1
|
Wu L, Zhang J, Xin Y, Ma J, Chen T, Nie J, Niu P. Associations between phenols, parabens, and phthalates and depressive symptoms: The role of inflammatory markers and bioinformatic insights. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117191. [PMID: 39442251 DOI: 10.1016/j.ecoenv.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Phenols, parabens, and phthalates are commonly found in consumer products, yet there is limited research on their individual and combined effects on depressive symptoms, particularly regarding the role of inflammation in these associations. This study aimed to evaluate these effects and explore potential molecular mechanisms, with a focus on inflammation as a mediator. We conducted a cross-sectional analysis involving 2766 adult participants from the National Health and Nutrition Examination Survey (NHANES) 2013-2016. Urine samples were analyzed for 15 chemicals, including 3 phenols, 2 parabens, and 10 phthalates. Depressive symptoms were assessed using the Patient Health Questionnaire-9 (PHQ-9). Statistical analyses included linear regression, restricted cubic splines, Bayesian Kernel Machine Regression and quantile g-computation models to investigate the relationships between chemical exposures and depressive symptoms. Additionally, mediation analysis was employed to explore the potential role of inflammation (immune cells, CRP, NLR) in these associations. The underlying molecular mechanisms were analyzed using bioinformatic approaches. Notably, BPA, MECPP, MEHHP, MiBP and MBP were found to be positively associated with depressive symptoms among females. Besides, BPA was the most significant positive contributor to the effect in the context of the chemical mixture, while the overall mixture effect was relatively weak. Furthermore, WBC were found to mediate a marginal portion (4 %) of the potential effects of MBP on depressive symptoms. The 15 genes identified are primarily involved in neurotransmission, mood regulation, and stress response. Further research is needed to elucidate the mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Luli Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China.
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Adam N, Desroziers E, Hanine R, Bascarane K, Naulé L, Mhaouty-Kodja S. Developmental exposure to environmentally relevant doses of phthalates alters the neural control of male and female reproduction in mice. ENVIRONMENTAL RESEARCH 2024; 258:119476. [PMID: 38909949 DOI: 10.1016/j.envres.2024.119476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The present study aims to analyze the effects of developmental exposure to phthalates at environmentally relevant doses on the neural control of male and female reproduction. For this purpose, C57Bl/6J mice were exposed to di-(2-ethylexyl) phthalate (DEHP) alone (5 or 50 μg/kg/d), or DEHP (5 μg/kg/d) in a phthalate mixture. Exposure through diet started 6 weeks before the first mating and lasted until weaning of litters from the second gestation (multiparous dams). Analyses of offspring born from multiparous dams exposed to DEHP alone or in a phthalate mixture showed that females experienced a delayed pubertal onset, and as adults they had prolonged estrous cyclicity and reduced Kiss1 expression in the preoptic area and mediobasal hypothalamus. Male littermates showed a reduced anogenital distance and delayed pubertal onset compared with controls. However, in adulthood the weight of androgen-sensitive organs and hypothalamic Kiss1 expression were unaffected, suggesting normal functioning of the male gonadotropic axis. Developmental exposure to DEHP alone or in a phthalate mixture reduced the ability of intact males and ovariectomized and hormonally primed females to attract a sexual partner and to express copulatory behaviors. In addition, females were unable to discriminate between male and female stimuli in the olfactory preference test. Social interaction was also impaired in females, while locomotor activity and anxiety-like behavior in both sexes were unaffected by the treatment. The sexual deficiencies were associated with reduced expression of the androgen receptor in the preoptic area and progesterone receptor in the mediobasal hypothalamus, the key regions involved in male and female sexual behavior, respectively. Thus, the neural structures controlling reproduction are vulnerable to developmental exposure to phthalates at environmentally relevant doses in male and female mice. Adult females had an impaired gonadotropic axis and showed more affected behaviors than adult males.
