1
|
Cao L, Ma J, Lu Y, Chen P, Hou X, Yang N, Huang H. Combining full-length transcriptome sequencing and next generation sequencing to provide insight into the growth superiority of the hybrid grouper (Cromileptes altivelas (♀) × Epinephelus lanceolatus (♂)). PLoS One 2024; 19:e0308802. [PMID: 39383135 PMCID: PMC11463768 DOI: 10.1371/journal.pone.0308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 10/11/2024] Open
Abstract
The hybrid grouper (Cromileptes altivelas, ♀ × Epinephelus lanceolatus, ♂) is an economically important aquaculture species that exhibits certain growth advantages compared to its female parent, Cromileptes altivelas. However, the current understanding of the molecular mechanisms underlying the growth of hybrid groupers is lacking. Herein, we performed full-length transcriptome sequencing and next-generation sequencing on the hybrid grouper and its parents to identify growth-related genes and comprehensively analyze the regulatory mechanism of growth heterosis in the hybrid grouper. Approximately 44.70, 40.44, and 45.32 Gb of single-molecule real-time sequencing data were generated in C. altivelas (Cal), E. lanceolatus (Ela), and the hybrid (Hyb), which were combined into 204,322 non-redundant isoforms using the PacBio sequencing platform. Differentially expressed genes (DEGs) were identified between Hyb and Cal (3,494, 2,125, and 1,487 in brain, liver, and muscle tissues, respectively) and Hyb and Ela (3,415, 2,351, and 1,675 in brain, liver, and muscle tissues, respectively). Then, 27 DEGs (13 in the brain and 14 in the muscle) related to growth traits were identified using cluster and correlation network analysis. Quantitative RT-PCR validated 15 DEGs consistent with transcriptome sequencing (RNA-seq) trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these 15 genes were mainly involved in regulating the actin cytoskeleton, suggesting that this pathway plays an essential role in fish growth. In addition, we found that the phosphatase and tensin homologue (PTEN) is a key regulator of growth heterosis in Hyb. These results shed light on the regulatory mechanism of growth in the Hyb, which is important for marker-assisted selection programs to improve the growth quality of groupers.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan Lu
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Tropical Ocean University, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
2
|
Ma S, Liu J, Zhao Y, Wang Y, Zhao R. In ovo betaine injection improves breast muscle growth in newly hatched goslings through FXR/IGF-2 pathway. Poult Sci 2024; 103:104075. [PMID: 39094501 PMCID: PMC11345595 DOI: 10.1016/j.psj.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Betaine has been shown to enhance growth performance and increase breast muscle yield in ducks and broilers through various mechanisms, including the modification of DNA methylation. However, the impact of in ovo betaine injection on muscle growth in newly hatched goslings remains unclear. In this study, fifty eggs were injected with saline or betaine at 7.5 mg/egg prior to incubation, and the subsequent effects on breast muscle growth in the newly hatched goslings were investigated. Betaine significantly increased (P < 0.05) the hatch weight, breast muscle weight, and breast muscle index, accompanied by an augmentation in muscle bundle cross-sectional area. Concurrently, betaine significantly upregulated (P < 0.05) the expression levels of myogenic regulatory factors, including myogenin (MyoG) and paired box 7 (Pax7) both mRNA and protein, while downregulating (P < 0.05) the mRNA and protein levels of myostatin (MSTN). Histological analysis revealed a higher abundance of proliferating cell nuclear antigen (PCNA) and Pax7 immune-positive cells in the breast muscle of the betaine group, consistent with elevated PCNA and Pax7 mRNA and protein levels. Additionally, significantly increased (P < 0.05) contents of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2) were observed in the breast muscle of the betaine group, so was mRNA expression of IGF-1, IGF-2, and insulin-like growth factor 1 receptor (IGF-1R). Betaine also significantly in8creased (P < 0.05) global DNA methylation of the breast muscle, accompanied by enhanced mRNA and protein levels of methionine cycle and DNA methylation-related enzymes, Interestingly, the promoter regions of IGF-1, IGF-2, and IGF-1R genes were significantly hypomethylated (P < 0.05). Moreover, in ovo betaine injection significantly upregulated (P < 0.05) the protein level of farnesoid X receptor (FXR) in breast muscle and FXR binding to the promoter of IGF-2 gene. These findings suggest that in ovo betaine injection promotes breast muscle growth during embryonic development in goslings through the FXR-mediated IGF-2 pathway, ultimately improving hatch weight and breast muscle weight.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
3
|
Geng W, Guo Y, Chen B, Cheng X, Li S, Challioui MK, Tian W, Li H, Zhang Y, Li Z, Jiang R, Tian Y, Kang X, Liu X. IGFBP7 promotes the proliferation and differentiation of primary myoblasts and intramuscular preadipocytes in chicken. Poult Sci 2024; 103:104258. [PMID: 39293261 PMCID: PMC11426050 DOI: 10.1016/j.psj.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Though it is well known that insulin-like growth factor (IGF) binding protein 7 (IGFBP7) plays an important role in myogenesis and adipogenesis in mammals, its impact on the proliferation, differentiation, and lipid deposition in chicken primary myoblasts (CPM) and intramuscular preadipocytes remains unexplored. In the present study, we firstly examined the correlation between SNPs within the genomic sequence of the IGFBP7 gene and carcass and blood chemical traits in a F2 resource population by genetic association analysis, and found that a significant correlation between the SNP (4_49499525) located in the intron region of IGFBP7 and serum high-density lipoproteins (HDL). We then examined the expression patterns of IGFBP7 across different stages of proliferation and differentiation in CPMs and intramuscular preadipocytes via qPCR, and explored the biological functions of IGFBP7 through gain- and loss-of-function experiments and a range of techniques including qPCR, CCK-8, EdU, flow cytometry, Western blot, immunofluorescence, and Oil Red O staining to detect the proliferation, differentiation, and lipid deposition in CPMs and intramuscular preadipocytes. We ascertained that the expression levels of the IGFBP7 gene increased as cell differentiation progresses in CPMs and intramuscular preadipocytes, and that IGFBP7 promotes the proliferation and differentiation of these cells, as well as facilitates intracellular lipid deposition. Furthermore, we investigated the regulatory mechanism of IGFBP7 expression by using co-transfection strategy and dual-luciferase reporter assay, and discovered that the myogenic transcription factors (MRF), myoblast determination factor (MyoD) and myogenin (MyoG), along with the adipocyte-specific transcription factor (TF) CCAAT/enhancer-binding protein α (C/EBPα), can bind to the core transcription activation region of the IGFBP7 promoter located 500 bp upstream from the transcription start site, thereby promoting IGFBP7 transcription and expression. Taken together, our study underscores the role of IGFBP7 as a positive regulator for myogenesis and adipogenesis, while also elucidating the functional and transcriptional regulatory mechanisms of IGFBP7 in chicken skeletal muscle development and intramuscular adipogenesis.
Collapse
Affiliation(s)
- Wanzhuo Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Botong Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xi Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuohan Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mohammed Kamal Challioui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Animal Production and Biotechnology Department, Institut Agronomique et Vétérinaire Hassan II, Rabat P.O. Box 6202, Rabat, Morocco
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Chen CC, Lin CY, Lu HY, Liou CH, Ho YN, Huang CW, Zhang ZF, Kao CH, Yang WC, Gong HY. Transcriptomics and gut microbiome analysis of the edible herb Bidens pilosa as a functional feed additive to promote growth and metabolism in tilapia (Oreochromis spp.). BMC Genomics 2024; 25:785. [PMID: 39138417 PMCID: PMC11323441 DOI: 10.1186/s12864-024-10674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.
Collapse
Affiliation(s)
- Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Yen Lin
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yun Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chyng-Hwa Liou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhong-Fu Zhang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Hsin Kao
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Yi Gong
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
5
|
Gao Y, Huang X, Liu Y, Lv H, Yin X, Li W, Chu Z. Transcriptome analysis of large yellow croaker (Larimichthys crocea) at different growth rates. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1745-1757. [PMID: 38842792 DOI: 10.1007/s10695-024-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The unsynchronized growth of the large yellow croaker (Larimichthys crocea), which impacts growth efficiency, poses a challenge for aquaculture practitioners. In our study, juvenile stocks of large yellow croaker were sorted by size after being cultured in offshore cages for 4 months. Subsequently, individuals from both the fast-growing (FG) and slow-growing (SG) groups were sampled for analysis. High-throughput RNA-Seq was employed to identify genes and pathways that are differentially expressed during varying growth rates, which could suggest potential physiological mechanisms that influence growth rate. Our transcriptome analysis identified 382 differentially expressed genes (DEGs), comprising 145 upregulated and 237 downregulated genes in comparison to the SG group. GO and KEGG enrichment analyses indicated that these DEGs are predominantly involved in signal transduction and biochemical metabolic pathways. Quantitative PCR (qPCR) results demonstrated that cat, fasn, idh1, pgd, fgf19, igf2, and fads2 exhibited higher expression levels, whereas gadd45b and gadd45g showed lower expression compared to the slow-growing group. In conclusion, the differential growth rates of large yellow croaker are intricately associated with cellular proliferation, metabolic rates of the organism, and immune regulation. These findings offer novel insights into the molecular mechanisms and regulatory aspects of growth in large yellow croaker and enhance our understanding of growth-related genes.
Collapse
Affiliation(s)
- Yang Gao
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China.
| | - Xuming Huang
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Yanli Liu
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Huirong Lv
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Zhangjie Chu
- Fishery School, Zhejiang Ocean University, No.1 Haida South Road, Lincheng Street, Dinghai District, Zhoushan City, 316022, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
7
|
Shi M, Li H, Chen T, Huang B, Li X, Dong X, Chi S, Yang Q, Liu H, Deng J, Tan B, Zhang S, Xie S. Effects of hydroxyproline supplementation in low fish meal diets on collagen synthesis, myofiber development and muscular texture of juvenile Pacific white shrimp ( Litopenaeus vannamei). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:428-437. [PMID: 38860024 PMCID: PMC11163151 DOI: 10.1016/j.aninu.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 06/12/2024]
Abstract
This experiment aimed to evaluate the impact of dietary hydroxyproline (Hyp) supplementation on the muscle quality of juvenile Pacific white shrimp (Litopenaeus vannamei) fed a low fishmeal diet. Six formulated diets included one high fishmeal (HF; 25% fishmeal content) and five low fishmeal diets (10% fishmeal content) with 0%, 0.2%, 0.4%, 0.6% and 0.8% Hyp (LF0, LF2, LF4, LF6 and LF8, respectively). Each diet was assigned to four replicates, and 40 shrimp (0.32 ± 0.00 g) per replicate were fed four times a day for 8 weeks. Dietary Hyp supplementation had little effects on growth performance, but increased the contents of Hyp, prolyl 4-hydroxylases (P4Hs), and collagen. The meat yield, springiness, hardness, chewiness, and cohesiveness of muscle were the highest in the LF4 group among the low fishmeal groups (P < 0.05). Cooking loss and freezing loss of muscle were the lowest in the LF4 group (P < 0.05). Dietary supplementation with 0.4% Hyp increased the myofiber density and decreased the myofiber diameter of muscle (P < 0.05). Supplementation of Hyp in the diet up-regulated the mRNA expression of smyhc5, smyhc15, col1a1, col1a2, igf-1f, tgf-β and tor and down-regulated the mRNA expression of smyhc 1, smyhc 2, smyhc 6a (P < 0.05). Supplementation of Hyp in the diet up-regulated the protein expression of P-4E-BP1, P-AKT, AKT and P-AKT/AKT (P < 0.05). These results suggested that the addition of 0.4% Hyp to low fishmeal diets improved the muscle quality of L. vannamei.
