1
|
Chaves T, Török B, Fazekas C, Correia P, Karailiev P, Oravcova H, Sipos E, Biró L, Haller J, Jezova D, Zelena D. The role of the GABAergic cells of the median raphe region in reinforcement-based learning. Sci Rep 2024; 14:1175. [PMID: 38216718 PMCID: PMC10786920 DOI: 10.1038/s41598-024-51743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Learning and memory are important in everyday life as well as in pathological conditions. The median raphe region (MRR) contributes to memory formation; however, its precise role and the neurotransmitters involved have yet to be elucidated. To address this issue, we stimulated the MRR neurons of mice by chemogenetic technique and studied them in the operant conditioning and active avoidance tests. The virus carrier infected a variety of neuron types including both GABAergic and glutamatergic ones. Behavior was not influenced by stimulation. We hypothesize that the lack of effect was due to opposing effects exerted via GABAergic and glutamatergic neurons. Therefore, next we used VGAT-Cre mice that allowed the specific manipulation of MRR-GABAergic neurons. The stimulation did not affect behavior in the learning phase of the operant conditioning task, but increased reward preference and total responses when operant contingencies were reversed. The enhanced responsiveness might be a proclivity to impulsive behavior. Stimulation facilitated learning in the active avoidance test but did not affect reversal learning in this paradigm. Our findings suggest that MRR-GABAergic neurons are involved in both learning and reversal learning, but the type of learning that is affected depends on the task.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csilla Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Peter Karailiev
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Henrieta Oravcova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Eszter Sipos
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - László Biró
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - József Haller
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- Ludovika University of Public Service, Budapest, Hungary
| | - Daniela Jezova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary.
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
2
|
Biro L, Miskolczi C, Szebik H, Bruzsik B, Varga ZK, Szente L, Toth M, Halasz J, Mikics E. Post-weaning social isolation in male mice leads to abnormal aggression and disrupted network organization in the prefrontal cortex: Contribution of parvalbumin interneurons with or without perineuronal nets. Neurobiol Stress 2023; 25:100546. [PMID: 37323648 PMCID: PMC10265620 DOI: 10.1016/j.ynstr.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Adverse social experiences during childhood increase the risk of developing aggression-related psychopathologies. The prefrontal cortex (PFC) is a key regulator of social behavior, where experience-dependent network development is tied to the maturation of parvalbumin-positive (PV+) interneurons. Maltreatment in childhood could impact PFC development and lead to disturbances in social behavior during later life. However, our knowledge regarding the impact of early-life social stress on PFC operation and PV+ cell function is still scarce. Here, we used post-weaning social isolation (PWSI) to model early-life social neglect in mice and to study the associated neuronal changes in the PFC, additionally distinguishing between the two main subpopulations of PV+ interneurons, i.e. those without or those enwrapped by perineuronal nets (PNN). For the first time to such detailed extent in mice, we show that PWSI induced disturbances in social behavior, including abnormal aggression, excessive vigilance and fragmented behavioral organization. PWSI mice showed altered resting-state and fighting-induced co-activation patterns between orbitofrontal and medial PFC (mPFC) subregions, with a particularly highly elevated activity in the mPFC. Surprisingly, aggressive interaction was associated with a higher recruitment of mPFC PV+ neurons that were surrounded by PNN in PWSI mice that seemed to mediate the emergence of social deficits. PWSI did not affect the number of PV+ neurons and PNN density, but enhanced PV and PNN intensity as well as cortical and subcortical glutamatergic drive onto mPFC PV+ neurons. Our results suggest that the increased excitatory input of PV+ cells could emerge as a compensatory mechanism for the PV+ neuron-mediated impaired inhibition of mPFC layer 5 pyramidal neurons, since we found lower numbers of GABAergic PV+ puncta on the perisomatic region of these cells. In conclusion, PWSI leads to altered PV-PNN activity and impaired excitatory/inhibitory balance in the mPFC, which possibly contributes to social behavioral disruptions seen in PWSI mice. Our data advances our understanding on how early-life social stress can impact the maturing PFC and lead to the development of social abnormalities in adulthood.
