1
|
Fullard JF, Nm P, Lee D, Mathur D, Therrien K, Hong A, Casey C, Shao Z, Alvia M, Argyriou S, Clarence T, Burstein D, Venkatesh S, Auluck PK, Barnes LL, Bennett DA, Marenco S, PsychAD Consortium, Girdhar K, Haroutunian V, Hoffman GE, Voloudakis G, Bendl J, Roussos P. Population-scale cross-disorder atlas of the human prefrontal cortex at single-cell resolution. Sci Data 2025; 12:954. [PMID: 40480991 PMCID: PMC12144096 DOI: 10.1038/s41597-025-04687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/20/2025] [Indexed: 06/11/2025] Open
Abstract
Neurodegenerative diseases and serious mental illnesses often exhibit overlapping characteristics, highlighting the potential for shared underlying mechanisms. To facilitate a deeper understanding of these diseases and pave the way for more effective treatments, we have generated a population-scale multi-omics dataset consisting of genotype and single-nucleus transcriptome data from the prefrontal cortex of frozen human brain specimens. Encompassing over 6.3 million nuclei from 1,494 donors, our dataset represents a diverse range of neurodegenerative and serious mental illnesses, including Alzheimer's and Parkinson's diseases, schizophrenia, bipolar disorder and diffuse Lewy body dementia, as well as neurotypical controls. Our dataset offers a unique opportunity to study disease interactions, as 21% of donors had comorbid diagnoses of two or more major brain disorders. Additionally, it includes detailed phenotypic information on neuropsychiatric symptoms, such as apathy and weight loss, which commonly accompany Alzheimer's disease and related dementias. We have performed stringent preprocessing and quality controls, ensuring the reliability and usability of the data. As a commitment to fostering collaborative research, we provide this valuable resource as an online repository, enabling widespread analyses across the scientific community.
Collapse
Affiliation(s)
- John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prashant Nm
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Karen Therrien
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, New York, NY, 10029, USA
| | - Aram Hong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clara Casey
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Alvia
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stathis Argyriou
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Burstein
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Sanan Venkatesh
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, New York, NY, 10029, USA
| | - Pavan K Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA
| | | | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
Collaborators
Monika Ahirwar, Sayali A Alatkar, Marios Anyfantakis, Rachel Bercovitch, Pramod B Chandrashekar, Jerome Choi, Noah Cohen Kalafut, Pengfei Dong, Logan C Dumitrescu, Steven Finkbeiner, Chirag Gupta, Kalpana H Arachchilage, Chenfeng He, Timothy J Hohman, Xiang Huang, Lars J Jensen, Ting Jin, Pavel Katsel, Saniya Khullar, Seon Kinrot, Steven P Kleopoulos, Roman Kosoy, Mikaela Koutrouli, Athan Z Li, Nicolas Y Masse, Deepika Mathur, Colleen A McClung, Jennifer Monteiro Fortes, Milos Pjanic, Christian Porras, Vivek G Ramaswamy, Genadi Ryan, Madeline R Scott, Lyra Sheu, Maxim Signaevsky, Collin Spencer, Karen Therrien, Fotios Tsetsos, Sanan Venkatesh, Daifeng Wang, Xinyi Wang, Zhenyi Wu, Hui Yang, Biao Zeng,
Collapse
|
2
|
Leung YY, Lee W, Kuzma AB, Nicaretta H, Valladares O, Gangadharan P, Qu L, Zhao Y, Ren Y, Cheng P, Kuksa PP, Wang H, White H, Katanic Z, Bass L, Saravanan N, Greenfest‐Allen E, Kirsch M, Cantwell L, Iqbal T, Wheeler NR, Farrell JJ, Zhu C, Turner SL, Gunasekaran TI, Mena PR, Jin Y, Carter L, Alzheimer's Disease Sequencing Project, Zhang X, Vardarajan BN, Toga A, Cuccaro M, Hohman TJ, Bush WS, Naj AC, Martin E, Dalgard CL, Kunkle BW, Farrer LA, Mayeux RP, Haines JL, Pericak‐Vance MA, Schellenberg GD, Wang L. Alzheimer's Disease Sequencing Project release 4 whole genome sequencing dataset. Alzheimers Dement 2025; 21:e70237. [PMID: 40407102 PMCID: PMC12100500 DOI: 10.1002/alz.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/26/2025]
Abstract
INTRODUCTION The Alzheimer's Disease Sequencing Project (ADSP) is a national initiative to understand the genetic architecture of Alzheimer's disease and related dementias (ADRD) by integrating whole genome sequencing (WGS) with other genetic, phenotypic, and harmonized datasets from diverse populations. METHODS The Genome Center for Alzheimer's Disease (GCAD) uniformly processed WGS from 36,361 ADSP samples, including 35,014 genetically unique participants of which 45% are from non-European ancestry, across 17 cohorts in 14 countries in this fourth release (R4). RESULTS This sequencing effort identified 387 million bi-allelic variants, 42 million short insertions/deletions, and 6.8 million structural variants. Annotations and quality control data are available for all variants and samples. Additionally, detailed phenotypes from 15,927 participants across 10 domains are also provided. A linkage disequilibrium panel was created using unrelated AD cases and controls. DISCUSSION Researchers can access and analyze the genetic data via the National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) Data Sharing Service, the VariXam, or NIAGADS GenomicsDB. HIGHLIGHTS We detailed the genetic architecture and quality of the Alzheimer's Disease Sequencing Project release 4 whole genome sequences. We identified 435 million single nucleotide polymorphisms, insertions and deletions, and structural variants from diverse genomes. We harmonized extensive phenotypes, linkage disequilibrium reference panel on subset of samples. Data is publicly available at NIAGADS Data Storage Site, variants and annotations are browsable on two different websites.
Collapse
Grants
- HHSN268201100012C NHLBI NIH HHS
- Alzheimer's Therapeutic Research Institute
- P30 AG10161 Religious Orders Study
- NS039764 Mayo Parkinson's Disease
- P20 AG068082 NIA NIH HHS
- R01AG064614 Alzheimer's Therapeutic Researc Institute
- U01AG052410 Alzheimer's Therapeutic Researc Institute
- R01 AG042188 NIA NIH HHS
- P30 AG066444 NIA NIH HHS
- RC2 HL102419 NHLBI NIH HHS
- Austrian Stroke Prevention Study
- P30 AG013854 NIA NIH HHS
- P30 AG072975 NIA NIH HHS
- R37AG015473 Alzheimer's Disease Centers
- Alzheimer's Disease Sequencing Project (ADSP)
- Welfare and Sports
- U01AG057659 The Longitudinal Aging Study in India
- RC2AG036528 Arizona Department of Health Services
- R01AG057777 Darrell K Royal Texas Alzheimer's Initiative
- HHSN268201100009I NHLBI NIH HHS
- Medical Research Council
- R01 AG018016 NIA NIH HHS
- A2011048 University of Miami
- R01 AG060747 NIA NIH HHS
- 5R37AG015473 Estudio Familiar de Influencia Genetica en Alzheimer
- P01AG003991 Darrell K Royal Texas Alzheimer's Initiative
- R01 AG064877 NIA NIH HHS
- NS071674 Mayo Parkinson's Disease
- U01 AG046152 NIA NIH HHS
- P30 AG010124 NIA NIH HHS
- EuroImmun
- P30 AG072946 NIA NIH HHS
- R01AG051125 The Longitudinal Aging Study in India
- American Genome Center
- R01 NS017950 NINDS NIH HHS
- P30 AG066518 NIA NIH HHS
- R01 AG025711 Darrell K Royal Texas Alzheimer's Initiative
- Netherlands Consortium for Healthy Aging
- RC2 AG036528 NIA NIH HHS
- R01 AG019771 NIA NIH HHS
- P30 AG028377 NIA NIH HHS
- Alzheimer's Association "Identification of Rare Variants in Alzheimer Disease"
- Biogen
- P30 AG066507 NIA NIH HHS
- RF1AG054014 Arizona Department of Health Services
- U01 AG058654 NIA NIH HHS
- AG041718 Arizona Department of Health Services
- U01 HL096812 NHLBI NIH HHS
- R01 AG057777 NIA NIH HHS
- Johnson & Johnson Pharmaceutical Research & Development LLC.
- U54 AG052427 NIA NIH HHS
- Washington University Genome Institute
- R01AG058501 Darrell K Royal Texas Alzheimer's Initiative
- Framingham Heart Study
- R01 AG046949 NIA NIH HHS
- R01 AG042210 NIA NIH HHS
- P50 AG008671 NIA NIH HHS
- R01 AG054076 NIA NIH HHS
- U54 HG003067 NHGRI NIH HHS
- P50 AG005142 NIA NIH HHS
- R01 AG057909 NIA NIH HHS
- R01 AG058501 NIA NIH HHS
- 2014-A-004-NET Hillblom Aging Network
- Ministry of Education
- U01AG062602 Gwangju Alzheimer and Related Dementias Study
- HHSN268201100010C NHLBI NIH HHS
- RF1 AG057440 NIA NIH HHS
- European Special Populations Research Network
- R01AG044829 Longevity Genes Project
- U01 AG058922 NIA NIH HHS
- P20 AG068053 NIA NIH HHS
- R01 AG009029 NIA NIH HHS
- K08 AG034290 NIA NIH HHS
- R01 AG015928 NIA NIH HHS
- R01 AG044546 NIA NIH HHS
- P01 NS026630 NINDS NIH HHS
- P30 AG010133 NIA NIH HHS
- U24 AG021886 NIA NIH HHS
- Netherlands Organization for Scientific Research
- R01 AG009956 NIA NIH HHS
- HHSN268201100008C NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- P30 AG72975 Religious Orders Study
- IIRG09133827 University of Miami
- R01NS29993 Northern Manhattan Study
- Culture and Science
- 2R01AG09029 Multi-Institutional Research in Alzheimer's Genetic Epidemiology
- 5R37AG015473 Alzheimer's Therapeutic Researc Institute
- Victorian Forensic Institute of Medicine
- P50 AG005131 NIA NIH HHS
- P30AG038072 Longevity Genes Project
- R01 NS069719 NINDS NIH HHS
- U24AG056270 Alzheimer's Disease Centers
- CIHR
- NU38CK000480 Case Western Reserve University Rapid Decline
- UF1AG047133 NIH HHS
- CurePSP Foundation
- HHSN268201500001C NHLBI NIH HHS
- Reta Lila Weston Institute for Neurological Studies
- P50 AG005146 NIA NIH HHS
- Atherosclerosis Risk in Communities
- HHSN268201100005G NHLBI NIH HHS
- RF1AG053303 Alzheimer's Therapeutic Researc Institute
- K25 AG041906 NIA NIH HHS
- P30 AG066512 NIA NIH HHS
- U01 AG049507 NIA NIH HHS
- U01 HL096917 NHLBI NIH HHS
- P50 AG016574 NIA NIH HHS
- R01AG025259 Multi-Institutional Research in Alzheimer's Genetic Epidemiology
- P30 AG066511 NIA NIH HHS
- RF1AG053303 Darrell K Royal Texas Alzheimer's Initiative
- U24 AG072122 NIA NIH HHS
- Erasmus University
- R01 AG11101 Arizona Department of Health Services
- P01 AG017586 NIA NIH HHS
- RF1 AG054014 NIA NIH HHS
- HHSN268201100008I NHLBI NIH HHS
- R01 AG15819 Religious Orders Study
- European Commission
- Alzheimer's Drug Discovery Foundation
- RF1AG058501 Darrell K Royal Texas Alzheimer's Initiative
- P50 AG05681 Darrell K Royal Texas Alzheimer's Initiative
- U01 AG052411 NIA NIH HHS
- R01AG064614 Darrell K Royal Texas Alzheimer's Initiative
- R01 AG019085 NIA NIH HHS
- Genetic and Environmental Risk Factors
- P30 AG066515 NIA NIH HHS
- RF1 AG053303 NIA NIH HHS
- U01 HL130114 NHLBI NIH HHS
- R01 AG017216 Darrell K Royal Texas Alzheimer's Initiative
- R01 AG11101 Chicago Health and Aging Project
- U01 AG032984 NIA NIH HHS
- R01AG032289 Hillblom Aging Network
- P30 AG062421 NIA NIH HHS
- R01 AG030146 NIA NIH HHS
- U01 AG046170 NIA NIH HHS
- R01 AG057907 NIA NIH HHS
- R01 AG09029 Multi-Institutional Research in Alzheimer's Genetic Epidemiology Study
- U01 AG024904 NIA NIH HHS
- European Research Council
- P50 AG008702 NIA NIH HHS
- Lumosity
- R01AG028786 University of Miami Brain Endowment Bank
- HHSN268201100007C NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- R01 AG048234 NIA NIH HHS
- RF1AG015473 Estudio Familiar de Influencia Genetica en Alzheimer
- Ministry for Health
- U01AG065958 The Longitudinal Aging Study in India
- Piramal Imaging
- R01 AG043617 NIA NIH HHS
- Takeda Pharmaceutical Company
- U01 AG068057 NIA NIH HHS
- W81XWH-12-2-0012 National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site
- Hussman Institute for Human Genomics
- U54HG003067 Broad Institute Genome Center
- P01AG017586 Tau Consortium
- HHSN268201100011I NHLBI NIH HHS
- QLG2-CT-2002- 01254 Quality of Life and Management of the Living Resources
- HHSN268201100011C NHLBI NIH HHS
- Alzheimer's Association
- RF1 AG054074 NIA NIH HHS
- Erasmus Rucphen Family Study
- AG064877 Arizona Department of Health Services
- U01 AG016976 NIA NIH HHS
- U54AG052427 Genome Center for Alzheimer's Disease
- P50 NS039764 NINDS NIH HHS
- P30AG066462 Darrell K Royal Texas Alzheimer's Initiative
- P30 AG066508 NIA NIH HHS
- R01 AG18023 Arizona Department of Health Services
- Genentech, Inc.
