1
|
Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41:105-116. [PMID: 38587523 DOI: 10.2108/zs230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 04/09/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.
Collapse
Affiliation(s)
- Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama 352-8558, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan,
| |
Collapse
|
2
|
Exogenous Melatonin Regulates Puberty and the Hypothalamic GnRH-GnIH System in Female Mice. Brain Sci 2022; 12:brainsci12111550. [PMID: 36421874 PMCID: PMC9688274 DOI: 10.3390/brainsci12111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action. Female mice that were 22 days old received 1 mg/kg doses of melatonin subcutaneously every day for 10, 15 and 20 days. The vaginal opening was checked daily. Hematoxylin and eosin (HE) stain was used to determine the growth of the uterus and ovaries. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of follicle-stimulating hormone (FSH), gonadotropin-inhibiting hormone (GnIH), and gonadotropin-releasing hormone (GnRH) in serum. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus GnRH, GnIH, Kisspeptin (Kp), Proopiomelanocortin (POMC), Neuropeptide Y (NPY), as well as G protein-coupled receptor 147 (GPR147) were identified. The findings demonstrated that melatonin could suppress ovarian follicle and uterine wall growth as well as delay vaginal opening, decrease serum levels of GnRH and FSH and increase levels of GnIH. Melatonin increased GnIH and GPR147 expression in the hypothalamus in comparison to the saline group, while decreasing the expression of GnRH, Kisspeptin, POMC, and NPY. In conclusion, exogenous melatonin can inhibit the onset of puberty in female mice by modulating the expression of hypothalamic GnRH, GnIH, Kisspeptin, POMC and NPY neurons and suppressing the hypothalamic–pituitary–gonadal axis.
Collapse
|
3
|
Zhou X, Jiang D, Zhang Z, Shen X, Pan J, Xu D, Tian Y, Huang Y. Expression of GnIH and its effects on follicle development and steroidogenesis in quail ovaries under different photoperiods. Poult Sci 2022; 101:102227. [PMID: 36334429 PMCID: PMC9627100 DOI: 10.1016/j.psj.2022.102227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
Photoperiod is an important environmental factor that influence seasonal reproduction behavior in bird and GnIH can play a function in this process through the reproductive axis, and some studies suggest that GnIH may have a direct role at the gonadal level. To investigate the expression of GnIH and its effects on follicle development and steroidogenesis in quail ovaries under different photoperiods, 72 healthy laying quails of 8-wk-old were randomly divided into long day (LD) group [16 light (L): 8 dark (D)] (n = 36) and short day (SD) group (8L:16D) (n = 36). Samples were collected from each group on d1, d11, d22, and d36 of the experiment. The result showed that short day treatment upregulated the level of GnIH in the gonads (P < 0.05), decreased the expression level of CYP19A1,3β-HSD, StAR, LHR, and FSHR and increased the expression level of AMH, AMHR2, GDF9, and BMP15 to inhibit follicle development and ovulation, thus affecting the egg production performance of quails. In vitro culture of quail granulosa cells and treatment with different concentrations of GnIH (0, 1, 10, and 100 ng/mL) for 24 h. Result showed that GnIH inhibited the levels of FSHR, LHR, and steroid synthesis pathways in granulosa cells, upregulated the levels of AMHR2, GDF9, and BMP15. The results suggest that the inhibition of follicle development and reduced egg production in quail by short day treatment is due to GnIH acting at the gonadal level, and GnIH affected the steroid synthesis by inhibiting gonadotropin receptors.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Danli Jiang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Zhuoshen Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Jianqiu Pan
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Danning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Yunbo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China
| | - Yunmao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Key Laboratory of Waterfowl Health Breeding, Guangzhou 510225, China,Corresponding author:
| |
Collapse
|
4
|
Guo Z, Chen W, Lv L, Liu D. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development. Anim Reprod 2021; 18:e20210031. [PMID: 34840610 PMCID: PMC8607851 DOI: 10.1590/1984-3143-ar2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R., China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R., China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| |
Collapse
|
5
|
Munley KM, Trinidad JC, Deyoe JE, Adaniya CH, Nowakowski AM, Ren CC, Murphy GV, Reinhart JM, Demas GE. Melatonin-dependent changes in neurosteroids are associated with increased aggression in a seasonally breeding rodent. J Neuroendocrinol 2021; 33:e12940. [PMID: 33615607 DOI: 10.1111/jne.12940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Aggression is a complex social behaviour that allows individuals to compete for access to limited resources (eg, mates, food and territories). Excessive or inappropriate aggression, however, has become problematic in modern societies, and current treatments are largely ineffective. Although previous work in mammals suggests that aggressive behaviour varies seasonally, seasonality is largely overlooked when developing clinical treatments for inappropriate aggression. Here, we investigated how the hormone melatonin regulates seasonal changes in neurosteroid levels and aggressive behaviour in Siberian hamsters, a rodent model of seasonal aggression. Specifically, we housed males in long-day (LD) or short-day (SD) photoperiods, administered timed s.c. melatonin injections (which mimic a SD-like signal) or control injections, and measured aggression using a resident-intruder paradigm after 9 weeks of treatment. Moreover, we quantified five steroid hormones in circulation and in brain regions associated with