Collapse
Affiliation(s)
- Menglin Shi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haoming Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tianyu Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bocheng Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hongyu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
8
|
Wang C, Liu E, Zhang H, Shi H, Qiu G, Lu S, Han S, Jiang H, Liu H. Dietary Protein Optimization for Growth and Immune Enhancement in Juvenile Hybrid Sturgeon ( Acipenser baerii × A. schrenckii): Balancing Growth Performance, Serum Biochemistry, and Expression of Immune-Related Genes. BIOLOGY 2024; 13:324. [PMID: 38785806 PMCID: PMC11117904 DOI: 10.3390/biology13050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to evaluate the effects of dietary protein levels on growth performance, serum indices, body amino acid composition, and intestinal gene expression in juvenile hybrid sturgeon (Acipenser baerii × A. schrenckii). Hybrid sturgeons (initial weight 29.21 ± 2.04 g) were fed isolipidic diets containing 30%, 33%, 36%, 39%, 42% or 45% crude protein for 12 weeks (n = 18 tanks, 30 fish/tank). Results showed significant differences between treatments, where weight gain and protein efficiency ratio peaked optimally between 35.9% and 38.3% dietary protein. Serum parameters such as glucose, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, and lipid peroxidation levels varied significantly with changes in dietary protein levels. Specifically, the highest enzymatic activities and growth parameters were observed in groups fed with 33% to 39% protein, enhancing whole-body concentrations of lysine, leucine, phenylalanine, proline, and glutamic acid. Immune parameters such as immunoglobulin M and lysozyme activity also showed peak levels at higher protein concentrations, particularly notable at 42% for lysozyme and 36% for both component 3 and immunoglobulin M. Gene expression related to immune and growth pathways, including MyD88, TLR1, IL-8, IL-6, NF-κB, and IL1β, was significantly upregulated at protein levels of 33% to 36%, with a noted peak in expression at 39% for TLR1, IL-10, and TOR signaling genes, before diminishing at higher protein levels. Overall, the dietary protein requirement for juvenile hybrid sturgeon ranges from 35.9% to 38.3% crude protein.
Collapse
Affiliation(s)
- Chang’an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Entong Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Honghe Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangwen Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang 550000, China
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (C.W.)
| |
Collapse
|
9
|
Wang H, Su B, Zhang Y, Shang M, Wang J, Johnson A, Dilawar H, Bruce TJ, Dunham RA, Wang X. Transcriptome analysis revealed potential mechanisms of channel catfish growth advantage over blue catfish in a tank culture environment. Front Genet 2024; 15:1341555. [PMID: 38742167 PMCID: PMC11089159 DOI: 10.3389/fgene.2024.1341555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production. While hybrid catfish have significant growth advantages in earthen ponds, channel catfish were reported to grow faster in tank culture environments. In this study, we confirmed channel fish's superiority in growth over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this study, respectively; p < 0.001). In addition, we conducted RNA sequencing experiments and established transcriptomic resources for the heart, liver, intestine, mucus, and muscle of both species. The number of expressed genes varied across tissues, ranging from 5,036 in the muscle to over 20,000 in the mucus. Gene Ontology analysis has revealed the functional specificity of differentially expressed genes within their respective tissues, with significant pathway enrichment in metabolic pathways, immune activity, and stress responses. Noteworthy tissue-specific marker genes, including lrrc10, fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This transcriptome resource is poised to support future investigations into the molecular mechanisms underlying environment-dependent heterosis and advance genetic breeding efforts of hybrid catfish.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Rex A. Dunham
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
10
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
11
|
Cao L, Zhou J, Ma W, Zhang H, Pan H, Xu M, Wang Y, Wang P, Xiang X, Liu Y, Qiu X, Zhou X, Wang X. Identification of lncRNA-based regulatory mechanisms of Takifugu rubripes growth traits in fast and slow-growing family lines. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101164. [PMID: 37976965 DOI: 10.1016/j.cbd.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.
Collapse
Affiliation(s)
- Lirong Cao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jinxu Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Wenchao Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huakun Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hanbai Pan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Mingjie Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yusen Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Peiyang Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xuejian Xiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Qiu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxu Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
12
|
Sánchez-Velázquez J, Peña-Herrejón GA, Aguirre-Becerra H. Fish Responses to Alternative Feeding Ingredients under Abiotic Chronic Stress. Animals (Basel) 2024; 14:765. [PMID: 38473149 DOI: 10.3390/ani14050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Aquaculture has become one of the most attractive food production activities as it provides high-quality protein for the growing human population. However, the abiotic chronic stress of fish in intensive fish farming leads to a detrimental condition that affects their health and somatic growth, comprising productive performance. This work aims to comprehensively review the impact of alternative and novel dietary protein sources on fish somatic growth, metabolism, and antioxidative capacity under environmental/abiotic stressors. The documental research indicates that ingredients from rendered animal by-products, insects, bacteria as single-cell proteins, and fungal organisms (e.g., yeast, filamentous fungus, and mushrooms) benefit fish health and performance. A set of responses allows fish growth, health, and survival to remain unaffected by feeding with alternative ingredients during chronic environmental stress. Those ingredients stimulate the production of enzymes such as catalase, glutathione peroxidase, and selenoproteins that counteract ROS effects. In addition, the humoral immune system promotes immunoglobulin production (IgM) and cortisol plasmatic reduction. Further investigation must be carried out to establish the specific effect by species. Additionally, the mixture and the pre-treatment of ingredients such as hydrolysates, solid fermentations, and metabolite extraction potentialize the beneficial effects of diets in chronically stressed fish.
Collapse
Affiliation(s)
- Julieta Sánchez-Velázquez
- Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| | - Guillermo Abraham Peña-Herrejón
- Centro de Investigación y Desarrollo Tecnológico en Materia Agrícola Pecuaria Acuícola y Forestal (CIDAF), Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Concá, Arroyo Seco 76410, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería, Campus Amazcala, Universidad Autónoma de Querétaro, El Marqués 76265, Querétaro, Mexico
| |
Collapse
|
13
|
Ndandala CB, Zhou Q, Li Z, Guo Y, Li G, Chen H. Identification of Insulin-like Growth Factor (IGF) Family Genes in the Golden Pompano, Trachinotus ovatus: Molecular Cloning, Characterization and Gene Expression. Int J Mol Sci 2024; 25:2499. [PMID: 38473747 DOI: 10.3390/ijms25052499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Insulin-like growth factors (IGFs) are hormones that primarily stimulate and regulate animal physiological processes. In this study, we cloned and identified the open reading frame (ORF) cDNA sequences of IGF family genes: the insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), and insulin-like growth factor 3 (IGF3). We found that IGF1, IGF2, and IGF3 have a total length of 558, 648, and 585 base pairs (bp), which encoded a predicted protein with 185, 215, and 194 amino acids (aa), respectively. Multiple sequences and phylogenetic tree analysis showed that the mature golden pompano IGFs had been conserved and showed high similarities with other teleosts. The tissue distribution experiment showed that IGF1 and IGF2 mRNA levels were highly expressed in the liver of female and male fish. In contrast, IGF3 was highly expressed in the gonads and livers of male and female fish, suggesting a high influence on fish reproduction. The effect of fasting showed that IGF1 and mRNA expression had no significant difference in the liver but significantly decreased after long-term (7 days) fasting in the muscles and started to recover after refeeding. IGF2 mRNA expression showed no significant difference in the liver but had a significant difference in muscles for short-term (2 days) and long-term fasting, which started to recover after refeeding, suggesting muscles are more susceptible to both short-term and long-term fasting. In vitro incubation of 17β-estradiol (E2) was observed to decrease the IGF1 and IGF3 mRNA expression level in a dose- (0.1, 1, and 10 μM) and time- (3, 6, and 12 h) dependent manner. In addition, E2 had no effect on IGF2 mRNA expression levels in a time- and dose-dependent manner. The effect of 17α-methyltestosterone (MT) in vitro incubation was observed to significantly increase the IGF3 mRNA expression level in a time- and dose-dependent manner. MT had no effect on IGF2 mRNA but was observed to decrease the IGF1 mRNA expression in the liver. Taken together, these data indicate that E2 and MT may either increase or decrease IGF expression in fish; this study provides basic knowledge and understanding of the expression and regulation of IGF family genes in relation to the nutritional status, somatic growth, and reproductive endocrinology of golden pompano for aquaculture development.
Collapse
Affiliation(s)
- Charles Brighton Ndandala
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Qi Zhou
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyuan Li
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuwen Guo
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| |
Collapse
|
14
|
Shi B, Sun R, Liu X, Xu Y, Jiang Y, Yan K, Chen Y. Cloning, phylogenetic and expression analysis of two MyoDs in yellowtail kingfish (Seriola lalandi). Gen Comp Endocrinol 2024; 347:114422. [PMID: 38092071 DOI: 10.1016/j.ygcen.2023.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/30/2023]
Abstract
Yellowtail kingfish (Seriola lalandi) is a pelagic piscivore distributed circumglobally. Owing to its great market value, the growth mechanism of S. lalandi, including muscle development and growth, is a hot research topic. The myoblast determination protein (MyoD) gene has been shown to play an important role in formation of myoblasts and the function of somites in fish. The open reading frame (ORF) sequences of MyoD1 and MyoD2 in S. lalandi encoded 298 and 263 amino acids possessing three common characteristic domains, respectively, containing a myogenic basic domain, a bHLH domain, and a ser-rich region (helix III). S. lalandi MyoDs shared the highest identity with the MyoDs of S. dumerili. MyoDs are highly expressed in white muscle (P < 0.05) in S. lalandi. The expression level of MyoD1 mRNA was higher than that of MyoD2 mRNA during embryonic and early developmental stages, indicating that the two MyoD isoforms may have different roles in muscle formation. Moreover, the mRNA expression of MyoDs in the brain, pituitary, liver and muscle of endocrine growth axis were analyzed in the various sizes and ages stages. The expression levels of MyoDs in the different sizes and ages of S. lalandi showed that expression of both these genes was particularly high in 400-g fish and 2-year-old fish (P < 0.05). Moreover, the increases in the mRNA expression and plasma levels of growth hormone (GH) and insulin-like growth factor (IGF-I) were accompanied by an increase in mRNA expression of MyoDs, indicating the roles of GH and IGF-I in muscle development and growth of S. lalandi. Overall, the expression profiles of genes associated with muscle development are the first step taken towards deciphering fast growth mechanism in this important Seriola fish.