Collapse
Affiliation(s)
- Nolwenn Adam
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Elodie Desroziers
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Rita Hanine
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Karouna Bascarane
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
3
|
Jeon H, Yeo S, Park EA, Kang D, Shen K, Kim M, Lee I, Jeon J, Moon B, Ji K, Kim S, Kho Y. Identification and quantification of acetyl tributyl citrate (ATBC) metabolites using human liver microsomes and human urine. CHEMOSPHERE 2024; 363:142840. [PMID: 39019193 DOI: 10.1016/j.chemosphere.2024.142840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Plasticizers are chemicals that make plastics flexible, and phthalates are commonly used. Due to the toxic effects of phthalates, there is increasing use of non-phthalate plasticizers like acetyl tributyl citrate (ATBC). ATBC has emerged as a safer alternative, yet concerns about its long-term safety persist due to its high leachability and potential endocrine-disrupting effects. This study aims to identify ATBC metabolites using human liver microsomes and suspect screening methods, and to explore potential urinary biomarkers for ATBC exposure. Using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we identified ATBC metabolites, including acetyl dibutyl citrate (ADBC), tributyl citrate (TBC), and dibutyl citrate (DBC). Urine samples from 15 participants revealed the presence of ADBC in 5, TBC in 11, and DBC in all samples, with DBC concentrations pointedly higher than the other metabolites. These metabolites show promise as biomarkers for ATBC exposure, though further validation with human data is required. Our results underscore the need for comprehensive studies on ATBC metabolism, exposure pathways, and urinary excretion to accurately assess human exposure levels.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Sunghoon Yeo
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Eun-Ah Park
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, 51140, Republic of Korea
| | - Minyoung Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Inhye Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, 134 Yongindaehak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17092, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea.
| |
Collapse
|
4
|
Soloperto S, Renaux M, Lecarpentier L, Minier C, Aroua S, Halm-Lemeille MP, Jozet-Alves C. 17α-Ethinylestradiol exposure disrupts anxiety-like behaviours but not social preference in sea bass larvae (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55708-55719. [PMID: 39243328 DOI: 10.1007/s11356-024-34922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species. In this context, the European sea bass (Dicentrarchus labrax) is emerging as a valuable species representative of the European marine environment. Here, we designed and validated a two-step procedure allowing to sequentially assess anxiety-like behaviours (novel tank test) and social preference (visual social preference test) in sea bass. Thereafter, using this procedure, we evaluated whether social behavioural disruption occurs in 2-month-old larvae after an 8-day exposure to a xenoestrogen, the 17α-ethinylestradiol (EE2 at 0.5 and 50 nM). Our results confirmed previous studies showing that exposure to 50 nM of EE2 induces a significant increase in anxiety-like behaviours in sea bass larvae. On the contrary, social preference seemed unaffected whatever the EE2 concentration, suggesting that social behaviour has more complex mechanical regulations than anxiety.
Collapse
Affiliation(s)
- Sofia Soloperto
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France.
| | - Maelle Renaux
- Unité Littoral Ifremer, LITTORAL, 14520, Port-en-Bessin, France
| | - Lucas Lecarpentier
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| | - Christophe Minier
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | - Salima Aroua
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | | | - Christelle Jozet-Alves
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
5
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
- Elena Morales-Grahl
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Ahmad I, Kaur M, Tyagi D, Singh TB, Kaur G, Afzal SM, Jauhar M. Exploring novel insights into the molecular mechanisms underlying Bisphenol A-induced toxicity: A persistent threat to human health. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104467. [PMID: 38763439 DOI: 10.1016/j.etap.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.
