1
|
Kunjalwar R, Keerti A, Chaudhari A, Sahoo K, Meshram S. Microbial Therapeutics in Oncology: A Comprehensive Review of Bacterial Role in Cancer Treatment. Cureus 2024; 16:e70920. [PMID: 39502977 PMCID: PMC11535891 DOI: 10.7759/cureus.70920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Conventional cancer therapies, including chemotherapy, radiotherapy, and immunotherapy, have significantly advanced cancer treatment. However, these modalities often face limitations such as systemic toxicity, lack of specificity, and the emergence of resistance. Recent advancements in genetic engineering and synthetic biology have rekindled interest in using bacteria as a novel therapeutic approach in oncology. This comprehensive review explores the potential of microbial therapeutics, particularly bacterial therapies, in the treatment of cancer. Bacterial therapies offer several unique advantages, such as the ability to selectively target and colonize hypoxic and necrotic regions of tumors, areas typically resistant to conventional treatments. The review delves into the mechanisms through which bacteria exert antitumor effects, including direct tumor cell lysis, modulation of the immune response, and delivery of therapeutic agents like cytotoxins and enzymes. Various bacterial species, such as Salmonella, Clostridium, Lactobacillus, and Listeria, have shown promise in preclinical and clinical studies, demonstrating diverse mechanisms of action and therapeutic potential. Moreover, the review discusses the challenges associated with bacterial therapies, such as safety concerns, immune evasion, and the need for precise targeting, and how recent advances in genetic engineering are being used to overcome these hurdles. Current clinical trials and combination strategies with conventional therapies are also highlighted to provide a comprehensive overview of the ongoing developments in this field. In conclusion, while bacterial therapeutics present a novel and promising avenue in cancer treatment, further research and clinical validation is required to fully realize their potential. This review aims to inspire further exploration into microbial oncology, paving the way for innovative and more effective cancer therapies.
Collapse
Affiliation(s)
- Radha Kunjalwar
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshunna Keerti
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Achal Chaudhari
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kaushik Sahoo
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Supriya Meshram
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Liu Y, Ai H. Comprehensive insights into human papillomavirus and cervical cancer: Pathophysiology, screening, and vaccination strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189192. [PMID: 39349261 DOI: 10.1016/j.bbcan.2024.189192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
This article provides an in-depth review of the Human Papillomavirus (HPV), a predominant etiological factor in cervical cancer, exploring its pathophysiology, epidemiology, and mechanisms of oncogenesis. We examine the role of proteins, DNA methylation markers, and non-coding RNAs as predictive biomarkers in cervical cancer, highlighting their potential in refining diagnostic and prognostic practices. The evolution and efficacy of cervical cancer screening methods, including the Papanicolaou smear, HPV testing, cytology and HPV test, and colposcopy techniques, are critically analyzed. Furthermore, the article delves into the current landscape and future prospects of prophylactic HPV vaccines and therapeutic vaccines, underscoring their significance in the prevention and potential treatment of HPV-related diseases. This comprehensive review aims to synthesize recent advances and ongoing challenges in the field, providing a foundation for future research and clinical strategies in the prevention and management of cervical cancer.
Collapse
Affiliation(s)
- Ying Liu
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, 2, Section 5, Heping Road, Linghe, Jinzhou, Liaoning 121000, PR China
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, 2, Section 5, Heping Road, Linghe, Jinzhou, Liaoning 121000, PR China.
| |
Collapse
|
3
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Ketch PW, Zaharias RS, Leath CA. Pharmacotherapy for cervical cancer: current standard of care and new perspectives. Expert Opin Pharmacother 2024; 25:1591-1603. [PMID: 39164924 PMCID: PMC11453679 DOI: 10.1080/14656566.2024.2395379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Cervical cancer, while highly preventable, remains an international public health challenge especially in under resourced regions. Although early-stage cervix confined cancers are often amenable to surgical resection, larger tumors deemed locally advanced cervical cancer (LACC) necessitate systemic therapy as part of chemoradiation therapy. Moreover, systemic therapy is the standard therapeutic approach for those presenting with primary metastasis or recurrence. AREAS COVERED While several agents have been approved to treat recurrent cervical cancer including checkpoint inhibitors as well as both biomarker agnostic and specific antibody drug conjugates, the development of agents added to chemoradiation has been less fruitful. Until recently, the addition of novel therapies to chemoradiation has been negative in terms of improving outcomes; however, results of a recent Phase III clinical trial (NCT04221945) in LACC demonstrated that the addition of pembrolizumab to standard of care chemoradiation was associated with an improvement in progression-free survival and resulted in an FDA approval for this therapy. This observation led to the first change in treating LACC since the early 2000s. EXPERT OPINION Improvements in systemic therapy both alone and in combination with chemoradiation for cervical cancer have been realized. Ongoing research is needed for therapeutic options following immunotherapy.
Collapse
Affiliation(s)
- Peter W. Ketch
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rennan S. Zaharias
- Division of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charles A. Leath
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
6
|
Massobrio R, Bianco L, Campigotto B, Attianese D, Maisto E, Pascotto M, Ruo Redda MG, Ferrero A. New Frontiers in Locally Advanced Cervical Cancer Treatment. J Clin Med 2024; 13:4458. [PMID: 39124724 PMCID: PMC11312973 DOI: 10.3390/jcm13154458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the introduction of targeted vaccines and screening protocols, locally advanced cervical cancer represents a median proportion of 37% among all cervical carcinomas. Compared to early stages, it presents significantly lower cure rates, with a 5-year disease-free survival rate of 68% and a 5-year overall survival rate of 74%. According to current guidelines, definitive radiotherapy with concomitant chemotherapy represents the gold standard for locally advanced cervical cancer treatment. However, a significant number of patients relapse and die from metastatic disease. The aim of this narrative review is to examine the recent advancements in treating locally advanced cervical cancer, exploring new frontiers in therapeutic approaches. The PubMed database and clinical trial registries were searched to identify relevant articles published on locally advanced cervical cancer treatment up to March 2024, mainly focusing on papers published in the last decade. Abstracts presented at major international congresses that bring relevant evidence were included. Progress achieved in refining radiotherapy techniques, recent evidence regarding neoadjuvant treatment preceding surgery or concurrent chemoradiotherapy, and key findings concerning adjuvant treatment are thoroughly explored. Furthermore, a comprehensive review of prominent phase II and phase III trials examining the integration of immune checkpoint inhibitors is conducted, analyzing the various contexts in which they are applied. In light of the new evidence that has emerged in recent years and is discussed in this article, the appropriate selection of the most suitable therapeutic approach for each patient remains a complex but crucial issue.