aggressive behaviour (lateral septum, anterior hypothalamus, medial amygdala and periaqueductal gray) using liquid chromatography-tandem mass spectrometry. SD hamsters and LD hamsters administered timed melatonin injections (LD-M) displayed increased aggression and exhibited region-specific decreases in neural dehydroepiandrosterone, testosterone and oestradiol, but showed no changes in progesterone or cortisol. Male hamsters also showed distinct associations between neurosteroids and aggressive behaviour, in which neural progesterone and dehydroepiandrosterone were positively correlated with aggression in all treatment groups, whereas neural testosterone, oestradiol and cortisol were negatively correlated with aggression only in LD-M and SD hamsters. Collectively, these results provide insight into a novel neuroendocrine mechanism of mammalian aggression, in which melatonin reduces neurosteroid levels and elevates aggressive behaviour.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | | | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Catherine H Adaniya
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Andrea M Nowakowski
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Grace V Murphy
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - John M Reinhart
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
6
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Munley KM, Deyoe JE, Ren CC, Demas GE. Melatonin mediates seasonal transitions in aggressive behavior and circulating androgen profiles in male Siberian hamsters. Horm Behav 2020; 117:104608. [PMID: 31669179 PMCID: PMC6980702 DOI: 10.1016/j.yhbeh.2019.104608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023]
Abstract
Some seasonally-breeding animals are more aggressive during the short, "winter-like" days (SD) of the non-breeding season, despite gonadal regression and reduced circulating androgen levels. While the mechanisms underlying SD increases in aggression are not well understood, previous work from our lab suggests that pineal melatonin (MEL) and the adrenal androgen dehydroepiandrosterone (DHEA) are important in facilitating non-breeding aggression in Siberian hamsters (Phodopus sungorus). To characterize the role of MEL in modulating seasonal transitions in aggressive behavior, we housed male hamsters in long days (LD) or SD, treated them with timed MEL (M) or saline injections, and measured aggression after 3, 6, and 9 weeks. Furthermore, to assess whether MEL mediates seasonal shifts in gonadal and adrenal androgen synthesis, serum testosterone (T) and DHEA concentrations were quantified 36 h before and immediately following an aggressive encounter. LD-M and SD males exhibited similar physiological and behavioral responses to treatment. Specifically, both LD-M and SD males displayed higher levels of aggression than LD males and reduced circulating DHEA and T in response to an aggressive encounter, whereas LD males elevated circulating androgens. Interestingly, LD and SD males exhibited distinct relationships between circulating androgens and aggressive behavior, in which changes in serum T following an aggressive interaction (∆T) were negatively correlated with aggression in LD males, while ∆DHEA was positively correlated with aggression in SD males. Collectively, these findings suggest that SD males transition from synthesis to metabolism of circulating androgens following an aggressive encounter, a mechanism that is modulated by MEL.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
8
|
Takeshima K, Hanlon C, Sparling B, Korver D, Bédécarrats G. Spectrum Lighting During Pullet Rearing and Its Impact on Subsequent Production Performance in Layers. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Physiological roles of avian eyes in light perception and their responses to photoperiodicity. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933916000416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Evaluation of the Impact of Light Source on Reproductive Parameters in Laying Hens Housed in Individual Cages. J Poult Sci 2019; 56:148-158. [PMID: 32055209 PMCID: PMC7005406 DOI: 10.2141/jpsa.0180054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Higher light wavelengths have been shown to stimulate extra-retinal photoreceptors more efficiently than lower wavelengths to promote reproduction in poultry. We developed a light emitting diode (LED) bulb that emits 60% of its light in the red spectrum (LED-R), and evaluated the effects of different light sources on growth and reproduction in commercial layer hens. Three rooms equipped with either 100W incandescent, 15W compact fluorescent (CFL), or 10W LED-R bulbs were populated with 96 Lohmann LSL-Lite layers housed in individual cages from 14 to 69 weeks of age (woa). Pullets were initially maintained on a 10-h photoperiod, then photostimulated at 18 woa. Surprisingly, regardless of the light source, plasma levels of estradiol peaked at 16 woa, 2 weeks before photostimulation, and egg-laying was initiated at 19 woa. As a direct correlation between age at first egg and body weight was identified, metabolic cues most likely served as a primary trigger to initiate sexual maturation prior to photostimulation. Overall egg production and cumulative egg numbers were similar among treatments. Interestingly, a second increase in estradiol was observed at 52 woa under all treatments, suggesting an additional ovarian stimulation, possibly associated with an additional follicular recruitment at that age. Overall, changes in estradiol concentrations were more pronounced in hens maintained under LED-R light than in hens exposed to incandescent and CFL, especially for the second increase, suggesting that a higher amount of red light leads to stronger ovarian activity. Maintaining hens under LED-R bulbs also resulted in lower feed consumption, which combined with the lower energy consumption of LED-bulbs (LED-R: 306 kW; incandescent: 2,514 kW; CFL: 422 kW) could reduce the production cost.