Collapse
Affiliation(s)
- Israel Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Mandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Devansh Tyagi
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Tejinder Bir Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Gurpreet Kaur
- School of Business Studies, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Shaikh Mohammad Afzal
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Mohsin Jauhar
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| |
Collapse
|
7
|
Li Y, Yuan M, Zhang C, Zhang X, Hao J, Tao F, Wang G, Su P. Bisphenol AF exposure synergistically increases the risk for suicidality among early adolescents with child maltreatment: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116511. [PMID: 38810289 DOI: 10.1016/j.ecoenv.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Child maltreatment (CM) is correlated with suicidality risk among adolescents. Additionally, exposure to bisphenol AF (BPAF) may increase this risk. However, the combined effect of CM and BPAF exposure remains unknown and should be further investigated. METHODS In this study, 1,475 early adolescents (mean age = 12.48 years) from the Chinese Early Adolescents Cohort were enrolled. Data were collected at three time points with an interval of 12 months between 2019 and 2021. Participants' history of CM and suicidality (including suicidal ideation and suicidal attempts) were evaluated using a self-report questionnaire. Blood samples were obtained from participants to measure serum BPAF concentrations at baseline. Group-based trajectory modeling was employed to identify different developmental trajectories of suicidality across the three waves. After adjusting for potential confounders, the association between CM and BPAF exposure on suicidal ideation and suicidal attempts was assessed using logistic regression and Poisson regression analyses. RESULTS Participants with CM were associated with a risk of one- and two-year incident suicidality (all ps < 0.05), and BPAF levels were positively associated with two-year incident suicidal ideation (adjusted OR = 1.68, 95% CI: 1.13-2.50). Additionally, middle and high levels of BPAF exposure synergistically increase the risk for one- and two-year incident suicidal ideation among participants with CM (adjusted ORs = 2.00-3.83). Similarly, participants exposed to high-level BPAF as well as CM were at a greater risk of one- and two-year incident suicidal attempts than those with low-level BPAF exposure and no CM (adjusted incidence rate ratio [IRRs] = 2.82-4.34). Moreover, compared with participants with a low developmental trajectory of suicidality across the three waves, high BPAF exposure exhibited a significant synergistic effect on participants with CM in the persistently high suicidal ideation trajectory and the increasing suicidal attempts trajectory (all ps < 0.05). Sex subgroup analysis revealed that females were more susceptible to the synergistic effect of BPAF and CM exposure on suicidality than males. CONCLUSIONS Environmental factors and the psychological status of individuals may synergistically increase their susceptibility to suicidality. These results offer novel insights into enhancing our understanding of suicidality among adolescents.
Collapse
Affiliation(s)
- Yonghan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Mengyuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
8
|
Grau J, Chabowska A, Werner J, Zgoła-Grześkowiak A, Fabjanowicz M, Jatkowska N, Chisvert A, Płotka-Wasylka J. Deep eutectic solvents with solid supports used in microextraction processes applied for endocrine-disrupting chemicals. Talanta 2024; 268:125338. [PMID: 37931567 DOI: 10.1016/j.talanta.2023.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The determination of endocrine-disrupting chemicals (EDCs) has become one of the biggest challenges in Analytical Chemistry. Due to the low concentration of these compounds in different kinds of samples, it becomes necessary to employ efficient sample preparation methods and sensitive measurement techniques to achieve low limits of detection. This issue becomes even more struggling when the principles of the Green Analytical Chemistry are added to the equation, since finding an efficient sample preparation method with low damaging properties for health and environment may become laborious. Recently, deep eutectic solvents (DESs) have been proposed as the most promising green kind of solvents, but also with excellent analytical properties due to the possibility of custom preparation with different components to modify their polarity, viscosity or aromaticity among others. However, conventional extraction techniques using DESs as extraction solvents may not be enough to overcome challenges in analysing trace levels of EDCs. In this sense, combination of DESs with solid supports could be seen as a potential solution to this issue allowing, in different ways, to determine lower concentrations of EDCs. In that aim, the main purpose of this review is the study of the different strategies with solid supports used along with DESs to perform the determination of EDCs, comparing their advantages and drawbacks against conventional DES-based extraction methods.