Collapse
Affiliation(s)
- Roberta Massobrio
- Academic Division of Gynecology and Obstetrics, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (R.M.); (B.C.); (D.A.); (E.M.); (M.P.)
| | - Lavinia Bianco
- Department of Radiation Oncology, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (L.B.); (M.G.R.R.)
| | - Beatrice Campigotto
- Academic Division of Gynecology and Obstetrics, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (R.M.); (B.C.); (D.A.); (E.M.); (M.P.)
| | - Daniela Attianese
- Academic Division of Gynecology and Obstetrics, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (R.M.); (B.C.); (D.A.); (E.M.); (M.P.)
| | - Elisa Maisto
- Academic Division of Gynecology and Obstetrics, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (R.M.); (B.C.); (D.A.); (E.M.); (M.P.)
| | - Maria Pascotto
- Academic Division of Gynecology and Obstetrics, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (R.M.); (B.C.); (D.A.); (E.M.); (M.P.)
| | - Maria Grazia Ruo Redda
- Department of Radiation Oncology, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (L.B.); (M.G.R.R.)
| | - Annamaria Ferrero
- Academic Division of Gynecology and Obstetrics, University of Turin, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (R.M.); (B.C.); (D.A.); (E.M.); (M.P.)
- Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| |
Collapse
|
7
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
8
|
Balhara N, Yadav R, Ranga S, Ahuja P, Tanwar M. Understanding the HPV associated cancers: A comprehensive review. Mol Biol Rep 2024; 51:743. [PMID: 38874682 DOI: 10.1007/s11033-024-09680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Human papillomavirus (HPV), a common cause of sexually transmitted diseases, may cause warts and lead to various types of cancers, which makes it important to understand the risk factors associated with it. HPV is the leading risk factor and plays a crucial role in the progression of cervical cancer. Viral oncoproteins E6 and E7 play a pivotal role in this process. Beyond cervical cancer, HPV-associated cancers of the mouth and throat are also increasing. HPV can also contribute to other malignancies like penile, vulvar, and vaginal cancers. Emerging evidence links HPV to these cancers. Research on the oncogenic effect of HPV is still ongoing and explorations of screening techniques, vaccination, immunotherapy and targeted therapeutics are all in progress. The present review offers valuable insight into the current understanding of the role of HPV in cancer and its potential implications for treatment and prevention in the future.
Collapse
Affiliation(s)
- Nikita Balhara
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
9
|
Duan Y, Yang L, Wang W, Zhang P, Fu K, Li W, Yin R. A comprehensive bibliometric analysis (2000-2022) on the mapping of knowledge regarding immunotherapeutic treatments for advanced, recurrent, or metastatic cervical cancer. Front Pharmacol 2024; 15:1351363. [PMID: 38799160 PMCID: PMC11116801 DOI: 10.3389/fphar.2024.1351363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Background Despite extensive literature on therapeutic strategies for cervical cancer, a bibliometric analysis specifically focused on immunotherapy for advanced, recurrent, or metastatic (A/R/M) cervical malignancies remains unexplored. This study aims to address this gap by presenting a comprehensive overview that includes general characteristics, research focal points, the trajectory of evolution, and current emerging trends in this under-researched area. Methods A systematic search was conducted using the Web of Science Core Collection (WOSCC) to identify articles related to A/R/M cervical cancer published between 2000 and 2022. Citespace and VOS viewer were the primary tools used to identify research focal points, intriguing future patterns, and to evaluate contributions and co-occurrences among authors, institutions, countries, and journals. Results A total of 1,001 original articles were identified, involving 6,387 authors from 66 countries and 1,474 institutions, and published across 366 academic journals. The United States contributed most significantly. The most productive researcher was Van der Burg SH from Leiden University Medical Center. The International Journal of Cancer and Cancer Research were identified as the most productive and influential journals, respectively. Analysis of co-citation clusters highlighted 25 clusters, primarily focusing on potential predictive biomarkers, dendritic cell-based tumor vaccines, therapeutic HPV vaccinations, peptide-based cancer vaccines, tumor immune microenvironments, and adoptive cell transfer (ACT). The latest significant trends in A/R/M cervical cancer immunotherapy research included ACT, CAR-T, and immune checkpoint inhibitors (ICIs), as revealed by keyword and reference burst detection. Conclusion This pioneering study provides a detailed landscape of immunotherapy research in A/R/M cervical cancer. It underscores the importance of global collaboration, enriches our understanding of the immunology of A/R/M cervical cancer, expands on potential beneficiaries of immunotherapy, and explores clinical applications of various therapies, including therapeutic vaccines, adoptive cell transfer, and ICIs, particularly in combination with established treatments such as chemotherapy, radiotherapy, and targeted therapy.
