. This and previous work from our laboratory suggests that multiple mechanisms, including GABAergic delays, may underlie prenatal stress-linked deficits.
Collapse
|
42
|
Scheiber IBR, de Jong ME, Komdeur J, Pschernig E, Loonen MJJE, Millesi E, Weiß BM. Diel pattern of corticosterone metabolites in Arctic barnacle goslings (Branta leucopsis) under continuous natural light. PLoS One 2017; 12:e0182861. [PMID: 28787012 PMCID: PMC5546627 DOI: 10.1371/journal.pone.0182861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
Here we describe the excretion pattern of corticosterone metabolites collected from droppings in barnacle goslings (Branta leucopsis) raised under 24 hours of continuous natural light in the Arctic. In lower latitudes, circulating corticosterone peaks around waking and shows a nadir between midnight and 4:00, whereas the peak and nadir are time-delayed slightly when measuring corticosterone metabolites from droppings. Photoperiod, along with other environmental factors, helps to entrain an animal's endogenous rhythm to that of the natural world. North of the Arctic Circle, photoperiod may not be a reliable cue as light is continuously absent during the winter and continuously present during the summer. Here, for the first time, we used droppings to describe a 24-hour excretion pattern of corticosterone metabolites (CORTm). By applying circular statistics for dependent data, we found a diel rhythmic pattern even under continuous natural light. We discuss potential alternative 'Zeitgeber' that may function even in the polar regions, focusing on melatonin. We propose a line of research to measure melatonin non-invasively from droppings. We also provide a validation of the adopted enzyme immunoassay (EIA) that was originally developed for greylag geese.
Collapse
Affiliation(s)
- Isabella B. R. Scheiber
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Groningen, The Netherlands
| | - Margje E. de Jong
- Arctic Centre, The University of Groningen, Groningen, The Netherlands
| | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Groningen, The Netherlands
| | | | | | - Eva Millesi
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| | - Brigitte M. Weiß
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Groningen, The Netherlands
- Behavioural Ecology Research Group, University of Leipzig, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
43
|
Vera F, Zenuto R, Antenucci CD. Expanding the actions of cortisol and corticosterone in wild vertebrates: A necessary step to overcome the emerging challenges. Gen Comp Endocrinol 2017; 246:337-353. [PMID: 28109824 DOI: 10.1016/j.ygcen.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/14/2016] [Accepted: 01/02/2017] [Indexed: 11/25/2022]
Abstract
We conducted a review of scientific articles published between 2000 and 2014 and evaluated how frequently various aspects of cortisol and corticosterone (CORT) actions have been considered in studies on wild vertebrates. Results show that (1) the notion that CORT are stress-responsive hormones is central in our theoretical frameworks and it is reflected by the fact that several articles refer to CORT as "stress hormones". (2) The large majority of studies do not contemplate the possibility of decrease and no change in CORT levels in response to chronic stressors. (3) Our ideas about CORT actions on energy balance are slanted towards the mobilization of energy, though there are several studies considering -and empirically addressing- CORT's orexigenic actions, particularly in birds. (4) The roles of CORT in mineral-water balance, though widely documented in the biomedical area, are virtually ignored in the literature about wild vertebrates, with the exception of studies in fish. (5) Adrenocorticotropic hormone (ACTH) independent regulation of CORT secretion is also very scarcely considered. (6) The preparative, permissive, suppressive and stimulatory actions of CORT, as described by Sapolsky et al. (2000), are not currently considered by the large majority of authors. We include an extension of the Preparative Hypothesis, proposing that the priming effects of baseline and stress-induced CORT levels increase the threshold of severity necessary for subsequent stimuli to become stressors. Studies on animal ecology and conservation require integration with novel aspects of CORT actions and perspectives developed in other research areas.
Collapse
Affiliation(s)
- Federico Vera
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | - Roxana Zenuto
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| | - C Daniel Antenucci
- Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Podlaszczuk P, Włodarczyk R, Janiszewski T, Kaczmarek K, Minias P. When moult overlaps migration: moult-related changes in plasma biochemistry of migrating common snipe. PeerJ 2017; 5:e3057. [PMID: 28286713 PMCID: PMC5344014 DOI: 10.7717/peerj.3057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
Moult of feathers entails considerable physiological and energetic costs to an avian organism. Even under favourable feeding conditions, endogenous body stores and energy reserves of moulting birds are usually severely depleted. Thus, most species of birds separate moult from other energy-demanding activities, such as migration or reproduction. Common snipe Gallinago gallinago is an exception, as during the first autumn migration many young snipe initiate the post-juvenile moult, which includes replacement of body feathers, lesser and median wing coverts, tertials, and rectrices. Here, we evaluated moult-related changes in blood plasma biochemistry of the common snipe during a period of serious trade-off in energy allocation between moult and migration. For this purpose, concentrations of basic metabolites in plasma were evaluated in more than 500 young snipe migrating through Central Europe. We found significant changes in the plasma concentrations of total protein, triglyceride and glucose over the course of moult, while the concentrations of uric acid and albumin did not change. Total protein concentration increased significantly in the initial stage of moult, probably as a result of increased production of keratin, but it decreased to the pre-moult level at the advanced stage of moult. Plasma triglyceride concentration decreased during the period of tertial and rectrice moult, which reflected depletion of endogenous fat reserves. By contrast, glucose concentration increased steadily during the course of moult, which could be caused by increased catabolism of triglycerides (via gluconeogenesis) or, alternatively, due to increased glucocorticoids as a stress response. Our results suggest that physiological changes associated with moult may be considered important determinants of the low pace of migration typical of the common snipe.
