1
|
Fruzzetti F, Fidecicchi T. Hormonal Contraception and Depression: Updated Evidence and Implications in Clinical Practice. Clin Drug Investig 2021; 40:1097-1106. [PMID: 32980990 DOI: 10.1007/s40261-020-00966-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hormonal contraceptives are used worldwide by more than 100 million women. Some studies have been published about the possible appearance of depressive symptoms when using hormonal contraceptives, but this link is still a matter of debate. The purpose of this review is to provide an update of the literature on this issue, and to investigate the possible explanations of this problem based on animal and human studies. The main pathway responsible for menstrual cycle-related mood changes is the γ-aminobutyric acid pathway, which is sensitive to changes in the levels of progesterone and of its metabolites, the neurosteroids. In particular, allopregnanolone is a potentiating neurosteroid with anxiolytic and anti-convulsant effects whose levels change during a normal menstrual cycle together with progesterone levels. Progestins have different effects on allopregnanolone, mainly owing to their diverse androgenicity. Moreover, they might affect brain structure and function, even though the meaning of these changes has yet to be clarified. It is important to define the groups of women in which negative mood disorders are more likely to occur. Adolescence is a critical period and this age-specific vulnerability is complex and likely bidirectional. Moreover, women with a history of mood affective disorders or premenstrual dysphoric syndrome are at a higher risk when taking contraceptives. In this review, we aim to provide clinicians with advice on how to approach these difficult situations.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Via Roma 65, 56126, Pisa, Italy.
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Via Roma 65, 56126, Pisa, Italy
| |
Collapse
|
2
|
Chen T, Yu W, Xie X, Ge H, Fu Y, Yang D, Zhou L, Liu X, Yan Z. Influence of Gonadotropin Hormone Releasing Hormone Agonists on Interhemispheric Functional Connectivity in Girls With Idiopathic Central Precocious Puberty. Front Neurol 2020; 11:17. [PMID: 32082242 PMCID: PMC7006458 DOI: 10.3389/fneur.2020.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose: The pubertal growth suppressive effects of gonadotropin hormone releasing hormone agonists (GnRHa) are well-known, although it remains unclear if long-term GnRHa treatment influences the brain function of treated children. The present study investigated the differences in the homotopic resting-state functional connectivity patterns in girls with idiopathic central precocious puberty (ICPP) with and without GnRHa treatment using voxel-mirrored homotopic connectivity (VMHC). Methods: Eighteen girls with ICPP who underwent 12 months of GnRHa treatment, 40 treatment-naïve girls with ICPP, and 19 age-matched girls with premature thelarche underwent resting-state functional magnetic resonance imaging using a 3T MRI. VMHC method was performed to explore the differences in the resting-state interhemispheric functional connectivity. The levels of serum pubertal hormones, including luteinizing hormone (LH), follicular-stimulating hormone, and estradiol, were assessed. Correlation analyses among the results of clinical laboratory examinations, neuropsychological scales, and VMHC values of different brain regions were performed with the data of the GnRHa treated group. Results: Significant decreases in VMHC of the lingual, calcarine, superior temporal, and middle frontal gyri were identified in the untreated group, compared with the control group. Medicated patients showed decreased VMHC in the superior temporal gyrus, when compared with the controls. Compared to the unmedicated group, the medicated group showed a significant increase in VMHC in the calcarine and middle occipital gyrus. Moreover, a positive correlation was observed between basal LH levels and VMHC of the middle occipital gyrus in medicated patients. Conclusions: These findings indicate that long-term treatment with GnRHa was associated with increased interhemispheric functional connectivity within several areas responsible for memory and visual process in patients with ICPP. Higher interhemispheric functional connectivity in the middle occipital gyrus was related to higher basal LH production in the girls who underwent treatment. The present study adds to the growing body of research associated with the effects of GnRHa on brain function.