Collapse
Affiliation(s)
- Yuanqiong Duan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Wenxiang Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Peixuan Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Wen Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
11
|
Yadav A, Yadav S, Alam MA. Immunotherapies landscape and associated inhibitors for the treatment of cervical cancer. Med Oncol 2023; 40:328. [PMID: 37815596 DOI: 10.1007/s12032-023-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Cervical cancer ranks as the fourth most common form of cancer worldwide. There is a large number of situations that may be examined in the developing world. The risk of contracting HPV (Human Papillomavirus) due to poor sanitation and sexual activity is mostly to blame for the disease's alarming rate of expansion. Immunotherapy is widely regarded as one of the most effective medicines available. The immunotherapy used to treat cervical cancer cells relies on inhibitors that block the immune checkpoint. The poly adenosine diphosphate ribose polymer inhibited cervical cancer cells by activating both the programmed death 1 (PD-1) and programmed death ligand 1 (CTLA-1) checkpoints, a strategy that has been shown to have impressive effects. Yet, immunotherapy directed towards tumors that have already been invaded by lymphocytes leaves a positive imprint on the healing process. Immunotherapy is used in conjunction with other treatments, including chemotherapy and radiation, to provide faster and more effective outcomes. In this combination therapy, several medications such as Pembrolizumab, Durvalumab, Atezolizumab, and so on are employed in clinical trials. Recent developments and future predictions suggest that vaccinations will soon be developed with the dual goal of reducing the patient's susceptibility to illness while simultaneously strengthening their immune system. Many clinical and preclinical studies are now investigating the effectiveness of immunotherapy in slowing the progression of cervical cancer. The field of immunotherapy is expected to witness more progress toward improving outcomes. Immunotherapies landscape and associated inhibitors for the treatment of Cervical Cancer.
Collapse
Affiliation(s)
- Agrima Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No. 2, Sector 17-A, Yamuna Expressway, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India.
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
12
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers. Cancers (Basel) 2023; 15:3849. [PMID: 37568665 PMCID: PMC10417375 DOI: 10.3390/cancers15153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Collapse
Affiliation(s)
| | | | - Mariam M. AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (D.M.); (C.Y.)
| |
Collapse
|
14
|
Xu T, Shi H, Lin R. Bayesian single-to-double arm transition design using both short-term and long-term endpoints. Pharm Stat 2023; 22:588-604. [PMID: 36755420 PMCID: PMC11323481 DOI: 10.1002/pst.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
The choice between single-arm designs versus randomized double-arm designs has been contentiously debated in the literature of phase II oncology trials. Recently, as a compromise, the single-to-double arm transition design was proposed, combining the two designs into one trial over two stages. Successful implementation of the two-stage transition design requires a suspension period at the end of the first stage to collect the response data of the already enrolled patients. When the evaluation of the primary efficacy endpoint is overly long, the between-stage suspension period may unfavorably prolong the trial duration and cause a delay in treating future eligible patients. To accelerate the trial, we propose a Bayesian single-to-double arm design with short-term endpoints (BSDS), where an intermediate short-term endpoint is used for making early termination decisions at the end of the single-arm stage, followed by an evaluation of the long-term endpoint at the end of the subsequent double-arm stage. Bayesian posterior probabilities are used as the primary decision-making tool at the end of the trial. Design calibration steps are proposed for this Bayesian monitoring process to control the frequentist operating characteristics and minimize the expected sample size. Extensive simulation studies have demonstrated that our design has comparable power and average sample size but a much shorter trial duration than conventional single-to-double arm design. Applications of the design are illustrated using two phase II oncology trials with binary endpoints.
Collapse
Affiliation(s)
- Tianlin Xu
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Haolun Shi
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Vergote I, Ray-Coquard I, Lorusso D, Oaknin A, Cibula D, Van Gorp T. Investigational drugs for recurrent or primary advanced metastatic cervical cancer: what is in the clinical development pipeline? Expert Opin Investig Drugs 2023; 32:201-211. [PMID: 36803278 DOI: 10.1080/13543784.2023.2179483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Recurrent or primary advanced metastatic cervical cancer (R/M CC) has a poor prognosis with a 5-year-survival rate of 16.5%, demanding novel and improved therapies for the treatment of these patients. The first-line standard of care for R/M CC now benefits from the addition of the immune checkpoint inhibitor, pembrolizumab, to platinum-based chemotherapy with paclitaxel and bevacizumab. Additionally, new options for second-line treatment have become available in recent years. AREAS COVERED Here, we review current investigational drugs and discuss their relative targets, efficacies, and potential within the R/M CC treatment landscape. This review will focus on recently published data and key ongoing clinical trials in patients with R/M CC, covering multiple modes of action, including immunotherapies, antibody-drug conjugates, and tyrosine kinase inhibitors. We searched clinicaltrials.gov for ongoing trials and pubmed.ncbi.nih.gov for recently published trial data, as well as recent years' proceedings from the annual conferences of the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), European Society of Gynaecological Oncology (ESGO), and the International Gynecologic Cancer Society (IGCS). EXPERT OPINION Therapeutics currently attracting attention include novel immune checkpoint inhibitors, therapeutic vaccinations, antibody-drug conjugates, such as tisotumab vedotin, tyrosine kinase inhibitors targeting HER2, and multitarget synergistic combinations.
Collapse
Affiliation(s)
- Ignace Vergote
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium, European Union
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard and University Claude Bernard Lyon 1, GINECO, Lyon, France
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Catholic University of Sacred Heart and Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Ana Oaknin
- Gynecologic Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - David Cibula
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Central and Eastern European Gynecologic Oncology Group (CEEGOG), Prague, Czech Republic
| | - Toon Van Gorp
- Department of Gynecology and Obstetrics, Gynecologic Oncology, Leuven Cancer Institute, Catholic University Leuven, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium, European Union
| |
Collapse
|
16
|
Paulino E, de Melo AC, de Andrade DAP, de Almeida MS. Systemic therapy for advanced cervical cancer: Leveraging the historical threshold of overall survival. Crit Rev Oncol Hematol 2023; 183:103925. [PMID: 36696932 DOI: 10.1016/j.critrevonc.2023.103925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer (CC) is a worldwide problem, especially in low- and middle-income countries, where patients are often diagnosed with locally advanced disease. Until recently, all chemotherapy drugs achieved low ORR and 12-month overall survival (12- month OS) for advanced CC after failure for platinum compounds. Advances in systemic therapy with immunotherapy, targeted therapy, and antibody-drug conjugates (ADC) have leveraged the 12-month OS limit. Recently, immunotherapy (pembrolizumab) has become the standard of care in first-line advanced CC combined with platinum and taxane and in second-line after platinum doublet failure.