Collapse
Affiliation(s)
- Laszlo Biro
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Christina Miskolczi
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Huba Szebik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Biborka Bruzsik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Zoltan Kristof Varga
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Laszlo Szente
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Mate Toth
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Jozsef Halasz
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Eva Mikics
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| |
Collapse
|
3
|
Oliveras I, Cañete T, Sampedro-Viana D, Río-Álamos C, Tobeña A, Corda MG, Giorgi O, Fernández-Teruel A. Neurobehavioral Profiles of Six Genetically-based Rat Models of Schizophrenia- related Symptoms. Curr Neuropharmacol 2023; 21:1934-1952. [PMID: 36809938 PMCID: PMC10514524 DOI: 10.2174/1570159x21666230221093644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/24/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder with high heterogeneity in its symptoms clusters. The effectiveness of drug treatments for the disorder is far from satisfactory. It is widely accepted that research with valid animal models is essential if we aim at understanding its genetic/ neurobiological mechanisms and finding more effective treatments. The present article presents an overview of six genetically-based (selectively-bred) rat models/strains, which exhibit neurobehavioral schizophrenia-relevant features, i.e., the Apomorphine-susceptible (APO-SUS) rats, the Low-prepulse inhibition rats, the Brattleboro (BRAT) rats, the Spontaneously Hypertensive rats (SHR), the Wisket rats and the Roman High-Avoidance (RHA) rats. Strikingly, all the strains display impairments in prepulse inhibition of the startle response (PPI), which remarkably, in most cases are associated with novelty-induced hyperlocomotion, deficits of social behavior, impairment of latent inhibition and cognitive flexibility, or signs of impaired prefrontal cortex (PFC) function. However, only three of the strains share PPI deficits and dopaminergic (DAergic) psychostimulant-induced hyperlocomotion (together with prefrontal cortex dysfunction in two models, the APO-SUS and RHA), which points out that alterations of the mesolimbic DAergic circuit are a schizophrenia-linked trait that not all models reproduce, but it characterizes some strains that can be valid models of schizophrenia-relevant features and drug-addiction vulnerability (and thus, dual diagnosis). We conclude by putting the research based on these genetically-selected rat models in the context of the Research Domain Criteria (RDoC) framework, suggesting that RDoC-oriented research programs using selectively-bred strains might help to accelerate progress in the various aspects of the schizophrenia-related research agenda.
Collapse
Affiliation(s)
- Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Sardinia, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
4
|
Farkas S, Szabó A, Török B, Sólyomvári C, Fazekas CL, Bánrévi K, Correia P, Chaves T, Zelena D. Ovariectomy-induced hormone deprivation aggravates Aβ 1-42 deposition in the basolateral amygdala and cholinergic fiber loss in the cortex but not cognitive behavioral symptoms in a triple transgenic mouse model of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:985424. [PMID: 36303870 PMCID: PMC9596151 DOI: 10.3389/fendo.2022.985424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease is the most common type of dementia, being highly prevalent in elderly women. The advanced progression may be due to decreased hormone synthesis during post-menopause as estradiol and progesterone both have neuroprotective potentials. We aimed to confirm that female hormone depletion aggravates the progression of dementia in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). As pathological hallmarks are known to appear in 6-month-old animals, we expected to see disease-like changes in the 4-month-old 3xTg-AD mice only after hormone depletion. Three-month-old female 3xTg-AD mice were compared with their age-matched controls. As a menopause model, ovaries were removed (OVX or Sham surgery). After 1-month recovery, the body composition of the animals was measured by an MRI scan. The cognitive and anxiety parameters were evaluated by different behavioral tests, modeling different aspects (Y-maze, Morris water maze, open-field, social discrimination, elevated plus maze, light-dark box, fox odor, operant conditioning, and conditioned fear test). At the end of the experiment, uterus was collected, amyloid-β accumulation, and the cholinergic system in the brain was examined by immunohistochemistry. The uterus weight decreased, and the body weight increased significantly in the OVX animals. The MRI data showed that the body weight change can be due to fat accumulation. Moreover, OVX increased anxiety in control, but decreased in 3xTg-AD animals, the later genotype being more anxious by default based on the anxiety z-score. In general, 3xTg-AD mice moved less. In relation to cognition, neither the 3xTg-AD genotype nor OVX surgery impaired learning and memory in general. Despite no progression of dementia-like behavior after OVX, at the histological level, OVX aggravated the amyloid-β plaque deposition in the basolateral amygdala and induced early cholinergic neuronal fiber loss in the somatosensory cortex of the transgenic animals. We confirmed that OVX induced menopausal symptoms. Removal of the sexual steroids aggravated the appearance of AD-related alterations in the brain without significantly affecting the behavior. Thus, the OVX in young, 3-month-old 3xTg-AD mice might be a suitable model for testing the effect of new treatment options on structural changes; however, to reveal any beneficial effect on behavior, a later time point might be needed.