Collapse
Affiliation(s)
- Bao Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Ranran Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Xuezhou Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Kewen Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
15
|
Ibrahim RE, Rhouma NR, Elbealy MA, Abdelwarith AA, Younis EM, Khalil SS, Khamis T, Mansour AT, Davies SJ, El-Murr A, Abdel Rahman AN. Effect of dietary intervention with Capsicum annuum extract on growth performance, physiological status, innate immune response, and related gene expression in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110914. [PMID: 37939898 DOI: 10.1016/j.cbpb.2023.110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
The red pepper (Capsicum annuum) has gained great attention recently because of its biological and pharmacological characteristics. The present approach aimed to evaluate the effects of C. annuum alcoholic extract (CAE) supplementation on Nile tilapia (Oreochromis niloticus) growth performance, physiological status, some metabolic, immune, and regulatory genes expression, and resistance against Streptococcus agalactiae infection. Fish (22.26 ± 0.19 g) were assigned to four treatments (five replicates, each with 10 fish replicate-1) and fed tested diets for 60 days. The experimental diets were supplemented with CAE at 0, 0.4, 0.8, and 1.6 g kg-1, expressed as CAE0, CAE0.4, CAE0.8, and CAE1.6, respectively. The findings exhibited that CAE dietary supplementation improved growth performance, feed utilization, elevated growth hormone level, and digestive enzyme activities (amylase and protease), and lowered leptin hormone in a level-dependent manner. Boosting the mRNA expression of the transporter proteins (solute carrier family 15 member 2 and solute carrier family 26 member 6) and insulin-like growth factor-1 genes with a decrease in the myostatin gene expression was noticed in the CAE-fed groups. The innate immune (serum bactericidal activity %, complement 3, and phagocytic activity %) and antioxidant (glutathione peroxidase and total antioxidant capacity) parameters were significantly (p < 0.05) improved, and the serum malondialdehyde level was significantly decreased by CAE dietary inclusion. A marked upregulation in the mRNA expression of interleukins (il-1β, il-6, il-8, and il-10), transforming growth factor-β, glutathione peroxidase, and glutathione synthetase genes were observed in CAE-fed groups. Dietary CAE decreased the cumulative mortalities after the challenge with S. agalactiae by 20, 13.33, and 10% in CAE0.4, CAE0.8, and CAE1.6, respectively, compared to the control (40%). Overall, dietary supplementation with CAE could improve growth performance and physiological status, and modulate the expression of several regulatory genes in Nile tilapia. The recommended level of CAE is 1.6 g kg-1 to augment growth and health status.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Nasreddin R Rhouma
- Biology Department, Faculty of Science, Misurata University, PO Box 2478, Misurata, Libya
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Abdallah Tageldein Mansour
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1 Galway, Ireland
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
16
|
Melo DSD, de Sá ALA, de Matos Guerreiro SL, Natividade J, Gomes PFF, Takata R, da Silva Filho E, Palheta GDA, de Melo NFAC, Sterzelecki FC, Hamoy I. Growth, survival, and myogenic gene expression in the post-larvae of Colossoma macropomum provisioned with Artemia nauplii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:145-155. [PMID: 36971872 DOI: 10.1007/s10695-023-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Artemia nauplii are widely used as fish larvae feed due to its beneficial nutritional characteristics for larval development; however, efficient feeding strategies are needed to balance its high costs. Therefore, we evaluated the effects of different densities of Artemia nauplii (100, 250, 500, 750, and 1000 nauplii/post-larvae) on the growth, survival, water quality, and myogenic gene expression of tambaqui (Colossoma macropomum) post-larvae cultivated in a recirculating aquaculture system. After 2 weeks of trial, there was a significant decrease in dissolved oxygen concentration with the increase in nauplii density, but it did not interfere with larval performance and survival. In the first week, larvae fed with fewer than 500 nauplii/post-larvae presented slower growth, while in the second week, larvae fed with 1000 nauplii/post-larvae had the highest final weight and length. Regression analysis suggests that the optimum feeding density of Artemia nauplii during the first week is 411 nauplii/post-larvae, while for the second week, the growth increased proportionally to the feeding densities. The relative expression of the myod, myog, and mstn genes was higher in larvae fed with fewer than 500 nauplii/post-larvae. Although low-growing larvae showed increased expression of myod and myog genes, responsible for muscle hyperplasia and hypertrophy, respectively, mstn expression may have played a significant inhibitory role in larval development. Further research is needed to better determine the effects of the live food on the zootechnical performance and the expression of the myogenic genes in the initial phase of the life cycle of the tambaqui post-larvae.
Collapse
Affiliation(s)
- Debora Sayumi Doami Melo
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
| | - André Luiz Alves de Sá
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
| | - Sávio Lucas de Matos Guerreiro
- Laboratório de Genética Humana E Médica (LGHM), Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, Pará, Brazil
| | - Joane Natividade
- Laboratório de Biossistemas Aquáticos Amazônicos (BIOAQUAM), ISARH, UFRA, Belém, Pará, Brazil
| | | | - Rodrigo Takata
- Departamento de Pesquisa E Produção, Fundação Instituto de Pesca Do Estado Do Rio de Janeiro (FIPERJ), Rio de Janeiro, Cordeiro, Brazil
| | - Ednaldo da Silva Filho
- Laboratório de Sorologia E Biologia Molecular (LSBM), Instituto de Ciências Agrárias, UFRA, Belém, Pará, Brazil
| | | | | | | | - Igor Hamoy
- Laboratório de Genética Aplicada (LGA), Instituto Socioambiental E Dos Recursos Hídricos (ISARH), Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil.
| |
Collapse
|
17
|
Chen L, Shi Y, Li J, Shao C, Ma S, Shen C, Zhao R. Dietary bile acids improve breast muscle growth in chickens through FXR/IGF2 pathway. Poult Sci 2024; 103:103346. [PMID: 38128457 PMCID: PMC10776637 DOI: 10.1016/j.psj.2023.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
It is a common practice to provide fast-growing broilers with high-fat diets in the context of integrated farms in Northeast China. Therefore, fat digestion, absorption, and utilization efficiency are critical for broiler meat production. Bile acids (BA) promote fat digestion and absorption, but whether and how BA affects muscle growth in broilers remains unclear. In this study, 1-day-old broilers were fed diets containing varying levels of crude fat (low, medium, and high) with or without BA supplementation for 42 d. Chickens fed a high-fat diet supplemented with BA exhibited significantly (P < 0.05) higher body weight (BW) at 21 d and average daily gain (ADG) during the first 21 d compared to the other groups. Throughout the entire experiment, feed conversion rate (FCR) was significantly (P < 0.05) lower in the high-fat group without the addition of BA, which was further decreased (P < 0.05) with BA supplementation. The improved growth performance in the BA-supplemented high-fat group was associated with significantly (P < 0.05) higher lipase activity in the small intestine chyme, a decreased trend (P = 0.06) in abdominal fat ratio, and significantly (P < 0.05) higher breast muscle mass. Histological analysis revealed significant (P < 0.05) increases in myofiber diameter, cross-sectional area, and RNA and DNA concentrations in the breast muscle of BA-supplemented broilers on the high-fat diet. Additional histological analysis further revealed significant (P < 0.05) enhancements in myofiber diameter, cross-sectional area, and RNA and DNA concentrations within the breast muscles of broilers supplemented with BA and a high-fat diet. The increased insulin-like growth factor 2 (IGF2) in the breast muscle of broilers fed a BA-supplemented high-fat diet correlated with significantly (P < 0.05) increased farnesoid X factor (FXR) protein expression and binding to the IGF2 promoter. These results suggest that dietary BA supplementation improves FCR and breast muscle growth in broilers fed a high-fat diet, potentially through the FXR-mediated IGF2 pathway.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Huaihua Institute of Agricultural Sciences, Huaihua 418000, PR China
| | - Yanghong Shi
- Wellhope Foods Animal Husbandry Co. Ltd., Shenyang 110000, PR China
| | - Jinbao Li
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co. Ltd., Dezhou 253000, PR China
| | - Caimei Shao
- Wellhope Foods Animal Husbandry Co. Ltd., Shenyang 110000, PR China
| | - Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chao Shen
- Wellhope Foods Animal Husbandry Co. Ltd., Shenyang 110000, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China.
| |
Collapse
|
18
|
Zhao Y, Zhou J, Dong Y, Xu D, Qi D. Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × Gymnocypris eckloni ♂. Genes (Basel) 2024; 15:182. [PMID: 38397172 PMCID: PMC10888472 DOI: 10.3390/genes15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Artificial hybrid breeding can optimize parental traits to cultivate excellent hybrids with enhanced economic value. In this study, we investigated the growth performance and transcriptomes of Gymnocypris przewalskii (♀) and Gymnocypris eckloni (♂) and their F1 hybrid fishes. Hatched individuals of G. przewalskii (GP) and G. eckloni (GE) of the same size and their F1 hybrids (GH) were separately cultured for eight months in three cement tanks (n = 3). The growth indexes were measured, which showed that the growth rate of the groups was GE > GH > GP, while the survival rate was GH > GE > GP. The RNA-Seq data analysis of the muscles from the three Gymnocypris fish strains revealed that gene transcription has a significant impact on F1 hybrid fish and its parents. The differentially expressed genes (DEGs) in GH show less differences with GP, but more with GE. qRT-PCR was used to confirm the expression profiles of the chosen DEGs, and the results showed positive correlations with the RNA-seq data. KEGG enrichment results indicated that the DEGs were related to a variety of molecular functions, such as glycolysis/gluconeogenesis, arachidonic acid formation, citrate cycle, and the MAPK, PI3K-Akt, or mTOR signal pathways. Subsequent analysis indicated that there may be a significant correlation between the differential expression of IGF2 and a difference in the growth of GE and GP.