Collapse
|
11
|
viviD D, Bentley GE. Seasonal Reproduction in Vertebrates: Melatonin Synthesis, Binding, and Functionality Using Tinbergen's Four Questions. Molecules 2018; 23:E652. [PMID: 29534047 PMCID: PMC6017951 DOI: 10.3390/molecules23030652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
One of the many functions of melatonin in vertebrates is seasonal reproductive timing. Longer nights in winter correspond to an extended duration of melatonin secretion. The purpose of this review is to discuss melatonin synthesis, receptor subtypes, and function in the context of seasonality across vertebrates. We conclude with Tinbergen's Four Questions to create a comparative framework for future melatonin research in the context of seasonal reproduction.
Collapse
Affiliation(s)
- Dax viviD
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | - George E Bentley
- Berkeley Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Munley KM, Rendon NM, Demas GE. Neural Androgen Synthesis and Aggression: Insights From a Seasonally Breeding Rodent. Front Endocrinol (Lausanne) 2018; 9:136. [PMID: 29670576 PMCID: PMC5893947 DOI: 10.3389/fendo.2018.00136] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
Aggression is an essential social behavior that promotes survival and reproductive fitness across animal systems. While research on the neuroendocrine mechanisms underlying this complex behavior has traditionally focused on the classic neuroendocrine model, in which circulating gonadal steroids are transported to the brain and directly mediate neural circuits relevant to aggression, recent studies have suggested that this paradigm is oversimplified. Work on seasonal mammals that exhibit territorial aggression outside of the breeding season, such as Siberian hamsters (Phodopus sungorus), has been particularly useful in elucidating alternate mechanisms. These animals display elevated levels of aggression during the non-breeding season, in spite of gonadal regression and reduced levels of circulating androgens. Our laboratory has provided considerable evidence that the adrenal hormone precursor dehydroepiandrosterone (DHEA) is important in maintaining aggression in both male and female Siberian hamsters during the non-breeding season, a mechanism that appears to be evolutionarily-conserved in some seasonal rodent and avian species. This review will discuss research on the neuroendocrine mechanisms of aggression in Siberian hamsters, a species that displays robust neural, physiological, and behavioral changes on a seasonal basis. Furthermore, we will address how these findings support a novel neuroendocrine pathway for territorial aggression in seasonal animals, in which adrenal DHEA likely serves as an essential precursor for neural androgen synthesis during the non-breeding season.
Collapse
|
13
|
Liu L, Zhang S, Bao J, He X, Tong D, Chen C, Ying Q, Zhang Q, Zhang C, Li J. Melatonin Improves Laying Performance by Enhancing Intestinal Amino Acids Transport in Hens. Front Endocrinol (Lausanne) 2018; 9:426. [PMID: 30105005 PMCID: PMC6077205 DOI: 10.3389/fendo.2018.00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023] Open
Abstract
The high concentration of melatonin (MEL) in the intestinal mucosa suggests that it has a special physiological function in intestine. In hens, previous studies have shown that MEL treatment promoted egg-laying performance. Considering the importance of amino acids (AA) for egg formation, we hypothesized that MEL may enhance the intestinal absorption of AA from the feed, thus promoting egg laying performance. In this study, we supplemented the hens with MEL for two consecutive weeks. The results showed that, compared with control group, feeding with 0.625 mg MEL/kg diets gave rise to higher egg laying rate (by 4.3%, P = 0.016), increased eggshell thickness (by 16.9%, P < 0.01) and albumen height (by 4.5%, P = 0.042). Meanwhile, feeding with 0.625 and 2.5 mg MEL/kg diets could significantly increase serum levels of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline. Furthermore, a 0.625 mg MEL/kg diets could significantly increase the expression of PepT1 (by 3949.9%), B0AT (by 6045.9%), b0, +AT (by 603.5%), and EAAT3 (by 412.7%) in the jejunum. Additionally, in the cultured intestinal crypt "organoids," treatment with 0.5 μM MEL could significantly enhance the expression of PepT1, b0, +AT and EAAT3 mRNAs by 35.4%, 110.0%, and 160.1%, respectively. Detection of MEL concentration in serum and intestinal fluid suggested that lower dosage of MEL feeding was mainly acted on intestine locally, and further increased intestinal antioxidases (GPx-3, SOD-1 or PRDX-3) mRNA expression. Taken together, we demonstrated that MEL feeding in laying hens could locally promote the expression and function of AA transporter in small intestine by up-regulating antioxidases expression, and finally elevate laying performance.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiayang Bao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowen He