Collapse
Affiliation(s)
- Eduardo Paulino
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil; Oncologia D'or, Rio de Janeiro, Brazil.
| | - Andreia Cristina de Melo
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil; Grupo Oncoclínicas, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
17
|
Yan F, Cowell LG, Tomkies A, Day AT. Therapeutic Vaccination for HPV-Mediated Cancers. CURRENT OTORHINOLARYNGOLOGY REPORTS 2023; 11:44-61. [PMID: 36743978 PMCID: PMC9890440 DOI: 10.1007/s40136-023-00443-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
Purpose of Review The goal of this narrative review is to educate clinicians regarding the foundational concepts, efficacy, and future directions of therapeutic vaccines for human papillomavirus (HPV)-mediated cancers. Recent Findings Therapeutic HPV vaccines deliver tumor antigens to stimulate an immune response to eliminate tumor cells. Vaccine antigen delivery platforms are diverse and include DNA, RNA, peptides, proteins, viral vectors, microbial vectors, and antigen-presenting cells. Randomized, controlled trials have demonstrated that therapeutic HPV vaccines are efficacious in patients with cervical intraepithelial neoplasia. In patients with HPV-mediated malignancies, evidence of efficacy is limited. However, numerous ongoing studies evaluating updated therapeutic HPV vaccines in combination with immune checkpoint inhibition and other therapies exhibit significant promise. Summary Therapeutic vaccines for HPV-mediated malignancies retain a strong biological rationale, despite their limited efficacy to date. Investigators anticipate they will be most effectively used in combination with other regimens, such as immune checkpoint inhibition.
Collapse
Affiliation(s)
- Flora Yan
- Department of Otolaryngology-Head and Neck Surgery, Temple University, Philadelphia, PA USA
| | - Lindsay G Cowell
- Peter O'Donnell Jr. School of Public Health, Department of Immunology, UT Southwestern Medical Center, Dallas, TX USA
| | - Anna Tomkies
- Department of Otolaryngology-Head and Neck Surgery, UT Southwestern Medical Center, 2001 Inwood Blvd, Dallas, TX 75390-9035 USA
| | - Andrew T Day
- Department of Otolaryngology-Head and Neck Surgery, UT Southwestern Medical Center, 2001 Inwood Blvd, Dallas, TX 75390-9035 USA
| |
Collapse
|
18
|
Luo M, Chen X, Gao H, Yang F, Chen J, Qiao Y. Bacteria-mediated cancer therapy: A versatile bio-sapper with translational potential. Front Oncol 2022; 12:980111. [PMID: 36276157 PMCID: PMC9585267 DOI: 10.3389/fonc.2022.980111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are important symbionts for humans, which sustain substantial influences on our health. Interestingly, some bastrains have been identified to have therapeutic applications, notably for antitumor activity. Thereby, oncologists have developed various therapeutic models and investigated the potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT). Even though BCT has a long history and exhibits remarkable therapeutic efficacy in pre-clinical animal models, its clinical translation still lags and requires further breakthroughs. This review aims to focus on the established strains of therapeutic bacteria and their antitumor mechanisms, including the stimulation of host immune responses, direct cytotoxicity, the interference on cellular signal transduction, extracellular matrix remodeling, neoangiogenesis, and metabolism, as well as vehicles for drug delivery and gene therapy. Moreover, a brief discussion is proposed regarding the important future directions for this fantastic research field of BCT at the end of this review.
Collapse
Affiliation(s)
- Miao Luo
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyu Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Haojin Gao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
19
|
Bacteriolytic therapy with Clostridium ghonii for experimental solid tumors. Biochem Biophys Res Commun 2022; 634:114-121. [DOI: 10.1016/j.bbrc.2022.09.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022]
|
20
|
Li S, Yue H, Wang S, Li X, Wang X, Guo P, Ma G, Wei W. Advances of bacteria-based delivery systems for modulating tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114444. [PMID: 35817215 DOI: 10.1016/j.addr.2022.114444] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
The components and hospitable properties of tumor microenvironment (TME) are associated with tumor progression. Recently, TME modulating vectors and strategies have garnished significant attention in cancer therapy. Although a pilot work has reviewed TME regulation via nanoparticle-based delivery systems, there is no systematical review that summarizes the natural bacteria-based anti-tumor system to modulate TME. In this review, we conclude the strategies of bacterial carriers (including whole bacteria, bacterial skeleton and bacterial components) to regulate TME from the perspective of TME components and hospitable properties, and the clinical trials of bacteria-mediated cancer therapy. Current challenges and future prospects for the design of bacteria-based carriers are also proposed that provide critical insights into this natural delivery system and related translation from the bench to the clinic.
Collapse
Affiliation(s)
- Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
21
|
Review of the Standard and Advanced Screening, Staging Systems and Treatment Modalities for Cervical Cancer. Cancers (Basel) 2022; 14:cancers14122913. [PMID: 35740578 PMCID: PMC9220913 DOI: 10.3390/cancers14122913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This review discusses the timeline and development of the recommended screening tests, diagnosis system, and therapeutics implemented in clinics for precancer and cancer of the uterine cervix. The incorporation of the latest automation, machine learning modules, and state-of-the-art technologies into these aspects are also discussed. Abstract Cancer arising from the uterine cervix is the fourth most common cause of cancer death among women worldwide. Almost 90% of cervical cancer mortality has occurred in low- and middle-income countries. One of the major aetiologies contributing to cervical cancer is the persistent infection by the cancer-causing types of the human papillomavirus. The disease is preventable if the premalignant lesion is detected early and managed effectively. In this review, we outlined the standard guidelines that have been introduced and implemented worldwide for decades, including the cytology, the HPV detection and genotyping, and the immunostaining of surrogate markers. In addition, the staging system used to classify the premalignancy and malignancy of the uterine cervix, as well as the safety and efficacy of the various treatment modalities in clinical trials for cervical cancers, are also discussed. In this millennial world, the advancements in computer-aided technology, including robotic modules and artificial intelligence (AI), are also incorporated into the screening, diagnostic, and treatment platforms. These innovations reduce the dependence on specialists and technologists, as well as the work burden and time incurred for sample processing. However, concerns over the practicality of these advancements remain, due to the high cost, lack of flexibility, and the judgment of a trained professional that is currently not replaceable by a machine.