Collapse
Affiliation(s)
- Patrycja Podlaszczuk
- Department of Biodiversity Studies and Bioeducation, University of Łódź , Łódź , Poland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, University of Łódź , Łódź , Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, University of Łódź , Łódź , Poland
| | | | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, University of Łódź , Łódź , Poland
| |
Collapse
|
45
|
Jacques-Hamilton R, Hall ML, Buttemer WA, Matson KD, Gonҫalves da Silva A, Mulder RA, Peters A. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis. Horm Behav 2017; 88:31-40. [PMID: 27633460 DOI: 10.1016/j.yhbeh.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
Abstract
We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals.
Collapse
Affiliation(s)
| | - Michelle L Hall
- School of biosciences, University of Melbourne, VIC 3010, Australia
| | - William A Buttemer
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3216, Australia
| | - Kevin D Matson
- Resource Ecology Group, Wageningen University, 6700 AA Wageningen, The Netherlands
| | | | - Raoul A Mulder
- School of biosciences, University of Melbourne, VIC 3010, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
46
|
Favreau-Peigné A, Calandreau L, Constantin P, Bertin A, Arnould C, Laurence A, Richard-Yris MA, Houdelier C, Lumineau S, Boissy A, Leterrier C. Unpredictable and repeated negative stimuli increased emotional reactivity in male quail. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
DuRant SE, Arciniega ML, Bauer CM, Romero LM. A test of reactive scope: Reducing reactive scope causes delayed wound healing. Gen Comp Endocrinol 2016; 236:115-120. [PMID: 27432814 DOI: 10.1016/j.ygcen.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Reactive scope predicts that all animals have an adaptive ability to respond to stressors in their environment, termed reactive homeostasis, and that only when an animal's response to stressful stimuli exceeds a certain threshold (homeostatic overload) will stress have pathological effects. While this framework has successfully helped interpret effects of stressors on wildlife, no study has designed an experiment to directly test this framework. This study was designed to expose house sparrows (Passer domesticus) to treatments that would result in varying ranges of reactive homeostasis during chronic stress, which based on the reactive scope model should cause birds with the lowest reactive homeostasis range to exhibit signs of pathology during a subsequent challenge. To modulate the reactive homeostasis range, we altered allostatic load of birds by exposing them to chronic stress while either elevating, blocking, or not manipulating corticosterone. After concluding chronic stress treatments, birds were exposed to the subsequent challenge of a superficial wound. Individuals treated with corticosterone during chronic stress (high allostatic load) experienced the most pathology, including both weight loss and slower wound healing. Unmanipulated birds (medium allostatic load) also experienced weight loss but had normal healing rates, while birds with blocked corticosterone (low allostatic load) had minimal weight loss and normal healing rates. Our results indicate that increased allostatic load reduces the reactive homeostasis range, thereby causing individuals to cross the homeostatic overload threshold sooner, and thus support the reactive scope framework.
Collapse
Affiliation(s)
- S E DuRant
- Department of Integrative Biology, Oklahoma State University, Stillwater OK, 74078, United States; Department of Biology, Tufts University, Medford, MA 02144, United States.
| | - M L Arciniega
- Department of Biology, Tufts University, Medford, MA 02144, United States
| | - C M Bauer
- Department of Biology, Tufts University, Medford, MA 02144, United States
| | - L M Romero
- Department of Biology, Tufts University, Medford, MA 02144, United States
| |
Collapse
|
48
|
Chronic stress does not further exacerbate the abnormal psychoneuroendocrine phenotype of Cbg-deficient male mice. Psychoneuroendocrinology 2016; 70:33-7. [PMID: 27153522 DOI: 10.1016/j.psyneuen.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022]
Abstract
Chronic stress leads to a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which can constitute a base for pathophysiological consequences. Using mice totally deficient in Corticosteroid binding globulin (CBG), we have previously demonstrated the important role of CBG in eliciting an adequate response to an acute stressor. Here, we have studied its role in chronic stress situations. We have submitted Cbg ko and wild-type (WT) male mice to two different chronic stress paradigms - the unpredictable chronic mild stress and the social defeat. Then, their impact on neuroendocrine function - through corticosterone and CBG measurement - and behavioral responses - via anxiety and despair-like behavioral tests - was evaluated. Both chronic stress paradigms increased the display of despair-like behavior in WT mice, while that from Cbg ko mice - which was already high - was not aggravated. We have also found that control and defeated (stressed) Cbg ko mice show no difference in the social interaction test, while defeated WT mice reduce their interaction time when compared to unstressed WT mice. Interestingly, the same pattern was observed for corticosterone levels, where both chronic stress paradigms lowered the corticosterone levels of WT mice, while those from Cbg ko mice remained low and unaltered. Plasma CBG binding capacity remained unaltered in WT mice regardless of the stress paradigm. Through the use of the Cbg ko mice, which only differs genetically from WT mice by the absence of CBG, we demonstrated that CBG is crucial in modulating the effects of stress on plasma corticosterone levels and consequently on behavior. In conclusion, individuals with CBG deficiency, whether genetically or environmentally-induced, are vulnerable to acute stress but do not have their abnormal psychoneuroendocrine phenotype further affected by chronic stress.
