1
|
Schilliger Z, Alemán-Gómez Y, Magnus Smith M, Celen Z, Meuleman B, Binz PA, Steullet P, Do KQ, Conus P, Merglen A, Piguet C, Dwir D, Klauser P. Sex-specific interactions between stress axis and redox balance are associated with internalizing symptoms and brain white matter microstructure in adolescents. Transl Psychiatry 2024; 14:30. [PMID: 38233401 PMCID: PMC10794182 DOI: 10.1038/s41398-023-02728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Adolescence is marked by the maturation of systems involved in emotional regulation and by an increased risk for internalizing disorders (anxiety/depression), especially in females. Hypothalamic-pituitary-adrenal (HPA)-axis function and redox homeostasis (balance between reactive oxygen species and antioxidants) have both been associated with internalizing disorders and may represent critical factors for the development of brain networks of emotional regulation. However, sex-specific interactions between these factors and internalizing symptoms and their link with brain maturation remain unexplored. We investigated in a cohort of adolescents aged 13-15 from the general population (n = 69) whether sex-differences in internalizing symptoms were associated with the glutathione (GSH)-redox cycle homeostasis and HPA-axis function and if these parameters were associated with brain white matter microstructure development. Female adolescents displayed higher levels of internalizing symptoms, GSH-peroxidase (GPx) activity and cortisol/11-deoxycortisol ratio than males. There was a strong correlation between GPx and GSH-reductase (Gred) activities in females only. The cortisol/11-deoxycortisol ratio, related to the HPA-axis activity, was associated with internalizing symptoms in both sexes, whereas GPx activity was associated with internalizing symptoms in females specifically. The cortisol/11-deoxycortisol ratio mediated sex-differences in internalizing symptoms and the association between anxiety and GPx activity in females specifically. In females, GPx activity was positively associated with generalized fractional anisotropy in widespread white matter brain regions. We found that higher levels of internalizing symptoms in female adolescents than in males relate to sex-differences in HPA-axis function. In females, our results suggest an important interplay between HPA-axis function and GSH-homeostasis, a parameter strongly associated with brain white matter microstructure.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mariana Magnus Smith
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ben Meuleman
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Alain Binz
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arnaud Merglen
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Meng X, Chen P, Veltien A, Palavra T, In't Veld S, Grandjean J, Homberg JR. Estimating foraging behavior in rodents using a modified paradigm measuring threat imminence dynamics. Neurobiol Stress 2024; 28:100585. [PMID: 38024390 PMCID: PMC10661863 DOI: 10.1016/j.ynstr.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Animals need to respond to threats to avoid danger and approach rewards. In nature, these responses did not evolve alone but are always accompanied by motivational conflict. A semi-naturalistic threat imminence continuum model models the approach-avoidance conflict and is able to integrate multiple behaviors into a single paradigm. However, its comprehensive application is hampered by the lack of a detailed protocol and data about some fundamental factors including sex, age, and motivational level. Here, we modified a previously established paradigm measuring threat imminence continuum dynamics, involving modifications of training and testing protocols, and utilization of commercial materials combined with open science codes, making it easier to replicate. We demonstrate that foraging behavior is modulated by age, hunger level, and sex. This paradigm can be used to study foraging behaviors in animals in a more naturalistic manner with relevance to human approach-avoid conflicts and associated psychopathologies.
Collapse
Affiliation(s)
- Xianzong Meng
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
| | - Ping Chen
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Andor Veltien
- Department of Medical Imaging, Radboud University Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Tony Palavra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
| | - Sjors In't Veld
- Department of Medical Imaging, Radboud University Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Joanes Grandjean
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, 6525 GA, Nijmegen, the Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Favoretto CA, Bertagna NB, Righi T, Rodolpho BT, Anjos-Santos A, Silva FBR, Bianchi PC, Cruz FC. Impacts of maternal separation stress on ethanol-related responses, anxiety- and depressive-like behaviors in adolescent mice. Neurosci Lett 2023; 809:137295. [PMID: 37182574 DOI: 10.1016/j.neulet.2023.137295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The present work evaluated the consequences of chronic maternal separation (MS), an animal model of early-life stress, on ethanol intake and striatal Fos expression induced by ethanol consumption. Furthermore, we analyzed MS impacts on anxiety- and depressive-like behaviors and on locomotor and plasma corticosterone responses to intraperitoneal treatment with ethanol in adolescent mice. For that, male and female C57BL/6J mice were exposed or not to MS stress, for 3 h per day, from postnatal day (PND) 1 to 14, and submitted to behavioral tests from PND 28. In Experiment 1, MS and control groups of mice were submitted to an involuntary ethanol intake protocol, and striatal Fos expression following ethanol exposure was analyzed. In Experiment 2, mice behavior was assessed in elevated plus-maze, sucrose splash, saccharin preference, and open field tests. Locomotor and plasma corticosterone responses induced by a systemic dose of ethanol (1.75 g/kg) were also evaluated. Our results demonstrated that MS increased ethanol intake only in an acute manner and did not impact ethanol-induced Fos expression in the dorsal striatum and nucleus accumbens (NAc) core and shell subregions. MS did not change the parameters analyzed during elevated plus-maze, sucrose splash, preference for saccharin, and open field tests. MS did not affect locomotor activity following ethanol injection nor plasma corticosterone response to the drug. Thus, our data showed that MS transiently increased ethanol intake. However, early-life stress did not impact Fos, locomotor, or plasma corticosterone responses to the drug. In addition, MS did not affect anxiety- and depressive-like behaviors in adolescent mice.
Collapse
Affiliation(s)
- C A Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - N B Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - T Righi
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - B T Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A Anjos-Santos
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - F B R Silva
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - P C Bianchi
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - F C Cruz
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Kokka I, Chrousos GP, Darviri C, Bacopoulou F. Measuring Adolescent Chronic Stress: A Review of Established Biomarkers and Psychometric Instruments. Horm Res Paediatr 2023; 96:74-82. [PMID: 35124668 DOI: 10.1159/000522387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
Abstract
Adolescence is a period of stressful physiological and psychosocial changes. Exposure to chronic stress can cause specific structural and functional changes in an organism, which can be appraised objectively. Some of these alterations are an expected reaction of the body in its attempt to adapt to a stressful situation, while others are signs of possible disease development. The aim of this review was to present the most widely used methods of stress evaluation in adolescence research. Primary biomarkers associated with different biological systems, such as the stress hormones glucocorticoids, and catecholamines, as well as the available methods of extraction and assessment of each biomarker, are presented. This work also includes secondary outcomes, which can also provide an estimation of an individual's stress level. Also, most available psychometric instruments of stress, constructed to address specifically this period of life, are presented and discussed. In addition, this paper addresses possible confounding factors that may affect stress measurements, which should be taken under consideration when conducting stress research. To objectively evaluate stress, it is of great importance for a researcher to be familiar with the condition under examination and its representative stress indices. Adequate evaluation of adolescents with the selection of proper psychometric tests and biological markers can help design targeted interventions aiming to prevent or reverse the effects of physical and mental stressors that occur during adolescence, effects that can be carried into adulthood with detrimental consequences.
Collapse
Affiliation(s)
- Ioulia Kokka
- Postgraduate Course on the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Outpatient Specialty Clinic for Obsessive Compulsive Disorder and Behavioral Therapy, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Postgraduate Course on the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health & Precision Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Darviri
- Postgraduate Course on the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Flora Bacopoulou
- Postgraduate Course on the Science of Stress and Health Promotion, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health & Precision Medicine and UNESCO Chair in Adolescent Health Care, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Pediatrics, Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Associations between HPA axis reactivity and PTSD and depressive symptoms: Importance of maltreatment type and puberty. Dev Psychopathol 2023; 35:130-141. [PMID: 34092276 PMCID: PMC8648873 DOI: 10.1017/s095457942100050x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The functioning of the hypothalamic-pituitary-adrenal (HPA) axis is implicated in the etiology and maintenance of depressive and posttraumatic stress disorder (PTSD) symptoms. However, different maltreatment experiences as well as the increased sensitivity of the HPA axis during puberty may alter associations between the HPA axis and mental health. To address these gaps, the current study examined the potential bidirectional associations between cortisol reactivity to a stressor, PTSD symptoms, and depressive symptoms among early adolescents across two time points, 1 year apart (n = 454; Mage = 10.98 at Time 1 and Mage = 12.11 at Time 2). Multiple-group path models tested the pathways between cortiol reactivity and mental health prior to and during puberty, for different types of maltreatment . Overall, the results showed that associations between cortisol output and symptoms of PTSD and depression were driven by those in the midst of puberty. Specifically, higher cortisol output at Time 1 was linked with higher levels of subsequent PTSD and depressive symptoms for neglected youth who had reached puberty. However, depressive symptoms predicted subsequent lower cortisol output for the physical abuse and emotional abuse groups. These findings demonstrate longitudinal links between cortisol, depressive symptoms, and PTSD symptoms among youth with different types of maltreatment histories and highlight the need to consider the reorganization of the stress system during puberty in order to advance our understanding of the HPA axis and mental health.