Collapse
|
22
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Mutlu L, Tymon-Rosario J, Harold J, Menderes G. Targeted treatment options for the management of metastatic/persistent and recurrent cervical cancer. Expert Rev Anticancer Ther 2022; 22:633-645. [PMID: 35533682 DOI: 10.1080/14737140.2022.2075348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cervical cancer is the overall fourth most common malignancy and the fourth most common cause of cancer related deaths worldwide. Despite vaccination and screening programs, many women continue to present with advanced stage cervical cancer, wherein the treatment options have been limited. AREAS COVERED In this review, immunotherapy and the potential targeted therapies that have demonstrated promise in the treatment of persistent, recurrent, and metastatic cervical cancer are discussed. EXPERT OPINION Our global goal in the gynecologic oncology community is to eliminate cervical cancer, by increasing the uptake of preventive vaccination and screening programs. For unfortunate patients who present with metastatic, persistent, and recurrent cervical cancer, pembrolizumab with chemotherapy, with or without bevacizumab is the new first line therapy for PD-L1 positive patients. For this patient population as a second line therapy, tisotumab vedotin (i.e. ADC) has shown significant efficacy in Phase II trials, leading to FDA approval. Combination regimens inclusive of immune checkpoint inhibitors, DNA damage repair inhibitors, antibody drug conjugates are potential breakthrough treatment strategies and are currently being investigated.
Collapse
Affiliation(s)
- Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| | - Joan Tymon-Rosario
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| | - Justin Harold
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| | - Gulden Menderes
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Smilow Cancer Hospital, Yale University, School of Medicine
| |
Collapse
|
24
|
Asano H, Oda K, Yoshihara K, Ito YM, Matsumura N, Shimada M, Watari H, Enomoto T. Phase II study of niraparib in recurrent or persistent rare fraction of gynecologic malignancies with homologous recombination deficiency (JGOG2052). J Gynecol Oncol 2022; 33:e55. [PMID: 35557035 PMCID: PMC9250862 DOI: 10.3802/jgo.2022.33.e55] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Poly (adenosine diphosphate)-ribose polymerase (PARP) inhibitors for tumors with homologous recombination deficiency (HRD), including pathogenic mutations in BRCA1/2, have been developed. Genomic analysis revealed that about 20% of uterine leiomyosarcoma (uLMS) have HRD, including 7.5%–10% of BRCA1/2 alterations and 4%–6% of carcinomas of the uterine corpus, and 2.5%–4% of the uterine cervix have alterations of BRCA1/2. Preclinical and clinical case reports suggest that PARP inhibitors may be effective against those targets. The Japanese Gynecologic Oncology Group (JGOG) is now planning to conduct a new investigator-initiated clinical trial, JGOG2052. Methods JGOG2052 is a single-arm, open-label, multi-center, phase 2 clinical trial to evaluate the efficacy and safety of niraparib monotherapy for a recurrent or persistent rare fraction of gynecologic malignancies with BRCA1/2 mutations except for ovarian cancers. We will independently consider the effect of niraparib for uLMS or other gynecologic malignancies with BRCA1/2 mutations (cohort A, C) and HRD positive uLMS without BRCA1/2 mutations (cohort B). Participants must have 1–3 lines of previous chemotherapy and at least one measurable lesion according to RECIST (v.1.1). Niraparib will be orally administered once a day until lesion exacerbation or unacceptable adverse events occur. Efficacy will be evaluated by imaging through an additional computed tomography scan every 8 weeks. Safety will be measured weekly in cycle 1 and every 4 weeks after cycle 2 by blood tests and physical examinations. The sample size is 16–20 in each of cohort A and B, and 31 in cohort C. Primary endpoint is the objective response rate. Trial Registration Japan Primary Registries Network (JPRN) Identifier: jRCT2031210264
Collapse
Affiliation(s)
- Hiroshi Asano
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
25
|
Sherer MV, Kotha NV, Williamson C, Mayadev J. Advances in immunotherapy for cervical cancer: recent developments and future directions. Int J Gynecol Cancer 2022; 32:281-287. [DOI: 10.1136/ijgc-2021-002492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023] Open
Abstract
There is an unmet need for novel therapies to improve clinical outcomes for patients with locally advanced, recurrent, or metastatic cervical cancer. Most cases of cervical cancer are driven by infection with human papillomavirus (HPV), which uses multiple mechanisms to avoid immune surveillance. Several classes of agents have been developed that seek to activate the immune system in order to overcome this resistance and improve treatment outcomes. These include immune checkpoint inhibitors, therapeutic vaccines, engineered T cells, and antibody-drug conjugates. Here, we review the immune landscape of cervical cancer and the growing clinical data regarding the use of immunotherapy. Checkpoint inhibitors are the best studied treatments, with encouraging phase II studies available in the definitive setting and recently published phase III data defining a new standard of care for patients with recurrent or metastatic disease. Vaccines and engineered T cells are generally in earlier phases of development but use unique mechanisms of immune activation. It is possible that combination of immunotherapy, with either conventional systemic therapy or multiple immunomodulatory agents, may provide further benefit. We also discuss possible synergies between immunotherapy and radiation therapy, which is frequently used in the management of cervical cancer. Ultimately, immunotherapy represents an emerging treatment option for patients with cervical cancer. It is an appropriate component of first-line treatment in the recurrent or metastatic setting and may soon be incorporated into definitive management of locally advanced disease.