Collapse
Affiliation(s)
- Tao Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenquan Yu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoling Xie
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huaizhi Ge
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Di Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Zhejiang Hospital, Hangzhou, China
| | - Lu Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|
4
|
Zilles D, Lewandowski M, Vieker H, Henseler I, Diekhof E, Melcher T, Keil M, Gruber O. Gender Differences in Verbal and Visuospatial Working Memory Performance and Networks. Neuropsychobiology 2016; 73:52-63. [PMID: 26859775 DOI: 10.1159/000443174] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Working memory (WM) has been a matter of intensive basic and clinical research for some decades now. The investigation of WM function and dysfunction may facilitate the understanding of both physiological and pathological processes in the human brain. Though WM paradigms are widely used in neuroscientific and psychiatric research, conclusive knowledge about potential moderating variables such as gender is still missing. METHODS We used functional magnetic resonance imaging to investigate the effects of gender on verbal and visuospatial WM maintenance tasks in a large and homogeneous sample of young healthy subjects. RESULTS We found significant gender effects on both the behavioral and neurofunctional level. Females exhibited disadvantages with a small effect size in both WM domains accompanied by stronger activations in a set of brain regions (including bilateral substantia nigra/ventral tegmental area and right Broca's area) independent of WM modality. As load and task difficulty effects have been shown for some of these regions, the stronger activations may reflect a slightly lower capacity of both WM domains in females. Males showed stronger bilateral intraparietal activations next to the precuneus which were specific for the visuospatial WM task. Activity in this specific region may be associated with visuospatial short-term memory capacity. CONCLUSION These findings provide evidence for a slightly lower capacity in both WM modalities in females.
Collapse
Affiliation(s)
- David Zilles
- Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Goettingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Montejo ÁL, Arango C, Bernardo M, Carrasco JL, Crespo-Facorro B, Cruz JJ, del Pino J, García Escudero MA, García Rizo C, González-Pinto A, Hernández AI, Martín Carrasco M, Mayoral Cleries F, Mayoral van Son J, Mories MT, Pachiarotti I, Ros S, Vieta E. Spanish consensus on the risks and detection of antipsychotic drug-related hyperprolactinaemia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.rpsmen.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
|
7
|
Montejo ÁL, Arango C, Bernardo M, Carrasco JL, Crespo-Facorro B, Cruz JJ, Del Pino J, García Escudero MA, García Rizo C, González-Pinto A, Hernández AI, Martín Carrasco M, Mayoral Cleries F, Mayoral van Son J, Mories MT, Pachiarotti I, Ros S, Vieta E. Spanish consensus on the risks and detection of antipsychotic drug-related hyperprolactinaemia. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2016; 9:158-73. [PMID: 26927534 DOI: 10.1016/j.rpsm.2015.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/28/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Iatrogenic hyperprolactinaemia (IHPRL) has been more frequently related to some antipsychotic drugs that provoke an intense blockade of dopamine D2 receptors. There is a wide variation in clinical practice, and perhaps some more awareness between clinicians is needed. Due to the high frequency of chronic treatment in severe mental patients, careful attention is recommended on the physical risk. IHPRL symptoms could be underestimated without routine examination. METHODOLOGY An intense scientific literature search was performed in order to draw up a multidisciplinary consensus, including different specialists of psychiatry, endocrinology, oncology and internal medicine, and looking for a consensus about clinical risk and detection of IHPRL following evidence-based medicine criteria levels (EBM I- IV). RESULTS Short-term symptoms include amenorrhea, galactorrhoea, and sexual dysfunction with decrease of libido and erectile difficulties related to hypogonadism. Medium and long-term symptoms related to oestrogens are observed, including a decrease bone mass density, hypogonadism, early menopause, some types of cancer risk increase (breast and endometrial), cardiovascular risk increase, immune system disorders, lipids, and cognitive dysfunction. Prolactin level, gonadal hormones and vitamin D should be checked in all patients receiving antipsychotics at baseline although early symptoms (amenorrhea-galactorrhoea) may not be observed due to the risk of underestimating other delayed symptoms that may appear in the medium term. Routine examination of sexual dysfunction is recommended due to possible poor patient tolerance and low compliance. Special care is required in children and adolescents, as well as patients with PRL levels >50ng/ml (moderate hyperprolactinaemia). A possible prolactinoma should be investigated in patients with PRL levels >150ng/ml, with special attention to patients with breast/endometrial cancer history. Densitometry should be prescribed for males >50 years old, amenorrhea>6 months, or early menopause to avoid fracture risk.