Collapse
|
6
|
Harris EP, Villalobos-Manriquez F, Melo TG, Clarke G, O'Leary OF. Stress during puberty exerts sex-specific effects on depressive-like behavior and monoamine neurotransmitters in adolescence and adulthood. Neurobiol Stress 2022; 21:100494. [DOI: 10.1016/j.ynstr.2022.100494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
|
7
|
Lyros I, Ferdianakis E, Halazonetis D, Lykogeorgos T, Alexiou A, Alexiou KE, Georgaki M, Vardas E, Yfanti Z, Tsolakis AI. Three-Dimensional Analysis of Posterior Mandibular Displacement in Rats. Vet Sci 2022; 9:vetsci9030144. [PMID: 35324872 PMCID: PMC8953185 DOI: 10.3390/vetsci9030144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Mandibular protrusion and its treatment is challenging for the orthodontist. The aim of the present research was to identify macroscopic changes in the mandible, based on three-dimensional Cone Beam Computed Tomography analysis. Seventy-two male Wistar rats were divided into two equal groups, experimental (group A) and control (group B). Each consisted of three equal subgroups of 12 rats (A1, A2, A3, B1, B2, B3). Full-cast orthodontic intraoral devices were attached to the maxillary incisors of the experimental animals, and effected functional posterior mandibular displacement. Throughout the experimental period, all animals were fed with mashed food. Animals were sacrificed at 30 days (A1, B1), 60 days (A2, B2) and 90 days (A3, B3). At the 60th day of the experiment, the orthodontic devices were removed from the remaining experimental subgroup A3. Measurements revealed significant differences in the anteroposterior dimensions between experimental and control subgroups. However, the observed changes in the vertical dimensions, Condylion/Go’–Menton and the Intercondylar distance proved insignificant. Posterior mandibular displacement of the mandible in growing rats affects the morphology of the mandible and culminates in the development of a smaller mandible at a grown age.
Collapse
Affiliation(s)
- Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
- Correspondence:
| | - Efstratios Ferdianakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
| | - Demetrios Halazonetis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
| | | | - Antigoni Alexiou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
| | - Konstantina-Eleni Alexiou
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (K.-E.A.); (Z.Y.)
| | - Maria Georgaki
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (M.G.); (E.V.)
| | - Emmanouil Vardas
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (M.G.); (E.V.)
| | - Zafeiroula Yfanti
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 10679 Athens, Greece; (K.-E.A.); (Z.Y.)
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.F.); (D.H.); (A.A.); (A.I.T.)
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Age-Related Individual Behavioural Characteristics of Adult Wistar Rats. Animals (Basel) 2021; 11:ani11082282. [PMID: 34438740 PMCID: PMC8388463 DOI: 10.3390/ani11082282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rats are considered adults from 2 to 5 months. During this period, they are used for experimentation in physiology and pharmacology. Adult rats, depending on their age, can be in a different physiological state, which can influence the results of experiments carried out on them. Despite this, age-related changes in adult rats have not yet been examined. Our results showed that as male and female rats progressed from 2 to 5 months of age there was a decrease in the level of motor and exploratory activities, and an increase in the level of anxiety-like behaviour. Age-related changes were dependent upon initial individual characteristics of behaviour. For example, animals that demonstrated high motor activity at 2 months become significantly less active by 5 months, and animals that showed a low level of anxiety at 2 months become more anxious by 5 months. Low-activity and high-anxiety rats did not show any significant age-related changes from 2 to 5 months of age. The results of this work should be taken into account when choosing the age of rats for conducting behavioural experiments. Abstract The aim of this work was to study age-related changes in the behaviour of adult Wistar rats using the open field (OF) and elevated plus maze (EPM) tests. Behavioural changes related to motor activity and anxiety were of particular interest. Results showed that as male and female rats progressed from 2 to 5 months of age, there was a decrease in the level of motor and exploratory activities and an increase in their level of anxiety. Age-related changes were dependent upon initial individual characteristics of behaviour. For example, animals that demonstrated high motor activity at 2 months become significantly less active by 5 months, and animals that showed a low level of anxiety at 2 months become more anxious by 5 months. Low-activity and high-anxiety rats did not show any significant age-related changes in OF and EPM tests from 2 to 5 months of age, except for a decrease in the number of rearings in the EPM. Thus, the behaviour of the same adult rat at 2 and 5 months of age is significantly different, which may lead to differences in the experimental results of physiological and pharmacological studies using adult animals of different ages.
Collapse
|
9
|
Sex-Specific Vasopressin Signaling Buffers Stress-Dependent Synaptic Changes in Female Mice. J Neurosci 2020; 40:8842-8852. [PMID: 33051356 DOI: 10.1523/jneurosci.1026-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
In many species, social networks provide benefit for both the individual and the collective. In addition to transmitting information to others, social networks provide an emotional buffer for distressed individuals. Our understanding about the cellular mechanisms that contribute to buffering is poor. Stress has consequences for the entire organism, including a robust change in synaptic plasticity at glutamate synapses onto corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN). In females, however, this stress-induced metaplasticity is buffered by the presence of a naive partner. This buffering may be because of discrete behavioral interactions, signals in the context in which the interaction occurs (i.e., olfactory cues), or it may be influenced by local signaling events in the PVN. Here, we show that local vasopressin (VP) signaling in PVN buffers the short-term potentiation (STP) at glutamate synapses after stress. This social buffering of metaplasticity, which requires the presence of another individual, was prevented by pharmacological inhibition of the VP 1a receptor (V1aR) in female mice. Exogenous VP mimicked the effects of social buffering and reduced STP in CRHPVN neurons from females but not males. These findings implicate VP as a potential mediator of social buffering in female mice.SIGNIFICANCE STATEMENT In many organisms, including rodents and humans, social groups are beneficial to overall health and well-being. Moreover, it is through these social interactions that the harmful effects of stress can be mitigated, a phenomenon known as social buffering. In the present study, we describe a critical role for the neuropeptide vasopressin (VP) in social buffering of synaptic metaplasticity in stress-responsive corticotropin-releasing hormone (CRH) neurons in female mice. These effects of VP do not extend to social buffering of stress behaviors, suggesting this is a very precise and local form of sex-specific neuropeptide signaling.
Collapse
|
10
|
Peripubertal stress following maternal immune activation sex-dependently alters depression-like behaviors in offspring. Behav Brain Res 2020; 393:112800. [DOI: 10.1016/j.bbr.2020.112800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
11
|
Kim J, Park M, Lee C, Ha JJ, Choi JS, Kim CH, Seok JH. Maladaptive Alterations of Defensive Response Following Developmental Complex Stress in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:412-422. [PMID: 32702220 PMCID: PMC7383007 DOI: 10.9758/cpn.2020.18.3.412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022]
Abstract
Objective Despite the etiological significance of complex developmental trauma in adult personality disorders and treatment-resistant depression, neurobiological studies have been rare due to the lack of useful animal models. As a first step, we devised an animal model to investigate the effects of multiple trauma-like stress during different developmental periods. Methods Twenty-one male Sprague-Dawley rats were classified into 3 groups based on the stress protocol: fear conditioning control (FCC, n = 6), complex stress (ComS, n = 9), and control (n = 6). While the ComS experienced three types of stress (maternal separation, juvenile isolation, electric foot shock), the FCC only experienced an electric foot shock stress and the control never experienced any. We compared fear responses at postnatal day (PND) 29 and PND 56 through freezing time per episode (FTpE), total freezing time (TFT), total freezing episodes (TFE), and ultrasonic vocalization (USV). Results ComS showed the longest FTpE in the conditioned fear response test. ComS and FCC exhibited the longer TFT and these two groups only displayed USV. ComS show difference TFE between PND 29 and PND 56. Conclusion The results of this investigation show that complex stress may affect not quantity of fear response but characteristics of fear response. Longer FTpE may be associated with tonic immobility which could be considered as a failed self-protective reaction and might be analogous to a sign of inappropriate coping strategy and self-dysregulation in complex trauma patients.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Yonsei University, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea
| | - Minkyung Park
- Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Chiheon Lee
- Department of Psychiatry, Yonsei University, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea
| | - Jung Jin Ha
- Department of Psychology, Yonsei University, Seoul, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Ho Seok
- Department of Psychiatry, Yonsei University, Seoul, Korea.,Institute of Behavioral Science in Medicine, Yonsei University, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Evans BE, Huizink AC, Greaves-Lord K, Tulen JHM, Roelofs K, van der Ende J. Urbanicity, biological stress system functioning and mental health in adolescents. PLoS One 2020; 15:e0228659. [PMID: 32187199 PMCID: PMC7080241 DOI: 10.1371/journal.pone.0228659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/21/2020] [Indexed: 11/19/2022] Open
Abstract
Growing up in an urban area has been associated with an increased chance of mental health problems in adults, but less is known about this association in adolescents. We examined whether current urbanicity was associated with mental health problems directly and indirectly via biological stress system functioning. Participants (n = 323) were adolescents from the Dutch general population. Measures included home and laboratory assessments of autonomic nervous system and hypothalamic-pituitary-adrenal axis functioning, neighborhood-level urbanicity and socioeconomic status, and mother- and adolescent self-reported mental health problems. Structural equation models showed that urbanicity was not associated with mental health problems directly. Urbanicity was associated with acute autonomic nervous system and hypothalamic-pituitary-adrenal axis reactivity such that adolescents who lived in more urban areas showed blunted biological stress reactivity. Furthermore, there was some evidence for an indirect effect of urbanicity on mother-reported behavioral problems via acute autonomic nervous system reactivity. Urbanicity was not associated with overall autonomic nervous system and hypothalamic-pituitary-adrenal axis reactivity or basal hypothalamic-pituitary-adrenal axis functioning. Although we observed some evidence for associations between urbanicity, biological stress reactivity and mental health problems, most of the tested associations were not statistically significant. Measures of long-term biological stress system functioning may be more relevant to the study of broader environmental factors such as urbanicity.