Collapse
|
26
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
27
|
Schmidt MW, Battista MJ, Schmidt M, Garcia M, Siepmann T, Hasenburg A, Anic K. Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials. Cancers (Basel) 2022; 14:cancers14020441. [PMID: 35053603 PMCID: PMC8773848 DOI: 10.3390/cancers14020441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: To systematically review the current body of evidence on the efficacy and safety of immunotherapy for cervical cancer (CC). Material and Methods: Medline, the Cochrane Central Register of Controlled Trials and Web of Science were searched for prospective trials assessing immunotherapy in CC patients in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Full-text articles in English and German reporting outcomes of survival, response rates or safety were eligible. Results: Of 4655 screened studies, 51 were included (immune checkpoint inhibitors (ICI) n=20; therapeutic vaccines n = 25; adoptive cell transfer therapy n=9). Of these, one qualified as a phase III randomized controlled trial and demonstrated increased overall survival following treatment with pembrolizumab, chemotherapy and bevacizumab. A minority of studies included a control group (n = 7) or more than 50 patients (n = 15). Overall, response rates were low to moderate. No response to ICIs was seen in PD-L1 negative patients. However, few remarkable results were achieved in heavily pretreated patients. There were no safety concerns in any of the included studies. Conclusion: Strong evidence on the efficacy of strategies to treat recurrent or metastatic cervical cancer is currently limited to pembrolizumab in combination with chemotherapy and bevacizumab, which substantiates an urgent need for large confirmatory trials on alternative immunotherapies. Overall, there is sound evidence on the safety of immunotherapy in CC.
Collapse
Affiliation(s)
- Mona W. Schmidt
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Correspondence: ; Tel.: +49-6131-17-0
| | - Marco J. Battista
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Monique Garcia
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Department of Medicine, Pontifícia Universidade Católica de Minas Gerais (PUC MG), Betim 32604-115, Brazil
| | - Timo Siepmann
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Katharina Anic
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| |
Collapse
|
28
|
Geng Z, Cao Z, Liu R, Liu K, Liu J, Tan W. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat Commun 2021; 12:6584. [PMID: 34782610 PMCID: PMC8593157 DOI: 10.1038/s41467-021-26956-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
Despite bacterial-mediated biotherapies have been widely explored for treating different types of cancer, their implementation has been restricted by low treatment efficacy, due largely to the absence of tumor-specific accumulation following administration. Here, the conjugation of aptamers to bacterial surface is described by a simple and cytocompatible amidation procedure, which can significantly promote the localization of bacteria in tumor site after systemic administration. The surface density of aptamers can be easily adjusted by varying feed ratio and the conjugation is able to increase the stability of anchored aptamers. Optimal bacteria conjugated with an average of 2.8 × 105 aptamers per cell present the highest specificity to tumor cells in vitro, separately generating near 2- and 4-times higher accumulation in tumor tissue at 12 and 60 hours compared to unmodified bacteria. In both 4T1 and H22 tumor-bearing mouse models, aptamer-conjugated attenuated Salmonella show enhanced antitumor efficacy, along with highly activated immune responses inside the tumor. This work demonstrates how bacterial behaviors can be tuned by surface conjugation and supports the potential of aptamer-conjugated bacteria for both targeted intratumoral localization and enhanced tumor biotherapy.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Weihong Tan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| |
Collapse
|
29
|
Kordbacheh F, Farah CS. Current and Emerging Molecular Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13215471. [PMID: 34771633 PMCID: PMC8582411 DOI: 10.3390/cancers13215471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer affects nearly 750,000 patients, with more than 300,000 deaths annually. Advances in first line surgical treatment have improved survival rates marginally particularly in developed countries, however survival rates for aggressive locally advanced head and neck cancer are still poor. Recurrent and metastatic disease remains a significant problem for patients and the health system. As our knowledge of the genomic landscape of the head and neck cancers continues to expand, there are promising developments occurring in molecular therapies available for advanced or recalcitrant disease. The concept of precision medicine is underpinned by our ability to accurately sequence tumour samples to best understand individual patient genomic variations and to tailor targeted therapy for them based on such molecular profiling. Not only is their purported response to therapy a factor of their genomic variation, but so is their inclusion in biomarker-driven personalised medicine therapeutic trials. With the ever-expanding number of molecular druggable targets explored through advances in next generation sequencing, the number of clinical trials assessing these targets has significantly increased over recent years. Although some trials are focussed on first-line therapeutic approaches, a greater majority are focussed on locally advanced, recurrent or metastatic disease. Similarly, although single agent monotherapy has been found effective in some cases, it is the combination of drugs targeting different signalling pathways that seem to be more beneficial to patients. This paper outlines current and emerging molecular therapies for head and neck cancer, and updates readers on outcomes of the most pertinent clinical trials in this area while also summarising ongoing efforts to bring more molecular therapies into clinical practice.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Broad Institute of MIT and Harvard, Boston, MA 02142, USA;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Camile S. Farah
- The Australian Centre for Oral Oncology Research & Education, Nedlands, WA 6009, Australia
- Genomics for Life, Milton, QLD 4064, Australia
- Anatomical Pathology, Australian Clinical Labs, Subiaco, WA 6009, Australia
- Head and Neck Cancer Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Correspondence:
| |
Collapse
|
30
|
Howell LM, Forbes NS. Bacteria-based immune therapies for cancer treatment. Semin Cancer Biol 2021; 86:1163-1178. [PMID: 34547442 DOI: 10.1016/j.semcancer.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
Engineered bacterial therapies that target the tumor immune landscape offer a new class of cancer immunotherapy. Salmonella enterica and Listeria monocytogenes are two species of bacteria that have been engineered to specifically target tumors and serve as delivery vessels for immunotherapies. Therapeutic bacteria have been engineered to deliver cytokines, gene silencing shRNA, and tumor associated antigens that increase immune activation. Bacterial therapies stimulate both the innate and adaptive immune system, change the immune dynamics of the tumor microenvironment, and offer unique strategies for targeting tumors. Bacteria have innate adjuvant properties, which enable both the delivered molecules and the bacteria themselves to stimulate immune responses. Bacterial immunotherapies that deliver cytokines and tumor-associated antigens have demonstrated clinical efficacy. Harnessing the diverse set of mechanisms that Salmonella and Listeria use to alter the tumor-immune landscape has the potential to generate many new and effective immunotherapies.