Collapse
Affiliation(s)
| | - Junming Zhou
- Key Laboratory of Plateau Wetland Ecology and Environmental Protection, Xichang University, Xichang 615013, China; (Y.Z.); (Y.D.); (D.X.); (D.Q.)
| | | | | | | |
Collapse
|
19
|
Bersin TV, Cordova KL, Journey ML, Beckman BR, Lema SC. Food deprivation reduces sensitivity of liver Igf1 synthesis pathways to growth hormone in juvenile gopher rockfish (Sebastes carnatus). Gen Comp Endocrinol 2024; 346:114404. [PMID: 37940008 DOI: 10.1016/j.ygcen.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
20
|
Khoklang A, Kersanté P, Nontasan S, Sutthi N, Pakdeenarong N, Wang T, Wangkahart E. Insights into the functional properties of a natural free amino acid mix: Effect on growth performance, nutrient metabolism, and immune response in a carnivorous fish, Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109232. [PMID: 37984611 DOI: 10.1016/j.fsi.2023.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Dietary supplements containing a functional feed additive have been shown to be beneficial to fish and shellfish aquaculture. However, the functional properties of aquafeed formulations have rarely been reported in fish. This study aimed to investigate the effects of natural free amino acid mix (FAAM) supplementation as a functional solution on the growth performance and nutrient utilization in a carnivorous fish, Asian seabass (Lates calcarifer). Five isonitrogenous and isolipidic diets were prepared with graded supplementation levels of FAAM at 0 % (control group), 0.25 %, 0.50 %, 0.75 %, and 1.0 %, denoted as FAAM0, FAAM0.25, FAAM0.5, FAAM0.75, and FAAM1.0, respectively. The experimental fish were fed different dietary FAAM supplementations to apparent satiation twice daily for eight weeks. Significant improvements were observed in the growth performance of fish among the five groups (P < 0.05). Fish fed with FAAM0.75 displayed significantly increased activities of lysozyme, myeloperoxidase, catalase, and glutathione peroxidase (P < 0.05). The activities of digestive enzymes, including amylase, protease, and lipase, were enhanced by the supplementation of FAAM in the feed (P < 0.05), especially for the groups that contained more than 0.5 % FAAM in the feed. Furthermore, the morphological profile of the intestinal tract, including the mucosal fold height, width, thickness, and goblet cell, increased in fish fed with FAAM at 1.0 % (P < 0.05). Moreover, FAAM supplementation in diets not only modulated the expression of immune-related genes (glutathione peroxidase (GPx), complement (C)3, C4, and C-reactive protein) in the liver but also positively impacted the growth-ralated genes, including growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I), and IGF-II. In addition, the amounts of monounsaturated fatty acids (mainly oleic acid (C18:1n9c)) and polyunsaturated fatty acids-especially γ-linolenic acid (C18:3 n6) and α-linolenic acid (C18:3n3)-increased in fish fed with diets containing FAAMs (P < 0.05). Interestingly, the diets supplemented with FAAMs also had a positive effect on the economic indices in terms of revenue-to-cost ratios. These findings provide a scientific basis for the application of FAAMs as a functional solution that can be used in feed formulations for Asian seabass.
Collapse
Affiliation(s)
- Aniwat Khoklang
- Master of Science Program in Agriculture, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand
| | | | - Supap Nontasan
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand; Faculty of Tourism and Hotel Management, Mahasarakham University, Talad Sub-district, Muang, Maha Sarakham, 44000, Thailand
| | - Nantaporn Sutthi
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Noppakun Pakdeenarong
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
21
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
22
|
Ye W, Shi M, Chen S, Duan Y, Jiang Y, Cheng Y, Zhang W, Chen J, Wang Y, Xia XQ. Transcriptome analysis revealed the existence of family-specific regulation of growth traits in grass carp. Genomics 2023; 115:110706. [PMID: 37714387 DOI: 10.1016/j.ygeno.2023.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The grass carp (Ctenopharyngodon idella) is the world's most prolific freshwater fish. Little is known, however, about the functional genes and genetic regulatory networks that govern its growth traits. We created three grass carp families in this study by using two grass carp parents with fast-growing offspring and two grass carp parents with slow-growing offspring, namely the fast-growing × fast-growing family (FF), the slow-growing × slow-growing family (SS), and the fast-growing × slow-growing family (FS). Under the satiation and starvation feeding modes, the average body weight of these families' offspring exhibited a consistent ordering (FF > FS > SS). The transcriptomes of grass carp whole brain and hepatopancreas were then acquired for each family, and it was discovered that the number of differentially expressed genes (DEGs) in the different organs demonstrated family specificity. DEGs were mostly identified in the hepatopancreas of FF and the whole brain of SS, but they were more evenly distributed in FS. There were 14 DEGs that were found in all three families, including three that were negatively correlated in hepatopancreas (ahsg2, lect2) or in brain (drd5), and 11 that were positively connected in hepatopancreas (sycn, pabpc4, zgc:112294, cel, endou, ela2, prss3, zbtb41, ela3) or in brain (fabp7, endod1). The deletion of ahsg2 boosted the growth rate only in certain zebrafish, suggesting that the growth-promoting effects of ahsg2 varies among individuals. Furthermore, we examined the SNP in each family and conducted preliminary research on the probable genetic pathways of family-specific control of growth traits. The family specificity of the growth regulation mechanism of grass carp at the transcriptional level was revealed for the first time in this study, and it was discovered that growth differences among individuals in the FF family were primarily due to differences in nutrient metabolism, whereas growth differences among individuals in the SS family may be primarily due to differences in foraging ability caused by differences in brain development. This research adds to our understanding of the genetic regulatory mechanism of grass carp growth.
Collapse
Affiliation(s)
- Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sijia Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiujiu Chen
- College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yaping Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Wu X, Lai J, Chen Y, Liu Y, Song M, Li F, Li P, Li Q, Gong Q. Combination of metabolome and proteome analyses provides insights into the mechanism underlying growth differences in Acipenser dabryanus. iScience 2023; 26:107413. [PMID: 37559901 PMCID: PMC10407750 DOI: 10.1016/j.isci.2023.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
To analyze the differences between different-sized Acipenser dabryanus, we randomly selected 600 3-month-old A. dabryanus juveniles. Four months later, the blood and white muscle of these fish were analyzed. The results showed no significant difference in the length-weight relationship (LWR) b value between the large and small A. dabryanus. The levels of serum growth hormone (gh) and insulin-like growth factor 1 (igf1) in the large A. dabryanus were significantly lower than those in the small, whereas the activity levels of Total superoxide dismutase (T-sod) and catalase (cat) were opposite to the results of gh and igf1. A total of 212 and 245 metabolites showed significant changes in the positive and negative polarity mode, respectively. Among 3,308 proteins identified, 69 proteins showed upregulated expression, and 185 proteins showed downregulated expression. These results indicated that the growth advantage of A. dabryanus was closely related to glycolysis, protein synthesis, and antioxidant function.
Collapse
Affiliation(s)
- Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Pengcheng Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Qingzhi Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
- Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611730, China
| |
Collapse
|
24
|
Sánchez-Moya A, Balbuena-Pecino S, Vélez EJ, Perelló-Amorós M, García-Meilán I, Fontanillas R, Calduch-Giner JÀ, Pérez-Sánchez J, Fernández-Borràs J, Blasco J, Gutiérrez J. Cysteamine improves growth and the GH/IGF axis in gilthead sea bream ( Sparus aurata): in vivo and in vitro approaches. Front Endocrinol (Lausanne) 2023; 14:1211470. [PMID: 37547324 PMCID: PMC10400459 DOI: 10.3389/fendo.2023.1211470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Aquaculture is the fastest-growing food production sector and nowadays provides more food than extractive fishing. Studies focused on the understanding of how teleost growth is regulated are essential to improve fish production. Cysteamine (CSH) is a novel feed additive that can improve growth through the modulation of the GH/IGF axis; however, the underlying mechanisms and the interaction between tissues are not well understood. This study aimed to investigate the effects of CSH inclusion in diets at 1.65 g/kg of feed for 9 weeks and 1.65 g/kg or 3.3 g/kg for 9 weeks more, on growth performance and the GH/IGF-1 axis in plasma, liver, stomach, and white muscle in gilthead sea bream (Sparus aurata) fingerlings (1.8 ± 0.03 g) and juveniles (14.46 ± 0.68 g). Additionally, the effects of CSH stimulation in primary cultured muscle cells for 4 days on cell viability and GH/IGF axis relative gene expression were evaluated. Results showed that CSH-1.65 improved growth performance by 16% and 26.7% after 9 and 18 weeks, respectively, while CSH-3.3 improved 32.3% after 18 weeks compared to control diet (0 g/kg). However, no significant differences were found between both experimental doses. CSH reduced the plasma levels of GH after 18 weeks and increased the IGF-1 ones after 9 and 18 weeks. Gene expression analysis revealed a significant upregulation of the ghr-1, different igf-1 splice variants, igf-2 and the downregulation of the igf-1ra and b, depending on the tissue and dose. Myocytes stimulated with 200 µM of CSH showed higher cell viability and mRNA levels of ghr1, igf-1b, igf-2 and igf-1rb compared to control (0 µM) in a similar way to white muscle. Overall, CSH improves growth and modulates the GH/IGF-1 axis in vivo and in vitro toward an anabolic status through different synergic ways, revealing CSH as a feasible candidate to be included in fish feed.