- R01 AG003949 Darrell K Royal Texas Alzheimer's Initiative
- P50 AG005681 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- Study Investigators institutions
- R56AG051876 Alzheimer's Therapeutic Researc Institute
- R01AG041797 University of Washington Families
- U24 AG056270 NIA NIH HHS
- P30 AG072978 NIA NIH HHS
- HEALTH-F4- 2007-201413 European Community's Seventh Framework
- P01 AG026276 NIA NIH HHS
- R01 AG017917 NIA NIH HHS
- RC2 HG005605 NHGRI NIH HHS
- U24 AG21886 The Longitudinal Aging Study in India
- R01AG046949 Longevity Genes Project
- RF1 AG058501 NIA NIH HHS
- P30 AG062429 NIA NIH HHS
- P01 AG03991 Darrell K Royal Texas Alzheimer's Initiative
- P30 AG19610 MND Victoria
- U01 HL096902 NHLBI NIH HHS
- P30 AG013846 NIA NIH HHS
- Rotterdam
- Netherlands Organization for Scientific Research and the Russian Foundation for Basic Research
- U01AG032984 Transition Therapeutics
- R56 AG051876 NIA NIH HHS
- U54NS100693 Arizona Department of Health Services
- R01AG064877 Darrell K Royal Texas Alzheimer's Initiative
- R01AG054047 Wisconsin Registry for Alzheimer's Prevention
- R01 AG028786 NIA NIH HHS
- Anniversary Fund
- N01HC55222 NHLBI NIH HHS
- U54 HG003273 NHGRI NIH HHS
- R01 AG049607 NIA NIH HHS
- Araclon Biotech
- P30 AG066519 NIA NIH HHS
- UF1 AG047133 NIA NIH HHS
- U01 AG057659 NIA NIH HHS
- KL2 RR024151 NCRR NIH HHS
- Medical University of Graz
- U24 AG074855 NIA NIH HHS
- R01 AG061155 NIA NIH HHS
- Novartis Pharmaceuticals Corporation
- P50 AG005136 NIA NIH HHS
- R01AG025259 Alzheimer Disease Among African Americans Study
- Meso Scale Diagnostics, LLC.
- CereSpir, Inc.
- P30 AG012300 NIA NIH HHS
- NU38 CK000480 NCEZID CDC HHS
- R01 AG42210 Religious Orders Study
- Northern California Institute for Research and Education
- Center for Genome Technology
- N01HC85086 NHLBI NIH HHS
- BioClinica, Inc.
- R01 AG027161 NIA NIH HHS
- RF1 AG054023 NIA NIH HHS
- R01 AG054047 NIA NIH HHS
- 5R01AG009956 Ibadan Study of Aging
- Meso Scale Diagnostics, LLC
- R01AG060747 Religious Orders Study
- U24AG041689 The Longitudinal Aging Study in India
- P30 AG072973 NIA NIH HHS
- U54AG052427 CurePSP
- P30 AG062422 NIA NIH HHS
- RF1 AG054080 NIA NIH HHS
- U19 AG024904 NIA NIH HHS
- U01 AG062943 NIA NIH HHS
- RF1 AG051504 NIA NIH HHS
- GE Healthcare
- P50 AG016573 NIA NIH HHS
- GHR Foundation
- R01 HL105756 NHLBI NIH HHS
- R01 AG079280 NIA NIH HHS
- Large Scale Sequencing and Analysis Centers
- K25 AG041906-01 Arizona Department of Health Services
- Research Institute for Diseases in the Elderly
- Austrian Science Fond
- RF1AG058501 Alzheimer's Disease Centers
- P30AG066444 Alzheimer's Therapeutic Researc Institute
- U.S. Department of Health and Human Services
- R01AG031272 Cache County Study
- Cardiovascular Health Study
- Medical Research Council UK
- RF1 AG058066 NIA NIH HHS
- Parkinson's Victoria
- R01AG042188 Longevity Genes Project
- Departments of Neurology and Psychiatry at Washington University School of Medicine
- 3U01AG052410 CubanAmerican Alzheimer's Disease Initiative
- U24 AG041689 NIA NIH HHS
- U01AG052410 University of Miami Brain Endowment Bank
- P50 AG005134 NIA NIH HHS
- U01 AG006781 NIH HHS
- RF1AG054080 Darrell K Royal Texas Alzheimer's Initiative
- P30 AG008017 NIA NIH HHS
- HHSN268201100006C NHLBI NIH HHS
- R01AG044546 Alzheimer's Therapeutic Researc Institute
- R01 AG044829 NIA NIH HHS
- P30 AG066462 NIA NIH HHS
- R01NS069719 University of Washington Families
- U54AG052427 The Longitudinal Aging Study in India
- R01AG027161 Wisconsin Registry for Alzheimer's Prevention
- P30 AG010161 NIA NIH HHS
- P30 AG066530 NIA NIH HHS
- R01 AG033193 NIA NIH HHS
- R01AG057909 Longevity Genes Project
- Austrian National Bank
- HHSN268201200036C NHLBI NIH HHS
- Victorian Brain Bank
- R01 AG036042 NIA NIH HHS
- U01 AG058589 NIA NIH HHS
- P50 AG025688 NIA NIH HHS
- HHSN268201100005I NHLBI NIH HHS
- R01 AG032990 NIA NIH HHS
- Netherlands Organization
- AbbVie
- 2R01AG048927 Multi-Institutional Research in Alzheimer's Genetic Epidemiology
- U01AG052410 Research in African American Alzheimer Disease Initiative
- P50AG008012 Case Western Reserve University Brain Bank
- Austrian Science Fund
- R37 AG015473 NIA NIH HHS
- R01AG21136 Cache County Study
- U01 NS041588 NINDS NIH HHS
- U01AG057659 Uniformed Services University of the Health Sciences
- R01 NS080820 NINDS NIH HHS
- Department of Internal Medicine
- R01 AG059716 NIA NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- P01AG03991 Alzheimer's Therapeutic Researc Institute
- U01 AG049508 NIA NIH HHS
- U01AG052410 Darrell K Royal Texas Alzheimer's Initiative
- P50 AG008012 NIA NIH HHS
- P01AG03991 Darrell K Royal Texas Alzheimer's Initiative
- P50 NS072187 NINDS NIH HHS
- U24AG041689 National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site
- R01AG046170 Arizona Department of Health Services
- U01AG058922 Alzheimer's Therapeutic Researc Institute
- R01 AG15819 Arizona Department of Health Services
- Avid and Cogstate
- R01AG018016 Mexican Health and Aging Study
- RF1AG015473 Alzheimer's Therapeutic Researc Institute
- U01 HL096814 NHLBI NIH HHS
- Mayo Clinic Florida
- U01AG032984 Arizona Department of Health Services
- RC2 AG036547 NIA NIH HHS
- Steiermärkische Krankenanstalten Gesellschaft
- U24AG041689 Transition Therapeutics
- U01AG058922 Alzheimer's Disease Centers
- Cogstate
- U01 AG052410 NIA NIH HHS
- 5RC2HG005605 Mayo Parkinson's Disease
- P30 AG066509 NIA NIH HHS
- Erasmus MC
- U01 AG006781 NIA NIH HHS
- R01 AG041797 NIA NIH HHS
- EU Joint Programme - Neurodegenerative Disease Research
- NIBIB NIH HHS
- K23 AG030944 NIA NIH HHS
- U54NS100693 CurePSP
- P20 AG068077 NIA NIH HHS
- U01 AG062602 NIA NIH HHS
- R01 NS029993 NINDS NIH HHS
- R01AG044546 Darrell K Royal Texas Alzheimer's Initiative
- Johnson & Johnson Pharmaceutical Research & Development LLC
- RC4 AG039085 NIA NIH HHS
- Reasons for Geographic and Racial Differences in Stroke
- HHSN271201300031C NIDA NIH HHS
- P30 AG066546 NIA NIH HHS
- P30AG066444 Darrell K Royal Texas Alzheimer's Initiative
- R01 AG064614 NIA NIH HHS
- BRIDGET
- P30 AG079280 Alzheimer's Disease Research Centers
- P30 AG038072 NIA NIH HHS
- Erasmus Medical Center
- R01 AG032289 NIA NIH HHS
- R01 AG048927 NIA NIH HHS
- U54 HG003079 NHGRI NIH HHS
- R01 AG019757 NIA NIH HHS
- U01 AG052409 NIA NIH HHS
- U01 AG046139 NIA NIH HHS
- R01 AG033040 NIA NIH HHS
- RF1 AG054052 NIA NIH HHS
- R01 AG007584 Genetic Differences
- R01 AG021547 NIA NIH HHS
- RF1AG054080 Alzheimer's Therapeutic Researc Institute
- R01AG11380 Cache County Study
- U01 AG006576 Darrell K Royal Texas Alzheimer's Initiative
- R01 AG051125 NIA NIH HHS
- Accelerating Medicines Partnership
- R56 AG064877 NIA NIH HHS
- National Institutes of Health-National Institute on Aging
- Elan Pharmaceuticals, Inc.