Collapse
Affiliation(s)
- Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States.
| |
Collapse
|
31
|
Shamseddine AA, Burman B, Lee NY, Zamarin D, Riaz N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov 2021; 11:1896-1912. [PMID: 33990345 PMCID: PMC8338882 DOI: 10.1158/2159-8290.cd-20-1760] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV) infection drives tumorigenesis in the majority of cervical, oropharyngeal, anal, and vulvar cancers. Genetic and epidemiologic evidence has highlighted the role of immunosuppression in the oncogenesis of HPV-related malignancies. Here we review how HPV modulates the immune microenvironment and subsequent therapeutic implications. We describe the landscape of immunotherapies for these cancers with a focus on findings from early-phase studies exploring antigen-specific treatments, and discuss future directions. Although responses across these studies have been modest to date, a deeper understanding of HPV-related tumor biology and immunology may prove instrumental for the development of more efficacious immunotherapeutic approaches. SIGNIFICANCE: HPV modulates the microenvironment to create a protumorigenic state of immune suppression and evasion. Our understanding of these mechanisms has led to the development of immunomodulatory treatments that have shown early clinical promise in patients with HPV-related malignancies. This review summarizes our current understanding of the interactions of HPV and its microenvironment and provides insight into the progress and challenges of developing immunotherapies for HPV-related malignancies.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bharat Burman
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dmitriy Zamarin
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
32
|
Ferrall L, Lin KY, Roden RBS, Hung CF, Wu TC. Cervical Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2021; 27:4953-4973. [PMID: 33888488 DOI: 10.1158/1078-0432.ccr-20-2833] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
It is a sad fact that despite being almost completely preventable through human papillomavirus (HPV) vaccination and screening, cervical cancer remains the fourth most common cancer to affect women worldwide. Persistent high-risk HPV (hrHPV) infection is the primary etiologic factor for cervical cancer. Upward of 70% of cases are driven by HPV types 16 and 18, with a dozen other hrHPVs associated with the remainder of cases. Current standard-of-care treatments include radiotherapy, chemotherapy, and/or surgical resection. However, they have significant side effects and limited efficacy against advanced disease. There are a few treatment options for recurrent or metastatic cases. Immunotherapy offers new hope, as demonstrated by the recent approval of programmed cell death protein 1-blocking antibody for recurrent or metastatic disease. This might be augmented by combination with antigen-specific immunotherapy approaches, such as vaccines or adoptive cell transfer, to enhance the host cellular immune response targeting HPV-positive cancer cells. As cervical cancer progresses, it can foster an immunosuppressive microenvironment and counteract host anticancer immunity. Thus, approaches to reverse suppressive immune environments and bolster effector T-cell functioning are likely to enhance the success of such cervical cancer immunotherapy. The success of nonspecific immunostimulants like imiquimod against genital warts also suggest the possibility of utilizing these immunotherapeutic strategies in cervical cancer prevention to treat precursor lesions (cervical intraepithelial neoplasia) and persistent hrHPV infections against which the licensed prophylactic HPV vaccines have no efficacy. Here, we review the progress and challenges in the development of immunotherapeutic approaches for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Louise Ferrall
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland
| | - Ken Y Lin
- Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
33
|
Paulino E, Melo ACD. Advanced Cervical Cancer: Leveraging the Historical Threshold of Overall Survival. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:235-237. [PMID: 33860508 PMCID: PMC10183907 DOI: 10.1055/s-0041-1728662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Eduardo Paulino
- Insituto Nacional do Câncer, Rio de Janeiro, RJ, Brazil.,Grupo Oncoclínicas, Rio de Janeiro, RJ, Brazil
| | - Andreia Cristina de Melo
- Insituto Nacional do Câncer, Rio de Janeiro, RJ, Brazil.,Grupo Oncoclínicas, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
34
|
Oladejo M, Paterson Y, Wood LM. Clinical Experience and Recent Advances in the Development of Listeria-Based Tumor Immunotherapies. Front Immunol 2021; 12:642316. [PMID: 33936058 PMCID: PMC8081050 DOI: 10.3389/fimmu.2021.642316] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/26/2021] [Indexed: 12/29/2022] Open
Abstract
The promise of tumor immunotherapy to significantly improve survival in patients who are refractory to long-standing therapies, such as chemotherapy and radiation, is now being realized. While immune checkpoint inhibitors that target PD-1 and CTLA-4 are leading the charge in clinical efficacy, there are a number of other promising tumor immunotherapies in advanced development such as Listeria-based vaccines. Due to its unique life cycle and ability to induce robust CTL responses, attenuated strains of Listeria monocytogenes (Lm) have been utilized as vaccine vectors targeting both infectious disease and cancer. In fact, preclinical studies in a multitude of cancer types have found Listeria-based vaccines to be highly effective at activating anti-tumor immunity and eradicating tumors. Several clinical trials have now recently reported their results, demonstrating promising efficacy against some cancers, and unique challenges. Development of the Lm-based immunotherapies continues with discovery of improved methods of attenuation, novel uses, and more effective combinatorial regimens. In this review, we provide a brief background of Listeria monocytogenes as a vaccine vector, discuss recent clinical experience with Listeria-based immunotherapies, and detail the advancements in development of improved Listeria-based vaccine platforms and in their utilization.