Collapse
Affiliation(s)
- Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS, Spanish National Research Council (CSIC)), Castellón, Spain
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joaquin Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Yang P, Wang H, Ma L, Yin H, Zhu Z, Liu C, Huang W, Zhou Z, Wu X, Taj S. The Optimum Dietary Phenylalanine Requirement of Hybrid Grouper ( Epinephelusfuscoguttatus ♀ × Epinepheluslanceolatus ♂) Juveniles: Effects on Growth Performance, Gut Micromorphology, and Antioxidation. AQUACULTURE NUTRITION 2023; 2023:9155290. [PMID: 37520289 PMCID: PMC10374384 DOI: 10.1155/2023/9155290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
The optimum phenylalanine (Phe) requirement for hybrid grouper (Epinephelusfuscoguttatus ♀ × Epinepheluslanceolatus ♂) juveniles was determined through an 8-week growth trial. A total of seven isoenergetic (340 kcal per 100 g of dry matter), isonitrogenous, and isolipidic diets were made, containing 8.2 (Phe 8.2), 9.2 (Phe 9.2), 10.1 (Phe 10.1), 11.2 (Phe 11.2), 13.3 (Phe 13.3), 15.2 (Phe 15.2), and 17.3 g/kg (Phe 17.3), respectively. Triplicate tanks of juvenile fish (about 16.7 g/fish) were fed each experimental diet twice daily until apparent satiation. The results indicated that different dietary Phe levels significantly influenced weight gain percentage (WG), feed efficiency (FE), protein efficiency ratio (PER), as well as, productive protein value (PPV). Fish fed Phe 8.2 had the lowest WG or PPV among all experimental treatments. Furthermore, the optimal dietary Phe level increased fold height, width, enterocyte, and microvillus height of fish. The Phe 10.1 group exhibited higher growth hormone (GH) expression in the pituitary compared to other groups. Expression of hepatic insulin-like growth factor-1 (IGF-1) and growth hormone receptor 1 (GHR1) displayed a similar pattern of variation to that of GH. The Phe 13.3 group had lower expression of S6 kinase 1 (S6K1) and target of rapamycin (TOR) than other groups. In addition, fish fed Phe 10.1 had lower levels of nuclear factor erythroid 2 (Nrf2) and heat shock protein 70 (HSP70) in the head kidney, and Cu/Zn-superoxide (Cu/ZnSOD) dismutases in the midgut compared to fish fed other Phe levels. Generally, optimal Phe content in the diet of hybrid grouper was estimated to be 12.7 g/kg of dry matter (27.3 g/kg of dietary protein), and at this level, the feed utilization, gut micromorphology, and immunity of fish were also elevated.
Collapse
Affiliation(s)
- Pinxian Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
- Huzhou Haihuang Biotechnology Co. Ltd, Huzhou, China
| | - Haijiao Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Lei Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Haoran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Zhanying Zhu
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
- Huzhou Haihuang Biotechnology Co. Ltd, Huzhou, China
| | - Cong Liu
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
| | - Wei Huang
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
- Huzhou Haihuang Biotechnology Co. Ltd, Huzhou, China
| | - Zhiyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoyi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Sehrish Taj
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
26
|
Yin Y, Zhang Y, Hua Z, Wu A, Pan X, Yang J, Wang X. Muscle transcriptome analysis provides new insights into the growth gap between fast- and slow-growing Sinocyclocheilus grahami. Front Genet 2023; 14:1217952. [PMID: 37538358 PMCID: PMC10394708 DOI: 10.3389/fgene.2023.1217952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Sinocyclocheilus grahami is an economically valuable and famous fish in Yunnan Province, China. However, given its slow growth (40 g/2 years) and large growth differences among individuals, its growth performance needs to be improved for sustainable future use, in which molecular breeding technology can play an important role. In the current study, we conducted muscle transcriptomic analysis to investigate the growth gaps among individuals and the mechanism underlying growth within 14 fast- and 14 slow-growth S. grahami. In total, 1,647 differentially expressed genes (DEGs) were obtained, including 947 up-regulated and 700 down-regulated DEGs in fast-growth group. Most DEGs were significantly enriched in ECM-receptor interaction, starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, amino acids biosynthesis and metabolism, peroxisome, and PPAR signaling pathway. Some genes related to glycogen degradation, glucose transport, and glycolysis (e.g., adipoq, prkag1, slc2a1, agl, pygm, pgm1, pfkm, gapdh, aldoa, pgk1, pgam2, bpgm, and eno3) were up-regulated, while some genes related to fatty acid degradation and transport (e.g., acox1, acaa1, fabp1b.1, slc27a1, and slc27a2) and amino acid metabolism (e.g., agxt, shmt1, glula, and cth) were down-regulated in the fast-growth group. Weighted gene co-expression network analysis identified col1a1, col1a2, col5a1, col6a2, col10a1, col26a1, bglap, and krt15 as crucial genes for S. grahami growth. Several genes related to bone and muscle growth (e.g., bmp2, bmp3, tgfb1, tgfb2, gdf10, and myog) were also up-regulated in the fast-growth group. These results suggest that fast-growth fish may uptake adequate energy (e.g., glucose, fatty acid, and amino acids) from fodder, with excess energy substances used to synthesize collagen to accelerate bone and muscle growth after normal life activities are maintained. Moreover, energy uptake may be the root cause, while collagen synthesis may be the direct reason for the growth gap between fast- and slow-growth fish. Hence, improving food intake and collagen synthesis may be crucial for accelerating S. grahami growth, and further research is required to fully understand and confirm these associations.
Collapse
Affiliation(s)
- Yanhui Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zexiang Hua
- Fishery Technology Extension Station of Yunnan, Kunming, Yunnan, China
| | - Anli Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Junxing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
27
|
Panteli N, Feidantsis K, Demertzioglou M, Paralika V, Karapanagiotis S, Mylonas CC, Kormas KA, Mente E, Makridis P, Antonopoulou E. The Probiotic Phaeobacter inhibens Provokes Hypertrophic Growth via Activation of the IGF-1/Akt Pathway during the Process of Metamorphosis of Greater Amberjack ( Seriola dumerili, Risso 1810). Animals (Basel) 2023; 13:2154. [PMID: 37443952 DOI: 10.3390/ani13132154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Metamorphosis entails hormonally regulated morphological and physiological changes requiring high energy levels. Probiotics as feed supplements generate ameliorative effects on host nutrient digestion and absorption. Thereby, the aim of the present research was to investigate the impact of the probiotic Phaeobacter inhibens as a water additive on cellular signaling pathways in the metamorphosis of greater amberjack (Seriola dumerili). Activation of insulin-like growth factor type 1 receptor (IGF-1R), protein kinase B (Akt), mitogen-activated protein kinases (MAPKs) and AMP-activated protein kinase (AMPK), induction of heat shock proteins (Hsps), and programmed cell death were assessed through SDS-Page/immunoblot analysis, while energy metabolism was determined through enzymatic activities. According to the results, greater amberjack reared in P. inhibens-enriched water entered the metamorphic phase with greater body length, while protein synthesis was triggered to facilitate the hypertrophic growth as indicated by IGF-1/Akt activation and AMPK inhibition. Contrarily, MAPKs levels were reduced, whereas variations in Hsps response were evident in the probiotic treatment. Apoptosis and autophagy were mobilized potentially for the structural remodeling processes. Furthermore, the elevated enzymatic activities of intermediary metabolism highlighted the excess energy demands of metamorphosis. Collectively, the present findings demonstrate that P. inhibens may reinforce nutrient utilization, thus leading greater amberjack to an advanced growth and developmental state.
Collapse
Affiliation(s)
- Nikolas Panteli
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Fisheries & Aquaculture, University of Patras, 26504 Mesolonghi, Greece
| | - Maria Demertzioglou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasiliki Paralika
- Department of Biology, University of Patras, 26504 Rio Achaias, Greece
| | | | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003 Heraklion, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
- Agricultural Development Institute, University Research and Innovation Centre "IASON", Argonafton & Filellinon, 38221 Volos, Greece
| | - Eleni Mente
- Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pavlos Makridis
- Department of Biology, University of Patras, 26504 Rio Achaias, Greece
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
28
|
He Y, Hou J, Qiu Y, Ouyang K, Li D, Li L. Microcystin-LR immersion caused sequential endocrine disruption and growth inhibition in zebrafish (Danio rerio) from fertilization to sexual differentiation completion. Toxicology 2023:153569. [PMID: 37295766 DOI: 10.1016/j.tox.2023.153569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic congener and is also one of the most commonly found. Recent studies have demonstrated that MC-LR can disrupt growth and endocrine in fish, but how it works at the stage of the sex differentiation period had not been determined to date. In this study, zebrafish (Danio rerio) embryos were exposed to MC-LR (0 and 10μg/L), and sampled at 14, 28, and 42 days post fertilization (dpf), respectively. The results demonstrated that MC-LR caused the growth inhibition of zebrafish at 42 dpf. The expression levels of genes related to the growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes, as well as the levels of hormone 3,5,3'- Triiodothyronine (T3) and thyroxine (T4), were significantly decreased at all time points. A Significant decrease in the ratio of testosterone and estradiol (T/E2) were detected at 28 and 42 dpf in MC-LR group along with changes in genes related to the hypothalamic-pituitary-gonadal (HPG) axis. The result of sex ratio showed that the percentage of females was up to 61.84%, indicating a estrogenic effect induced by MC-LR. The significant changes on hormone levels and gene transcripts occurred mainly in the stage of sex differentiation. The correlation analysis further suggested that key cross-talks among three endocrine axes may be the growth hormone releasing hormone (GHRH), Transthyretin (TTR) and gonadotropin releasing hormone (GnRH) signaling molecules. Overall, our findings provide a new insight for understanding the mechanisms by which MC-LR affects fish growth and reproduction during gonadal development.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China.
| |
Collapse
|
29
|
Taj S, Han Q, Wu X, Yin H, Tian L, Yang H, Liu Y, Huang J. Effects of Dietary Protein-to-Energy Ratios on Growth, Immune Response, Antioxidative Capacity, Liver and Intestinal Histology, and Growth-Related Gene Expression in Hybrid Yellow Catfish ( Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂). AQUACULTURE NUTRITION 2023; 2023:9106332. [PMID: 37260466 PMCID: PMC10229254 DOI: 10.1155/2023/9106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
This study is aimed at evaluating the effects of dietary protein-to-energy ratios on the growth, immunological response, antioxidative capacity, liver and intestinal histology, and growth-related gene expression of hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂). Eight diets were formulated to form different protein/energy ratios of 84, 88, 90, 93, 95, 96, 99, and 103 mg/kcal (P/E84, P/E88, P/E90, P/E93, P/E95, P/E96, P/E99, and P/E103), respectively. These diets contain different levels of gross energy (GE), ranging from 4.13 to 4.76 kcal g-1. Seven hundred and twenty healthy fish (17.15 ± 0.02 g) were randomly dispersed into 24 rectangular fiberglass tanks with 8 treatments in triplicate groups. The fish fed a P/E ratio of 95 mg/kcal demonstrated the best growth and feed utilization. A significant (P < 0.05) increase in percent weight gain (WG%) and specific growth rate (SGR) was seen as the dietary P/E ratio ameliorated from P/E84 to P/E95, followed by a decreased pattern in these parameters. Feed conversion ratio (FCR) and daily feed intake (DFI) were significantly impacted by dietary P/E ratios (P < 0.05). Additionally, an optimum P/E ratio improved intestinal morphology. However, low or high P/E ratio diets can cause oxidative stress, impaired liver function, and significantly reduced nonspecific immunity. The expression of target of rapamycin (TOR) and insulin-like growth factor-1 (IGF1) genes in the liver was considerably influenced by dietary protein-to-energy ratios (P < 0.05). Based on the statistical analysis of WG% against the dietary P/E ratio, the optimal P/E ratio for the studied species was estimated to be 92.92 mg/kcal.