- P30 AG072977 NIA NIH HHS
- R01AG064877 Alzheimer's Therapeutic Researc Institute
- R01 AG020098 NIA NIH HHS
- public-private-philanthropic partnership
- P30 AG062677 NIA NIH HHS
- N01HC85082 NHLBI NIH HHS
- Rainwater Charitable Foundation
- RF1AG054074 Puerto Rican Alzheimer Disease Initiative
- Health Research and Development
- R01 HL070825 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- RF1AG057440 Arizona Department of Health Services
- R01 AG027944 NIA NIH HHS
- HHSN268201100005C NHLBI NIH HHS
- P30 AG072958 NIA NIH HHS
- R01 AG025259 NIA NIH HHS
- R01 AG030653 NIA NIH HHS
- HHSN268201100009C NHLBI NIH HHS
- P20 AG068024 NIA NIH HHS
- Eli Lilly and Company
- P01 AG003949 NIA NIH HHS
- RF1 AG057519 NIA NIH HHS
- U01 HL096899 NHLBI NIH HHS
- P30 AG062715 NIA NIH HHS
- RF1 AG015473 NIA NIH HHS
- P50AG005136 University of Washington Families
- U01AG058922 Darrell K Royal Texas Alzheimer's Initiative
- Prospective Dementia Registry-Austria
- P30 AG072976 NIA NIH HHS
- P30 AG010129 NIA NIH HHS
- HHSN268201100007I NHLBI NIH HHS
- R01AG064614 The Longitudinal Aging Study in India
- U01 AG049506 NIA NIH HHS
- U24 NS072026 NINDS NIH HHS
- Wellcome Trust
- R01 AG011101 NIA NIH HHS
- R01 AG17917 Arizona Department of Health Services
- U24 AG21886 Arizona Department of Health Services
- P30 AG066506 NIA NIH HHS
- U24-AG041689 University of Pennsylvania
- P30 AG066468 NIA NIH HHS
- R01 AG021136 NIA NIH HHS
- P30 AG019610 NIA NIH HHS
- IXICO Ltd.
- R01 AG041718 NIA NIH HHS
- Arizona Alzheimer's Disease Core Center
- UG3 NS104095 NINDS NIH HHS
- RF1AG058267 Case Western Reserve University Rapid Decline
- P30AG066462 Alzheimer's Therapeutic Researc Institute
- R01AG057907 Arizona Department of Health Services
- R01AG061155 Longevity Genes Project
- Hussman Institute for Human Genomics Brain Bank
- NeuroRx Research
- P30 AG072947 NIA NIH HHS
- P50 AG025711 NIA NIH HHS
- U01 AG058635 NIA NIH HHS
- Longitudinal Evaluation of Amyloid Risk and Neurodegeneration
- P30 AG072931 NIA NIH HHS
- Merck & Co., Inc.
- RF1AG053303 Alzheimer's Disease Centers
- RF1AG058066 Amish Protective Variant
- #NS072187 Morris K. Udall Parkinson's Disease Research Center of Excellence
- P30 AG072972 NIA NIH HHS
- U01 ES017155 NIEHS NIH HHS
- R01 AG30146 Arizona Department of Health Services
- R01 AG023629 NIA NIH HHS
- N01HC85079 NHLBI NIH HHS
- German Center for Neurodegenerative Diseases
- RF1AG054052 Cache County Study
- Janssen Alzheimer Immunotherapy Research & Development, LLC
- RF1AG058501 Alzheimer's Therapeutic Researc Institute
- R01AG064877 Alzheimer's Disease Centers
- P30 AG066514 NIA NIH HHS
- R56AG051876 Estudio Familiar de Influencia Genetica en Alzheimer
- U19 AG066567 NIH HHS
- U54AG052427 Transition Therapeutics
- P30 AG028383 NIA NIH HHS
- U19 AG066567 NIA NIH HHS
- P01 AG017216 NIA NIH HHS
- N01HC85080 NHLBI NIH HHS
- P30 AG072959 NIA NIH HHS
- P30-AG066468 Arizona Department of Health Services
- R01 AG031272 NIA NIH HHS
- Austrian Research Promotion agency
- P01AG026276 Darrell K Royal Texas Alzheimer's Initiative
- R01 AG011380 NIA NIH HHS
- Netherlands Genomics Initiative
- R01AG048234 Hillblom Aging Network
- P01AG026276 Alzheimer's Therapeutic Researc Institute
- P50 NS071674 NINDS NIH HHS
- R01 AG018023 NIA NIH HHS
- Neurotrack Technologies
- R01 AG17917 Memory and Aging Project
- Fujirebio
- AG030653 Arizona Department of Health Services
- Lundbeck
- R01AG044546 Alzheimer's Disease Centers
- University of Toronto (UT)
- U01 AG006786 NIA NIH HHS
- U54 NS100693 NINDS NIH HHS
- 2R01AG09029 Alzheimer Disease Among African Americans Study
- Netherlands Organization of Scientific Research NWO Investments
- RF1AG054074 Peru Alzheimer's Disease Initiative
- Rotterdam Study
- P30 AG072979 NIA NIH HHS
- R01 AG015819 NIA NIH HHS
- R01 AG036836 NIA NIH HHS
- Eisai Inc.
- RF1 AG058267 NIA NIH HHS
- 2R01AG048927 Alzheimer Disease Among African Americans Study
- P30 AG10161 Arizona Department of Health Services
- U19AG024904) Alzheimer's Disease Neuroimaging Initiative
- U54AG052427 Arizona Department of Health Services
- N01HC85081 NHLBI NIH HHS
- National Institute on Aging Alzheimer's Disease Data Storage Site
- U01 AG049505 NIA NIH HHS
- University of Pennsylvania
- National Institute on Aging
- National Human Genome Research Institute
- National Heart, Lung, and Blood Institute
- National Institutes of Health
- Mayo Clinic
- University of Miami
- Case Western Reserve University
- Alzheimer's Association
- Wellcome Trust
- Medical Research Council
- Canadian Institutes of Health Research
- Framingham Heart Study
- Medical University of Graz
- Austrian Science Fund
- EU Joint Programme – Neurodegenerative Disease Research
- Austrian National Bank
- National Institute of Neurological Disorders and Stroke
- Erasmus Medical Center
- Ministry of Education
- European Commission
- Erasmus MC
- U.S. Department of Health and Human Services
- Alzheimer's Disease Neuroimaging Initiative
- European Research Council
- Baylor College of Medicine
- Uniformed Services University of the Health Sciences
- Eli Lilly and Company
- GHR Foundation
- University of Southern California
- National Institute of Biomedical Imaging and Bioengineering
- AbbVie
- Alzheimer's Drug Discovery Foundation
- BioClinica, Inc.
- Biogen
- Genentech, Inc.
- Fujirebio
- GE Healthcare
- Lundbeck
- Merck & Co., Inc.
- Novartis Pharmaceuticals Corporation
- Takeda Pharmaceutical Company
- Northern California Institute for Research and Education
- Arizona Department of Health Services
- Rainwater Charitable Foundation
- CurePSP
- Tau Consortium
- Victorian Brain Bank
- German Center for Neurodegenerative Diseases
Collapse
Affiliation(s)
- Yuk Yee Leung
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wan‐Ping Lee
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amanda B. Kuzma
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Heather Nicaretta
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Otto Valladares
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Prabhakaran Gangadharan
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Liming Qu
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yi Zhao
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Youli Ren
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Po‐Liang Cheng
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Pavel P. Kuksa
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hui Wang
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Heather White
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zivadin Katanic
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lauren Bass
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Naveen Saravanan
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Greenfest‐Allen
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maureen Kirsch
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Laura Cantwell
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Taha Iqbal
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Nicholas R. Wheeler
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - John J. Farrell
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Congcong Zhu
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Shannon L. Turner
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tamil I. Gunasekaran
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterTaub Institute for Research on the Aging BrainDepartments of Neurology, Psychiatry, and EpidemiologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Pedro R. Mena
- Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Yumi Jin
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Luke Carter
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Xiaoling Zhang
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Badri N. Vardarajan
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterTaub Institute for Research on the Aging BrainDepartments of Neurology, Psychiatry, and EpidemiologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Arthur Toga
- Laboratory of Neuro ImagingUSC Stevens Neuroimaging and Informatics InstituteKeck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Michael Cuccaro
- Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Timothy J. Hohman
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - William S. Bush
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Adam C. Naj
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Eden Martin
- Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and GeneticsSchool of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Brian W. Kunkle
- Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics)Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Richard P. Mayeux
- Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterTaub Institute for Research on the Aging BrainDepartments of Neurology, Psychiatry, and EpidemiologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
- Department of Genetics and Genome SciencesSchool of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Margaret A. Pericak‐Vance
- Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Li‐San Wang
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Neurodegeneration Genomics CenterDepartment of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Wang D, Scalici A, Wang Y, Lin H, Pitsillides A, Heard-Costa N, Cruchaga C, Ziegemeier E, Bis JC, Fornage M, Boerwinkle E, De Jager PL, Wijsman E, Dupuis J, Renton AE, Seshadri S, Goate AM, DeStefano AL, Peloso GM. Frequency of variants in Mendelian Alzheimer's disease genes within the Alzheimer's Disease Sequencing Project. J Alzheimers Dis 2025; 104:841-851. [PMID: 40084664 DOI: 10.1177/13872877251320375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
BackgroundPrior studies examined variants within presenilin-2 (PSEN2), presenilin-1 (PSEN1), and amyloid precursor protein (APP) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP).ObjectiveTo characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP.MethodsWe identified rare variants (MAF < 1%) in PSEN2, PSEN1, and APP in 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available (Ntotal = 31,490). We additionally curated variants from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes.ResultsWe detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2, 25 in PSEN1, and 2 in APP. The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with noncarriers (p = 7.8 × 10-57). Additionally, we identified 197 rare variants (MAF < 1%) within ADSP participants not reported in known clinical databases.ConclusionsA small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to noncarriers.