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Danni Tong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Yanping Bureau of Animal Husbandry, Veterinary & Aquatic Products, Nanping, China
| | | | - Qing Zhang
- Yanping Bureau of Animal Husbandry, Veterinary & Aquatic Products, Nanping, China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li
| | - Jian Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Caiqiao Zhang
| |
Collapse
|
14
|
Comparing the Behavioural Effects of Exogenous Growth Hormone and Melatonin in Young and Old Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5863402. [PMID: 28050228 PMCID: PMC5165162 DOI: 10.1155/2016/5863402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/25/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) and melatonin are two hormones with quite different physiological effects. Curiously, their secretion shows parallel and severe age-related reductions. This has promoted many reports for studying the therapeutic supplementation of both hormones in an attempt to avoid or delay the physical, physiological, and psychological decay observed in aged humans and in experimental animals. Interestingly, the effects of the external administration of low doses of GH and of melatonin were surprisingly similar, as both hormones caused significant improvements in the functional capabilities of aged subjects. The present report aims at discerning the eventual difference between cognitive and motor effects of the two hormones when administered to young and aged Wistar rats. The effects were tested in the radial maze, a test highly sensitive to the age-related impairments in working memory and also in the rotarod test, for evaluating the motor coordination. The results showed that both hormones caused clear improvements in both tasks. However, while GH improved the cognitive capacity and, most importantly, the physical stamina, the effects of melatonin should be attributed to its antioxidant, anxiolytic, and neuroprotective properties.
Collapse
|
15
|
Bédécarrats GY, Baxter M, Sparling B. An updated model to describe the neuroendocrine control of reproduction in chickens. Gen Comp Endocrinol 2016; 227:58-63. [PMID: 26414126 DOI: 10.1016/j.ygcen.2015.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Since its first identification in quail 15 years ago, gonadotropin inhibitory hormone (GnIH) has become a central regulator of reproduction in avian species. In this review, we have revisited our original model published in 2009 to incorporate recent experimental evidence suggesting that GnIH acts as a molecular switch during the integration of multiple external and internal cues that allow sexual maturation to proceed in chickens. Furthermore, we discuss the regulation of a dual inhibitory/stimulatory control of the hypothalamo-pituitary-gonadal axis involving the interaction between GnIH and gonadotropin releasing hormone (GnRH). Finally, beyond seasonality, we also propose that GnIH along with this dual control may be responsible for the circadian control of ovulation in chickens, allowing eggs to be laid in a synchronized manner.
Collapse
Affiliation(s)
- Grégoy Y Bédécarrats
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| | - Mikayla Baxter
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| | - Brandi Sparling
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| |
Collapse
|
16
|
Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp Endocrinol 2015; 220:13-22. [PMID: 24929229 DOI: 10.1016/j.ygcen.2014.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Birds time their activities in synchronization with daily and seasonal periodicities in the environment, which is mainly provided by changes in day length (=photoperiod). Photoperiod appears to act at different levels than simply entraining the hypothalamic clock via eyes in birds. Photoreceptor cells that transmit light information to an avian brain are localized in three independent structures, the retina of eyes, pineal gland and hypothalamus, particularly in the paraventricular organ and lateral septal area. These hypothalamic photoreceptors are commonly referred to as encephalic or deep brain photoreceptors, DBPs. Eyes and pineal are known to contribute to the circadian regulation of behavior and physiology via rhythmic melatonin secretion in several birds. DBPs have been implicated in the regulation of seasonal physiology, particularly in photoperiod induced gonadal growth and development. Here, we briefly review limited evidence that is available on the roles of these photoreceptors in the regulation of circadian and seasonal physiology, with particular emphasis placed on the DBPs.