Collapse
Affiliation(s)
- Brittany E. Evans
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- Centre for Research on Child and Adolescent Mental Health, Karlstad University, Karlstad, Sweden
- * E-mail:
| | - Anja C. Huizink
- Section of Clinical Developmental Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- School of Health and Education, University of Skövde, Skövde, Sweden
| | - Kirstin Greaves-Lord
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joke H. M. Tulen
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jan van der Ende
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
14
|
Herzog JI, Thome J, Demirakca T, Koppe G, Ende G, Lis S, Rausch S, Priebe K, Müller-Engelmann M, Steil R, Bohus M, Schmahl C. Influence of Severity of Type and Timing of Retrospectively Reported Childhood Maltreatment on Female Amygdala and Hippocampal Volume. Sci Rep 2020; 10:1903. [PMID: 32024861 PMCID: PMC7002661 DOI: 10.1038/s41598-020-57490-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
Deleterious effects of adverse childhood experiences (ACE) on human brain volume are widely reported. First evidence points to differential effects of ACE on brain volume in terms of timing of ACE. Upcoming studies additionally point towards the impact of different types (i.e., neglect and abuse) of ACE in terms of timing. The current study aimed to investigate the correlation between retrospectively reported severity of type (i.e., the extent to which subjects were exposed to abuse and/or neglect, respectively) and timing of ACE on female brain volume in a sample of prolonged traumatized subjects. A female sample with ACE (N = 68) underwent structural magnetic resonance imaging and a structured interview exploring the severity of ACE from age 3 up to 17 using the “Maltreatment and Abuse Chronology of Exposure” (MACE). Random forest regression with conditional interference trees was applied to assess the impact of ACE severity as well as the severity of ACE type, (i.e. to what extent individuals were exposed to neglect and/or abuse) at certain ages on pre-defined regions of interest such as the amygdala, hippocampus, and anterior cingulate (ACC) volume. Analyses revealed differential type and timing-specific effects of ACE on stress sensitive brain structures: Amygdala and hippocampal volume were affected by ACE severity during a period covering preadolescence and early adolescence. Crucially, this effect was driven by the severity of neglect.
Collapse
Affiliation(s)
- Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Janine Thome
- Institute for Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Psychiatry, University of Western Ontario, 339 Windermere Rd., London, N6A 5A5, ON, Canada
| | - Traute Demirakca
- Department of Neuroimaging, Central Institute of Mental Health Mannheim, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Georgia Koppe
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health Mannheim, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Stefanie Lis
- Institute for Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Sophie Rausch
- Institute for Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Kathlen Priebe
- Department of Psychology, Faculty of Life Sciences, Humboldt-University of Berlin, Unter den Linden 6, 10999, Berlin, Germany
| | - Meike Müller-Engelmann
- Department of Clinical Psychology and Intervention, Institute of Psychology, Goethe-University Frankfurt, Varrentrappstr. 40-42, 60486, Frankfurt am Main, Germany
| | - Regina Steil
- Department of Clinical Psychology and Intervention, Institute of Psychology, Goethe-University Frankfurt, Varrentrappstr. 40-42, 60486, Frankfurt am Main, Germany
| | - Martin Bohus
- Institute for Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Psychiatry, University of Western Ontario, 339 Windermere Rd., London, N6A 5A5, ON, Canada
| |
Collapse
|
15
|
Evans BE, van der Ende J, Greaves-Lord K, Huizink AC, Beijers R, de Weerth C. Urbanicity, hypothalamic-pituitary-adrenal axis functioning, and behavioral and emotional problems in children: a path analysis. BMC Psychol 2020; 8:12. [PMID: 32019592 PMCID: PMC7001285 DOI: 10.1186/s40359-019-0364-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Urbanization is steadily increasing worldwide. Previous research indicated a higher incidence of mental health problems in more urban areas, however, very little is known regarding potential mechanisms underlying this association. We examined whether urbanicity was associated with mental health problems in children directly, and indirectly via hypothalamic-pituitary-adrenal (HPA)-axis functioning. METHODS Utilizing data from two independent samples of children we examined the effects of current urbanicity (n = 306, ages seven to 12 years) and early childhood urbanicity (n = 141, followed from birth through age 7 years). Children's mothers reported on their mental health problems and their family's socioeconomic status. Salivary cortisol samples were collected during a psychosocial stress procedure to assess HPA axis reactivity to stress, and at home to assess basal HPA axis functioning. Neighborhood-level urbanicity and socioeconomic conditions were extracted from Statistics Netherlands. Path models were estimated using a bootstrapping procedure to detect indirect effects. RESULTS We found no evidence for a direct effect of urbanicity on mental health problems, nor were there indirect effects of urbanicity through HPA axis functioning. Furthermore, we did not find evidence for an effect of urbanicity on HPA axis functioning or effects of HPA axis functioning on mental health problems. CONCLUSIONS Possibly, the effects of urbanicity on HPA axis functioning and mental health do not manifest until adolescence. An alternative explanation is a buffering effect of high family socioeconomic status as the majority of children were from families with an average or high socioeconomic status. Further studies remain necessary to conclude that urbanicity does not affect children's mental health via HPA axis functioning.
Collapse
Affiliation(s)
- B E Evans
- Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525, HR, Nijmegen, the Netherlands.
- Centre for Research on Child and Adolescent Mental Health, Karlstad University, Room 1D 349A, Universitetsgatan 2, 651 88, Karlstad, Sweden.
| | - J van der Ende
- Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Wytemaweg 8, 3015, CN, Rotterdam, the Netherlands
| | - K Greaves-Lord
- Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Wytemaweg 8, 3015, CN, Rotterdam, the Netherlands
| | - A C Huizink
- Section of Clinical Developmental Psychology, Amsterdam Public Health Research Institute, Vrije University Amsterdam, Van der Boechorststraat 1, 1081, BT, Amsterdam, the Netherlands
- School of Health and Education, University of Skövde, Högskolevägen 1, 541 28, Skövde, Sweden
| | - R Beijers
- Behavioural Science Institute, Radboud University, Montessorilaan 3, 6525, HR, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525, EN, Nijmegen, the Netherlands
| | - C de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525, EN, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Nordquist RE, Zeinstra EC, Dougherty A, Riber AB. Effects of Dark Brooder Rearing and Age on Hypothalamic Vasotocin and Feather Corticosterone Levels in Laying Hens. Front Vet Sci 2020; 7:19. [PMID: 32083103 PMCID: PMC7002395 DOI: 10.3389/fvets.2020.00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Chickens cannot independently thermoregulate at hatch and lack opportunity to behaviorally thermoregulate with a hen in the egg layer industry, thus barns are heated to thermoneutral temperatures. Dark brooders are low-energy-consuming hot plates, which may be environmentally advantageous while providing welfare-enhancing aspects of maternal care (i.e., shelter and separation of active and inactive individuals). Dark brooder use has been demonstrated to decrease injurious pecking and mortality well into the production period of layers. To further understand hen development around lay onset and effects of dark brooders on the brain and HPA-axis, we examined effects of rearing with dark brooders on expression of vasotocin (AVT) in the hypothalamus and corticosterone (CORT) in the feathers of in total 48 layer Isa Warren hens at 16 w and 28 w of age (n = 12 per age and treatment). An age-dependent decreased number of AVT-positive neurons was seen in the medial preoptic area, medial preoptic nucleus, paraventricular nucleus, rostral part (prepeduncular hypothalamus), and lateral preoptic area. Trends to effects of brooder rearing were found in both anteromedial preoptic nucleus and supraoptic nucleus, with dark brooder reared animals showing higher mean counts of AVT-positive neurons in both areas. No interactions between brooder raising and age were observed in AVT-positive neuron count. CORT levels were higher in primary wing feathers from 28 week old hens than in those from 16 week hens. No main effects of rearing with dark brooders or interactions between age and treatment were found on CORT levels. The age-dependent effects seen in the hypothalamus and CORT aids in further understanding of the development of chickens around puberty. The use of brooders tended to increase AVT expression in the anteromedial preoptic nucleus and supraoptic nucleus, an indication that dark brooder rearing may affect physiological responses regulated by these areas. The lack of effect of dark brooders on CORT in feathers is at the least an indication that the use of dark brooders is not stressful; in combination with the benefits of dark brooders on injurious pecking, fearfulness and early mortality, this pleads for the use of dark brooders in on-farm situations.