Collapse
Affiliation(s)
- Dongyu Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexandra Scalici
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yanbing Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Achilleas Pitsillides
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nancy Heard-Costa
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Ellen Ziegemeier
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Ellen Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Seshadri
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's Disease and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Li D, Zeng L, Zhang W, Wang Q, Wu J, Zhu C, Meng Z. Multi-omics study of sex in greater amberjack (Seriola dumerili): Identifying related genes, analyzing sex-biased expression, and developing sex-specific markers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101364. [PMID: 39612541 DOI: 10.1016/j.cbd.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
The greater amberjack (Seriola dumerili) is a valuable marine fish with significant breeding potential, but does not exhibit clear sexual dimorphism in morphology. Sex research and the development of sex identification technology are important for breeding purposes. Through genome-wide association analysis (GWAS), we identified one significant sex-related SNP and 18 candidate sex-related SNPs, then obtained one significant sex-related gene (hsd17β1) and 20 candidate sex-related genes (hmbox1, ahcyl1, pdzd2, etc.). Key sex-biased genes (sox2, dmrt2, hsd17β3, rnf145, foxo3, etc.) were identified in mature gonads by transcriptome analysis. These genes are important in greater amberjack sex determination and gonad development. In addition, we developed classical PCR and kompetitive allele-specific PCR (KASP) primers to identify the sex of greater amberjack, with an accuracy of 94.87 % and 100 %, respectively. The sex-specific markers can effectively determine the gender of greater amberjack and evaluate the sex ratio and reproductive potential of the breeding population.
Collapse
Affiliation(s)
- Duo Li
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Leilei Zeng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiwei Zhang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinghua Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinhui Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish, Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zining Meng
- School of Life Sciences, State Key Laboratory of Biocontrol, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Leung YY, Lee WP, Kuzma AB, Nicaretta H, Valladares O, Gangadharan P, Qu L, Zhao Y, Ren Y, Cheng PL, Kuksa PP, Wang H, White H, Katanic Z, Bass L, Saravanan N, Greenfest-Allen E, Kirsch M, Cantwell L, Iqbal T, Wheeler NR, Farrell JJ, Zhu C, Turner SL, Gunasekaran TI, Mena PR, Jin J, Carter L, Alzheimer’s Disease Sequencing Project, Zhang X, Vardarajan BN, Toga A, Cuccaro M, Hohman TJ, Bush WS, Naj AC, Martin E, Dalgard C, Kunkle BW, Farrer LA, Mayeux RP, Haines JL, Pericak-Vance MA, Schellenberg GD, Wang LS. Alzheimer's Disease Sequencing Project Release 4 Whole Genome Sequencing Dataset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24317000. [PMID: 39677464 PMCID: PMC11643159 DOI: 10.1101/2024.12.03.24317000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Alzheimer's Disease Sequencing Project (ADSP) is a national initiative to understand the genetic architecture of Alzheimer's Disease and Related Dementias (AD/ADRD) by sequencing whole genomes of affected participants and age-matched cognitive controls from diverse populations. The Genome Center for Alzheimer's Disease (GCAD) processed whole-genome sequencing data from 36,361 ADSP participants, including 35,014 genetically unique participants of which 45% are from non-European ancestry, across 17 cohorts in 14 countries in this fourth release (R4). This sequencing effort identified 387 million bi-allelic variants, 42 million short insertions/deletions, and 2.2 million structural variants. Annotations and quality control data are available for all variants and samples. Additionally, detailed phenotypes from 15,927 participants across 10 domains are also provided. A linkage disequilibrium panel was created using unrelated AD cases and controls. Researchers can access and analyze the genetic data via NIAGADS Data Sharing Service, the VariXam tool, or NIAGADS GenomicsDB.
Collapse
Affiliation(s)
- Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Heather Nicaretta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Prabhakaran Gangadharan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Liming Qu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Youli Ren
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Pavel P Kuksa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Heather White
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Zivadin Katanic
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Lauren Bass
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Naveen Saravanan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Emily Greenfest-Allen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Maureen Kirsch
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Taha Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas R Wheeler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - John J. Farrell
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Shannon L Turner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamil I Gunasekaran
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pedro R Mena
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jimmy Jin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Luke Carter
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | | | - Xiaoling Zhang
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Badri N Vardarajan
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California
| | - Michael Cuccaro
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eden Martin
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clifton Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian W Kunkle
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Richard P Mayeux
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret A Pericak-Vance
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
6
|
Lee W, Choi SH, Shea MG, Cheng P, Dombroski BA, Pitsillides AN, Heard‐Costa NL, Wang H, Bulekova K, Kuzma AB, Leung YY, Farrell JJ, Lin H, Kunkle BW, Naj A, Blue EE, Nusetor F, Wang D, Boerwinkle E, Bush WS, Zhang X, De Jager PL, Dupuis J, Farrer LA, Fornage M, Martin E, Pericak‐Vance M, Seshadri S, Wijsman EM, Wang L, The Alzheimer's Disease Sequencing Project, Schellenberg GD, Destefano AL, Haines JL, Peloso GM. Association of common and rare variants with Alzheimer's disease in more than 13,000 diverse individuals with whole-genome sequencing from the Alzheimer's Disease Sequencing Project. Alzheimers Dement 2024; 20:8470-8483. [PMID: 39428839 PMCID: PMC11667527 DOI: 10.1002/alz.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. METHODS We investigated the association of AD with both common variants and aggregates of rare coding and non-coding variants in 13,371 individuals of diverse ancestry with whole genome sequencing (WGS) data. RESULTS Pooled-population analyses of all individuals identified genetic variants at apolipoprotein E (APOE) and BIN1 associated with AD (p < 5 × 10-8). Subgroup-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and non-coding variants in the region. Common variants in LINC00320 were observed associated with AD in Black individuals (p = 1.9 × 10-9). Finally, we observed rare non-coding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p = 7.2 × 10-8). DISCUSSION We observed that complementary pooled-population and subgroup-specific analyses offered unique insights into the genetic architecture of AD. HIGHLIGHTS We determine the association of genetic variants with Alzheimer's disease (AD) using 13,371 individuals of diverse ancestry with whole genome sequencing (WGS) data. We identified genetic variants at apolipoprotein E (APOE), BIN1, PSEN1, and LINC00320 associated with AD. We observed rare non-coding variants in the promoter of TOMM40 distinct of APOE.
Collapse
|
7
|
N M P, Fullard JF, Clarence T, Mathur D, Casey C, Hennigan E, Alvia M, Krause-Massaguer J, Barreda A, Davis DA, Vontell RT, Garamszegi SP, Vance JM, Sang L, Chatigny M, Vismer D, Landin B, Burstein D, Lee D, Voloudakis G, Berretta S, Haroutunian V, Scott WK, Bendl J, Roussos P. A multi-region single nucleus transcriptomic atlas of Parkinson's disease. Sci Data 2024; 11:1274. [PMID: 39580497 PMCID: PMC11585549 DOI: 10.1038/s41597-024-04117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disorder, characterized by motor and cognitive impairments, that affects >1% of the population over the age of 60. The pathogenesis of PD is complex and remains largely unknown. Due to the cellular heterogeneity of the human brain and changes in cell type composition with disease progression, this complexity cannot be fully captured with bulk tissue studies. To address this, we generated single-nucleus RNA sequencing and whole-genome sequencing data from 100 postmortem cases and controls, carefully selected to represent the entire spectrum of PD neuropathological severity and diverse clinical symptoms. The single nucleus data were generated from five brain regions, capturing the subcortical and cortical spread of PD pathology. Rigorous preprocessing and quality control were applied to ensure data reliability. Committed to collaborative research and open science, this dataset is available on the AMP PD Knowledge Platform, offering researchers a valuable tool to explore the molecular bases of PD and accelerate advances in understanding and treating the disease.
Collapse
Affiliation(s)
- Prashant N M
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Clara Casey
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn Hennigan
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Alvia
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Krause-Massaguer
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ayled Barreda
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David A Davis
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina T Vontell
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susanna P Garamszegi
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | - David Burstein
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Sabina Berretta
- McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William K Scott
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
8
|
Tong T, Zhu C, Farrell JJ, Khurshid Z, Martin ER, Pericak-Vance MA, Wang LS, Bush WS, Schellenberg GD, Haines JL, Qiu WQ, Lunetta KL, Farrer LA, Zhang X. Blood-derived mitochondrial DNA copy number is associated with Alzheimer disease, Alzheimer-related biomarkers and serum metabolites. Alzheimers Res Ther 2024; 16:234. [PMID: 39444005 PMCID: PMC11515778 DOI: 10.1186/s13195-024-01601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Blood-derived mitochondrial DNA copy number (mtDNA-CN) is a proxy measurement of mitochondrial function in the peripheral and central systems. Abnormal mtDNA-CN not only indicates impaired mtDNA replication and transcription machinery but also dysregulated biological processes such as energy and lipid metabolism. However, the relationship between mtDNA-CN and Alzheimer disease (AD) is unclear. METHODS We performed two-sample Mendelian randomization (MR) using publicly available summary statistics from GWAS for mtDNA-CN and AD to investigate the causal relationship between mtDNA-CN and AD. We estimated mtDNA-CN using whole-genome sequence data from blood and brain samples of 13,799 individuals from the Alzheimer's Disease Sequencing Project. Linear and Cox proportional hazards models adjusting for age, sex, and study phase were used to assess the association of mtDNA-CN with AD. The association of AD biomarkers and serum metabolites with mtDNA-CN in blood was evaluated in Alzheimer's Disease Neuroimaging Initiative using linear regression. We conducted a causal mediation analysis to test the natural indirect effects of mtDNA-CN change on AD risk through the significantly associated biomarkers and metabolites. RESULTS MR analysis suggested a causal relationship between decreased blood-derived mtDNA-CN and increased risk of AD (OR = 0.68; P = 0.013). Survival analysis showed that decreased mtDNA-CN was significantly associated with higher risk of conversion from mild cognitive impairment to AD (HR = 0.80; P = 0.002). We also identified significant associations of mtDNA-CN with brain FDG-PET (β = 0.103; P = 0.022), amyloid-PET (β = 0.117; P = 0.034), CSF amyloid-β (Aβ) 42/40 (β=-0.124; P = 0.017), CSF t-Tau (β = 0.128; P = 0.015), p-Tau (β = 0.140; P = 0.008), and plasma NFL (β=-0.124; P = 0.004) in females. Several lipid species, amino acids, biogenic amines in serum were also significantly associated with mtDNA-CN. Causal mediation analyses showed that about a third of the effect of mtDNA-CN on AD risk was mediated by plasma NFL (P = 0.009), and this effect was more significant in females (P < 0.005). CONCLUSIONS Our study indicates that mtDNA-CN measured in blood is predictive of AD and is associated with AD biomarkers including plasma NFL particularly in females. Further, we illustrate that decreased mtDNA-CN possibly increases AD risk through dysregulation of mitochondrial lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Tong Tong
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zainab Khurshid
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eden R Martin
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret A Pericak-Vance
- Hussman Institute of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Qiao Qiu
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Departments of Neurology and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Boston University Chobanian & Avedisian School of Medicine, Biomedical Genetics E223, 72 East Concord Street, 02118, Boston, MA, USA.