Collapse
Affiliation(s)
- Sehrish Taj
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Department of Aquaculture, Ocean College of Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydro biology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Quan Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Department of Aquaculture, Ocean College of Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydro biology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoyi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Department of Aquaculture, Ocean College of Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydro biology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Haoran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Department of Aquaculture, Ocean College of Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydro biology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Lixia Tian
- Guangzhou A Share Aquatic Science and Technology Co. LTD, China
| | - Huijun Yang
- Guangzhou A Share Aquatic Science and Technology Co. LTD, China
| | - Yongjian Liu
- Guangzhou A Share Aquatic Science and Technology Co. LTD, China
| | - Junwa Huang
- Guangzhou A Share Aquatic Science and Technology Co. LTD, China
| |
Collapse
|
30
|
Bersin TV, Mapes HM, Journey ML, Beckman BR, Lema SC. Insulin-like growth factor-1 (Igf1) signaling responses to food consumption after fasting in the Pacific rockfish Sebastes carnatus. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111444. [PMID: 37201654 DOI: 10.1016/j.cbpa.2023.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Fish adjust rates of somatic growth in the face of changing food consumption. As in other vertebrates, growth in fish is regulated by the growth hormone (Gh)/insulin-like growth factor-1 (Igf1) endocrine axis, and changes in food intake impact growth via alterations to Gh/Igf1 signaling. Understanding the time course by which the Gh/Igf1 axis responds to food consumption is crucial to predict how rapidly changes in food abundance might lead to altered growth dynamics. Here, we looked at the response times of plasma Igf1 and liver Igf1 signaling-associated gene expression to refeeding after food deprivation in juvenile gopher rockfish (Sebastes carnatus), one of several species of northern Pacific Ocean Sebastes rockfishes targeted by fisheries or utilized for aquaculture. Gopher rockfish were fasted for 30 d, after which a subset was fed to satiation for 2 h, while other rockfish continued to be fasted. Refed fish exhibited higher hepatosomatic index (HSI) values and increased Igf1 after food consumption. Gene transcripts for Gh receptor 1 (ghr1), but not ghr2, increased in the liver after eating. Transcripts encoding igf1 also increased in the liver of refed fish 2-4 d after feeding, only to return to levels similar as continually fasted rockfish by 9 d after feeding. Liver mRNA abundances for Igf binding protein (Igfbp) genes igfbp1a, igfbp1b, and igfbp3a declined within 2 d of feeding. These findings provide evidence that circulating Igf1 in rockfish reflects a fish's feeding experience within the previous few days, and suggest that feeding-induced increases in Igf1 are being mediated in part by altered liver sensitivity to Gh due to upregulated Gh receptor 1 expression.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Hayley M Mapes
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
31
|
Bersin TV, Cordova KL, Saenger EK, Journey ML, Beckman BR, Lema SC. Nutritional status affects Igf1 regulation of skeletal muscle myogenesis, myostatin, and myofibrillar protein degradation pathways in gopher rockfish (Sebastes carnatus). Mol Cell Endocrinol 2023; 573:111951. [PMID: 37169322 DOI: 10.1016/j.mce.2023.111951] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Insulin-like growth factor-1 (Igf1) regulates skeletal muscle growth in fishes by increasing protein synthesis and promoting muscle hypertrophy. When fish experience periods of insufficient food intake, they undergo slower muscle growth or even muscle wasting, and those changes emerge in part from nutritional modulation of Igf1 signaling. Here, we examined how food deprivation (fasting) modulates Igf1 regulation of liver and skeletal muscle gene expression in gopher rockfish (Sebastes carnatus), a nearshore rockfish of importance for commercial and recreational fisheries in the northeastern Pacific Ocean, to understand how food limitation impacts Igf regulation of muscle growth pathways. Rockfish were either fed or fasted for 14 d, after which a subset of fish from each group was treated with recombinant Igf1 from sea bream (Sparus aurata). Fish that were fasted lost body mass and had lower body condition, reduced hepatosomatic index, and lower plasma Igf1 concentrations, as well as a decreased abundance of igf1 gene transcripts in the liver, increased hepatic mRNAs for Igf binding proteins igfbp1a, igfbp1b, and igfbp3a, and decreased mRNA abundances for igfbp2b and a putative Igf acid labile subunit (igfals) gene. In skeletal muscle, fasted fish showed a reduced abundance of intramuscular igf1 mRNAs but elevated gene transcripts encoding Igf1 receptors A (igf1ra) and B (igf1rb), which also showed downregulation by Igf1. Fasting increased skeletal muscle mRNAs for myogenin and myostatin1, as well as ubiquitin ligase F-box only protein 32 (fbxo32) and muscle RING-finger protein-1 (murf1) genes involved in muscle atrophy, while concurrently downregulating mRNAs for myoblast determination protein 2 (myod2), myostatin2, and myogenic factors 5 (myf5) and 6 (myf6 encoding Mrf4). Treatment with Igf1 downregulated muscle myostatin1 and fbxo32 under both feeding conditions, but showed feeding-dependent effects on murf1, myf5, and myf6/Mrf4 gene expression indicating that Igf1 effects on muscle growth and atrophy pathways is contingent on recent food consumption experience.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - E Kate Saenger
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA, 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
32
|
Silva HNPD, Almeida APG, Souza CDF, Mancera JM, Martos-Sitcha JA, Martínez-Rodríguez G, Baldisserotto B. Stress response of Rhamdia quelen to the interaction stocking density - Feeding regimen. Gen Comp Endocrinol 2023; 335:114228. [PMID: 36781023 DOI: 10.1016/j.ygcen.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.
Collapse
Affiliation(s)
| | - Ana Paula G Almeida
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carine de F Souza
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
33
|
Chaklader MR, Howieson J, Foysal MJ, Hanif MA, Abdel-Latif HM, Fotedar R. Fish waste to sustainable additives: Fish protein hydrolysates alleviate intestinal dysbiosis and muscle atrophy induced by poultry by-product meal in Lates calcarifer juvenile. Front Nutr 2023; 10:1145068. [PMID: 37057066 PMCID: PMC10086250 DOI: 10.3389/fnut.2023.1145068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Valorising waste from the processing of fishery and aquaculture products into functional additives, and subsequent use in aquafeed as supplements could be a novel approach to promoting sustainability in the aquaculture industry. The present study supplemented 10% of various fish protein hydrolysates (FPHs), obtained from the hydrolysis of kingfish (KH), carp (CH) and tuna (TH) waste, with 90% of poultry by-product meal (PBM) protein to replace fishmeal (FM) completely from the barramundi diet. At the end of the trial, intestinal mucosal barriers damage, quantified by villus area (VA), lamina propria area (LPA), LPA ratio, villus length (VL), villus width (VW), and neutral mucin (NM) in barramundi fed a PBM-based diet was repaired when PBM was supplemented with various FPHs (p < 0.05, 0.01, and 0.001). PBM-TH diet further improved these barrier functions in the intestine of fish (p < 0.05 and 0.001). Similarly, FPHs supplementation suppressed PBM-induced intestinal inflammation by controlling the expression of inflammatory cytokines (tnf-α and il-10; p < 0.05 and 0.001) and a mucin-relevant production gene (i-mucin c; p < 0.001). The 16S rRNA data showed that a PBM-based diet resulted in dysbiosis of intestinal bacteria, supported by a lower abundance of microbial diversity (p < 0.001) aligned with a prevalence of Photobacterium. PBM-FPHs restored intestine homeostasis by enhancing microbial diversity compared to those fed a PBM diet (p < 0.001). PBM-TH improved the diversity (p < 0.001) further by elevating the Firmicutes phylum and the Ruminococcus, Faecalibacterium, and Bacteroides genera. Muscle atrophy, evaluated by fiber density, hyperplasia and hypertrophy and associated genes (igf-1, myf5, and myog), occurred in barramundi fed PBM diet but was repaired after supplementation of FPHs with the PBM (p < 0.05, 0.01, and 0.001). Similarly, creatine kinase, calcium, phosphorous, and haptoglobin were impacted by PBM-based diet (p < 0.05) but were restored in barramundi fed FPHs supplemented diets (p < 0.05 and 0.01). Hence, using circular economy principles, functional FPHs could be recovered from the fish waste applied in aquafeed formulations and could prevent PBM-induced intestinal dysbiosis and muscular atrophy.GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Primary Industries and Regional Development, Fremantle, WA, Australia
- *Correspondence: Md Reaz Chaklader, ;
| | - Janet Howieson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, Republic of Korea
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
34
|
Shen X, Li X, Jia C, Li J, Chen S, Gao B, Liang W, Zhang L. HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101071. [PMID: 36931130 DOI: 10.1016/j.cbd.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Olfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.