Collapse
Affiliation(s)
- Rebecca E Nordquist
- Behaviour and Welfare Research Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elisabeth C Zeinstra
- Behaviour and Welfare Research Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alyssa Dougherty
- Behaviour and Welfare Research Group, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anja B Riber
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
17
|
Lovelock DF, Deak T. Acute stress imposed during adolescence has minimal effects on hypothalamic-pituitary-adrenal (HPA) axis sensitivity in adulthood in female Sprague Dawley rats. Physiol Behav 2020; 213:112707. [PMID: 31634523 PMCID: PMC6885129 DOI: 10.1016/j.physbeh.2019.112707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
Adolescence is a developmental epoch marked by maturation of stress-responsive systems including the Hypothalamic-Pituitary-Adrenal (HPA) axis. Emerging evidence has found sex-specificity in the long term behavioral and neural effects of stressors experienced during this sensitive period, though most studies have utilized chronic stress exposures that span much of the adolescent period. Using Sprague-Dawley rats, we examined how a single exposure to inescapable footshock (80 shocks, 5 s, 1.0 mA, 90 s variable ITI) applied during early adolescence (PND 29-31) affected the corticosterone (CORT) response to a later restraint stress challenge in adulthood. We found that females, but not males, displayed a marginally enhanced CORT response when challenged with restraint in adulthood. To further probe intrinsic sensitivity of the HPA axis in adolescent stressed females, subsequent studies utilized exogenous CRH and ACTH challenges to probe sensitivity of the pituitary and adrenal glands respectively, demonstrating that neither gland appears to be sensitized to hormone challenge as a result of adolescent stress history in females. A final experiment examined negative feedback regulation of the HPA axis through systemic administration of dexamethasone, showing that corticosteroid receptor-mediated negative feedback mechanisms were also intact in females with a history of adolescent stress. Together, these findings report that intrinsic regulatory elements of the HPA axis are fully intact in females exposed to footshock in adolescence, and that adolescent exposure to footshock had appreciably modest long-lasting effects on HPA axis sensitivity. These findings are discussed within the general context of stress resilience and vulnerability.
Collapse
Affiliation(s)
- Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
18
|
Delgado H, Agrati D, Machado L, Reyes L, Savio E, Engler H, Ferreira A. Cocaine treatment before pregnancy differentially affects the anxiety and brain glucose metabolism of lactating rats if performed during adulthood or adolescence. Behav Brain Res 2019; 372:112070. [PMID: 31276701 DOI: 10.1016/j.bbr.2019.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cocaine exposure disrupts the maternal behavior of lactating rats, yet it is less known whether it alters the affective changes that accompany motherhood. As the long-term action of cocaine on anxiety varies according to the developmental stage of the individuals, this study aimed to compare the effect of a chronic treatment with cocaine to adult and adolescent non-pregnant females on their anxiety-like behavior and basal brain metabolic activity during lactation. Thus, adult and adolescent virgin rats were exposed to cocaine (0.0 or 15.0 mg/kg ip) during 10 days and were mated four days later. Anxiety behavior was evaluated on postpartum days 3-4 in the elevated plus maze test, and the basal brain glucose metabolism was determined on postpartum days 7-9 by means of [18F] fluorodeoxyglucose positron emission tomography. Cocaine treatment during adulthood increased the anxiety-like behavior of lactating females whereas its administration during adolescence decreased it. Also, the basal glucose metabolism of the medial prefrontal cortex differed between lactating females treated with cocaine during adulthood and adolescence. These differential effects of cocaine, according to the age at which the drug was administered, support the idea that the adolescent and adult brains have a distinct susceptibility to this drug, which leads to divergent long-term changes in the neural circuits that regulate anxiety during lactation.
Collapse
Affiliation(s)
- Hernán Delgado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Basic Research Center in Psychology, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay.
| | - Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luna Machado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Reyes
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Annabel Ferreira
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
19
|
Sex Differences in Adolescent Neurobiological Risk for Substance Use and Substance Use Disorders. CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00276-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Lovelock DF, Deak T. Acute stress imposed during adolescence yields heightened anxiety in Sprague Dawley rats that persists into adulthood: Sex differences and potential involvement of the Medial Amygdala. Brain Res 2019; 1723:146392. [PMID: 31446016 DOI: 10.1016/j.brainres.2019.146392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022]
Abstract
Stressors experienced during adolescence have been demonstrated to have a long-lasting influence on affective behavior in adulthood. Notably, most studies to date have found these outcomes after chronic stress during adolescence. In the present study we tested how exposure to a single episode of acute footshock during early adolescence would modify subsequent adult anxiety- and depressive-like behaviors in male and female Sprague-Dawley rats. Adolescent rats were exposed to inescapable footshock (80 shocks, 5 s, 1.0 mA, 90 sec variable inter-trial interval (ITI)) at Post-natal day (PND) 29-30 and remained undisturbed until adulthood where they were evaluated with several behavioral assays for anxiety as well as depressive-like behavior via forced swim. In addition, gene expression changes were assessed immediately after a 30 min forced swim challenge in adulthood among several stress-related brain regions including the Central Amygdala (CeA), Medial Amygdala (MeA), ventral Hippocampus (vHPC), and Paraventricular Nucleus (PVN). Studies used real-time RT-PCR to examine the cytokines Interleukin-1β (IL-1β) and Interleukin-6 (IL-6), corticotropin-releasing hormone (CRH), the immediate early genes c-Fos, c-Jun, Egr1 and Arc, and several genes relating to corticosteroid receptor function (glucocorticoid and mineralocorticoid receptor (GR and MR, respectively), Gilz (glucocorticoid-induced leucine zipper), Sgk1 (Serum and Glucocorticoid regulated Kinase 1)). Behaviorally, males displayed signs of increased anxiety, most notably in the light-dark box, whereas females did not. No notable depressive-like behavior was observed in forced swim as a result of adolescent stress history, but adolescent footshock exacerbated the c-Fos response in the MeA produced by swim in both sexes. Forced swim led to increased IL-1β expression in the PVN regardless of adolescent stress history, whereas most HPA (hypothalamic-pituitaryadrenal) axis-related genes were largely unaffected in the vHPC. To determine the potential for β-adrenergic receptors to contribute to the male-specific anxiety-like behavior, two further studies applied a β-adrenergic agonist (isoproterenol) or antagonist (propranolol) in male rats. These studies found that propranolol administered 2 h after footshock led to a reduction in some anxiety-like behaviors as compared to controls. Overall, these findings suggest that exposure to a single, intense stress challenge imposed during adolescence may have sex-specific consequences across the lifespan and may implicate the MeA in developmental plasticity.
Collapse
Affiliation(s)
- Dennis F Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
21
|
Rincón-Cortés M, Herman JP, Lupien S, Maguire J, Shansky RM. Stress: Influence of sex, reproductive status and gender. Neurobiol Stress 2019; 10:100155. [PMID: 30949564 PMCID: PMC6430637 DOI: 10.1016/j.ynstr.2019.100155] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence from the preclinical and human research suggests sex differences in response to different types of stress exposure, and that developmental timing, reproductive status, and biological sex are important factors influencing the degree of HPA activation/function. Here we review data regarding: i) sex differences in behavioral and neural responses to uncontrollable and controllable stressors; ii) distinct trajectories of behavioral development and HPA-axis function in male and female rats following adolescent stress exposure; iii) normative changes in behavior and dopamine function in early postpartum rats; iv) aberrant HPA-axis function and its link to abnormal behaviors in two independent, preclinical mouse models of postpartum depression; and, v) data indicating that gender, in addition to sex, is an important determinant of stress reactivity in humans. Based on these findings, we conclude it will be important for future studies to investigate the short and long-term effects of a wide variety of stressors, how these effects may differ according to developmental timing and in relation to gonadal function, the relationship between aberrant HPA-axis activity during the postpartum and mood disorders, and influences of both sex and gender on stress reactivity in humans.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding author. Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James P. Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Sonia Lupien
- Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
22
|
Roberts AG, Lopez-Duran NL. Developmental influences on stress response systems: Implications for psychopathology vulnerability in adolescence. Compr Psychiatry 2019; 88:9-21. [PMID: 30466015 DOI: 10.1016/j.comppsych.2018.10.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
The adolescent transition is marked by increases in stress exposure and significant maturation of neural and hormonal stress processing systems. Variability in the development of these systems during adolescence may influence the risk for stress-related psychopathology. This paper aims to review the developmental maturation of the HPA axis and related stress regulation systems, and demonstrate how interference in this adaptive developmental process may increase the risk for negative outcomes. We argue that the developmental maturation of the HPA axis aims to improve the regulatory capacity of the axis in order to more adaptively respond to these increases in stress reactivity. Additionally, we review evidence that sex differences in the development of the HPA and related axes may contribute to sex differences in the risk for stress-related psychopathology. Finally, we discuss how contextual factors, such as early trauma and obesity may alter the development of HPA axis during the adolescence transition and how alterations of normative development increase the risk for stress-related disorders.