Collapse
Affiliation(s)
- Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo US Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
17
|
Kumari Y, Rani S, Tsutsui K, Kumar V. Duration of melatonin regulates seasonal plasticity in subtropical Indian weaver bird, Ploceus philippinus. Gen Comp Endocrinol 2015; 220:46-54. [PMID: 24932714 DOI: 10.1016/j.ygcen.2014.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/21/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Day length regulates seasonal plasticity connected with reproduction in birds. Rhythmic pineal melatonin secretion is a reliable indicator of the night length, hence day length. Removal of rhythmic melatonin secretion by exposure to constant bright light (LLbright) or by pinealectomy renders several species of songbirds including Indian weaver bird (Ploceus philippinus) arrhythmic. Present study investigated whether rhythmic melatonin is involved in the regulation of key reproductive neuropeptides (GnRH I and GnIH) and reproduction linked neural changes, viz. song control nuclei, in Indian weaver birds. Two experiments were performed using birds in an arrhythmic condition with low (under LLbright) or no (in the absence of pineal gland) endogenous melatonin. In experiment I, three groups of birds (n=5 each) entrained to 12L:12D were exposed to LLbright (25lux) for two weeks. Beginning on day 15 of LLbright, a control group received vehicle for 16h and two treatment groups were given melatonin in drinking water for 8h or 16h. In experiment II, one group of sham-operated and three groups of pinealectomized birds (n=5 each) entrained to 12L:12D were exposed to constant dim light (LLdim, 0.5lux). Beginning on day 15 of LLdim, three groups received similar treatment as in experiment I. Birds were perfused after thirty cycles of the melatonin treatment, and brain sections were immunohistochemically double-labeled for GnRH I and GnIH or Nissl stained. Activity was recorded throughout the experiments, while body mass and testes were measured at the beginning and end of the experiment. Birds were synchronized with melatonin cycles and measured the duration of melatonin as "night". Pinealectomized birds that received 16h of melatonin had significantly higher GnIH-ir cells than those received 8h melatonin; there was no difference in the GnRH I immunoreactivity between two treatment groups however. Intact birds that received long duration melatonin cycles exhibited small song control nuclei, specifically the high vocal center (HVC) and the robust nucleus of the arcopallium (RA), while birds that received short duration melatonin or no melatonin exhibited large HVC and RA. Thus, melatonin possibly regulates seasonal reproduction via GnIH secretion, and also controls seasonal neuroplasticity in the song control system in songbirds.
Collapse
Affiliation(s)
- Yatinesh Kumari
- DST-IRHPA Center for Excellence in Biological Rhythms Research, Department of Zoology, University of Lucknow, Lucknow 226 007, India
| | - Sangeeta Rani
- DST-IRHPA Center for Excellence in Biological Rhythms Research, Department of Zoology, University of Lucknow, Lucknow 226 007, India
| | | | - Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
18
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Gómez A, Zanuy S, Mañanos E, Muñoz-Cueto JA. LPXRFa peptide system in the European sea bass: A molecular and immunohistochemical approach. J Comp Neurol 2015; 524:176-98. [DOI: 10.1002/cne.23833] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- José A. Paullada-Salmerón
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Mairi Cowan
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - María Aliaga-Guerrero
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - José A. Muñoz-Cueto
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| |
Collapse
|
19
|
Bédécarrats GY. Control of the reproductive axis: Balancing act between stimulatory and inhibitory input. Poult Sci 2015; 94:810-5. [DOI: 10.3382/ps/peu042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Zheng L, Su J, Fang R, Jin M, Lei Z, Hou Y, Ma Z, Guo T. Developmental changes in the role of gonadotropin-inhibitory hormone (GnIH) and its receptors in the reproductive axis of male Xiaomeishan pigs. Anim Reprod Sci 2015; 154:113-20. [PMID: 25640458 DOI: 10.1016/j.anireprosci.2015.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 11/30/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH), a key regulator of vertebrate reproduction, was identified in the Japanese quail in 2000, and RFamide-related peptide-3 (RFRP-3) was found to be a mammalian GnIH ortholog. To further determine its role in the reproductive system of male Xiaomeishan pigs, we systematically investigated changes in GnIH and its receptors (GPR147 and GPR74) during the development of the reproductive axis of male pigs. We also investigated the direct effect of RFRP-3 on the synthesis and secretion of testosterone in Leydig cells in vitro. The expression patterns of GnIH in the reproductive axis of male pigs at different stages of development (postnatal 3, 30, 60, 90, and 120D) were studied using semiquantitative RT-PCR and immunohistochemistry. Our results show that hypothalamic, pituitary and testicular levels of GnIH and its receptors mRNA significantly changed on postnatal day 30 and postnatal day 90. The immunoreactivities of the GnIH proteins were mainly localized to the spermatogenic cells, sustentacular cells and interstitial cells of the testis throughout sexual development. It was confirmed that different doses of GnIH/RFRP-3 inhibited the release and synthesis of testosterone, and impacted on the gene expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and P450, enzymes that play a key role in the synthesis of testosterone. Together, this research provides molecular and morphological data on the regulation of GnIH in the reproductive development of male pigs.