Collapse
Affiliation(s)
- Jose Grau
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Aneta Chabowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Analytical Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
9
|
Rodríguez-Carrillo A, Verheyen VJ, Van Nuijs ALN, Fernández MF, Remy S. Brain-derived neurotrophic factor (BDNF): an effect biomarker of neurodevelopment in human biomonitoring programs. FRONTIERS IN TOXICOLOGY 2024; 5:1319788. [PMID: 38268968 PMCID: PMC10806109 DOI: 10.3389/ftox.2023.1319788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The present narrative review summarizes recent findings focusing on the role of brain-derived neurotrophic factor (BDNF) as a biomarker of effect for neurodevelopmental alterations during adolescence, based on health effects of exposure to environmental chemical pollutants. To this end, information was gathered from the PubMed database and the results obtained in the European project Human Biomonitoring for Europe (HBM4EU), in which BDNF was measured at two levels of biological organization: total BDNF protein (serum) and BDNF gene DNA methylation (whole blood) levels. The obtained information is organized as follows. First, human biomonitoring, biomarkers of effect and the current state of the art on neurodevelopmental alterations in the population are presented. Second, BDNF secretion and mechanisms of action are briefly explained. Third, previous studies using BDNF as an effect biomarker were consulted in PubMed database and summarized. Finally, the impact of bisphenol A (BPA), metals, and non-persistent pesticide metabolites on BDNF secretion patterns and its mediation role with behavioral outcomes are addressed and discussed. These findings were obtained from three pilot studies conducted in HBM4EU project. Published findings suggested that exposure to some chemical pollutants such as fine particle matter (PM), PFAS, heavy metals, bisphenols, and non-persistent pesticides may alter circulating BDNF levels in healthy population. Therefore, BDNF could be used as a valuable effect biomarker to investigate developmental neurotoxicity of some chemical pollutants.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Toxicological Centre, University of Antwerp, Universiteitsplein, Wilrijk, Belgium
| | - Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Mariana F. Fernández
- Biomedical Research Center and School of Medicine, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), University of Granada, Granada, Spain
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
10
|
Zolzaya S, Narumoto A, Katsuyama Y. Genomic variation in neurons. Dev Growth Differ 2024; 66:35-42. [PMID: 37855730 DOI: 10.1111/dgd.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ayano Narumoto
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
11
|
Leader J, Mínguez-Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Bellinger DC, Oken E, Calafat AM, Hauser R, Braun JM. Paternal and maternal preconception and maternal pregnancy urinary phthalate metabolite and BPA concentrations in relation to child behavior. ENVIRONMENT INTERNATIONAL 2024; 183:108337. [PMID: 38088019 PMCID: PMC10868726 DOI: 10.1016/j.envint.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Epidemiologic studies on health effects of parental preconception exposures are limited despite emerging evidence from toxicological studies suggesting that such exposures, including to environmental chemicals, may affect offspring health. OBJECTIVE We investigated whether maternal and paternal preconception and maternal pregnancy urinary phthalate metabolite and bisphenol A (BPA) concentrations were associated with child behavior. METHODS We analyzed data from the Preconception Environmental exposure And Childhood health Effects (PEACE) Study, an ongoing prospective cohort study of children aged 6-11 years whose parent(s) previously enrolled in the prospective preconception Environment and Reproductive Health (EARTH) study. Using linear mixed models, we estimated covariate-adjusted associations of 11 urinary phthalate metabolite and BPA concentrations collected prior to conception and during pregnancy with Behavioral Assessment System for Children-3 (BASC-3) T-scores (higher scores indicate more problem behaviors). RESULTS This analysis included 134 mothers, 87 fathers and 157 children (24 sets of twins); parents were predominantly non-Hispanic white (mothers and fathers86%). Higher maternal preconception or pregnancy monobenzyl phthalate (MBzP) concentrations were related to higher mean externalizing problems T-scores in their children (β = 1.3 per 1-loge unit increase; 95 % CI: -0.2, 2.4 and β = 2.1, 95 % CI: 0.7, 3.6, respectively). Higher maternal preconception monocarboxyoctyl phthalate (MCOP) was suggested to be related to lower mean externalizing problems T-scores (β = -0.9; 95 % CI: -1.8, 0.0). Higher paternal preconception MCOP was suggestively associated with lower internalizing problems (β = -0.9; 95 %CI:-1.9, 0.1) and lower Behavioral Symptoms Index (BSI) T-scores (β = -1.3; 95 % CI: -2.1, -0.4). CONCLUSION In this cohort, higher maternal preconception and pregnancy MBzP were associated with worse parent-reported child behavior, while higher maternal and paternal preconception MCOP concentrations were related to lower BASC-3 scores.