Collapse
|
23
|
Maly MA, Edwards KL, Farin CE, Koester DC, Crosier AE. Assessing puberty in ex situ male cheetahs (Acinonyx jubatus) via fecal hormone metabolites and body weights. Gen Comp Endocrinol 2018; 268:22-33. [PMID: 30026021 DOI: 10.1016/j.ygcen.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/28/2023]
Abstract
Cheetahs are one of the most heavily studied felid species, with numerous publications on health, disease, and reproductive physiology produced over the last 30 years. Despite this relatively long history of research, there is a paucity of crucial biological data, such as pubertal onset, which has direct and significant applications to improved management of ex situ cheetah populations. This study aimed to determine age of pubertal onset in ex situ male cheetahs using non-invasive fecal steroid hormone monitoring and body weights. Fecal samples from 12 male cheetahs from four institutions were collected 2-3 times weekly from 1 to 42 months of age. Fecal androgen and glucocorticoid metabolites were analyzed using enzyme immunoassays previously validated for use with cheetah feces. Animal body weights were recorded monthly. Fecal hormone and body weight data were analyzed using generalized linear mixed models. Androgen concentrations exhibited an increase to levels similar to those observed in adult males by 18-24 months of age, and males attained adult body weights by 21 months of age. Based on these weight data and the initial increase in androgens toward adult concentrations, males were considered pubertal from 18 to 24 months of age. Glucocorticoid concentrations and amplitude of concentration over baseline were also increased during this period. Knowledge about the physiological changes associated with puberty is useful for management and improving reproductive success of cheetah populations under human care, particularly for determining timing of litter separation from dam, littermate dispersal and when to introduce potential breeding pairs.
Collapse
Affiliation(s)
- Morgan A Maly
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States; Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, 123 Polk Hall, 120 Broughton Drive, Raleigh, NC 27695, United States
| | - Katie L Edwards
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States
| | - Charlotte E Farin
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, 123 Polk Hall, 120 Broughton Drive, Raleigh, NC 27695, United States
| | - Diana C Koester
- Department of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, OH 44109, United States
| | - Adrienne E Crosier
- Center for Species Survival, Department of Reproductive Sciences, Smithsonian Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, United States.
| |
Collapse
|
24
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
25
|
Marty MS, Borgert C, Coady K, Green R, Levine SL, Mihaich E, Ortego L, Wheeler JR, Yi KD, Zorrilla LM. Distinguishing between endocrine disruption and non-specific effects on endocrine systems. Regul Toxicol Pharmacol 2018; 99:142-158. [PMID: 30217484 DOI: 10.1016/j.yrtph.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
The endocrine system is responsible for growth, development, maintaining homeostasis and for the control of many physiological processes. Due to the integral nature of its signaling pathways, it can be difficult to distinguish endocrine-mediated adverse effects from transient fluctuations, adaptive/compensatory responses, or adverse effects on the endocrine system that are caused by mechanisms outside the endocrine system. This is particularly true in toxicological studies that require generation of effects through the use of Maximum Tolerated Doses (or Concentrations). Endocrine-mediated adverse effects are those that occur as a consequence of the interaction of a chemical with a specific molecular component of the endocrine system, for example, a hormone receptor. Non-endocrine-mediated adverse effects on the endocrine system are those that occur by other mechanisms. For example, systemic toxicity, which perturbs homeostasis and affects the general well-being of an organism, can affect endocrine signaling. Some organs/tissues can be affected by both endocrine and non-endocrine signals, which must be distinguished. This paper examines in vitro and in vivo endocrine endpoints that can be altered by non-endocrine processes. It recommends an evaluation of these issues in the assessment of effects for the determination of endocrine disrupting properties of chemicals. This underscores the importance of using a formal weight of evidence (WoE) process to evaluate potential endocrine activity.
Collapse
Affiliation(s)
- M Sue Marty
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Chris Borgert
- Applied Pharmacology and Toxicology, Inc., C.E.H.T. Dept. Physiological Sciences, University of FL College of Veterinary Medicine, 2250 NW 24th Avenue, Gainesville, FL, 32605, USA.
| | - Katie Coady
- The Dow Chemical Company, Toxicology & Environmental Research and Consulting, 1803 Building, Midland, MI, 48674, USA.
| | - Richard Green
- Dow AgroSciences, 3b Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, United Kingdom.
| | - Steven L Levine
- Monsanto Company, Global Regulatory Science, 700 Chesterfield Parkway W, Chesterfield, MO, 63017, USA.
| | - Ellen Mihaich
- Environmental and Regulatory Resources, LLC, 6807 Lipscomb Drive, Durham, NC, 27712, USA.
| | - Lisa Ortego
- Bayer CropScience, 2 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| | - James R Wheeler
- Dow AgroSciences, 3b Park Square, Milton Park, Abingdon, Oxfordshire, OX14 4RN, United Kingdom.
| | - Kun Don Yi
- Syngenta Crop Protection, LLC, 410 S Wing Rd, Greensboro, NC, 27409, USA.
| | - Leah M Zorrilla
- Bayer CropScience, 2 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
26
|
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic–pituitary–adrenal axis activity during development and the emergence of aggression—Animal studies. Neurosci Biobehav Rev 2018; 91:138-152. [DOI: 10.1016/j.neubiorev.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
27
|
Schroeder A, van den Buuse M, Hill RA. Reelin Haploinsufficiency and Late-Adolescent Corticosterone Treatment Induce Long-Lasting and Female-Specific Molecular Changes in the Dorsal Hippocampus. Brain Sci 2018; 8:brainsci8070118. [PMID: 29941797 PMCID: PMC6070826 DOI: 10.3390/brainsci8070118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
Reelin depletion and stress seem to affect similar pathways including GABAergic and glutamatergic signaling and both are implicated in psychiatric disorders in late adolescence/early adulthood. The interaction between reelin depletion and stress, however, remains unclear. To investigate this, male and female heterozygous reelin mice (HRM) and wildtype (WT) controls were treated with the stress hormone, corticosterone (CORT), during late adolescence to simulate chronic stress. Glucocorticoid receptors (GR), N-methyl-d-aspartate receptor (NMDAr) subunits, glutamic acid decarboxylase (GAD67) and parvalbumin (PV) were measured in the hippocampus and the prefrontal cortex (PFC) in adulthood. While no changes were seen in male mice, female HRM showed a significant reduction in GR expression in the dorsal hippocampus. In addition, CORT reduced GR levels as well as GluN2B and GluN2C subunits of NMDAr in the dorsal hippocampus in female mice only. CORT furthermore reduced GluN1 levels in the PFC of female mice. The combined effect of HRM and CORT treatment appeared to be additive in terms of GR expression in the dorsal hippocampus. Female-specific CORT-induced changes were associated with overall higher circulating CORT levels in female compared to male mice. This study shows differential effects of reelin depletion and CORT treatment on GR and NMDAr protein expression in male and female mice, suggesting that females are more susceptible to reelin haploinsufficiency as well as late-adolescent stress. These findings shed more light on female-specific vulnerability to stress and have implications for stress-associated mental illnesses with a female bias including anxiety and major depression.
Collapse
Affiliation(s)
- Anna Schroeder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora 3086 Australia.
- Department of Pharmacology, University of Melbourne, Parkville 3052, Australia.
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4810, Australia.
| | - Rachel A Hill
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| |
Collapse
|
28
|
Condon EM. Chronic Stress in Children and Adolescents: A Review of Biomarkers for Use in Pediatric Research. Biol Res Nurs 2018; 20:473-496. [PMID: 29865855 DOI: 10.1177/1099800418779214] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PROBLEM Incorporating biomarkers of chronic stress into pediatric research studies may help to explicate the links between exposure to adversity and lifelong health, but there are currently very few parameters to guide nurse researchers in choosing appropriate biomarkers of chronic stress for use in research with children and adolescents. METHODS Biomarkers of chronic stress are described, including primary mediators (glucocorticoids, catecholamines, and cytokines) and secondary outcomes (neurologic, immune, metabolic, cardiovascular, respiratory, and anthropometric) of the chronic stress response. RESULTS Evidence of the use of each biomarker in pediatric research studies is reviewed. Recommendations for pediatric researchers, including selection of appropriate biomarkers, measurement considerations, potential moderators, and future directions for research, are presented. DISCUSSION A wide range of biomarkers is available for use in research studies with children. While primary mediators of chronic stress have been frequently measured in studies of children, measurement of secondary outcomes, particularly immune and metabolic biomarkers, has been limited. With thoughtful and theoretically based approaches to selection and measurement, these biomarkers present an important opportunity to further explore the physiologic pathways linking exposure to chronic stress with later health and disease. CONCLUSION The incorporation of chronic stress biomarkers into pediatric research studies may provide valuable insight into the mechanisms through which stressful environments "get under the skin" and ultimately inform efforts to promote health and reduce inequities among children exposed to adversity.
Collapse
Affiliation(s)
- Eileen M Condon
- 1 Yale School of Nursing, West Campus Drive, Orange, CT, USA
| |
Collapse
|
29
|
Lee TH, Qu Y, Telzer EH. Dyadic Neural Similarity During Stress in Mother-Child Dyads. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2018; 28:121-133. [PMID: 29460351 PMCID: PMC6402773 DOI: 10.1111/jora.12334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Shared psychological processes between individuals occur most between a mother and her child because the mother-child bond is one of the closest forms of human attachment, in which a mother and her child are essentially wired to connect. We recruited mother-child pairs (Ndyad = 19; adolescent: Mage = 13.74, 11 males; mothers: Mage = 44.26), who each completed an fMRI scan. We examined dyadic neural representational similarity as adolescents completed a stress task and mothers observed their child's performance during the same task. On average, mothers and their children did not show similar neural patterns during stress. However, neural similarity varied depending on family connectedness, such that only dyads reporting high family connectedness showed similar neural profiles. Importantly, increased neural similarity was associated with reduced stress in youth, suggesting that shared neural profiles in mother-child dyads enhance adolescents' psychological well-being.