| | - Xiaoling Zhang
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Laureyssen C, Küçükali F, Van Dongen J, Gawor K, Tomé SO, Ronisz A, Otto M, von Arnim CAF, Van Damme P, Vandenberghe R, Thal DR, Sleegers K. Hypothesis-based investigation of known AD risk variants reveals the genetic underpinnings of neuropathological lesions observed in Alzheimer's-type dementia. Acta Neuropathol 2024; 148:55. [PMID: 39424714 PMCID: PMC11489263 DOI: 10.1007/s00401-024-02815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Besides neurofibrillary tangles and amyloid beta (Aβ) plaques, a wide range of co-morbid neuropathological features can be observed in AD brains. Since AD has a very strong genetic background and displays a wide phenotypic heterogeneity, this study aims at investigating the genetic underpinnings of co-morbid and hallmark neuropathological lesions. This was realized by obtaining the genotypes for 75 AD risk variants from low-coverage whole-genome sequencing data for 325 individuals from the Leuven Brain Collection. Association testing with deeply characterized neuropathological lesions revealed a strong and likely direct effect of rs117618017, a SNP in exon 1 of APH1B, with tau-related pathology. Second, a relation between APOE and granulovacuolar degeneration, a proxy for necroptosis, was also discovered in addition to replication of the well-known association of APOE with AD hallmark neuropathological lesions. Additionally, several nominal associations with AD risk genes were detected for pTDP pathology, α-synuclein lesions and pTau-related pathology. These findings were confirmed in a meta-analysis with three independent cohorts. For example, we replicated a prior association between TPCN1 (rs6489896) and LATE-NC risk. Furthermore, we identified new putative LATE-NC-linked SNPs, including rs7068231, located upstream of ANK3. We found association between BIN1 (rs6733839) and α-synuclein pathology, and replicated a prior association between USP6NL (rs7912495) and Lewy body pathology. Additionally, we also found that UMAD1 (rs6943429) was nominally associated with Lewy body pathology. Overall, these results contribute to a broader general understanding of how AD risk variants discovered in large-scale clinical genome-wide association studies are involved in the pathological mechanisms of AD and indicate the importance of downstream elimination of phenotypic heterogeneity introduced in these studies.
Collapse
Affiliation(s)
- Celeste Laureyssen
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Philip Van Damme
- Laboratory for Neurobiology, VIB-KU Leuven, Louvain, Belgium
- Department of Neurology, UZ Leuven, Louvain, Belgium
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven, Louvain, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Louvain, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, KU Leuven, Louvain, Belgium
- Department of Pathology, University Hospital Leuven, Louvain, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Wang D, Scalici A, Wang Y, Lin H, Pitsillides A, Heard-Costa N, Cruchaga C, Ziegemeier E, Bis JC, Fornage M, Boerwinkle E, De Jager PL, Wijsman E, Dupuis J, Renton AE, Seshadri S, Goate AM, DeStefano AL, Peloso GM. Frequency of Variants in Mendelian Alzheimer's Disease Genes within the Alzheimer's Disease Sequencing Project (ADSP). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.24.23297227. [PMID: 37961373 PMCID: PMC10635182 DOI: 10.1101/2023.10.24.23297227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
BACKGROUND Prior studies using the ADSP data examined variants within presenilin-2 (PSEN2), presenilin-1 (PSEN1), and amyloid precursor protein (APP) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP). OBJECTIVE To characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP. METHODS We identified rare variants (MAF <1%) previously-reported in PSEN2, PSEN1, and APP in the available ADSP sample of 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available for research-use (Ntotal = 31,490). We additionally curated variants in these three genes from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes. RESULTS We detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2, 25 in PSEN1, and 2 in APP. The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with noncarriers (p-value=7.8×10-57). CONCLUSION A small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to noncarriers.
Collapse
|
11
|
Cheng PL, Wang H, Dombroski BA, Farrell JJ, Horng I, Chung T, Tosto G, Kunkle BW, Bush WS, Vardarajan B, Schellenberg GD, Lee WP. A Specialized Reference Panel with Structural Variants Integration for Improving Genotype Imputation in Alzheimer's Disease and Related Dementias (ADRD). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310827. [PMID: 39108532 PMCID: PMC11302603 DOI: 10.1101/2024.07.22.24310827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
We developed an imputation panel for Alzheimer's disease (AD) and related dementias (ADRD) using whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project (ADSP). Recognizing the significant associations between structural variants (SVs) and AD, and their underrepresentation in existing public reference panels, our panel uniquely integrates single nucleotide variants (SNVs), short insertions and deletions (indels), and SVs. This panel enhances the imputation of disease susceptibility, including rare AD-associated SNVs, indels, and SVs, onto genotype array data, offering a cost-effective alternative to whole-genome sequencing while significantly augmenting statistical power. Notably, we discovered 10 rare indels nominal significant related to AD that are absent in the TOPMed-r2 panel and identified three suggestive significant (p-value < 1E-05) AD-associated SVs in the genes EXOC3L2 and DMPK, were identified. These findings provide new insights into AD genetics and underscore the critical role of imputation panels in advancing our understanding of complex diseases like ADRD.
Collapse
Affiliation(s)
- Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Iris Horng
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Chung
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Brian W Kunkle
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard‐Costa NL, Choi SH, Wang D, Bis JC, Blue EE, the Alzheimer's Disease Neuroimaging Initiative (ADNI), Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, Peloso GM, DeStefano AL, for the Alzheimer's Disease Sequencing Project (ADSP). Key variants via the Alzheimer's Disease Sequencing Project whole genome sequence data. Alzheimers Dement 2024; 20:3290-3304. [PMID: 38511601 PMCID: PMC11095439 DOI: 10.1002/alz.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Chloé Sarnowski
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Honghuang Lin
- Department of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Nancy L. Heard‐Costa
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Seung Hoan Choi
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Dongyu Wang
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Joshua C. Bis
- Cardiovascular Health Research UnitDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth E. Blue
- Department of MedicineDivision of Medical GeneticsUniversity of WashingtonSeattleWashingtonUSA
- Brotman Baty InstituteSeattleWashingtonUSA
| | | | - Eric Boerwinkle
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Philip L. De Jager
- Center for Translational & Computational NeuroimmunologyDepartment of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Myriam Fornage
- Human Genetics CenterDepartment of EpidemiologySchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- Brown Foundation Institute of Molecular MedicineMcGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ellen M. Wijsman
- Division of Medical Genetics and Department Biostatistics Statistical Genetics LabUniversity of WashingtonHans Rosling Center for Population HealthSeattleWashingtonUSA
| | - Sudha Seshadri
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Josée Dupuis
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- Department of Epidemiology, Biostatistics and Occupational HealthSchool of Population and Global HealthMcGill UniversityMontrealQuebecCanada
| | - Gina M. Peloso
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
| | - Anita L. DeStefano
- Department of BiostatisticsBoston University, School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | | |
Collapse
|
13
|
Andrews SJ, Jonson C, Fulton-Howard B, Renton AE, Yokoyama JS, Yaffe K, Alzheimer’s Disease Neuroimaging Initiative. The Role of Genomic-Informed Risk Assessments in Predicting Dementia Outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.27.24306488. [PMID: 38903124 PMCID: PMC11188112 DOI: 10.1101/2024.04.27.24306488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Importance By integrating genetic and clinical risk factors into genomic-informed dementia risk reports, healthcare providers can offer patients detailed risk profiles to facilitate understanding of individual risk and support the implementation of personalized strategies for promoting brain health. Objective To develop a genomic-informed risk assessment composed of family history, genetic, and clinical risk factors and, in turn, evaluate how the risk assessment predicted incident dementia. Design This longitudinal study included data from two clinical case-control cohorts with an average of 6.6 visits. Secondary analyses were conducted from July 2023 - March 2024. Setting Data were previously collected across multiple US locations from 1994 to 2023. Participants Older adults aged 55+ with whole-genome sequencing and dementia-free at baseline. Exposures An additive score comprising the modified Cardiovascular Risk Factors, Aging, and Incidence of Dementia Risk Score (mCAIDE), family history of dementia, APOE genotype, and an AD polygenic risk score. Main Outcomes and Measures The risk of progression to all-cause dementia was evaluated using Cox-proportional hazard models (hazard ratios with 95% confidence intervals [OR 9%CI]). Results A total of 3,429 older adults were included (aged 75 ± 7 years; 59% female; 75% non-Latino White, 15% Black, 5.2% Latino, 3.6% other, and 0.4% Asian; 27% MCI), with 751 participants progressing to dementia. The most common high-risk indicator was a family history of dementia (56%), followed by APOE*ε4 genotype (36%), high mCAIDE score (34%), and high AD-PRS (11%). Most participants had at least one high-risk indicator, with 39% having one, 32% two, 9.8% three, and 1% four. The presence of 1, 2, 3, or 4 risk indicators was associated with a doubling (HR = 1.72, CI: 1.34-2.22, p = 2.5e-05), tripling (HR = 3.09, CI: 2.41-3.95, p = 4.4e-19), quadrupling (HR = 4.46, CI: 3.34-5.94, p = 2.2e-24), and a twelvefold increase (HR = 12.15, CI: 7.33-20.14, p = 3.2e-22) in dementia risk. Conclusion & Relevance We found that most participants in memory and aging clinics had at least one high-risk indicator for dementia. Furthermore, we observed a dose-response relationship where a greater number of risk indicators was associated with an increased risk of incident dementia.
Collapse
Affiliation(s)
- Shea J. Andrews
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, USA
| | - Caroline Jonson
- Department of Neurology, University of California San Francisco, San Francisco, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD USA 20892
- DataTecnica LLC, Washington, DC USA 20037
| | - Brian Fulton-Howard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alan E Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jennifer S Yokoyama
- Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Kristine Yaffe
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, USA
- Department of Neurology, University of California San Francisco, San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California
| | | |
Collapse
|
14
|
Katsumata Y, Fardo DW, Shade LMP, Wu X, Karanth SD, Hohman TJ, Schneider JA, Bennett DA, Farfel JM, Gauthreaux K, Mock C, Kukull WA, Abner EL, Nelson PT. Genetic associations with dementia-related proteinopathy: Application of item response theory. Alzheimers Dement 2024; 20:2906-2921. [PMID: 38460116 PMCID: PMC11032554 DOI: 10.1002/alz.13741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aβ, tau, α-synuclein, and TDP-43. RESULTS Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aβ/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - David W. Fardo
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Xian Wu
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shama D. Karanth
- Department of SurgeryCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
- UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julie A. Schneider
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Jose M. Farfel
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Charles Mock
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Erin L. Abner
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Epidemiology and Environmental HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyDivision of NeuropathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
15
|
Wang P, Lynn A, Miskimen K, Song YE, Wisniewski T, Cohen M, Appleby BS, Safar JG, Haines JL. Genome-wide association studies identify novel loci in rapidly progressive Alzheimer's disease. Alzheimers Dement 2024; 20:2034-2046. [PMID: 38184787 PMCID: PMC10984493 DOI: 10.1002/alz.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Recent data suggest that distinct prion-like amyloid beta and tau strains are associated with rapidly progressive Alzheimer's disease (rpAD). The role of genetic factors in rpAD is largely unknown. METHODS Previously known AD risk loci were examined in rpAD cases. Genome-wide association studies (GWAS) were performed to identify variants that influence rpAD. RESULTS We identified 115 pathology-confirmed rpAD cases and 193 clinical rpAD cases, 80% and 69% were of non-Hispanic European ancestry. Compared to the clinical cohort, pathology-confirmed rpAD had higher frequencies of apolipoprotein E (APOE) ε4 and rare missense variants in AD risk genes. A novel genome-wide significant locus (P < 5×10-8 ) was observed for clinical rpAD on chromosome 21 (rs2832546); 102 loci showed suggestive associations with pathology-confirmed rpAD (P < 1×10-5 ). DISCUSSION rpAD constitutes an extreme subtype of AD with distinct features. GWAS found previously known and novel loci associated with rpAD. Highlights Rapidly progressive Alzheimer's disease (rpAD) was defined with different criteria. Whole genome sequencing identified rare missense variants in rpAD. Novel variants were identified for clinical rpAD on chromosome 21.