Collapse
Affiliation(s)
- Ángel L Montejo
- Área de Neurociencias, Instituto de Biomedicina de Salamanca (IBSAL), Universidad de Salamanca, Servicio de Psiquiatría, Hospital Universitario de Salamanca, España.
| | - Celso Arango
- Departamento de Psiquiatría Infanto-Juvenil, Hospital General Universitario Gregorio Marañón (IiSGM). Facultad de Medicina, Universidad Complutense, CIBERSAM, Madrid, España
| | - Miguel Bernardo
- Unidad Esquizofrenia Clínic, Instituto Clínic de Neurociencias, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, España
| | - José L Carrasco
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, CIBERSAM, Madrid, España
| | - Benedicto Crespo-Facorro
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria. Hospital Universitario Marqués de Valdecilla, IDIVAL, CIBERSAM, Santander, España
| | - Juan J Cruz
- Servicio de Oncología Médica, Hospital Universitario de Salamanca, Universidad de Salamanca (IBSAL), España
| | - Javier Del Pino
- Servicio Medicina Interna, Hospital Clínico Universitario, Universidad de Salamanca, España
| | | | - Clemente García Rizo
- Unidad Esquizofrenia Clínic, Instituto Clínic de Neurociencias, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, España
| | - Ana González-Pinto
- International Mood Disorders Research Centre, CIBERSAM, Hospital Santiago Apóstol, Universidad del País Vasco, Vitoria, España
| | - Ana I Hernández
- FEA Psiquiatría, Red de Salud Mental de Guipúzcoa, San Sebastián, España
| | - Manuel Martín Carrasco
- Instituto de Investigaciones Psiquiátricas, Fundación María Josefa Recio, Bilbao, España; Clínica Psiquiátrica Padre Menni, CIBERSAM, Pamplona, España
| | - Fermin Mayoral Cleries
- UGC Salud Mental, Hospital Regional Universitario, Instituto de Biomedicina de Málaga, Málaga, España
| | | | - M Teresa Mories
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Salamanca, España
| | - Isabella Pachiarotti
- Programa de Trastornos Bipolares, Departamento de Psiquiatría, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERSAM, Barcelona, España
| | - Salvador Ros
- Instituto Internacional de Neurociencias Aplicadas, Barcelona, España
| | - Eduard Vieta
- Programa de Trastornos Bipolares, Departamento de Psiquiatría, Hospital Clínic, Universidad de Barcelona, IDIBAPS, CIBERSAM, Barcelona, España
| |
Collapse
|
8
|
Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL, McKee SA, Allen SS. Determining menstrual phase in human biobehavioral research: A review with recommendations. Exp Clin Psychopharmacol 2016; 24:1-11. [PMID: 26570992 PMCID: PMC4821777 DOI: 10.1037/pha0000057] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Given the volume and importance of research focusing on menstrual phase, a review of the strategies being used to identify menstrual phase and recommendations that will promote methodological uniformity in the field is needed. We conducted a literature review via Ovid Medline and PsycINFO. Our goal was to review methods used to identify menstrual phase and subphases in biobehavioral research studies with women who had physiologically natural menstrual cycles. Therefore, we excluded articles that focused on any of the following: use of exogenous hormones, the postpartum period, menstrual-related problems (e.g., polycystic ovarian syndrome, endometriosis), and infertility/anovulation. We also excluded articles on either younger (<18 years old) or older (>45 years old) study samples. We initially identified a total of 1,809 articles. After our exclusionary criteria were applied, 146 articles remained, within which our review identified 6 different methods used to identify menstrual phase and subphases. The most common method used was self-report of onset of menses (145/146 articles) followed by urine luteinizing hormone testing (50/146 articles) and measurement of hormones (estradiol and/or progesterone) in blood samples (49/146 articles). Overall, we found a lack of consistency in the methodology used to determine menstrual phase and subphases. We provide several options to improve accuracy of phase identification, as well as to minimize costs and burden. Adoption of these recommendations will decrease misclassification within individual studies, facilitate cross-study comparisons, and enhance the reproducibility of results.