Collapse
Affiliation(s)
- Mariam Oladejo
- Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Yvonne Paterson
- Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laurence M. Wood
- Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
35
|
Mauricio D, Zeybek B, Tymon-Rosario J, Harold J, Santin AD. Immunotherapy in Cervical Cancer. Curr Oncol Rep 2021; 23:61. [PMID: 33852056 DOI: 10.1007/s11912-021-01052-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current immunotherapy studies and the potential targeted therapies showing promise in the treatment of cervical cancer. RECENT FINDINGS There are promising ongoing monotherapy and combination therapy trials using different immune checkpoint inhibitors, poly adenosine diphosphate ribose polymerase inhibitors, tumor angiogenesis inhibitors (i.e., bevacizumab), antibody-drug conjugates, therapeutic vaccines, and tumor-infiltrating T lymphocytes (adoptive immunotherapy). Some of these novel modalities are also being evaluated in combination with standard platinum-based chemotherapy regimen. At this time, pembrolizumab is approved for the treatment of relapsed or metastatic programmed death ligand 1 (PD-L1) positive cervical cancer after frontline chemotherapy treatment. Multiple novel therapeutic modalities are emerging as safe and effective for the treatment of cervical cancer patients. Development and participation in investigative treatments can provide benefit and improve outcomes in cervical cancer.
Collapse
Affiliation(s)
- Dennis Mauricio
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, LSOG Bld. Room 305, 333 Cedar Street, PO Box 208063, New Haven, CT, 06520-8063, USA
| | - Burak Zeybek
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, LSOG Bld. Room 305, 333 Cedar Street, PO Box 208063, New Haven, CT, 06520-8063, USA
| | - Joan Tymon-Rosario
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, LSOG Bld. Room 305, 333 Cedar Street, PO Box 208063, New Haven, CT, 06520-8063, USA
| | - Justin Harold
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, LSOG Bld. Room 305, 333 Cedar Street, PO Box 208063, New Haven, CT, 06520-8063, USA
| | - Alessandro D Santin
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, LSOG Bld. Room 305, 333 Cedar Street, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
36
|
Randall LM, Walker AJ, Jia AY, Miller DT, Zamarin D. Expanding Our Impact in Cervical Cancer Treatment: Novel Immunotherapies, Radiation Innovations, and Consideration of Rare Histologies. Am Soc Clin Oncol Educ Book 2021; 41:252-263. [PMID: 34010052 DOI: 10.1200/edbk_320411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cervical cancer is a socially and scientifically distinguishable disease. Its pathogenesis, sexual transmission of high-risk HPV to a metaplastic portion of the uterine cervix, makes cervical cancer preventable by safe and effective HPV vaccines commercially available since 2006. Despite this, cervical cancer remains the deadliest gynecologic cancer in the world. Regrettably, global incidence and mortality rates disproportionately affect populations where women are marginalized, where HIV infection is endemic, and where access to preventive vaccination and screening for preinvasive disease are limited. In the United States, cervical cancer incidence has gradually declined over the last 25 years, but mortality rates remain both constant and disparately higher among communities of color because of the adverse roles that racism and poverty play in outcome. Until these conditions improve and widespread prevention is possible, treatment innovations are warranted. The last standard-of-care treatment changes occurred in 1999 for locally advanced disease and in 2014 for metastatic and recurrent disease. The viral and immunologic nature of HPV-induced cervical cancer creates opportunities for both radiation and immunotherapy to improve outcomes. With the advent of T cell-directed therapy, immune checkpoint inhibition, and techniques to increase the therapeutic window of radiation treatment, an overdue wave of innovation is currently emerging in cervical cancer treatment. The purpose of this review is to describe the contemporary developmental therapeutic landscape for cervical cancer that applies to most tumors and to discuss notable rare histologic subtypes that will not be adequately addressed with these treatment innovations.
Collapse
Affiliation(s)
- Leslie M Randall
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Amanda J Walker
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angela Y Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Devin T Miller
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill-Cornell Medical College, New York, NY
| |
Collapse
|
37
|
Wooster AL, Girgis LH, Brazeale H, Anderson TS, Wood LM, Lowe DB. Dendritic cell vaccine therapy for colorectal cancer. Pharmacol Res 2021; 164:105374. [PMID: 33348026 PMCID: PMC7867624 DOI: 10.1016/j.phrs.2020.105374] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths in the United States despite an array of available treatment options. Current standard-of-care interventions for this malignancy include surgical resection, chemotherapy, and targeted therapies depending on the disease stage. Specifically, infusion of anti-vascular endothelial growth factor agents in combination with chemotherapy was an important development in improving the survival of patients with advanced colorectal cancer, while also helping give rise to other forms of anti-angiogenic therapies. Yet, one approach by which tumor angiogenesis may be further disrupted is through the administration of a dendritic cell (DC) vaccine targeting tumor-derived blood vessels, leading to cytotoxic immune responses that decrease tumor growth and synergize with other systemic therapies. Early generations of such vaccines exhibited protection against various forms of cancer in pre-clinical models, but clinical results have historically been disappointing. Sipuleucel-T (Provenge®) was the first, and to-date, only dendritic cell-based therapy to receive FDA approval after significantly increasing overall survival in prostate cancer patients. The unparalleled success of Sipuleucel-T has helped revitalize the clinical development of dendritic cell vaccines, which will be examined in this review. We also highlight the promise of these vaccines to instill anti-angiogenic immunity for individuals with advanced colorectal cancer.
Collapse
Affiliation(s)
- Amanda L Wooster
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Lydia H Girgis
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Hayley Brazeale
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Trevor S Anderson
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Laurence M Wood
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States
| | - Devin B Lowe
- Department of Immunotherotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
38
|
Is There a Place for Immune Checkpoint Inhibitors in Vulvar Neoplasms? A State of the Art Review. Int J Mol Sci 2020; 22:ijms22010190. [PMID: 33375467 PMCID: PMC7796178 DOI: 10.3390/ijms22010190] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.
Collapse
|