Collapse
Affiliation(s)
- Ping Wang
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| | - Audrey Lynn
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
- Cleveland Institute for Computational BiologyClevelandOhioUSA
| | - Kristy Miskimen
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
| | - Thomas Wisniewski
- Departments of NeurologyPathology and PsychiatryCenter for Cognitive Neurology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Mark Cohen
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- National Prion Disease Pathology Surveillance CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Brian S. Appleby
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- National Prion Disease Pathology Surveillance CenterCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurologyCase Western Reserve UniversityClevelandOhioUSA
- Department of PsychiatryCase Western Reserve UniversityClevelandOhioUSA
| | - Jiri G. Safar
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurologyCase Western Reserve UniversityClevelandOhioUSA
- Department of NeurosciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health SciencesSchool of Medicine, Case Western Reserve UniversityClevelandOhioUSA
- Cleveland Institute for Computational BiologyClevelandOhioUSA
| |
Collapse
|
16
|
Leung YY, Naj AC, Chou YF, Valladares O, Schmidt M, Hamilton-Nelson K, Wheeler N, Lin H, Gangadharan P, Qu L, Clark K, Kuzma AB, Lee WP, Cantwell L, Nicaretta H, Haines J, Farrer L, Seshadri S, Brkanac Z, Cruchaga C, Pericak-Vance M, Mayeux RP, Bush WS, Destefano A, Martin E, Schellenberg GD, Wang LS. Human whole-exome genotype data for Alzheimer's disease. Nat Commun 2024; 15:684. [PMID: 38263370 PMCID: PMC10805795 DOI: 10.1038/s41467-024-44781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer's Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD > 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community.
Collapse
Affiliation(s)
- Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Adam C Naj
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Fan Chou
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Schmidt
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kara Hamilton-Nelson
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Nicholas Wheeler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Honghuang Lin
- Department of Medicine, UMass Chan Medical School, Boston, MA, USA
| | - Prabhakaran Gangadharan
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liming Qu
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn Clark
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda B Kuzma
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cantwell
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Nicaretta
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sudha Seshadri
- Boston University School of Medicine, Boston, MA, USA
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret Pericak-Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Richard P Mayeux
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anita Destefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eden Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Tejeda M, Farrell J, Zhu C, Wetzler L, Lunetta KL, Bush WS, Martin ER, Wang L, Schellenberg GD, Pericak‐Vance MA, Haines JL, Farrer LA, Sherva R. DNA from multiple viral species is associated with Alzheimer's disease risk. Alzheimers Dement 2024; 20:253-265. [PMID: 37578203 PMCID: PMC10840621 DOI: 10.1002/alz.13414] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, have been linked to Alzheimer's disease (AD) risk by independent lines of evidence. We explored this association by comparing the frequencies of viral species identified in a large sample of AD cases and controls. METHODS DNA sequence reads that did not align to the human genome in sequences were mapped to viral reference sequences, quantified, and then were tested for association with AD in whole exome sequences (WES) and whole genome sequences (WGS) datasets. RESULTS Several viruses were significant predictors of AD according to the machine learning classifiers. Subsequent regression analyses showed that herpes simplex type 1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10-4) and human papillomavirus 71 (HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonferroni correction. The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several strata of the data (p < 0.01). DISCUSSION Our results support the hypothesis that viral infection, especially HSV-1, is associated with AD risk.
Collapse
Affiliation(s)
- Marlene Tejeda
- Departments of Medicine Biomedical GeneticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - John Farrell
- Departments of Medicine Biomedical GeneticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Congcong Zhu
- Departments of Medicine Biomedical GeneticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lee Wetzler
- Departments of Medicine Infectious DiseaseBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of Medicine MicrobiologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Kathryn L. Lunetta
- Departments of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - William S. Bush
- Department of Population & Quantitative Health SciencesCleveland Institute for Computational BiologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Eden R. Martin
- John P. Hussman Institute for Human Genomics and Dr John T. MacDonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Li‐San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Gerard D. Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Margaret A. Pericak‐Vance
- John P. Hussman Institute for Human Genomics and Dr John T. MacDonald Foundation Department of Human GeneticsMiller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Jonathan L. Haines
- Department of Population & Quantitative Health SciencesCleveland Institute for Computational BiologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Lindsay A. Farrer
- Departments of Medicine Biomedical GeneticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Departments of Medicine Neurologyand Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- OphthalmologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Departments of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - Richard Sherva
- Departments of Medicine Biomedical GeneticsBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
18
|
Lee WP, Choi SH, Shea MG, Cheng PL, Dombroski BA, Pitsillides AN, Heard-Costa NL, Wang H, Bulekova K, Kuzma AB, Leung YY, Farrell JJ, Lin H, Naj A, Blue EE, Nusetor F, Wang D, Boerwinkle E, Bush WS, Zhang X, De Jager PL, Dupuis J, Farrer LA, Fornage M, Martin E, Pericak-Vance M, Seshadri S, Wijsman EM, Wang LS, Schellenberg GD, Destefano AL, Haines JL, Peloso GM. Association of Common and Rare Variants with Alzheimer's Disease in over 13,000 Diverse Individuals with Whole-Genome Sequencing from the Alzheimer's Disease Sequencing Project. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.01.23294953. [PMID: 37693521 PMCID: PMC10491367 DOI: 10.1101/2023.09.01.23294953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Alzheimer's Disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. Here, we investigated the association between AD and both common variants and aggregates of rare coding and noncoding variants in 13,371 individuals of diverse ancestry with whole genome sequence (WGS) data. Pooled-population analyses identified genetic variants in or near APOE, BIN1, and LINC00320 significantly associated with AD (p < 5×10-8). Population-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and noncoding variants in this region. Finally, we observed suggestive associations (p < 5×10-5) of aggregates of rare coding rare variants in ABCA7 among non-Hispanic Whites (p=5.4×10-6), and rare noncoding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p=7.2×10-8). Complementary pooled-population and population-specific analyses offered unique insights into the genetic architecture of AD.
Collapse
Affiliation(s)
- Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Margaret G Shea
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nancy L Heard-Costa
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katia Bulekova
- Research Computing Services, Information Services & Technology, Boston University, Boston, MA, USA
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Adam Naj
- Department of Biostatistics, Epidemiology, and Informatics, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Frederick Nusetor
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dongyu Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoling Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Lindsay A Farrer
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
- Department of Ophthalmology, Department of Medicine, Boston University Medical School, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eden Martin
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret Pericak-Vance
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ellen M Wijsman
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita L Destefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Wang Y, Sarnowski C, Lin H, Pitsillides AN, Heard-Costa NL, Choi SH, Wang D, Bis JC, Blue EE, Alzheimer’s Disease Neuroimaging Initiative (ADNI), Boerwinkle E, De Jager PL, Fornage M, Wijsman EM, Seshadri S, Dupuis J, Peloso GM, DeStefano AL, Alzheimer’s Disease Sequencing Project (ADSP). Key variants via Alzheimer's Disease Sequencing Project whole genome sequence data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294631. [PMID: 37693453 PMCID: PMC10491364 DOI: 10.1101/2023.08.28.23294631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases=2,184, N controls=2,383) and targeted analyses in sub-populations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.
Collapse
Affiliation(s)
- Yanbing Wang
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Nancy L Heard-Costa
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Dongyu Wang
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Brotman Baty Institute, Seattle, WA, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ellen M Wijsman
- Div. of Medical Genetics and Dept. Biostatistics Statistical Genetics Lab, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, Canada
| | - Gina M Peloso
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University, School of Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | | |
Collapse
|
20
|
Horimoto AR, Boyken LA, Blue EE, Grinde KE, Nafikov RA, Sohi HK, Nato AQ, Bis JC, Brusco LI, Morelli L, Ramirez A, Dalmasso MC, Temple S, Satizabal C, Browning SR, Seshadri S, Wijsman EM, Thornton TA. Admixture mapping implicates 13q33.3 as ancestry-of-origin locus for Alzheimer disease in Hispanic and Latino populations. HGG ADVANCES 2023; 4:100207. [PMID: 37333771 PMCID: PMC10276158 DOI: 10.1016/j.xhgg.2023.100207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in Argentina-Alzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.
Collapse
Affiliation(s)
| | - Lisa A. Boyken
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth E. Blue
- Division of Medical Genetics/Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kelsey E. Grinde
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Mathematics, Statistics and Computer Science, Macalester College, Saint Paul, MN 55105, USA
| | - Rafael A. Nafikov
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Division of Medical Genetics/Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Harkirat K. Sohi
- Division of Medical Genetics/Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Biomedical and Health Informatics Program, University of Washington, Seattle, WA 98195, USA
| | - Alejandro Q. Nato
- Division of Medical Genetics/Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Luis I. Brusco
- CENECON - Center of Behavioural Neurology and Neuropsychiatry, School of Medicine, University of Buenos Aires, C1121A6B Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration-Fundación Instituto Leloir-IIBBA- National Scientific and Technical Research Council (CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Department of Neurodegeneration and Gerontopsychiatry, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, 50674 Cologne, Germany
- Department of Psychiatry, UT Health San Antonio, San Antonio, TX 78229, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937 Cologne, Germany
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce, National University A. Jauretche (UNAJ), B1888AAE Florencio Varela, Argentina
| | - Seth Temple
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Claudia Satizabal
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas, San Antonio, TX 78229, USA
- Department of Neurology, University of Texas, San Antonio, TX 78229, USA
| | - Sharon R. Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Sudha Seshadri
- Department of Neurology, University of Texas, San Antonio, TX 78229, USA
| | - Ellen M. Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Division of Medical Genetics/Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Bai H, Zhang X, Bush WS. Pharmacogenomic and Statistical Analysis. Methods Mol Biol 2023; 2629:305-330. [PMID: 36929083 DOI: 10.1007/978-1-0716-2986-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Genetic variants can alter response to drugs and other therapeutic interventions. The study of this phenomenon, called pharmacogenomics, is similar in many ways to other types of genetic studies but has distinct methodological and statistical considerations. Genetic variants involved in the processing of exogenous compounds exhibit great diversity and complexity, and the phenotypes studied in pharmacogenomics are also more complex than typical genetic studies. In this chapter, we review basic concepts in pharmacogenomic study designs, data generation techniques, statistical analysis approaches, and commonly used methods and briefly discuss the ultimate translation of findings to clinical care.