Collapse
Affiliation(s)
- Tae-Ho Lee
- University of North Carolina at Chapel Hill
| | - Yang Qu
- University of Illinois at Urbana-Champaign and Stanford University
| | | |
Collapse
|
30
|
Barbayannis G, Franco D, Wong S, Galdamez J, Romeo RD, Bauer EP. Differential effects of stress on fear learning and activation of the amygdala in pre-adolescent and adult male rats. Neuroscience 2017; 360:210-219. [PMID: 28768158 PMCID: PMC5973547 DOI: 10.1016/j.neuroscience.2017.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/21/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Adolescence is accompanied by the maturation of several stress-responsive areas of the brain including the amygdala, a key region for the acquisition and expression of conditioned fear. These changes may contribute to the development of stress-related disorders in adolescence, such as anxiety and depression, and increase the susceptibility to these psychopathologies later in life. Here, we assessed the effects of acute restraint stress on fear learning and amygdala activation in pre-adolescent and adult male rats. Pre-adolescents exposed to stress prior to fear conditioning showed greater resistance to the extinction of fear memories than adults. At the cellular level, the combination of stress and fear conditioning resulted in a greater number of FOS-positive cells in the basolateral nucleus of the amygdala (BLA) than fear conditioning alone, and this increase was greater in pre-adolescents than in adults. Despite age-dependent differences, we found no changes in glucocorticoid receptor (GR) levels in the amygdala of either pre-adolescent or adult males. Overall, our data indicate that stress prior to fear conditioning leads to extinction-resistant fear responses in pre-adolescent animals, and that the BLA may be one neural locus mediating these age-dependent effects of stress on fear learning.
Collapse
Affiliation(s)
- Georgia Barbayannis
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Daly Franco
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Solange Wong
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Josselyn Galdamez
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Russell D Romeo
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Elizabeth P Bauer
- Departments of Biology and Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States.
| |
Collapse
|
31
|
Kállai V, Tóth A, Gálosi R, Péczely L, Ollmann T, Petykó Z, László K, Kállai J, Szabó I, Karádi Z, Lénárd L. The MAM-E17 schizophrenia rat model: Comprehensive behavioral analysis of pre-pubertal, pubertal and adult rats. Behav Brain Res 2017; 332:75-83. [DOI: 10.1016/j.bbr.2017.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
|
32
|
Montagud-Romero S, Nuñez C, Blanco-Gandia MC, Martínez-Laorden E, Aguilar MA, Navarro-Zaragoza J, Almela P, Milanés MV, Laorden ML, Miñarro J, Rodríguez-Arias M. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system. Psychopharmacology (Berl) 2017; 234:2063-2075. [PMID: 28466092 DOI: 10.1007/s00213-017-4612-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 03/25/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. OBJECTIVE The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. METHODS Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. RESULTS Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. CONCLUSION Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Cristina Nuñez
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - M Carmen Blanco-Gandia
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Elena Martínez-Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Javier Navarro-Zaragoza
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pilar Almela
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Maria-Victoria Milanés
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María-Luisa Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain. .,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
33
|
Komkova YN, Ermakova IV, Selverova NB. Influence of cognitive load on the body functional state in children aged 9 to 12 years during early stages of puberty. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s0362119717020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Sex differences in biological response to peer rejection and performance challenge across development: A pilot study. Physiol Behav 2017; 169:224-233. [DOI: 10.1016/j.physbeh.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 01/20/2023]
|
35
|
Chen M, Xia D, Min C, Zhao X, Chen Y, Liu L, Li X. Neonatal repetitive pain in rats leads to impaired spatial learning and dysregulated hypothalamic-pituitary-adrenal axis function in later life. Sci Rep 2016; 6:39159. [PMID: 27966656 PMCID: PMC5155224 DOI: 10.1038/srep39159] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023] Open
Abstract
Preterm birth is a major health issue. As part of their life-saving care, most preterm infants require hospitalization and are inevitably exposed to repetitive skin-breaking procedures. The long-term effects of neonatal repetitive pain on cognitive and emotional behaviors involving hypothalamic-pituitary-adrenal (HPA) axis function in young and adult rats are unknown. From P8 to P85, mechanical hypersensitivity of the bilateral hindpaws was observed in the Needle group (P < 0.001). Compared with the Tactile group, the Needle group took longer to find the platform on P30 than on P29 (P = 0.03), with a decreased number of original platform site crossings during the probe trial of the Morris water maze test (P = 0.026). Moreover, the Needle group spent more time and took longer distances in the central area than the Tactile group in the Open-field test, both in prepubertal and adult rats (P < 0.05). The HPA axis function in the Needle group differed from the Tactile group (P < 0.05), with decreased stress responsiveness in prepuberty and puberty (P < 0.05) and increased stress responsiveness in adulthood (P < 0.05). This study indicates that repetitive pain that occurs during a critical period may cause severe consequences, with behavioral and neuroendocrine disturbances developing through prepuberty to adult life.
Collapse
Affiliation(s)
- Mengying Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Dongqing Xia
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Cuiting Min
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yinhua Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Glucocorticoid receptor translocation and expression of relevant genes in the hippocampus of adolescent and adult male rats. Psychoneuroendocrinology 2016; 73:32-41. [PMID: 27448526 DOI: 10.1016/j.psyneuen.2016.07.210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022]
Abstract
We investigated whether pre-pubertal (postnatal day [P] 35) and post-pubertal adolescent (P45) and adult (P75) male rats differed in stressor-induced hormonal responses and in glucocorticoid receptor (GR) translocation because it has been proposed that negative feedback is maturing in adolescence and may be a basis for the prolonged activation of the HPA axis in adolescents compared with adults. The three age groups did not differ at baseline in plasma corticosterone or progesterone concentrations, and P35 had lower concentrations of testosterone than did both P45 and P75 rats, which did not differ. After 30min of restraint stress, plasma concentrations of corticosterone and progesterone increased to a greater extent in the adolescents than in the adults. Whereas restraint stress increased concentrations of testosterone in adult males, concentrations decreased in adolescents. In all three age groups, restraint stress reduced GR expression in the cytosol and increased expression in the nucleus within the hippocampus, and the increase in nuclear GR was greater in pre-pubertal adolescents compared with adults. In a separate set of rats we investigated age differences in hippocampal mRNA expression of corticosteroid receptors (MR and GR) and of chaperones (FKBP5, FKBP4, BAG-1), which are known to modulate their activity, at baseline and after restraint stress. Restraint stress decreased the expression of GR and increased the expression of FKBP5 mRNA, and age was not a significant factor. Higher expression of FKBP4 mRNA was found at P35 than at P75. Most research of HPA function in adolescent rats has involved pre-pubertal rats; the present findings indicate that despite their increase in gonadal function, responses to stressors in P45 rats are more like those of pre-pubertal than adult rats. The greater stressor-induced GR translocation in pre-pubertal adolescents parallels their greater release of corticosterone in response to stressors, which may contribute to the enhanced sensitivity of adolescent rats to the effects of chronic stress exposures compared with adults.
Collapse
|
37
|
Cai KC, van Mil S, Murray E, Mallet JF, Matar C, Ismail N. Age and sex differences in immune response following LPS treatment in mice. Brain Behav Immun 2016; 58:327-337. [PMID: 27506825 DOI: 10.1016/j.bbi.2016.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022] Open
Abstract
Puberty is an important developmental event that is marked by the reorganizing and remodeling of the brain. Exposure to stress during this critical period of development can have enduring effects on both reproductive and non-reproductive behaviors. The purpose of this study was to investigate age and sex differences in immune response by examining sickness behavior, body temperature changes, and serum cytokine levels following an immune challenge. The effects of circulating gonadal hormones on age and sex differences in immune response were also examined. Results showed that male mice display more sickness behavior and greater fluctuations in body temperature following LPS treatment than female mice. Moreover, adult male mice display more sickness behavior and a greater drop in body temperature following LPS treatment compared to pubertal male mice. Following gonadectomy, pubertal and adult males displayed steeper and prolonged drops in body temperature compared to sham-operated counterparts. Gonadectomy did not eliminate sex differences in LPS-induced body temperature changes, suggesting that additional factors contribute to the observed differences. LPS treatment increased cytokine levels in all mice. However, the increase in pro-inflammatory cytokines was higher in adult compared to pubertal mice, while the increase in anti-inflammatory cytokines was greater in pubertal than in adult mice. Our findings contribute to a better understanding of age and sex differences in acute immune response following LPS treatment and possible mechanisms involved in the enduring alterations in behavior and brain function following pubertal exposure to LPS.