Collapse
Affiliation(s)
- Xing Shen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Chaofeng Jia
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuyin Chen
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Bo Gao
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Wenke Liang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
35
|
Zuloaga R, Varas O, Ahrendt C, Pulgar VM, Valdés JA, Molina A, Duarte C, Urzúa Á, Guzmán-Rivas F, Aldana M, Pulgar J. Revealing coastal upwelling impact on the muscle growth of an intertidal fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159810. [PMID: 36341853 DOI: 10.1016/j.scitotenv.2022.159810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Upwelling oceanographic phenomenon is associated with increased food availability, low seawater temperature and pH. These conditions could significantly affect food quality and, in consequence, the growth of marine species. One of the most important organismal traits is somatic growth, which is highly related to skeletal muscle. In fish, skeletal muscle growth is highly influenced by environmental factors (i.e. temperature and nutrient availability) that showed differences between upwelling and downwelling zones. Nevertheless, there are no available field studies regarding the impact of those conditions on fish muscle physiology. This work aimed to evaluate the muscle fibers size, protein content, gene expression of growth and atrophy-related genes in fish sampled from upwelling and downwelling zones. Seawater and fish food items (seaweeds) samples were collected from upwelling and downwelling zones to determine the habitat's physical-chemical variations and the abundance of biomolecules in seaweed tissue. In addition, white skeletal muscle samples were collected from an intertidal fish to analyze muscular histology, the growth pathways of protein kinase B and the extracellular signal-regulated kinase; and the gene expression of growth- (insulin-like growth factor 1 and myosin heavy-chain) and atrophy-related genes (F-box only protein 32 and muscle RING-finger protein-1). Upwelling zones revealed higher nutrients in seawater and higher protein content in seaweed than samples from downwelling zones. Moreover, fish from upwelling zones presented a greater size of muscle fibers and protein content compared to downwelling fish, associated with lower protein ubiquitination and gene expression of F-box only protein 32. Our data indicate an attenuated use of proteins as energy source in upwelling conditions favoring protein synthesis and muscle growth. This report shed lights of how oceanographic conditions may modulate food quality and fish muscle physiology in an integrated way, with high implications for marine conservation and sustainable fisheries management.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Oscar Varas
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Camila Ahrendt
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Victor M Pulgar
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies-Creek, NC, USA; Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Juan A Valdés
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile.
| | - Cristian Duarte
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile
| | - Ángel Urzúa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Av. Alonso de Ribera 2850, Concepción, Chile
| | - Fabián Guzmán-Rivas
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Av. Alonso de Ribera 2850, Concepción, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile; Programa de Doctorado en Conservación y Gestión de la Biodiversidad, Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - José Pulgar
- Universidad Andres Bello, Facultad Ciencias de la Vida, 8370146 Santiago, Chile; Universidad Andres Bello, Centro de Investigación Marina Quintay (CIMARQ), 2340000 Valparaíso, Chile.
| |
Collapse
|
36
|
Otero-Tarrazón A, Perelló-Amorós M, Jorge-Pedraza V, Moshayedi F, Sánchez-Moya A, García-Pérez I, Fernández-Borràs J, García de la serrana D, Navarro I, Blasco J, Capilla E, Gutierrez J. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front Endocrinol (Lausanne) 2023; 14:1101356. [PMID: 36755925 PMCID: PMC9899866 DOI: 10.3389/fendo.2023.1101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joaquin Gutierrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Bull JK, Stanford BCM, Bokvist JK, Josephson MP, Rogers SM. Environment and genotype predict the genomic nature of domestication of salmonids as revealed by gene expression. Proc Biol Sci 2022; 289:20222124. [PMID: 36475438 PMCID: PMC9727666 DOI: 10.1098/rspb.2022.2124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Billions of salmonids are produced annually by artificial reproduction for harvest and conservation. Morphologically, behaviourally and physiologically these fish differ from wild-born fish, including in ways consistent with domestication. Unlike most studied domesticates, which diverged from wild ancestors millennia ago, salmonids offer a tractable model for early-stage domestication. Here, we review a fundamental mechanism for domestication-driven differences in early-stage domestication, differentially expressed genes (DEGs), in salmonids. We found 34 publications examining DEGs under domestication driven by environment and genotype, covering six species, over a range of life-history stages and tissues. Three trends emerged. First, domesticated genotypes have increased expression of growth hormone and related metabolic genes, with differences magnified under artificial environments with increased food. Regulatory consequences of these DEGs potentially drive overall DEG patterns. Second, immune genes are often DEGs under domestication and not simply owing to release from growth-immune trade-offs under increased food. Third, domesticated genotypes exhibit reduced gene expression plasticity, with plasticity further reduced in low-complexity environments typical of production systems. Recommendations for experimental design improvements, coupled with tissue-specific expression and emerging analytical approaches for DEGs present tractable avenues to understand the evolution of domestication in salmonids and other species.
Collapse
Affiliation(s)
- James K. Bull
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | | | - Jessy K. Bokvist
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Fisheries and Oceans Canada, South Coast Area Office, Nanaimo, British Columbia, Canada V9T 1K3
| | - Matthew P. Josephson
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4
| | - Sean M. Rogers
- Department of Biological Sciences, University of Calgary, Alberta, Canada T2N 1N4,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada V0R 1B0
| |
Collapse
|
38
|
Celino-Brady FT, Breves JP, Seale AP. Sex-specific responses to growth hormone and luteinizing hormone in a model teleost, the Mozambique tilapia. Gen Comp Endocrinol 2022; 329:114119. [PMID: 36029822 DOI: 10.1016/j.ygcen.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Across the vertebrate lineage, sexual dimorphism in body size is a common phenomenon that results from trade-offs between growth and reproduction. To address how key hormones that regulate growth and reproduction interact in teleost fishes, we studied Mozambique tilapia (Oreochromis mossambicus) to determine whether the activities of luteinizing hormone (Lh) are modulated by growth hormone (Gh), and conversely, whether targets of Gh are affected by the presence of Lh. In particular, we examined how gonadal morphology and specific gene transcripts responded to ovine GH (oGH) and/or LH (oLH) in hypophysectomized male and female tilapia. Hypophysectomized females exhibited a diminished gonadosomatic index (GSI) concomitant with ovarian follicular atresia. The combination of oGH and oLH restored GSI and ovarian morphology to conditions observed in sham-operated controls. A similar pattern was observed for GSI in males. In control fish, gonadal gh receptor (ghr2) and estrogen receptor β (erβ) expression was higher in females versus males. A combination of oGH and oLH restored erβ and arβ in females. In males, testicular insulin-like growth factor 3 (igf3) expression was reduced following hypophysectomy and subsequently restored to control levels by either oGH or oLH. By contrast, the combination of both hormones was required to recover ovarian igf3 expression in females. In muscle, ghr2 expression was more responsive to oGH in males versus females. In the liver of hypophysectomized males, igf2 expression was diminished by both oGH and oLH; there was no effect of hypophysectomy, oGH, or oLH on igf2 expression in females. Collectively, our results indicate that gene transcripts associated with growth and reproduction exhibit sex-specific responses to oGH and oLH. These responses reflect, at least in part, how hormones mediate trade-offs between growth and reproduction, and thus sexual dimorphism, in teleost fishes.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
39
|
Panteli N, Demertzioglou M, Feidantsis K, Karapanagiotis S, Tsele N, Tsakoniti K, Gkagkavouzis K, Mylonas CC, Kormas KA, Mente E, Antonopoulou E. Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1665-1684. [PMID: 36459361 DOI: 10.1007/s10695-022-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cell growth and differentiation signals of insulin-like growth factor-1 (IGF-1), a key regulator in embryonic and postnatal development, are mediated through the IGF-1 receptor (IGF-1R), which activates several downstream pathways. The present study aims to address crucial organogenesis and development pathways including Akt, MAPKs, heat shock response, apoptotic and autophagic machinery, and energy metabolism in relation to IGF-1R activation during five developmental stages of reared Seriola dumerili: 1 day prior to hatching fertilized eggs (D-1), hatching day (D0), 3 days post-hatching larvae (D3), 33 (D33) and 46 (D46) days post-hatching juveniles. During both the fertilized eggs stage and larval-to-juvenile transition, IGF-1R/Akt pathway activation may mediate the hypertrophic signaling, while p44/42 MAPK phosphorylation was apparent at S. dumerili post-hatching processes and juvenile organs completion. On the contrary, apoptosis was induced during embryogenesis and autophagy at hatching day indicating a potential involvement in morphogenetic rearrangements and yolk-sac reserves depletion. Larvae morphogenesis was accompanied by a metabolic turnover with increased substantial energy consumption. The findings of the present study demonstrate the developmental stages-specific shift in critical signaling pathways during the ontogeny of reared S. dumerili.
Collapse
Affiliation(s)
- Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Demertzioglou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Eleni Mente
- School of Veterinary Medicine, Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
40
|
Amer SA, Farahat M, Khamis T, Abdo SA, Younis EM, Abdel-Warith AWA, Reda R, Ali SA, Davies SJ, Ibrahim RE. Evaluation of Spray-Dried Bovine Hemoglobin Powder as a Dietary Animal Protein Source in Nile Tilapia, Oreochromis niloticus. Animals (Basel) 2022; 12:ani12223206. [PMID: 36428433 PMCID: PMC9687044 DOI: 10.3390/ani12223206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
The present study evaluated the potential effects of dietary inclusion of spray-dried bovine hemoglobin powder (SDBH) on the growth, gene expression of peptide and amino acid transporters, insulin growth factor-1 (IGF-1) and myostatin, digestive enzymes activity, intestinal histomorphology and immune status, immune-related gene expression, and economic efficiency in Nile tilapia, Oreochromis niloticus. Two hundred twenty-five fingerlings (32.38 ± 0.05 g/fish) were distributed into five treatments with five dietary inclusion levels of SDBH: 0, 2.5, 5, 7.5, and 10% for a ten-week feeding period. Dietary inclusion of SDBH linearly increased the final body weight (FBW), total weight gain (TWG), specific growth rate (SGR), and protein efficiency ratio (PER). Additionally, a linear decrease in feed conversion ratio (FCR) and daily feed intake relative to the daily BW was reported in the highest inclusion levels (7.5 and 10%). Dietary inclusion of SDBH was associated with a significant increase in the intestinal villous height (VH), villous width (VW), villous height: crypt depth ratio (VH: CD), and muscle coat thickness (MCT), with the highest values reported in SDBH7.5 group. Increased serum growth hormone levels and decreased serum leptin hormone levels were also reported by increasing the SDBH level. The serum glucose level was decreased in the SDBH7.5 and SDBH10 groups. The digestive enzymes' activity (amylase and protease) was increased by increasing the SDBH inclusion level. An up-regulation in the expression of peptide and amino acid transporters, IGF-1, and down-regulation of myostatin was reported in the SDBH2.5 to SDBH7.5 groups. Spleen sections showed more lymphoid elements, especially in the SDBH2.5 and SDBH7.5 groups. The SDBH inclusion increased the serum lysozyme activity, nitric oxide (NO), and complement 3 (C3) levels, with the highest values recorded in the SDBH5 group. The phagocytic % and the phagocytic index were increased by increasing the SDBH inclusion %. The expressions of immune-related genes (transforming growth factor-beta (TGF-β), Toll-like receptor 2 (TLR2), and interleukin 10 (IL10)) were up-regulated by SDBH inclusion with the highest expression in the SDBH5 group. Economically, the feed costs and feed costs/kg gain were linearly decreased in the SDBH7.5 and SDBH10 diets. In conclusion, spray-dried bovine hemoglobin powder could be used as a protein source for up to 10% of the diets of Nile tilapia for better growth and immune status of fish.