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, Boston, MA, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Research Director Emeritus, Cardiac Neurodevelopment Program, Boston Children's Hospital, Boston, MA, USA; Professor of Neurology and Psychology, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Yu J, Tang L, Yang L, Zheng M, Yu H, Luo Y, Liu J, Xu J. Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neuronal cell pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155123. [PMID: 37976699 DOI: 10.1016/j.phymed.2023.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND This study aimed to investigate the spatial learning/memory and motor abilities of rats and the alteration of miR-542-3p and pyroptosis in the midbrain nigrostriatal area in vivo after nonylphenol (NP) gavage and to explore the mechanism of miR-542-3p regulation of Toll-like receptor 4 (TLR4) in NP-induced pyroptosis in BV2 microglia in vitro. METHODS In vivo: Thirty-six specific-pathogen-free-grade Sprague-Dawley rats were divided into three equal groups: blank control group (treated with pure corn oil), NP group (treated with NP, 80 mg/kg body weight per day for 90 days), and positive control group [treated with lipopolysaccharide (LPS), 2 mg/kg body weight for 7 days]. In vitro: The first part of the experiment was divided into blank group (control, saline), LPS group [1 µg/ml + 1 mM adenosine triphosphate (ATP)], and NP group (40 µmol/L). The second part was divided into mimics NC (negative control) group, miR-542-3p mimics group, mimics NC + NP group, and miR-542-3p mimics + NP group. RESULTS In vivo: Behaviorally, the spatial learning/memory and motor abilities of rats after NP exposure declined, as detected via Y-maze, open field, and rotarod tests. Some microglia in the substantia nigra of the NP-treated rats were activated. The downregulation of miR-542-3p was observed in rat brain tissue after NP exposure. The mRNA/protein expression of pyroptosis-related indicators (TLR4), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin-D (GSDMD), cysteinyl aspartate-specific proteinase-1 (caspase-1), and interleukin-1β (IL-1β) in the substantia nigra of the midbrain increased after NP exposure. In vitro: ASC fluorescence intensity increased in BV2 cells after NP exposure. The mRNA and/or protein expression of pyroptosis-related indicators (TLR4, NLRP3, GSDMD, caspase-1, and IL-1β) in BV2 cells was upregulated after NP exposure. The transfection of miR-542-3p mimics inhibited NP-induced ASC expression in BV2 cells. The overexpression of miR-542-3p, followed by NP exposure, significantly reduced TLR4, NLRP3, ASC, caspase-1, and IL-1β gene and/or protein expression. CONCLUSIONS This study suggested that NP exposure caused a decline in spatial learning memory and whole-body motor ability in rats. Our study was novel in reporting that the upregulation of miR-542-3p targeting and regulating TLR4 could inhibit NLRP3 inflammatory activation and alleviate NP-induced microglia pyroptosis.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lan Tang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Department of Nosocomial Infection Control, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, 550002, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Mucong Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Huawen Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jinqing Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
13
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
14
|
Marinello WP, Gillera SEA, Huang L, Rollman J, Reif DM, Patisaul HB. Uncovering the common factors of chemical exposure and behavior: Evaluating behavioral effects across a testing battery using factor analysis. Neurotoxicology 2023; 99:264-273. [PMID: 37914043 PMCID: PMC11154886 DOI: 10.1016/j.neuro.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Although specific environmental chemical exposures, including flame retardants, are known risk factors for neurodevelopmental disorders (NDDs), direct experimental evidence linking specific chemicals to NDDs is limited. Studies focusing on the mechanisms by which the social processing systems are vulnerable to chemical exposure are underrepresented in the literature, even though social impairments are defining characteristics of many NDDs. We have repeatedly demonstrated that exposure to Firemaster 550 (FM 550), a prevalent flame retardant mixture used in foam-based furniture and infant products, can adversely impact a variety of behavioral endpoints. Our recent work in prairie voles (Microtus ochrogaster), a prosocial animal model, demonstrated that perinatal exposure to FM 550 sex specifically impacts socioemotional behavior. Here, we utilized a factor analysis approach on a battery of behavioral data from our prior study to extract underlying factors that potentially explain patterns within the FM 550 behavior data. This approach identified which aspects of the behavioral battery are most robust and informative, an outcome critical for future study designs. Pearson's correlation identified behavioral endpoints associated with distance and stranger interactions that were highly correlated across 5 behavioral tests. Using these behavioral endpoints, exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) extracted 2 factors that could explain the data: Activity (distance traveled endpoints) and Sociability (time spent with a novel conspecific). Exposure to FM 550 significantly decreased Activity and decreased Sociability. This factor analysis approach to behavioral data offers the advantages of modeling numerous measured variables and simplifying the data set by presenting the data in terms of common, overarching factors in terms of behavioral function.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; ICF International Inc, Durham, NC 27713, USA