Collapse
Affiliation(s)
- Lucheng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Fang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Tsutsui K, Ubuka T, Son YL, Bentley GE, Kriegsfeld LJ. Contribution of GnIH Research to the Progress of Reproductive Neuroendocrinology. Front Endocrinol (Lausanne) 2015; 6:179. [PMID: 26635728 PMCID: PMC4655308 DOI: 10.3389/fendo.2015.00179] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of gonadotropin-releasing hormone (GnRH) in mammals at the beginning of the 1970s, it was generally accepted that GnRH is the only hypothalamic neuropeptide regulating gonadotropin release in mammals and other vertebrates. In 2000, however, gonadotropin-inhibitory hormone (GnIH), a novel hypothalamic neuropeptide that actively inhibits gonadotropin release, was discovered in quail. Numerous studies over the past decade and a half have demonstrated that GnIH serves as a key player regulating reproduction across vertebrates, acting on the brain and pituitary to modulate reproductive physiology and behavior. In the latter case, recent evidence indicates that GnIH can regulate reproductive behavior through changes in neurosteroid, such as neuroestrogen, biosynthesis in the brain. This review summarizes the discovery of GnIH, and the contributions to GnIH research focused on its mode of action, regulation of biosynthesis, and how these findings advance our understanding of reproductive neuroendocrinology.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui,
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
- Brain Research Institute Monash Sunway of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - George E. Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Luan X, Liu D, Cao Z, Luo L, Liu M, Gao M, Zhang X. Transcriptome profiling identifies differentially expressed genes in Huoyan goose ovaries between the laying period and ceased period. PLoS One 2014; 9:e113211. [PMID: 25419838 PMCID: PMC4242529 DOI: 10.1371/journal.pone.0113211] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The Huoyan goose is famous for its high egg-laying performance and is listed as a nationally protected domestic animal by the Chinese government. To elucidate the key regulatory genes involved in Huoyan goose egg laying, RNA from ovarian tissue during the ceased and laying periods was sequenced using the Illumina HiSeq 2000 sequencing platform. More than 12 million reads were produced in ceased and laying libraries that included 11,896,423 and 12,534,799 clean reads, respectively. More than 20% of the reads were matched to the reference genome, and 23% of the reads were matched to reference genes. Genes with a false discovery rate (FDR) ≤0.001 and log2ratio ≧1 or ≤−1 were characterized as differentially expressed, and 344 up-regulated and 344 down-regulated genes were classified into functional categories. Twelve genes that are mainly involved in pathways for reproduction regulation, such as steroid hormone biosynthesis, GnRH signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, steroid biosynthesis, calcium signaling pathways, and G-protein coupled receptor signaling pathway were selected for validation by a quantitative real-time polymerase chain reaction (qRT-PCR) analysis, the qRT-PCR results are consistent with the general expression patterns of those genes from the Illumina sequencing. These data provide comprehensive gene expression information at the transcriptional level that might increase our understanding of the Huoyan goose's reproductive biology.
Collapse
Affiliation(s)
- Xinhong Luan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- * E-mail:
| | - Dawei Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhongzan Cao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lina Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mei Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoying Zhang
- Liaoning Province Livestock and Poultry Genetic Resources Conservation and Utilization Center, Liaoyang, 111000, China
| |
Collapse
|
23
|
Moussavi M, Wlasichuk M, Chang JP, Habibi HR. Seasonal effects of GnIH on basal and GnRH-induced goldfish somatotrope functions. J Endocrinol 2014; 223:191-202. [PMID: 25319842 DOI: 10.1530/joe-14-0441] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand how gonadotropin-inhibitory hormone (GnIH) regulates goldfish GH cell functions, we monitored GH release and expression during early, mid-, and/or late gonadal recrudescence. In vivo and in vitro responses to goldfish (g) GnIH were different, indicating direct action at the level of pituitary, as well as interactions with other neuroendocrine factors involved in GH regulation. Injection of gGnIH consistently reduced basal serum GH levels but elevated pituitary gh mRNA levels, indicating potential dissociation of GH release and synthesis. Goldfish GnRH (sGnRH and cGnRHII) injection differentially stimulated serum GH and pituitary gh mRNA levels with some seasonal differences; these responses were reduced by gGnIH. In contrast, in vitro application of gGnIH during 24-h static incubation of goldfish pituitary cells generally elevated basal GH release and attenuated sGnRH-induced changes in gh mRNA, while suppressing basal gh mRNA levels at mid- and late recrudescence but elevating them at early recrudescence. gGnIH attenuated the GH release responses to sGnRH during static incubation at early, but not at mid- and late recrudescence. In cell column perifusion experiments examining short-term GH release, gGnIH reduced the cGnRHII- and sGnRH-stimulated secretion at late recrudescence but inhibited tha action of cGnRHII only during mid-recrudescence. Interestingly, a reduction of basal GH release upon perifusion with gGnIH during late recrudescence was followed by a rebound increase in GH release upon gGnIH removal. These results indicate that gGnIH exerts complex effects on basal and GnRH-stimulated goldfish GH cell functions and can differentially affect GH release and mRNA expression in a seasonal reproductive manner.