Collapse
|
49
|
DuRant SE, de Bruijn R, Tran MN, Romero LM. Wound-healing ability is conserved during periods of chronic stress and costly life history events in a wild-caught bird. Gen Comp Endocrinol 2016; 229:119-26. [PMID: 26965949 DOI: 10.1016/j.ygcen.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/31/2022]
Abstract
Chronic stress, potentially through the actions of corticosterone, is thought to directly impair the function of immune cells. However, chronic stress may also have an indirect effect by influencing allocation of energy, ultimately shifting resources away from the immune system. If so, the effects of chronic stress on immune responses may be greater during energetically-costly life history events. To test whether the effects of chronic stress on immune responses differ during expensive life history events we measured wound healing rate in molting and non-molting European starlings (Sturnus vulgaris) exposed to control or chronic stress conditions. To determine whether corticosterone correlated with wound healing rates before starting chronic stress, we measured baseline and stress-induced corticosterone and two estimates of corticosterone release and regulation, negative feedback (using dexamethasone injection), and maximal capacity of the adrenals to secrete corticosterone (using adrenocorticotropin hormone [ACTH] injection). After 8days of exposure to chronic stress, we wounded both control and chronically stressed birds and monitored healing daily. We monitored nighttime heart rate, which strongly correlates with energy expenditure, and body mass throughout the study. Measures of corticosterone did not differ with molt status. Contrary to work on lizards and small mammals, all birds, regardless of stress or molt status, fully-healed wounds at similar rates. Although chronic stress did not influence healing rates, individuals with low baseline corticosterone or strong negative feedback had faster healing rates than individuals with high baseline corticosterone or weak negative feedback. In addition, wound healing does appear to be linked to energy expenditure and body mass. Non-molting, chronically stressed birds decreased nighttime heart rate during healing, but this pattern did not exist in molting birds. Additionally, birds of heavier body mass at the start of the experiment healed wounds more rapidly than lighter birds. Finally, chronically stressed birds lost body mass at the start of chronic stress, but after wounding all birds regardless of stress or molt status started gaining weight, which continued for the remainder of the study. Increased body mass could suggest compensatory feeding to offset energetic or resource demands (e.g., proteins) of wound healing. Although chronic stress did not inhibit healing, our data suggest that corticosterone may play an important role in mediating healing processes and that molt could influence energy saving tactics during periods of chronic stress. Although the experiment was designed to test allostasis, interpretation of data through reactive scope appears to be a better fit.
Collapse
Affiliation(s)
- S E DuRant
- Department of Biology, Tufts University, Medford, MA 02155, United States; Department of Zoology, Oklahoma State University, Stillwater, OK 74078, United States.
| | - R de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - M N Tran
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - L M Romero
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
50
|
Scheiber IBR, Sterenborg M, Komdeur J. Stress assessment in captive greylag geese (Anser anser). J Anim Sci 2016; 93:2124-33. [PMID: 26020308 DOI: 10.2527/jas.2014-8523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic stress--or, more appropriately, "allostatic overload"--may be physiologically harmful and can cause death in the most severe cases. Animals in captivity are thought to be particularly vulnerable to allostatic overload due to artificial housing and group makeup. Here we attempted to determine if captive greylag geese (Anser anser), housed lifelong in captivity, showed elevated levels of immunoreactive corticosterone metabolites (CORT) and ectoparasites in dropping samples as well as some hematological parameters (hematocrit, packed cell volume, total white blood cell count [TWBC], and heterophil:lymphocyte ratio [H:L]). All of these have been measured as indicators of chronic stress. Furthermore, we correlated the various stress parameters within individuals. Captive geese showed elevated values of CORT and ectoparasites relative to a wild population sampled in the vicinity of the area where the captive flock is held. The elevated levels, however, were by no means at a pathological level and fall well into the range of other published values in wild greylag geese. We found no correlations between any of the variables measured from droppings with any of the ones collected from blood. Among the blood parameters, only the H:L negatively correlated with TWBC. We examine the problem of inferring allostatic overload when measuring only 1 stress parameter, as there is no consistency between various measurements taken. We discuss the different aspects of each of the parameters measured and the extensive individual variation in response to stress as well as the timing at which different systems respond to a stressor and what is actually measured at the time of data collection. We conclude that measuring only 1 stress parameter often is insufficient to evaluate the well-being of both wild and captively housed animals and that collecting behavioral data on stress might be a suitable addition.
Collapse
|