Collapse
Affiliation(s)
- Alicia M. Allen
- Department of Family Medicine & Community Health, Medical School, University of Minnesota; Mailing Address: 717 Delaware Street SE, Room 422, Minneapolis, Minnesota, USA 55414
| | - Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina; Mailing Address: 67 President Street, Charleston, SC, USA 29425
| | - Samantha Carlson
- Department of Family Medicine & Community Health, Medical School, University of Minnesota; Mailing Address: 717 Delaware Street SE, Room 400, Minneapolis, Minnesota, USA 55414
| | - Michael E. Saladin
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina; Mailing Address: 77 President St., Charleston, SC, USA 29425
| | - Kevin M. Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina; Mailing Address: 125 Doughty Street, Suite 190, MSC861, Charleston SC, USA 29425
| | - Cora Lee Wetherington
- National Institute on Drug Abuse, National Institutes of Health; Mailing Address: National Institute on Drug Abuse, 6001 Executive Blvd, Suite 3155, Bethesda, MD, USA 20892-9593
| | - Sherry A. McKee
- Department of Psychiatry, Yale University School of Medicine; Mailing Address: 2 Church St. South, #109, New Haven, CT, USA 06519
| | - Sharon S. Allen
- Department of Family Medicine & Community Health, Medical School, University of Minnesota; Mailing Address: 420 Delaware Street SE, MMC 381 Mayo, Minneapolis, Minnesota, USA 55455
| |
Collapse
|
9
|
Guerrieri GM, Wakim PG, Keenan PA, Schenkel LA, Berlin K, Gibson CJ, Rubinow DR, Schmidt PJ. Sex differences in visuospatial abilities persist during induced hypogonadism. Neuropsychologia 2015; 81:219-229. [PMID: 26719236 DOI: 10.1016/j.neuropsychologia.2015.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/04/2015] [Accepted: 12/19/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite well-established sex differences in the performance on tests of several cognitive domains (e.g., visuospatial ability), few studies in humans have evaluated if these sex differences are evident both in the presence of circulating sex hormones and during sex steroid hormonal suppression. Sex differences identified in the relative absence of circulating levels of estradiol and testosterone suggest that differences in brain structure or function exist independent of current hormonal environment and are more likely a reflection of differing developmental exposures and/or genetic substrates. OBJECTIVE To evaluate cognitive performance in healthy eugonadal men and women before and again during GnRH agonist-induced hypogonadism. METHODS Men (n=16) and women (n=15) without medical or psychiatric illness were matched for IQ. Cognitive tests were performed at baseline (when eugonadal) and after 6-8 weeks of GnRH agonist-induced gonadal suppression. The test batteries included measures of verbal and spatial memory, spatial ability, verbal fluency, motor speed/dexterity, and attention/concentration. Data were analyzed using repeated-measures models. RESULTS During both eugonadism and hypogonadism, men performed significantly better than women on several measures of visuospatial performance including mental rotation, line orientation, Money Road Map, Porteus maze, and complex figure drawing. Although some test performances showed an effect of hormone treatment, the majority of these differences reflected an improved performance during hypogonadism compared with baseline (and probably reflected practice effects). CONCLUSION The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained in the context of short-term suppression of gonadal function in both men and women. These findings suggest that, in humans, sex differences in visuospatial performance are not merely dependent on differences in the current circulating sex steroid environment. Thus sex differences in visuospatial performance in adulthood could reflect early developmental effects of sex steroid exposure or other environmental exposures differing across the sexes as our data confirm that these differences are independent of circulating estradiol or testosterone levels in men and women.