Collapse
Affiliation(s)
- Shimaa A. Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.A.A.); (R.E.I.)
| | - Mahmoud Farahat
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Samar A. Abdo
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia
| | | | - Rehab Reda
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sozan A. Ali
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Simon J. Davies
- School of Science and Engineering, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Rowida E. Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.A.A.); (R.E.I.)
| |
Collapse
|
41
|
Shen Y, Ma K, Zhu Q, Xu X, Li J. Transcriptomic analysis reveals growth-related genes in juvenile grass carp, Ctenopharyngodon idella. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front Genet 2022; 13:990849. [PMID: 36313432 PMCID: PMC9616467 DOI: 10.3389/fgene.2022.990849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
Collapse
Affiliation(s)
- M. Kanakachari
- ICAR-Directorate of Poultry Research, Hyderabad, India
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - R. Ashwini
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | - T. K. Bhattacharya
- ICAR-Directorate of Poultry Research, Hyderabad, India
- *Correspondence: T. K. Bhattacharya,
| |
Collapse
|
43
|
Balbuena-Pecino S, Montblanch M, García-Meilán I, Fontanillas R, Gallardo Á, Gutiérrez J, Navarro I, Capilla E. Hydroxytyrosol-rich extract from olive juice as an additive in gilthead sea bream juveniles fed a high-fat diet: Regulation of somatic growth. Front Physiol 2022; 13:966175. [PMID: 36277183 PMCID: PMC9584614 DOI: 10.3389/fphys.2022.966175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8–9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.
Collapse
Affiliation(s)
- Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Manel Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Irene García-Meilán
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Ángeles Gallardo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Encarnación Capilla,
| |
Collapse
|
44
|
Aidos L, Cafiso A, Lopez A, Vasconi M, Valente LMP, Bazzocchi C, Di Giancamillo A. Rearing Environment during the Endogenous Feeding Stage of Acipenser baerii. Animals (Basel) 2022; 12:ani12172205. [PMID: 36077925 PMCID: PMC9454994 DOI: 10.3390/ani12172205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate behaviour, growth, lipid composition, muscle development, and stress status of Siberian sturgeon larvae reared with two types of substrate: Bioballs1 (BB1) and Bioballs2 (BB2), when compared to no substrate (CTR). Sampling points were: hatching (T0), schooling (T1), and yolk-sac full absorption (T2). BB1 larvae were less active and showed no schooling behaviour. At T1 and at T2, BB1 larvae showed a significantly higher weight and total length than larvae reared in either CTR or BB2 (p < 0.05). The lipid content of larvae decreased over time, with little relevant differences between groups. At T2, total muscle area, slow muscle area and fast muscle area were significantly higher in larvae reared in BB1 (p < 0.05). No significant differences in muscle proliferation were found between groups. Real Time PCR was used for evaluating the relative expression of a pool of genes: myod, myog, mrf4, igf2, hsp70, hsp90a, hsp90b, and glut2. The expression of these genes did not seem to be much affected by the type of rearing substrate, except for myog and hsp70 at T1, which was greater in BB2 larvae. Our data suggest that the presence of a substrate during this developmental period seems to have positive effects but further studies would be necessary during the exogenous feeding stage.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Cafiso
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy
| | - Annalaura Lopez
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy
| | - Mauro Vasconi
- Regional Health Service—Veterinary Department, ATS della Val Padana, 46100 Mantova, Italy
| | - Luisa M. P. Valente
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
45
|
Yang H, Pu Y, Liu C, Gao L, Duan X, Liu S, Chen D, Zhong L, Li Y. Environmentally relevant concentrations of tris (1,3-dichloro-2-propyl) phosphate induce growth inhibition and oxidative stress in silver carp (Hypophthalmichthys molitrix) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113798. [PMID: 35749998 DOI: 10.1016/j.ecoenv.2022.113798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), widely applied as flame retardant into a variety of products, can be physically leached out to the aquatic environment. Measurable values of TDCIPP have been found in the environment and within biota. Many toxicological assessments have shown that TDCIPP could cause developmental toxicity and oxidative stress in fish. In this study, we focused on the effects of TDCIPP on the growth and oxidative stress of an important commercial fish species in China, silver carp (Hypophthalmichthys molitrix). Fish larvae was exposed to environmentally relevant concentrations (0.05, 0.5, 5 and 50 μg/L) of TDCIPP for 7, 14 and 28 days. Simultaneously, the transcription levels of genes associated with the growth hormone/insulin-like growth factor (GH/IGF) axis and the antioxidative enzymes were examined. The body length and body mass of silver carp larvae decreased significantly only under exposure to 5 and 50 μg/L of TDCIPP at 14 days compared with the control group, while differences on those paraments were observed at 0.05, 0.5, 5 and 50 μg/L when larvae were exposed for 28 days. The observation evidenced the time- and dose- dependent growth inhibitions caused by TDCIPP on silver carp larvae. Exposure to TDCIPP also decreased the contents of GH and IGF1 in fish attended by significant down-regulation of gh and igf1. Moreover, TDCIPP up-regulated the expression of cat, sod1 and gstt followed by an increase of the activities of catalase (CAT) and superoxide dismutase (SOD) and the levels of malondialdehyde (MDA) and glutathione (GSH), but the activities of glutathione peroxidase (GPX) were decreased. These results suggested that growth inhibition and oxidative stress co-occurred in silver carp larvae after exposure to environmentally relevant concentrations of TDCIPP accompanied by the abnormal expression of genes which associated with the GH/IGF axis and antioxidative enzymes.
Collapse
Affiliation(s)
- Hao Yang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Yan Pu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Gao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Xinbin Duan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Shaoping Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Daqing Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Liqiao Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
46
|
Elbialy ZI, Gamal S, Al-Hawary II, Shukry M, Salah AS, Aboshosha AA, Assar DH. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:973-989. [PMID: 35781858 PMCID: PMC9385825 DOI: 10.1007/s10695-022-01094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes.
Collapse
Affiliation(s)
- Zizy I. Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Shrouk Gamal
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ibrahim I. Al-Hawary
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Ali A. Aboshosha
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
47
|
Zhou Y, Wu P, Feng L, Jiang WD, Liu Y, Peng Y, Kuang SY, Tang L, Li SW, Zhou XQ. Improvement of nutritional value and sensory quality by promoting protein deposition and muscle fiber growth in grass carp muscle (Ctenopharyngodon idella): the effect of cinnamaldehyde. Food Chem 2022; 399:133799. [DOI: 10.1016/j.foodchem.2022.133799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
|
48
|
Effects of dietary tryptophan on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Br J Nutr 2022; 127:1761-1773. [PMID: 34321122 DOI: 10.1017/s0007114521002828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82-39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
Collapse
|
49
|
Cao S, Xiao Y, Huang R, Zhao D, Xu W, Li S, Tang J, Qu F, Jin J, Xie S, Liu Z. Dietary Supplementation With Hydroxyproline Enhances Growth Performance, Collagen Synthesis and Muscle Quality of Carassius auratus Triploid. Front Physiol 2022; 13:913800. [PMID: 35721560 PMCID: PMC9198714 DOI: 10.3389/fphys.2022.913800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/26/2023] Open
Abstract
An eight-week experiment was undertaken to examine the effect of dietary hydroxyproline (Hyp) supplementation on growth performance, collagen synthesis, muscle quality of an improved triploid crucian carp (Carassius auratus Triploid) (ITCC). Six isonitrogenous (340 g/kg diet), isolipidic (60 g/kg diet) and isocaloric (17.80 MJ/kg diet) diets were formulated containing a certain amount of Hyp: 0.09% (the control group), 0.39, 0.76, 1.14, 1.53 and 1.90%. Each diet was randomly assigned to three tanks and each group was fed two times daily until apparent satiation. The results showed that growth performance and feed utilization of ITCC were significantly improved with the dietary Hyp level was increased from 0.09 to 0.76%. Crude protein, threonine and arginine content in the dorsal muscle in 0.76% hydroxyproline group were significantly higher than those in basic diet group (p < 0.05). The muscle textural characteristics increased remarkably with the amount of Hyp in the diet rising from 0.09 to 1.53% (p < 0.05). Meanwhile, the contents of type I collagen (Col I) and Pyridinium crosslink (PYD) in the muscle of fish were significantly increased by dietary Hyp (p < 0.05). The muscle fiber diameter and density of the fish were significantly increased when fed with 0.76% Hyp (p < 0.05). Furthermore, dietary supplementation with an appropriate concentration of Hyp substantially increased the expression of genes involved in collagen synthesis (col1a1, col1a2, p4hα1, p4hβ, smad4, smad5, smad9, and tgf-β) and muscle growth (igf-1, tor, myod, myf5, and myhc) (p < 0.05). In conclusion, dietary supplementation of Hyp can enhance fish growth performance, collagen production, muscle textural characteristics and muscle growth of ITCC. According to the SGR broken-line analysis, the recommended supplementation level of Hyp was 0.74% in the diet for ITCC, corresponding to 2.2% of dietary protein.
Collapse
Affiliation(s)
- Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yangbo Xiao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Rong Huang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shitao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
50
|
Rindom E, Ahrenfeldt M, Damgaard J, Overgaard K, Wang T. Short communication: Leucine, but not muscle contractions, stimulates protein synthesis in isolated EDL muscles from golden geckos. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111206. [PMID: 35351650 DOI: 10.1016/j.cbpa.2022.111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Resistance exercise and protein ingestion stimulate muscle protein synthesis in mammals and the combination of both stimuli exert an additive effect. However, mechanisms regulating muscle mass may be different in ectothermic vertebrates because these animals are adapted to low energy consumption, short bouts of physical activity, and prolonged periods of inactivity. Here, we investigated the effects of administration of leucine and simulated resistance exercise induced by electrical stimulation (ES) on protein synthesis rate in isolated extensor digitorum longus muscle from golden geckos (Gekko badenii). Muscles were placed in Krebs-Ringer buffer equilibrated with O2 (97%) and CO2 (3%) at 30 °C. One muscle from each animal was subjected to one of three interventions: 1) administration of leucine (0.5 mM) at rest, 2) isometric contractions evoked by ES, or 3) a combination of contractions and leucine, while the contralateral muscle served as untreated control. The rate of protein synthesis was measured through pyromycin-labeling. Administration of leucine led to a 2.75 (±1.88)-fold rise in protein synthesis rate in inactive muscles, whereas isometric contractions had no effect (0.67 ± 0.37-fold). The combination of isometric contractions and leucine did not affect protein synthesis rate (1.02 ± 0.34-fold), suggesting that muscle contractions attenuated the positive influence of leucine. Our study identifies leucine as a potent positive regulator of muscle protein synthesis in golden geckos, but also demonstrates that muscle contraction is not. More studies should be conducted in other taxonomic groups of ectothermic vertebrates to identify whether this is a general pattern.
Collapse
Affiliation(s)
- Emil Rindom
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Mikkel Ahrenfeldt
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Jeppe Damgaard
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kristian Overgaard
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|