Collapse
Affiliation(s)
- Haimeng Bai
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xueyi Zhang
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Lagisetty Y, Bourquard T, Al-Ramahi I, Mangleburg CG, Mota S, Soleimani S, Shulman JM, Botas J, Lee K, Lichtarge O. Identification of risk genes for Alzheimer's disease by gene embedding. CELL GENOMICS 2022; 2:100162. [PMID: 36268052 PMCID: PMC9581494 DOI: 10.1016/j.xgen.2022.100162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer's disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares the functional perturbations induced in gene interaction network neighborhoods by coding variants from disease versus healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes were differentially expressed in post mortem AD brains and modulated neurological phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of other complex diseases.
Collapse
Affiliation(s)
- Yashwanth Lagisetty
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
23
|
Zhang X, Farrell JJ, Tong T, Hu J, Zhu C, Alzheimer's Disease Sequencing Project, Wang L, Mayeux R, Haines JL, Pericak‐Vance MA, Schellenberg GD, Lunetta KL, Farrer LA. Association of mitochondrial variants and haplogroups identified by whole exome sequencing with Alzheimer's disease. Alzheimers Dement 2022; 18:294-306. [PMID: 34152079 PMCID: PMC8764625 DOI: 10.1002/alz.12396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Findings regarding the association between mitochondrial DNA (mtDNA) variants and Alzheimer's disease (AD) are inconsistent. METHODS We developed a pipeline for accurate assembly and variant calling in mitochondrial genomes embedded within whole exome sequences (WES) from 10,831 participants from the Alzheimer's Disease Sequencing Project (ADSP). Association of AD risk was evaluated with each mtDNA variant and variants located in 1158 nuclear genes related to mitochondrial function using the SCORE test. Gene-based tests were performed using SKAT-O. RESULTS Analysis of 4220 mtDNA variants revealed study-wide significant association of AD with a rare MT-ND4L variant (rs28709356 C>T; minor allele frequency = 0.002; P = 7.3 × 10-5 ) as well as with MT-ND4L in a gene-based test (P = 6.71 × 10-5 ). Significant association was also observed with a MT-related nuclear gene, TAMM41, in a gene-based test (P = 2.7 × 10-5 ). The expression of TAMM41 was lower in AD cases than controls (P = .00046) or mild cognitive impairment cases (P = .03). DISCUSSION Significant findings in MT-ND4L and TAMM41 provide evidence for a role of mitochondria in AD.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
- Department of BiostatisticsBoston University School of Public Health801 Massachusetts Avenue 3rd FloorBostonMassachusetts02118USA
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | - Tong Tong
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | - Junming Hu
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | | | - Li‐San Wang
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania19104USA
| | - Richard Mayeux
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences Case Western Reserve UniversityClevelandOhio44106USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania19104USA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public Health801 Massachusetts Avenue 3rd FloorBostonMassachusetts02118USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
- Department of BiostatisticsBoston University School of Public Health801 Massachusetts Avenue 3rd FloorBostonMassachusetts02118USA
- Department of NeurologyBoston University School of MedicineBostonMassachusetts02118USA
- Department of OphthalmologyBoston University School of MedicineBostonMassachusetts02118USA
- Department of EpidemiologyBoston University School of Public Health715 Albany StreetBostonMassachusetts02118USA
| |
Collapse
|
24
|
Lozano S, Padilla V, Avila ML, Gil M, Maestre G, Wang K, Xu C. APOE Gene Associated with Cholesterol-Related Traits in the Hispanic Population. Genes (Basel) 2021; 12:genes12111768. [PMID: 34828374 PMCID: PMC8619821 DOI: 10.3390/genes12111768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Genetic variants in the apolipoprotein E (APOE) gene are associated with lipid metabolism and lipid-related traits in the non-Hispanic population. There have been limited studies regarding the association between the APOE gene and hypercholesterolemia in the Hispanic population; therefore, our aim for this study is to examine the APOE gene’s associations with cholesterol level and its related phenotypes. The APOE gene consists of three different alleles, ε2, ε3, and ε4, with ε4 being associated with dementia and cardiovascular diseases. A total of 1,382 subjects were collected from the Texas Alzheimer’s Research and Care Consortium (TARCC, N = 1320) and the Initial Study of Longevity and Dementia from the Rio Grande Valley (ISLD-RGV, N = 62). Questionnaires on demographics, medical history, and blood/saliva samples were collected and APOE genotypes were performed. We observed allele frequencies of the APOE ε3 (96.7%), ε4 (22.6%) and ε2 (6.8%) alleles, respectively. Multivariable logistic regression revealed a significant association between the APOE ε4 allele and hypercholesteremia (p = 1.8 × 10−4) in our studied Hispanic population. We prove for the first time, that the APOE ε4 allele increases the risk for hypercholesterol in Hispanics. Further research is needed to confirm and supports our current findings.
Collapse
Affiliation(s)
- Stephanie Lozano
- Department of Science, Graduate College of Biochemistry and Molecular Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Victoria Padilla
- Department of Health and Biomedical Science, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA; (V.P.); (M.L.A.)
| | - Manuel Lee Avila
- Department of Health and Biomedical Science, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA; (V.P.); (M.L.A.)
| | - Mario Gil
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Harlingen, TX 78539, USA
| | - Gladys Maestre
- Neuroscience and School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Kesheng Wang
- Health Sciences Center, Department of Family and Community Health, School of Nursing, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (K.W.); (C.X.); Tel.: +1-304-581-1912 (K.W.); +1-956-882-4193 (C.X.)
| | - Chun Xu
- Department of Health and Biomedical Science, College of Health Affairs, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA; (V.P.); (M.L.A.)
- Correspondence: (K.W.); (C.X.); Tel.: +1-304-581-1912 (K.W.); +1-956-882-4193 (C.X.)
| |
Collapse
|
25
|
Monk B, Rajkovic A, Petrus S, Rajkovic A, Gaasterland T, Malinow R. A Machine Learning Method to Identify Genetic Variants Potentially Associated With Alzheimer's Disease. Front Genet 2021; 12:647436. [PMID: 34194466 PMCID: PMC8238203 DOI: 10.3389/fgene.2021.647436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer's disease (AD). Here, using exome data from ∼10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-associated SNPs (along with an effect measure); the majority with frequency under 0.01. For case individuals, the number of "protective" (or "at-risk") netSNP-identified SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis and inversely (or positively) with autopsy neuropathology. The effect measure increases correlations. Simulations suggest our results are not due to genetic linkage, overfitting, or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs associated with AD pathophysiology that may assist with the diagnosis and mechanistic understanding of the disease.
Collapse
Affiliation(s)
- Bradley Monk
- Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Cognitive Science & Psychology IDP, University of California, San Diego, San Diego, CA, United States
| | - Andrei Rajkovic
- Department of Computer Science, Royal Holloway, University of London, Egham, United Kingdom
| | - Semar Petrus
- Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Aleks Rajkovic
- Department of Pathology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terry Gaasterland
- Institute for Genomic Medicine, Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States
| | - Roberto Malinow
- Department of Neurosciences, Center for Neural Circuits and Behavior, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
26
|
Curtis D. Analysis of whole genome sequenced cases and controls shows that the association of variants in TOMM40, BCAM, NECTIN2 and APOC1 with late onset Alzheimer's disease is driven by linkage disequilibrium with APOE ε2/ε3/ε4 alleles. J Neurogenet 2021; 35:59-66. [PMID: 33970751 DOI: 10.1080/01677063.2020.1866569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/16/2020] [Indexed: 10/21/2022]
Abstract
Variants in APOE are associated with risk of late onset Alzheimer's disease (LOAD) but the magnitude of the effect has been reported to vary across ancestries. Also, other variants in the region have been reported to show association though it has been unclear whether this was secondary to their linkage disequilibrium with the APOE variants rs429358 and rs7412. Previous analyses of exome-sequenced samples have identified other genes in which rare variants impact risk of disease. In this study 2000 whole genome sequenced cases and controls with different ancestries were subjected to gene-based weighted burden analysis to identify risk genes. Additionally, individual variants in the APOE region were tested for association with LOAD. When using the APOE variants as covariates no individual genes showed statistically significant evidence for association after Bonferroni correction for multiple testing, which may well be a consequence of the modest sample size. Likewise, for those variants initially showing evidence of association with LOAD incorporating the APOE variants as covariates dramatically reduced the strength of association. These results demonstrate that the differential association of APOE across ancestries does not appear to be driven by another variant in the region. It seems likely that no other genes in the region have a direct effect on LOAD risk.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, University College London, London, UK
- Centre for Psychiatry, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Katsumata Y, Fardo DW, Bachstetter AD, Artiushin SC, Wang WX, Wei A, Brzezinski LJ, Nelson BG, Huang Q, Abner EL, Anderson S, Patel I, Shaw BC, Price DA, Niedowicz DM, Wilcock DW, Jicha GA, Neltner JH, Van Eldik LJ, Estus S, Nelson PT. Alzheimer Disease Pathology-Associated Polymorphism in a Complex Variable Number of Tandem Repeat Region Within the MUC6 Gene, Near the AP2A2 Gene. J Neuropathol Exp Neurol 2020; 79:3-21. [PMID: 31748784 PMCID: PMC8204704 DOI: 10.1093/jnen/nlz116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
We found evidence of late-onset Alzheimer disease (LOAD)-associated genetic polymorphism within an exon of Mucin 6 (MUC6) and immediately downstream from another gene: Adaptor Related Protein Complex 2 Subunit Alpha 2 (AP2A2). PCR analyses on genomic DNA samples confirmed that the size of the MUC6 variable number tandem repeat (VNTR) region was highly polymorphic. In a cohort of autopsied subjects with quantitative digital pathology data (n = 119), the size of the polymorphic region was associated with the severity of pTau pathology in neocortex. In a separate replication cohort of autopsied subjects (n = 173), more pTau pathology was again observed in subjects with longer VNTR regions (p = 0.031). Unlike MUC6, AP2A2 is highly expressed in human brain. AP2A2 expression was lower in a subset analysis of brain samples from persons with longer versus shorter VNTR regions (p = 0.014 normalizing with AP2B1 expression). Double-label immunofluorescence studies showed that AP2A2 protein often colocalized with neurofibrillary tangles in LOAD but was not colocalized with pTau proteinopathy in progressive supranuclear palsy, or with TDP-43 proteinopathy. In summary, polymorphism in a repeat-rich region near AP2A2 was associated with neocortical pTau proteinopathy (because of the unique repeats, prior genome-wide association studies were probably unable to detect this association), and AP2A2 was often colocalized with neurofibrillary tangles in LOAD.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Sergey C Artiushin
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Angela Wei
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Lena J Brzezinski
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Bela G Nelson
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Qingwei Huang
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Erin L Abner
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Sonya Anderson
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Indumati Patel
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Benjamin C Shaw
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Douglas A Price
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Dana M Niedowicz
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Donna W Wilcock
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Gregory A Jicha
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Janna H Neltner
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Steven Estus
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Peter T Nelson
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
28
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
29
|
WHEELER NICHOLASR, BENCHEK PENELOPE, KUNKLE BRIANW, HAMILTON-NELSON KARAL, WARFE MIKE, FONDRAN JEREMYR, HAINES JONATHANL, BUSH WILLIAMS. Hadoop and PySpark for reproducibility and scalability of genomic sequencing studies. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020; 25:523-534. [PMID: 31797624 PMCID: PMC6956992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Modern genomic studies are rapidly growing in scale, and the analytical approaches used to analyze genomic data are increasing in complexity. Genomic data management poses logistic and computational challenges, and analyses are increasingly reliant on genomic annotation resources that create their own data management and versioning issues. As a result, genomic datasets are increasingly handled in ways that limit the rigor and reproducibility of many analyses. In this work, we examine the use of the Spark infrastructure for the management, access, and analysis of genomic data in comparison to traditional genomic workflows on typical cluster environments. We validate the framework by reproducing previously published results from the Alzheimer's Disease Sequencing Project. Using the framework and analyses designed using Jupyter notebooks, Spark provides improved workflows, reduces user-driven data partitioning, and enhances the portability and reproducibility of distributed analyses required for large-scale genomic studies.