Collapse
Affiliation(s)
- Gioia M Guerrieri
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - P A Keenan
- Cronos Clinical Consulting (formerly Wayne State University), 22 Tanglewood Drive, Titusville, NJ 08560, United States
| | - Linda A Schenkel
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - Kate Berlin
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - Carolyn J Gibson
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Peter J Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States.
| |
Collapse
|
10
|
Simone J, Bogue EA, Bhatti DL, Day LE, Farr NA, Grossman AM, Holmes PV. Ethinyl estradiol and levonorgestrel alter cognition and anxiety in rats concurrent with a decrease in tyrosine hydroxylase expression in the locus coeruleus and brain-derived neurotrophic factor expression in the hippocampus. Psychoneuroendocrinology 2015; 62:265-78. [PMID: 26352480 DOI: 10.1016/j.psyneuen.2015.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022]
Abstract
In the United States, more than ten million women use contraceptive hormones. Ethinyl estradiol and levonorgestrel have been mainstay contraceptive hormones for the last four decades. Surprisingly, there is scant information regarding their action on the central nervous system and behavior. Intact female rats received three weeks of subcutaneous ethinyl estradiol (10 or 30μg/rat/day), levonorgestrel (20 or 60μg/rat/day), a combination of both (10/20μg/rat/day and 30/60μg/rat/day), or vehicle. Subsequently, the rats were tested in three versions of the novel object recognition test to assess learning and memory, and a battery of tests for anxiety-like behavior. Serum estradiol and ovarian weights were measured. All treatment groups exhibited low endogenous 17β-estradiol levels at the time of testing. Dose-dependent effects of drug treatment manifested in both cognitive and anxiety tests. All low dose drugs decreased anxiety-like behavior and impaired performance on novel object recognition. In contrast, the high dose ethinyl estradiol increased anxiety-like behavior and improved performance in cognitive testing. In the cell molecular analyses, low doses of all drugs induced a decrease in tyrosine hydroxylase mRNA and protein in the locus coeruleus. At the same time, low doses of ethinyl estradiol and ethinyl estradiol/levonorgestrel increased galanin protein in this structure. Consistent with the findings above, the low dose treatments of ethinyl estradiol and combination ethinyl estradiol/levonorgestrel reduced brain-derived neurotrophic factor mRNA in the hippocampus. These effects of ethinyl estradiol 10μg alone and in combination with levonorgestrel 20μg suggest a diminution of norepinephrine input into the hippocampus resulting in a decline in learning and memory.
Collapse
Affiliation(s)
- Jean Simone
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Elizabeth A Bogue
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Dionnet L Bhatti
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Laura E Day
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Nathan A Farr
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Anna M Grossman
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA.
| | - Philip V Holmes
- Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, 150 Paul D. Coverdell Center, Athens, GA 30602, USA; Psychology, University of Georgia, 125 Baldwin Street, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Comasco E, Frokjaer VG, Sundström-Poromaa I. Functional and molecular neuroimaging of menopause and hormone replacement therapy. Front Neurosci 2014; 8:388. [PMID: 25538545 PMCID: PMC4259109 DOI: 10.3389/fnins.2014.00388] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2014] [Indexed: 01/30/2023] Open
Abstract
The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women's brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the left inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in several cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal variations on the brain.