Collapse
Affiliation(s)
- Szidónia Farkas
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Adrienn Szabó
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Csenge Sólyomvári
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tiago Chaves
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Dóra Zelena,
| |
Collapse
|
5
|
Rico JL, Bonuti R, Morato S. The elevated gradient of aversion: a new apparatus to study the rat behavior dimensions of anxiety, fear, and impulsivity. ACTA ACUST UNITED AC 2019; 52:e8899. [PMID: 31664307 PMCID: PMC6826885 DOI: 10.1590/1414-431x20198899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022]
Abstract
Few behavioral tests allow measuring several characteristics and most require training, complex analyses, and/or are time-consuming. We present an apparatus based on rat exploratory behavior. Composed of three different environments, it allows the assessment of more than one behavioral characteristic in a short 3-min session. Factorial analyses have defined three behavioral dimensions, which we named Exploration, Impulsivity, and Self-protection. Behaviors composing the Exploration factor were increased by chlordiazepoxide and apomorphine and decreased by pentylenetetrazole. Behaviors composing the Impulsivity factor were increased by chlordiazepoxide, apomorphine, and both acute and chronic imipramine treatments. Behaviors composing the Self-protection factor were decreased by apomorphine. We submitted Wistar rats to the open-field test, the elevated-plus maze, and to the apparatus we are proposing. Measures related to exploratory behavior in all three tests were correlated. Measures composing the factors Impulsivity and Self-protection did not correlate with any measures from the two standard tests. Also, compared with existing impulsivity tests, the one we proposed did not require previous learning, training, or sophisticated analysis. Exploration measures from our test are as easy to obtain as the ones from other standard tests. Thus, we have proposed an apparatus that measured three different behavioral characteristics, was simple and fast, did not require subjects to be submitted to previous learning or training, was sensitive to drug treatments, and did not require sophisticated data analyses.
Collapse
Affiliation(s)
- J L Rico
- Laboratory of Animal Behavior, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia
| | - R Bonuti
- Laboratório de Comportamento Exploratório, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - S Morato
- Laboratório de Comportamento Exploratório, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
6
|
Consequences of VGluT3 deficiency on learning and memory in mice. Physiol Behav 2019; 212:112688. [PMID: 31622610 DOI: 10.1016/j.physbeh.2019.112688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to test the hypothesis that vesicular glutamate transporter 3 (VGluT3) deficiency is associated with cognitive impairments. Male VGluT3 knockout (KO) and wild type (WT) mice were exposed to a behavioral test battery covering paradigms based on spontaneous exploratory behavior and reinforcement-based learning tests. Reversal learning was examined to test the cognitive flexibility. The VGluT3 KO mice clearly exhibited the ability to learn. The social recognition memory of KO mice was intact. The y-maze test revealed weaker working memory of VGluT3 KO mice. No significant learning impairments were noticed in operant conditioning or holeboard discrimination paradigm. In avoidance-based learning tests (Morris water maze and active avoidance), KO mice exhibited slightly slower learning process compared to WT mice, but not a complete learning impairment. In tests based on simple associations (operant conditioning, avoidance learning) an attenuation of cognitive flexibility was observed in KO mice. In conclusion, knocking out VGluT3 results in mild disturbances in working memory and learning flexibility. Apparently, this glutamate transporter is not a major player in learning and memory formation in general. Based on previous characteristics of VGluT3 KO mice we would have expected a stronger deficit. The observed hypolocomotion did not contribute to the mild cognitive disturbances herein reported, either.
Collapse
|
7
|
Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, Gardier AM, Blanco C, Hen R, Ahmari SE. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron 2015; 86:813-26. [PMID: 25892302 DOI: 10.1016/j.neuron.2015.03.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/21/2015] [Accepted: 03/12/2015] [Indexed: 01/11/2023]
Abstract
Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulates impulsive behavior during adulthood.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Aggression/physiology
- Animals
- Animals, Newborn
- Brain/anatomy & histology
- Brain/growth & development
- Brain/metabolism
- Choice Behavior/physiology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Doxycycline/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Impulsive Behavior/physiology
- Iodine Isotopes/pharmacokinetics
- Mice
- Mice, Transgenic
- Pindolol/analogs & derivatives
- Pindolol/pharmacokinetics
- Piperazines/pharmacology
- Protein Binding/drug effects
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin/metabolism
- Serotonin Antagonists/pharmacokinetics
Collapse
Affiliation(s)
- Katherine M Nautiyal
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, the New York State Psychiatric Institute, New York, NY 10032, USA
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160 8582, Japan
| | - Mary M Barr
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Laurent Tritschler
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Yannick Le Dantec
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Denis J David
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Alain M Gardier
- Université Paris-Sud, INSERM UMR-S 1178, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry 92296, France
| | - Carlos Blanco
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, the New York State Psychiatric Institute, New York, NY 10032, USA
| | - René Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, the New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, Center for Neuroscience Program, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|