Collapse
Affiliation(s)
- Kyle Chiman Cai
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Spencer van Mil
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Emma Murray
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada
| | - Jean-François Mallet
- Department of Nutrition, Faculty of Health Sciences, University of Ottawa, Canada
| | - Chantal Matar
- Department of Nutrition, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Canada.
| |
Collapse
|
38
|
Sun Y, Liu Y, Yan SQ, Hu JJ, Xu G, Liu J, Tao FB. Longitudinal pattern of early maturation on morning cortisol and depressive symptoms: Sex-specific effects. Psychoneuroendocrinology 2016; 71:58-63. [PMID: 27236487 DOI: 10.1016/j.psyneuen.2016.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022]
Abstract
There is still insufficient understanding of the underlying processes that contribute to internalizing problems of early maturing adolescents. The purpose of this study is to examine the longitudinal pattern of early maturation and its effects on morning cortisol and depressive symptoms among a general population of adolescent cohort aged 8-11 years old at baseline (boys=424, girls=288). Results suggest newly-onset early maturation boys have 3-times more likely to have depressive symptoms at 1-year follow-up (adjusted odds ratio=3.197, 95% confidence interval=1.595-6.405); while in girls, stable early maturation individuals are more than 4 times as likely to have depressive symptoms (adjusted odds ratio=4.566, 95% confidence interval=1.882-11.077). Morning cortisol has moderating effects in the association of depressive symptoms with newly-onset early maturation in boys and stable early maturation in girls. These findings possibly explain current inconsistent results regarding association between earlier maturation and risk of depression in adolescents. Further longitudinal studies are needed to explore HPG-HPA interactions in adolescence, which may be critical to understanding the heightened susceptibility of mental health problems.
Collapse
Affiliation(s)
- Ying Sun
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics Hefei, Anhui Province, China
| | - Yang Liu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics Hefei, Anhui Province, China
| | - Shuang-Qin Yan
- Maternal & Health Care Hospital in Ma'anshan, Ma'anshan, Anhui Province, China
| | - Jing-Jing Hu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics Hefei, Anhui Province, China
| | - Geng Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics Hefei, Anhui Province, China
| | - Jiang Liu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics Hefei, Anhui Province, China
| | - Fang-Biao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China; Anhui Provincial Key Laboratory of Population Health &Aristogenics Hefei, Anhui Province, China.
| |
Collapse
|
39
|
Martin CG, Kim HK, Fisher PA. Differential sensitization of parenting on early adolescent cortisol: Moderation by profiles of maternal stress. Psychoneuroendocrinology 2016; 67:18-26. [PMID: 26859701 PMCID: PMC4820398 DOI: 10.1016/j.psyneuen.2016.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a critical component of the body's stress-response neurobiological system, and its development and functioning are shaped by the social environment. Much of our understanding of the effects of the caregiving environment on the HPA axis is based on (a) parenting in young children and (b) individual maternal stressors, such as depression. Yet, less is known about how parenting behaviors and maternal stressors interact to influence child cortisol regulation, particularly in older children. With an ethnically diverse sample of 199 mothers and their early adolescent children (M=11.00years; 54% female), a profile analytic approach was used to investigate how multiple phenotypes of maternal stress co-occur and moderate the relation between parenting behaviors and youths' diurnal cortisol rhythms. Latent profile analysis yielded 4 profiles: current parenting stress, concurrent parenting and childhood stress, childhood stress, and low stress. For mothers with the concurrent parenting and childhood stress profile, inconsistent discipline, poor parental supervision, and harsh caregiving behaviors each were related to flattened diurnal cortisol rhythms in their adolescents. For mothers with the current parenting stress and childhood stress profiles, their use of inconsistent discipline was associated with flattened diurnal cortisol rhythms in their adolescents. For mothers with the low stress profile, none of the parenting behaviors was related to their adolescents' cortisol regulation. Findings suggest that based on mothers' stress profile, parenting behaviors are differentially related to youths' diurnal cortisol rhythms. Implications for parenting interventions are discussed.
Collapse
Affiliation(s)
| | - Hyoun K. Kim
- Oregon Social Learning Center, 10 Shelton McMurphey Blvd., Eugene, Oregon 97401, USA,Department of Child and Family Studies, College of Human Ecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Philip A. Fisher
- Department of Psychology, 1227 University of Oregon, Eugene, Oregon 97403, USA,Oregon Social Learning Center, 10 Shelton McMurphey Blvd., Eugene, Oregon 97401, USA
| |
Collapse
|
40
|
Neuroticism and extraversion in relation to physiological stress reactivity during adolescence. Biol Psychol 2016; 117:67-79. [PMID: 26956979 DOI: 10.1016/j.biopsycho.2016.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 01/03/2023]
Abstract
The current study examined mean level and change in extraversion and neuroticism across adolescence in relation to physiological stress reactivity to social evaluation. Adolescents (n=327) from the Dutch general population reported on personality measures at five annual assessments. At age 17 years, adolescents participated in a psychosocial stress procedure characterized by social evaluation during which cortisol, heart rate, pre-ejection period (PEP) and heart rate variability were assessed. Dual latent growth curve models were fitted in which the intercepts (mean level) and slopes (change) of personality across adolescence predicted the intercepts (baseline) and slopes (reactivity) of the physiological stress measures. Most comparisons revealed no relation between personality and stress reactivity. Adolescents with higher mean level scores on extraversion did show lower cortisol reactivity. Adolescents with higher mean level neuroticism scores showed higher PEP reactivity. Our findings lend partial support for a relation between personality and physiological stress reactivity.
Collapse
|
41
|
|
42
|
Panagiotakopoulos L, Kelly S, Neigh GN. HIV-1 proteins accelerate HPA axis habituation in female rats. Physiol Behav 2015; 150:8-15. [PMID: 25666308 PMCID: PMC4529393 DOI: 10.1016/j.physbeh.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/22/2023]
Abstract
Congenital infection by the Human Immunodeficiency Virus (HIV) has been shown to lead to multiple co-morbidities, and people living with HIV have a higher incidence of affective and anxiety disorders. A marked increase in mood disorders is evident during the sensitive phase of adolescence and this is further pronounced in females. Depression has been linked to dysfunction of the intracellular response system to corticosteroids at the level of the hippocampus (HC) and prefrontal cortex (PFC) with a notable role of the glucocorticoid receptor (GR) and its co-chaperones (FKBP5 and FKBP4). The current study examined the extent to which HIV protein expression in adolescent female rats altered the stress response at both the level of corticosterone output and molecular regulation of the glucocorticoid receptor in the brain. WT and HIV-1 genotype female rats were randomly allocated in control, acute stress and repeat stress groups. Corticosterone plasma levels and expression of GR, FKBP4, and FKBP5 in the HC and PFC were measured. The presence of HIV-1 proteins facilitates habituation of the corticosterone response to repeated stressors, such that HIV-1 TG rats habituated to repeated restraint and WT rats did not. This was reflected by interactions between stress exposure and HIV-1 protein expression at the level of GR co-chaperones. Although expression of the GR was similarly reduced after acute and repeat stress in both genotypes, expression of FKBP5 and FKBP4 was altered in a brain-region specific manner depending on the duration of the stress exposure and the presence or absence of HIV-1 proteins. Collectively, the data presented demonstrate that HIV-1 proteins accelerate habituation to repeated stressors and modify the influence of acute and repeat stressors on GR co-chaperones in a brain region-specific manner.
Collapse
Affiliation(s)
| | - Sean Kelly
- Department of Physiology, Emory University, United States
| | - Gretchen N Neigh
- Department of Physiology, Emory University, United States; Department of Psychiatry & Behavioral Sciences, Emory University, United States.
| |
Collapse
|
43
|
Sullivan RM, Perry RE. Mechanisms and functional implications of social buffering in infants: Lessons from animal models. Soc Neurosci 2015; 10:500-11. [PMID: 26324338 DOI: 10.1080/17470919.2015.1087425] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social buffering, which is the attenuation of stress hormone release by a social partner, occurs in many species throughout the lifespan. Social buffering of the infant by the caregiver is particularly robust, and animal models using infant rodents are uncovering the mechanisms and neural circuitry supporting social buffering. At birth, the hypothalamic-pituitary-adrenal (HPA) stress system is functional but is suppressed via extended social buffering by the mother: the profound social buffering effects of the mother can last for 1-2 hours when pups are removed from the mother. At 10 days of age, pups begin to mount a stress response immediately when separated from the mother. The stimuli from the mother supporting social buffering are broad, for tactile stimulation, milk, and an anesthetized mother (no maternal behavior) all sufficiently support social buffering. The mother appears to produce social buffering by blocking norepinephrine (NE) release into the hypothalamic paraventricular nucleus (PVN), which blocks HPA activation. Since the infant amygdala relies on the presence of corticosterone (CORT), this suggests that social buffering of pups by the mother attenuates the neurobehavioral stress response in infancy and prevents pups from learning about threat within mother-infant interactions.