Collapse
Affiliation(s)
- Erika Comasco
- Department of Neuroscience, Uppsala University Uppsala, Sweden ; Department of Women's and Children's Health, Uppsala University Uppsala, Sweden
| | - Vibe G Frokjaer
- Department of Neurology, Center for Integrated Molecular Brain Imaging and Neurobiology Research Unit 6931, Copenhagen University Hospital Copenhagen, Denmark
| | | |
Collapse
|
12
|
Conroy SK, McDonald BC, Ahles TA, West JD, Saykin AJ. Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates. Brain Imaging Behav 2014; 7:491-500. [PMID: 23793983 DOI: 10.1007/s11682-013-9240-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapy-induced amenorrhea (CIA) often occurs in pre- and peri-menopausal BC patients, and while cancer/chemotherapy and abrupt estrogen loss have separately been shown to affect cognition and brain function, studies of the cognitive effects of CIA are equivocal, and its effects on brain function are unknown. Functional MRI (fMRI) during a working memory task was used to prospectively assess the pattern of brain activation and deactivation prior to and 1 month after chemotherapy in BC patients who experienced CIA (n = 9), post-menopausal BC patients undergoing chemotherapy (n = 9), and pre- and post-menopausal healthy controls (n = 6 each). Neurocognitive testing was also performed at both time points. Repeated measures general linear models were used to assess statistical significance, and age was a covariate in all analyses. We observed a group-by-time interaction in the combined magnitudes of brain activation and deactivation (p = 0.006): the CIA group increased in magnitude from baseline to post-treatment while other groups maintained similar levels over time. Further, the change in brain activity magnitude in CIA was strongly correlated with change in processing speed neurocognitive testing score (r = 0.837 p = 0.005), suggesting this increase in brain activity reflects effective cognitive compensation. Our results demonstrate prospectively that the pattern of change in brain activity from pre- to post-chemotherapy varies according to pre-treatment menopausal status. Cognitive correlates add to the potential clinical significance of these findings. These findings have implications for risk appraisal and development of prevention or treatment strategies for cognitive changes in CIA.
Collapse
Affiliation(s)
- Susan K Conroy
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th St., GH Suite 4100, Indianapolis, IN, 46202, USA
| | | | | | | | | |
Collapse
|
13
|
Gingnell M, Engman J, Frick A, Moby L, Wikström J, Fredrikson M, Sundström-Poromaa I. Oral contraceptive use changes brain activity and mood in women with previous negative affect on the pill--a double-blinded, placebo-controlled randomized trial of a levonorgestrel-containing combined oral contraceptive. Psychoneuroendocrinology 2013; 38:1133-44. [PMID: 23219471 DOI: 10.1016/j.psyneuen.2012.11.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Most women on combined oral contraceptives (COC) report high levels of satisfaction, but 4-10% complain of adverse mood effects. The aim of this randomized, double-blinded, placebo-controlled trial was to investigate if COC use would induce more pronounced mood symptoms than placebo in women with previous history of COC-induced adverse mood. A second aim was to determine if COC use is associated with changes in brain reactivity in regions previously associated with emotion processing. METHODS Thirty-four women with previous experience of mood deterioration during COC use were randomized to one treatment cycle with a levonorgestrel-containing COC or placebo. An emotional face matching task (vs. geometrical shapes) was administered during functional magnetic resonance imaging (fMRI) prior to and during the COC treatment cycle. Throughout the trial, women recorded daily symptom ratings on the Cyclicity Diagnoser (CD) scale. RESULTS During the last week of the treatment cycle COC users had higher scores of depressed mood, mood swings, and fatigue than placebo users. COC users also had lower emotion-induced reactivity in the left insula, left middle frontal gyrus, and bilateral inferior frontal gyri as compared to placebo users. In comparison with their pretreatment cycle, the COC group had decreased emotion-induced reactivity in the bilateral inferior frontal gyri, whereas placebo users had decreased reactivity in the right amygdala. CONCLUSION COC use in women who previously had experienced emotional side effects resulted in mood deterioration, and COC use was also accompanied by changes in emotional brain reactivity. These findings are of relevance for the understanding of how combined oral contraceptives may influence mood. Placebo-controlled fMRI studies in COC sensitive women could be of relevance for future testing of adverse mood effects in new oral contraceptives.