Collapse
Affiliation(s)
- M Moussavi
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - M Wlasichuk
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9 Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - J P Chang
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9 Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - H R Habibi
- Department of Biological SciencesUniversity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4Department of Biological SciencesUniversity of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
24
|
Calisi RM. An integrative overview of the role of gonadotropin-inhibitory hormone in behavior: applying Tinbergen's four questions. Gen Comp Endocrinol 2014; 203:95-105. [PMID: 24704003 DOI: 10.1016/j.ygcen.2014.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
The integration of various fields of investigation is of key importance to fully comprehending endocrine function. Here, I enact the theoretical framework of Nikolaas Tinbergen's four questions for understanding behavior to help bridge the wide gap that exists between our relatively reductionist molecular knowledge of a particular neurohormone, gonadotropin-inhibitory hormone (GnIH), and its place in animal behavior. Hypothalamic GnIH, upon its discovery in 2000, was so named because of its inhibitory effect on the release of the gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), from the pituitary. Because gonadotropins are necessary for reproduction, this finding stimulated questions about the functional significance of GnIH in reproduction and sexual behavior. After over a decade of research, invaluable knowledge has been gained regarding the mechanistic attributes of GnIH (mammalian homolog, RFamide-related peptide (RFRP)) in a variety of vertebrate species. However, many questions remain regarding the effect of the environment on GnIH and the subsequent effects of GnIH on behavior. I review the role of GnIH in shaping behavior using the framework of Tinbergen's four questions of mechanism, ontogeny, function and phylogeny. The studies I review were conducted in various species of mammals, birds, and in one species of fish. Because GnIH can play a role in mediating behaviors such as those important for reproduction, sociality, feeding, and the stress response in a variety of species, an integrative approach to the study of GnIH will help provide a multipronged schema for answering questions of GnIH function. By using the framework highlighted by Tinbergen's four questions, we will deepen and enhance our knowledge of the role of hormones in behavior from the point of view of the mechanisms involved.
Collapse
|
25
|
Rangel PL, Gutierrez CG. Reproduction in hens: is testosterone necessary for the ovulatory process? Gen Comp Endocrinol 2014; 203:250-61. [PMID: 24717810 DOI: 10.1016/j.ygcen.2014.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022]
Abstract
Avian reproduction entails complex endocrine interactions at the hypothalamic and ovarian levels. The initiation of the reproductive season is due to the reduction in melatonin and GnIH production as day length increases. The decline in GnIH permits GnRH and gonadotropin secretion starting follicle growth. Follicular steroids stimulate sexual activity and have important roles for the induction of ovulation. Progesterone (P4) is an inductor of the preovulatory surge of LH, while estradiol (E2) acts as a hypothalamic primer to allow P4 receptor development, as well as a stimulator of yolk production. Conversely, the role of testosterone (T) has been more controversial; however, there is now enough evidence, which demonstrates an essential action of T in the ovulatory process. For instance, blockage of endogenous T, by passive or active immunization or by the use of a specific antagonist of T, inhibits ovulation and the preovulatory surges of P4 and LH. This information is supported by the fact that there is a positive correlation between the occurrences of the T preovulatory surge and those of P4 and LH, in which the absence of T caused a lack of P4 and LH increase in almost 90% of the cases. Additionally, it has been observed that T has a paracrine action within the ovary, to promote P4 secretion by granulosa cells from the larger follicles. This has been related with an increased mRNA expression of StAR and P450scc enzymes, which are essential for P4 production, as well as with LH-R mRNA expression in granulosa cells of preovulatory follicles, an effect that should enhance the positive feedback between P4 and LH necessary for ovulation. Lastly, endocrine activity of hierarchical follicles occurs as a result of a complex interaction between the larger follicles (F1-F3) and the smaller follicles (F4-F6), which is necessary to achieve an adequate preovulatory milieu.
Collapse
Affiliation(s)
- P L Rangel
- Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Av. Universidad 3000, Col. UNAM, CU, CP 04510 Mexico City, Mexico
| | - C G Gutierrez
- Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Av. Universidad 3000, Col. UNAM, CU, CP 04510 Mexico City, Mexico.