Collapse
Affiliation(s)
- Regina M Sullivan
- a Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine , New York , NY , USA.,b Department of Child and Adolescent Psychiatry , NYU School of Medicine , New York , NY , USA
| | - Rosemarie E Perry
- a Emotional Brain Institute, Nathan Kline Institute, New York University School of Medicine , New York , NY , USA.,b Department of Child and Adolescent Psychiatry , NYU School of Medicine , New York , NY , USA.,c Neuroscience and Physiology , NYU Sackler Institute , New York , NY , USA
| |
Collapse
|
44
|
Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacol Biochem Behav 2015; 135:1-12. [DOI: 10.1016/j.pbb.2015.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
|
45
|
Cortisol Response to Psychosocial Stress in Chinese Early Puberty Girls: Possible Role of Depressive Symptoms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:781241. [PMID: 26146632 PMCID: PMC4471250 DOI: 10.1155/2015/781241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
Abstract
Objective. The present study aimed at investigating unique patterns of salivary cortisol reactivity and recovery in response to a social stressor among girls with early puberty and exploring possible role of depressive symptom in this association. Design. Case-control study. Patients. Fifty-six girls with early puberty and age- and body mass index- (BMI-) matched normal puberty controls (n = 56) were selected. Measurements. Salivary cortisol was measured in response to the Groningen Social Stress Test for Children. Results. Girls with early puberty had higher cortisol concentration at the end of the GSST (C3), cortisol concentration 20 min after the end of the GSST (C4), and AUC increment (AUCi) compared to non-early puberty girls. Depressive symptoms correlated with blunted HPA reactivity among girls with early puberty. Conclusion. This study demonstrated the disturbance effect of objectively examined early pubertal timing on HPA axis responses. It also suggested that stress reactivity might be blunted for individuals with depressive symptoms.
Collapse
|
46
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
47
|
Simmons JG, Byrne ML, Schwartz OS, Whittle SL, Sheeber L, Kaess M, Youssef GJ, Allen NB. Dual-axis hormonal covariation in adolescence and the moderating influence of prior trauma and aversive maternal parenting. Dev Psychobiol 2015; 57:670-87. [PMID: 25754696 DOI: 10.1002/dev.21275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 11/19/2014] [Indexed: 01/05/2023]
Abstract
Adversity early in life can disrupt the functioning of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes and increase risk for negative health outcomes. The interplay between these axes and the environment is complex, and understanding needs to be advanced by the investigation of the multiple hormonal relationships underlying these processes. The current study examined basal hormonal associations between morning levels of cortisol, testosterone, and dehydroepiandrosterone in a cohort of adolescents (mean age 15.56 years). The moderating influence of childhood adversity was also examined, as indexed by self-reported trauma (at mean age 14.91), and observed maternal aggressive parenting (at mean age 12.41). Between-person regressions revealed significant associations between hormones that were moderated by both measures of adversity. In females, all hormones positively covaried, but also interacted with adversity, such that positive covariation was typically only present when levels of trauma and/or aggressive parenting were low. In males, hormonal associations and interactions were less evident; however, interactions were detected for cortisol-testosterone - positively covarying at high levels of aggressive parenting but negatively covarying at low levels - and DHEA-cortisol - similarly positively covarying at high levels of parental aggression. These results demonstrate associations between adrenal and gonadal hormones and the moderating role of adversity, which is likely driven by feedback mechanisms, or cross-talk, between the axes. These findings suggest that hormonal changes may be the pathway through which early life adversity alters physiology and increases health risks, but does so differentially in the sexes; however further study is necessary to establish causation.
Collapse
Affiliation(s)
- Julian G Simmons
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia.,Orygen Youth Health Research Centre, The University of Melbourne, Victoria, Australia.,Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Michelle L Byrne
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Orli S Schwartz
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Sarah L Whittle
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
| | | | - Michael Kaess
- Department of Child and Adolescent Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - George J Youssef
- Monash Clinical and Imaging Neuroscience, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Nicholas B Allen
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia. .,Murdoch Childrens Research Institute, Parkville, Victoria, Australia. .,Department of Psychology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
48
|
Spear LP. Adolescent alcohol exposure: Are there separable vulnerable periods within adolescence? Physiol Behav 2015; 148:122-30. [PMID: 25624108 DOI: 10.1016/j.physbeh.2015.01.027] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Abstract
There are two key alcohol use patterns among human adolescents that confer increased vulnerability for later alcohol abuse/dependence, along with neurocognitive alterations: (a) early initiation of use during adolescence, and (b) high rates of binge drinking that are particularly prevalent late in adolescence. The central thesis of this review is that lasting neurobehavioral outcomes of these two adolescent exposure patterns may differ. Although it is difficult to disentangle consequences of early use from later binge drinking in human studies given the substantial overlap between groups, these two types of problematic adolescent use are differentially heritable and hence separable to some extent. Although few studies using animal models have manipulated alcohol exposure age, those studies that have have typically observed timing-specific exposure effects, with more marked (or at least different patterns of) lasting consequences evident after exposures during early-mid adolescence than late-adolescence/emerging adulthood, and effects often restricted to male rats in those few instances where sex differences have been explored. As one example, adult male rats exposed to ethanol during early-mid adolescence (postnatal days [P] 25-45) were found to be socially anxious and to retain adolescent-typical ethanol-induced social facilitation into adulthood, effects that were not evident after exposure during late-adolescence/emerging adulthood (P45-65); exposure at the later interval, however, induced lasting tolerance to ethanol's social inhibitory effects that was not evident after exposure early in adolescence. Females, in contrast, were little influenced by ethanol exposure at either interval. Exposure timing effects have likewise been reported following social isolation as well as after repeated exposure to other drugs such as nicotine (and cannabinoids), with effects often, although not always, more pronounced in males where studied. Consistent with these timing-specific exposure effects, notable maturational changes in brain have been observed from early to late adolescence that could provide differential neural substrates for exposure timing-related consequences, with for instance exposure during early adolescence perhaps more likely to impact later self-administration and social/affective behaviors, whereas exposures later in adolescence may be more likely to influence cognitive tasks whose neural substrates (such as the prefrontal cortex [PFC]) are still undergoing maturation at that time. More work is needed, however to characterize timing-specific effects of adolescent ethanol exposures and their sex dependency, determine their neural substrates, and assess their comparability to and interactions with adolescent exposure to other drugs and stressors. Such information could prove critical for informing intervention/prevention strategies regarding the potential efficacy of efforts directed toward delaying onset of alcohol use versus toward reducing high levels of use and risks associated with that use later in adolescence.
Collapse
Affiliation(s)
- Linda Patia Spear
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
49
|
Gobinath AR, Mahmoud R, Galea LAM. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus. Front Neurosci 2015; 8:420. [PMID: 25610363 PMCID: PMC4285110 DOI: 10.3389/fnins.2014.00420] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/02/2014] [Indexed: 12/18/2022] Open
Abstract
Sex differences exist in vulnerability, symptoms, and treatment of many neuropsychiatric disorders. In this review, we discuss both preclinical and clinical research that investigates how sex influences depression endophenotypes at the behavioral, neuroendocrine, and neural levels across the lifespan. Chronic exposure to stress is a risk factor for depression and we discuss how stress during the prenatal, postnatal, and adolescent periods differentially affects males and females depending on the method of stress and metric examined. Given that the integrity of the hippocampus is compromised in depression, we specifically focus on sex differences in how hippocampal plasticity is affected by stress and depression across the lifespan. In addition, we examine how female physiology predisposes depression in adulthood, specifically in postpartum and perimenopausal periods. Finally, we discuss the underrepresentation of women in both preclinical and clinical research and how this limits our understanding of sex differences in vulnerability, presentation, and treatment of depression.
Collapse
Affiliation(s)
- Aarthi R Gobinath
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - Rand Mahmoud
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada
| | - Liisa A M Galea
- Program in Neuroscience, Centre for Brain Health, University of British Columbia Vancouver, BC, Canada ; Department of Psychology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
50
|
Gallego X, Cox RJ, Funk E, Foster RA, Ehringer MA. Voluntary exercise decreases ethanol preference and consumption in C57BL/6 adolescent mice: sex differences and hippocampal BDNF expression. Physiol Behav 2014; 138:28-36. [PMID: 25447477 DOI: 10.1016/j.physbeh.2014.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
Adolescence is a period of high vulnerability for alcohol use and abuse. Early alcohol use has been shown to increase the risk for alcohol-related problems later in life; therefore effective preventive treatments targeted toward adolescents would be very valuable. Many epidemiological and longitudinal studies in humans have revealed the beneficial effects of exercise for prevention and treatment of alcohol addiction. Pre-clinical studies have demonstrated that access to a running wheel leads to decreased voluntary alcohol consumption in adult mice, hamsters, and rats. However, age and sex may also influence the effects of exercise on alcohol use. Herein, we studied male and female C57BL/6 adolescent mice using a 24-hour two-bottle choice paradigm to evaluate 21 days of concurrent voluntary exercise on alcohol consumption and preference. Given previously known effects of exercise in increasing the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus and its role in regulating the reward system, BDNF mRNA and protein levels were measured at the end of the behavioral experiment. Our results demonstrate sex differences in the efficacy of voluntary exercise and its effects on decreasing alcohol consumption and preference. We also report increased BDNF expression after 21 days of voluntary exercise in both male and female mice. Interestingly, the distance traveled played an important role in alcohol consumption and preference in female mice but not in male mice. Overall, this study demonstrates sex differences in the effects of voluntary exercise on alcohol consumption in adolescent mice and points out the importance of distance traveled as a limiting factor to the beneficial effects of wheel running in female mice.
Collapse
Affiliation(s)
- X Gallego
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R J Cox
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - E Funk
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - R A Foster
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO 80303, USA; Department of Integrative Physiology, University of Colorado Boulder, CO 80303, USA.
| |
Collapse
|