Collapse
Affiliation(s)
- Malin Gingnell
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
14
|
Salama SS, Kılıç GS. Uterine fibroids and current clinical challenges. J Turk Ger Gynecol Assoc 2013; 14:40-5. [PMID: 24592069 PMCID: PMC3881727 DOI: 10.5152/jtgga.2013.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/22/2022] Open
Abstract
Uterine fibroids (UF) are the most common gynecological tumors in premenopausal women. Hysterectomy remains the major and definitive therapeutic option. Minimally invasive surgical techniques for performing hysterectomy have many advantages over laparotomy. Current drug therapies for UF remain unsatisfactory. Unquestionably, continued investigation of novel agents is necessary. The currently used drugs for UF treatment which exclusively modulate a single target, typically either the estrogen or progesterone signaling pathways, are limited in their therapeutic effects. By contrast, multi-target drugs which simultaneously modulate multiple critical hubs in the network of the signaling pathways underlying UF pathogenesis should achieve robust and durable therapeutic effects.
Collapse
Affiliation(s)
- Salama S. Salama
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Gökhan S. Kılıç
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
15
|
Schmidt PJ, Keenan PA, Schenkel LA, Berlin K, Gibson C, Rubinow DR. Cognitive performance in healthy women during induced hypogonadism and ovarian steroid addback. Arch Womens Ment Health 2013; 16:47-58. [PMID: 23188540 PMCID: PMC3547128 DOI: 10.1007/s00737-012-0316-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/23/2012] [Indexed: 01/15/2023]
Abstract
Gynecology clinic-based studies have consistently demonstrated that induced hypogonadism is accompanied by a decline in cognitive test performance. However, a recent study in healthy asymptomatic controls observed that neither induced hypogonadism nor estradiol replacement influenced cognitive performance. Thus, the effects of induced hypogonadism on cognition might not be uniformly experienced across individual women. Moreover, discrepancies in the effects of hypogonadism on cognition also could suggest the existence of specific risk phenotypes that predict a woman's symptomatic experience during menopause. In this study, we examined the effects of induced hypogonadism and ovarian steroid replacement on cognitive performance in healthy premenopausal women. Ovarian suppression was induced with a GnRH agonist (Lupron) and then physiologic levels of estradiol and progesterone were reintroduced in 23 women. Cognitive tests were administered during each hormone condition. To evaluate possible practice effects arising during repeated testing, an identical battery of tests was administered at the same time intervals in 11 untreated women. With the exception of an improved performance on mental rotation during estradiol, we observed no significant effects of estradiol or progesterone on measures of attention, concentration, or memory compared with hypogonadism. In contrast to studies in which a decline in cognitive performance was observed in women receiving ovarian suppression therapy for an underlying gynecologic condition, we confirm a prior report demonstrating that short-term changes in gonadal steroids have a limited effect on cognition in young, healthy women. Differences in the clinical characteristics of the women receiving GnRH agonists could predict a risk for ovarian steroid-related changes in cognitive performance during induced, and possibly, natural menopause.
Collapse
Affiliation(s)
- Peter J Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bethesda, MD 20892-1277, USA.
| | | | | | | | | | | |
Collapse
|
16
|
McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol 2012; 30:2500-8. [PMID: 22665542 DOI: 10.1200/jco.2011.38.5674] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To prospectively examine alterations in working memory (WM) -associated brain activation related to breast cancer and treatment by using functional magnetic resonance imaging. PATIENTS AND METHODS Patients treated with chemotherapy (CTx+; n = 16) or without chemotherapy (CTx-; n = 12) and healthy controls (n = 15) were scanned during an n-back task at baseline (after surgery but before radiation, chemotherapy, and/or antiestrogen treatment), 1 month after completion of chemotherapy (M1), and 1 year later (Y1), or at yoked intervals for CTx- and controls. SPM5 was used for all image analyses, which included cross-sectional between-group and group-by-time interaction and longitudinal within-group analyses, all using a statistical threshold of 0.001. RESULTS At baseline, patients with cancer showed increased bifrontal and decreased left parietal activation compared with controls. At M1, both cancer groups showed decreased frontal hyperactivation compared with controls, with increased hyperactivation at Y1. These cross-sectional findings were confirmed by group-by-time interaction analyses, which showed frontal activation decreases from baseline to M1 in patients compared with controls. Within-group analyses showed different patterns of longitudinal activation change by treatment group (CTx+ or CTx-), with prominent alterations in the frontal lobes bilaterally. CONCLUSION Significant frontal lobe hyperactivation to support WM was found in patients with breast cancer. Superimposed on this background, patients showed decreased frontal activation at M1, with partial return to the previously abnormal baseline at Y1. These functional changes correspond to frontal lobe regions where we previously reported structural changes in this cohort and provide prospective, longitudinal data that further elucidate mechanisms underlying cognitive effects related to breast cancer and its treatment.