| |
Collapse
|
26
|
Baxter M, Joseph N, Osborne V, Bédécarrats G. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye. Poult Sci 2014; 93:1289-97. [DOI: 10.3382/ps.2013-03799] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
He H, Jiang D, Kang B, Ma R, Bai L, Wang X, Zhao L. Gene expression profiling of melatonin receptor subtypes in the ovarian hierarchical follicles of the Sichuan white goose. Anim Reprod Sci 2014; 145:62-8. [DOI: 10.1016/j.anireprosci.2013.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 12/15/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
|
28
|
Ogawa S, Parhar IS. Structural and functional divergence of gonadotropin-inhibitory hormone from jawless fish to mammals. Front Endocrinol (Lausanne) 2014; 5:177. [PMID: 25386165 PMCID: PMC4208418 DOI: 10.3389/fendo.2014.00177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was discovered as a novel hypothalamic peptide that inhibits gonadotropin release in the quail. The presence of GnIH-homologous peptides and its receptors (GnIHRs) have been demonstrated in various vertebrate species including teleosts, suggesting that the GnIH-GnIHR family is evolutionarily conserved. In avian and mammalian brain, GnIH neurons are localized in the hypothalamic nuclei and their neural projections are widely distributed. GnIH acts on the pituitary and gonadotropin-releasing hormone neurons to inhibit reproductive functions by decreasing gonadotropin release and synthesis. In addition, GnIH-GnIHR signaling is regulated by various factors, such as environmental cues and stress. However, the function of fish GnIH orthologs remains inconclusive because the physiological properties of fish GnIH peptides are debatable. This review summarizes the current research progress in GnIH-GnIHR signaling and their physiological functions in vertebrates with special emphasis on non-mammalian vertebrate species.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Selangor 47500, Malaysia e-mail:
| |
Collapse
|
29
|
Joseph NT, Tello JA, Bedecarrats GY, Millar RP. Reproductive neuropeptides: prevalence of GnRH and KNDy neural signalling components in a model avian, gallus gallus. Gen Comp Endocrinol 2013; 190:134-43. [PMID: 23756151 DOI: 10.1016/j.ygcen.2013.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
Diverse external and internal environmental factors are integrated in the hypothalamus to regulate the reproductive system. This is mediated through the pulsatile secretion of GnRH into the portal system to stimulate pituitary gonadotrophin secretion, which in turn regulates gonadal function. A single subpopulation of neurones termed 'KNDy neurones' located in the hypothalamic arcuate nucleus co-localise kisspeptin (Kiss), neurokinin B (NKB) and dynorphin (Dyn) and are responsive to negative feedback effects of sex steroids. The co-ordinated secretion from KNDy neurones appears to modulate the pulsatile release of GnRH, acting as a proximate pacemaker. This review briefly describes the neuropeptidergic control of reproduction in the avian class, highlighting the status of reproductive neuropeptide signalling systems homologous to those found in mammalian genomes. Genes encoding the GnRH system are complete in the chicken with similar roles to the mammalian counterparts, whereas genes encoding Kiss signalling components appear missing in the avian lineage, indicating a differing set of hypothalamic signals controlling avian reproduction. Gene sequences encoding both NKB and Dyn signalling components are present in the chicken genome, but expression analysis and functional studies remain to be completed. The focus of this article is to describe the avian complement of neuropeptidergic reproductive hormones and provide insights into the putative mechanisms that regulate reproduction in birds. These postulations highlight differences in reproductive strategies of birds in terms of gonadal steroid feedback systems, integration of metabolic signals and seasonality. Also included are propositions of KNDy neuropeptide gene silencing and plasticity in utilisation of these neuropeptides during avian evolution.
Collapse
Affiliation(s)
- Nerine T Joseph
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
30
|
Schoech SJ, Bowman R, Hahn TP, Goymann W, Schwabl I, Bridge ES. The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica). ACTA ACUST UNITED AC 2013; 319:527-38. [PMID: 23970442 DOI: 10.1002/jez.1816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/20/2013] [Accepted: 07/14/2013] [Indexed: 02/06/2023]
Abstract
Florida scrub-jays (Aphelocoma coerulescens) in the suburbs breed earlier than jays in native habitat. Amongst the possible factors that influence this advance (e.g., food availability, microclimate, predator regime, etc.), is exposure to artificial lights at night (LAN). LAN could stimulate the reproductive axis of the suburban jays. Alternatively, LAN could inhibit pineal melatonin (MEL), thus removing its inhibitory influence on the reproductive axis. Because Florida scrub-jays are a threatened species, we used western scrub-jays (Aphelocoma californica) to investigate the effects of LAN upon reproductive hormones and melatonin. Jays were held under conditions in which the dark-phase of the light:dark cycle was without illumination and then under low levels of LAN. Under both conditions, birds were exposed first to short-days (9.5L:14.5D) that were gradually increased to long-days (14.5L:9.5D). At various times, blood samples were collected during the light part of the cycle to measure reproductive hormones (luteinizing hormone, LH; testosterone, T; and estradiol, E2 ). Similarly, samples to assess melatonin were collected during the dark. In males, LAN caused a depression in LH levels and levels were ∼4× greater under long- than short-days. In females, there was no effect of LAN or photoperiod upon LH. LAN resulted in depressed T levels in females, although there was no effect on T in males. E2 levels in both sexes were lower under LAN than under an unlighted dark-phase. Paradoxically, MEL was higher in jays under LAN, and under long-days. MEL did not differ by sex. LAN disrupted the extraordinarily strong correlation between T and E2 that existed under unlighted nocturnal conditions. Overall, our findings fail to support the hypothesis that LAN stimulates the reproductive axis. Rather, the data demonstrate that LAN tends to inhibit reproductive hormone secretion, although not in a consistent fashion between the sexes.
Collapse
Affiliation(s)
- Stephan J Schoech
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|