Collapse
Affiliation(s)
- NICHOLAS R. WHEELER
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - PENELOPE BENCHEK
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - BRIAN W. KUNKLE
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - KARA L. HAMILTON-NELSON
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, 1501 NW 10th Ave, Miami, FL 33136, USA
| | - MIKE WARFE
- Cleveland Institute for Computational Biology, Center for Advanced Research Computing, University Technology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - JEREMY R. FONDRAN
- Cleveland Institute for Computational Biology, Center for Advanced Research Computing, University Technology, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - JONATHAN L. HAINES
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| | - WILLIAM S. BUSH
- Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road Cleveland OH 44106, USA
| |
Collapse
|
30
|
Adelson RP, Renton AE, Li W, Barzilai N, Atzmon G, Goate AM, Davies P, Freudenberg-Hua Y. Empirical design of a variant quality control pipeline for whole genome sequencing data using replicate discordance. Sci Rep 2019; 9:16156. [PMID: 31695094 PMCID: PMC6834861 DOI: 10.1038/s41598-019-52614-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
The success of next-generation sequencing depends on the accuracy of variant calls. Few objective protocols exist for QC following variant calling from whole genome sequencing (WGS) data. After applying QC filtering based on Genome Analysis Tool Kit (GATK) best practices, we used genotype discordance of eight samples that were sequenced twice each to evaluate the proportion of potentially inaccurate variant calls. We designed a QC pipeline involving hard filters to improve replicate genotype concordance, which indicates improved accuracy of genotype calls. Our pipeline analyzes the efficacy of each filtering step. We initially applied this strategy to well-characterized variants from the ClinVar database, and subsequently to the full WGS dataset. The genome-wide biallelic pipeline removed 82.11% of discordant and 14.89% of concordant genotypes, and improved the concordance rate from 98.53% to 99.69%. The variant-level read depth filter most improved the genome-wide biallelic concordance rate. We also adapted this pipeline for triallelic sites, given the increasing proportion of multiallelic sites as sample sizes increase. For triallelic sites containing only SNVs, the concordance rate improved from 97.68% to 99.80%. Our QC pipeline removes many potentially false positive calls that pass in GATK, and may inform future WGS studies prior to variant effect analysis.
Collapse
Affiliation(s)
- Robert P Adelson
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Alan E Renton
- Ronald M. Loeb Center for Alzheimer's Disease and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Wentian Li
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Nir Barzilai
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Gil Atzmon
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease and Departments of Neuroscience, Genetics and Genomic Sciences, and Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Peter Davies
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA
| | - Yun Freudenberg-Hua
- Litwin-Zucker Center for Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, 11030, USA.
- Division of Geriatric Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, 11004, USA.
| |
Collapse
|
31
|
Ebbert MTW, Jensen TD, Jansen-West K, Sens JP, Reddy JS, Ridge PG, Kauwe JSK, Belzil V, Pregent L, Carrasquillo MM, Keene D, Larson E, Crane P, Asmann YW, Ertekin-Taner N, Younkin SG, Ross OA, Rademakers R, Petrucelli L, Fryer JD. Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight. Genome Biol 2019; 20:97. [PMID: 31104630 PMCID: PMC6526621 DOI: 10.1186/s13059-019-1707-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The human genome contains "dark" gene regions that cannot be adequately assembled or aligned using standard short-read sequencing technologies, preventing researchers from identifying mutations within these gene regions that may be relevant to human disease. Here, we identify regions with few mappable reads that we call dark by depth, and others that have ambiguous alignment, called camouflaged. We assess how well long-read or linked-read technologies resolve these regions. RESULTS Based on standard whole-genome Illumina sequencing data, we identify 36,794 dark regions in 6054 gene bodies from pathways important to human health, development, and reproduction. Of these gene bodies, 8.7% are completely dark and 35.2% are ≥ 5% dark. We identify dark regions that are present in protein-coding exons across 748 genes. Linked-read or long-read sequencing technologies from 10x Genomics, PacBio, and Oxford Nanopore Technologies reduce dark protein-coding regions to approximately 50.5%, 35.6%, and 9.6%, respectively. We present an algorithm to resolve most camouflaged regions and apply it to the Alzheimer's Disease Sequencing Project. We rescue a rare ten-nucleotide frameshift deletion in CR1, a top Alzheimer's disease gene, found in disease cases but not in controls. CONCLUSIONS While we could not formally assess the association of the CR1 frameshift mutation with Alzheimer's disease due to insufficient sample-size, we believe it merits investigating in a larger cohort. There remain thousands of potentially important genomic regions overlooked by short-read sequencing that are largely resolved by long-read technologies.
Collapse
Affiliation(s)
- Mark T. W. Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| | - Tanner D. Jensen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602 USA
| | - Veronique Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Luc Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Eric Larson
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Paul Crane
- Department of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Yan W. Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224 USA
| |
Collapse
|
32
|
Grozeva D, Saad S, Menzies GE, Sims R. Benefits and Challenges of Rare Genetic Variation in Alzheimer's Disease. CURRENT GENETIC MEDICINE REPORTS 2019; 7:53-62. [PMID: 39649954 PMCID: PMC7617023 DOI: 10.1007/s40142-019-0161-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose of Review It is well established that sporadic Alzheimer's disease (AD) is polygenic with common and rare genetic variation alongside environmental factors contributing to disease. Here, we review our current understanding of the genetic architecture of disease, paying specific attention to rare susceptibility variants, and explore some of the limitations in rare variant detection and analysis. Recent Findings Rare variation has been shown to robustly associate with disease. These include potentially damaging and loss of function mutations that are easily modelled in silico, in vitro and in vivo, and represent potentially druggable targets. A number of risk genes, including TREM2, SORL1 and ABCA7 show multiple independent associations suggesting that they may influence disease via multiple mechanisms. With transcriptional regulation, inflammatory response and modification of protein production suggested to be of primary importance. Summary We are at the beginning of our journey of rare variant detection in AD. Whole exome sequencing has been the predominant technology of choice. While fruitful, this has introduced a number of challenges with regard to data integration. Ultimately the future of disease-associated rare variant identification lies in whole genome sequencing projects that will allow the testing of the full range of genomic variation.
Collapse
Affiliation(s)
- Detelina Grozeva
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Salha Saad
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Georgina E. Menzies
- UK Dementia Research Institute at Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
33
|
Beecham GW, Vardarajan B, Blue E, Bush W, Jaworski J, Barral S, DeStefano A, Hamilton-Nelson K, Kunkle B, Martin ER, Naj A, Rajabli F, Reitz C, Thornton T, van Duijn C, Goate A, Seshadri S, Farrer LA, Boerwinkle E, Schellenberg G, Haines JL, Wijsman E, Mayeux R, Pericak-Vance MA. Rare genetic variation implicated in non-Hispanic white families with Alzheimer disease. Neurol Genet 2018; 4:e286. [PMID: 30569016 PMCID: PMC6278241 DOI: 10.1212/nxg.0000000000000286] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To identify genetic variation influencing late-onset Alzheimer disease (LOAD), we used a large data set of non-Hispanic white (NHW) extended families multiply-affected by LOAD by performing whole genome sequencing (WGS). METHODS As part of the Alzheimer Disease Sequencing Project, WGS data were generated for 197 NHW participants from 42 families (affected individuals and unaffected, elderly relatives). A two-pronged approach was taken. First, variants were prioritized using heterogeneity logarithm of the odds (HLOD) and family-specific LOD scores as well as annotations based on function, frequency, and segregation with disease. Second, known Alzheimer disease (AD) candidate genes were assessed for rare variation using a family-based association test. RESULTS We identified 41 rare, predicted-damaging variants that segregated with disease in the families that contributed to the HLOD or family-specific LOD regions. These included a variant in nitric oxide synthase 1 adaptor protein that segregates with disease in a family with 7 individuals with AD, as well as variants in RP11-433J8, ABCA1, and FISP2. Rare-variant association identified 2 LOAD candidate genes associated with disease in these families: FERMT2 (p-values = 0.001) and SLC24A4 (p-value = 0.009). These genes still showed association while controlling for common index variants, indicating the rare-variant signal is distinct from common variation that initially identified the genes as candidates. CONCLUSIONS We identified multiple genes with putative damaging rare variants that segregate with disease in multiplex AD families and showed that rare variation may influence AD risk at AD candidate genes. These results identify novel AD candidate genes and show a role for rare variation in LOAD etiology, even at genes previously identified by common variation.
Collapse
Affiliation(s)
- Gary W Beecham
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Badri Vardarajan
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Elizabeth Blue
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - William Bush
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - James Jaworski
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Sandra Barral
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Anita DeStefano
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Kara Hamilton-Nelson
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Brian Kunkle
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Adam Naj
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Christiane Reitz
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Timothy Thornton
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Cornelia van Duijn
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Allison Goate
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Sudha Seshadri
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Lindsay A Farrer
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Eric Boerwinkle
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Gerard Schellenberg
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Jonathan L Haines
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Ellen Wijsman
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Richard Mayeux
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics (G.W.B., J.J., K.H.-N., B.K., E.R.M., F.R., M.A.P.-V.), University of Miami, Miller School of Medicine; Dr. John T. Macdonald Foundation Department of Human Genetics (G.W.B., E.R.M., M.A.P.-V.), University of Miami, Miller School of Medicine, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.V., S.B., C.R., R.M.), Columbia University; The Gertrude H. Segievsky Center (B.V., S.B., C.R., R.M.), Columbia University, New York Presbyterian Hospital; Division of Medical Genetics (E. Blue, E.W.), Department of Medicine, University of Washington, Seattle; Institute for Computational Biology (W.B., J.L.H.), Case Western Reserve University, Cleveland, OH; Department of Neurology (A.D., S.S., L.A.F.), Boston University School of Medicine; Department of Biostatistics (A.D., S.S., L.A.F.), Boston University School of Medicine, MA; School of Medicine (A.N., G.S.), University of Pennsylvania, Philadelphia; Department of Biostatistics (T.T., E.W.), University of Washington, Seattle; Erasmus Medical University (C.D.), Rotterdam, The Netherlands; Icahn School of Medicine at Mount Sinai (A.G.), New York, NY; Department of Medicine (L.A.F.), Boston University School of Medicine, MA; and University of Texas (E. Boerwinkle), Houston
| |
Collapse
|