Collapse
Affiliation(s)
- Brenna C McDonald
- Center for Neuroimaging, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Gonadotrophin-releasing hormone (GnRH) was first isolated in the mammal and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotrophin release. Subsequent to its discovery, this form of GnRH has been shown to be one of many structural variants found in the brain and peripheral tissues. Accordingly, the original form first discovered and cloned in the mammal is commonly referred to as GnRH-I. In addition to the complex regulation of GnRH-I synthesis, release and function, further evidence suggests that the processing of GnRH-I produces yet another layer of complexity in its activity. GnRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15), which cleaves the hormone at the covalent bond between the fifth and sixth residue of the decapeptide (Tyr(5)-Gly(6)) to form GnRH-(1-5). It was previously thought that the cleavage of GnRH-I by EP24.15 represents the initiation of its degradation. Here, we review the evidence for the involvement of GnRH-(1-5), the metabolite of GnRH-I, in the regulation of GnRH-I synthesis, secretion and facilitation of reproductive behaviour.
Collapse
Affiliation(s)
- T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
18
|
Skinner DC, Albertson AJ, Navratil A, Smith A, Mignot M, Talbott H, Scanlan-Blake N. Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis. J Neuroendocrinol 2009; 21:282-92. [PMID: 19187469 PMCID: PMC2669307 DOI: 10.1111/j.1365-2826.2009.01842.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is a hypothalamic decapeptide with an undisputed role as a primary regulator of gonadal function. It exerts this regulation by controlling the release of gonadotrophins. However, it is becoming apparent that GnRH may have a variety of other vital roles in normal physiology. A reconsideration of the potential widespread action that this traditional reproductive hormone exerts may lead to the generation of novel therapies and provide insight into seemingly incongruent outcomes from current treatments using GnRH analogues to combat diseases such as prostate cancer.
Collapse
Affiliation(s)
- D C Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Craig MC, Fletcher PC, Daly EM, Rymer J, Brammer M, Giampietro V, Stahl D, Maki PM, Murphy DGM. The interactive effect of the cholinergic system and acute ovarian suppression on the brain: an fMRI study. Horm Behav 2009; 55:41-9. [PMID: 18809406 DOI: 10.1016/j.yhbeh.2008.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/04/2008] [Accepted: 08/07/2008] [Indexed: 11/20/2022]
Abstract
Recent evidence suggests that loss of ovarian function following ovariectomy is a risk factor for Alzheimer's disease (AD); however, the biological basis of this risk remains poorly understood. We carried out an fMRI study into the interaction between loss of ovarian function (after Gonadotropin Hormone Releasing Hormone agonist (GnRHa) treatment) and scopolamine (a cholinergic antagonist used to model the memory decline associated with aging and AD). Behaviorally, cholinergic depletion produced a deficit in verbal recognition performance in both GnRHa-treated women and wait list controls, but only GnRHa-treated women made more false positive errors with cholinergic depletion. Similarly, cholinergic depletion produced a decrease in activation in the left inferior frontal gyrus (LIFG; Brodmann area 45)--a brain region implicated in retrieving word meaning--in both groups, and activation in this area was further reduced following GnRHa treatment. These findings suggest biological mechanisms through which ovarian hormone suppression may interact with the cholinergic system and the LIFG. Furthermore, this interaction may provide a useful model to help explain reports of increased risk for cognitive decline and AD in women following ovariectomy.
Collapse
Affiliation(s)
- M C Craig
- Department of Psychological Medicine, Section of Brain Maturation, Institute of Psychiatry, Kings College London, Denmark Hill, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|