| | - Lynn Huang
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - John Rollman
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, NC State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
15
|
Guo Y, Liang X, Li H, Ye M, Zou H, Yu H, Qi T, Hou L, Liang YQ. Effects of norethindrone on the growth, behavior, and thyroid endocrine system of adult female western mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115630. [PMID: 37890255 DOI: 10.1016/j.ecoenv.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
Progestins are mainly used in pharmacotherapy and animal husbandry and have received increasing attention as they are widely detected in various aquatic ecosystems. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to different concentrations of norethindrone (NET) (solvent control, 5.0 (L), 50.0 (M), and 500.0 (H) ng/L) for 42 days. Behaviors, morphological parameters, histology of the thyroid, thyroid hormone levels (TSH, T3, and T4), and transcriptional levels of nine genes in the hypothalamic-pituitary-thyroid (HPT) axis were examined. The results showed that NET decreased sociality but increased the anxiety of G. affinis. Sociality makes fish tend to cluster, and anxiety may cause G. affinis to reduce exploration of new environments. Female fish showed hyperplasia, hypertrophy, and glial depletion in their thyroid follicular epithelial cells after NET treatment. The plasma levels of TSH and T4 were significantly reduced, but T3 concentrations were significantly increased in the fish from the H group. In addition, the transcripts of genes (tshb, tshr, tg, dio1, dio2, thrb) in the brains of fish in the M and H treatments were significantly stimulated, while those of trh and pax2a were suppressed. Our results suggest that NET may impact key social behaviors in G. affinis and interfere with the entire thyroid endocrine system, probably via affecting the transcriptional expression of upstream regulators in the HPT axis.
Collapse
Affiliation(s)
- Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xiaorou Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Haisheng Li
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Meixin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongjun Yu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Tang Qi
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
16
|
Marinello WP, Gillera SEA, Han Y, Richardson JR, St Armour G, Horman BM, Patisaul HB. Gestational exposure to FireMaster® 550 (FM 550) disrupts the placenta-brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster). Mol Cell Endocrinol 2023; 576:112041. [PMID: 37562579 PMCID: PMC10795011 DOI: 10.1016/j.mce.2023.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Gestational flame retardant (FR) exposure has been linked to heightened risk of neurodevelopmental disorders, but the mechanisms remain largely unknown. Historically, toxicologists have relied on traditional, inbred rodent models, yet those do not always best model human vulnerability or biological systems, especially social systems. Here we used prairie voles (Microtus ochrogaster), a monogamous and bi-parental rodent, leveraged for decades to decipher the underpinnings of social behaviors, to examine the impact of fetal FR exposure on gene targets in the mid-gestational placenta and fetal brain. We previously established gestational exposure to the commercial mixture Firemaster 550 (FM 550) impairs sociality, particularly in males. FM 550 exposure disrupted placental monoamine production, particularly serotonin, and genes required for axon guidance and cellular respiration in the fetal brains. Effects were dose and sex specific. These data provide insights on the mechanisms by which FRs impair neurodevelopment and later in life social behaviors.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | | | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
18
|
Płotka-Wasylka J, Mulkiewicz E, Lis H, Godlewska K, Kurowska-Susdorf A, Sajid M, Lambropoulou D, Jatkowska N. Endocrine disrupting compounds in the baby's world - A harmful environment to the health of babies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163350. [PMID: 37023800 DOI: 10.1016/j.scitotenv.2023.163350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Globally, there has been a significant increase in awareness of the adverse effects of chemicals with known or suspected endocrine-acting properties on human health. Human exposure to endocrine disrupting compounds (EDCs) mainly occurs by ingestion and to some extent by inhalation and dermal uptake. Although it is difficult to assess the full impact of human exposure to EDCs, it is well known that timing of exposure is of importance and therefore infants are more vulnerable to EDCs and are at greater risk compared to adults. In this regard, infant safety and assessment of associations between prenatal exposure to EDCs and growth during infancy and childhood has been received considerable attention in the last years. Hence, the purpose of this review is to provide a current update on the evidence from biomonitoring studies on the exposure of infants to EDCs and a comprehensive view of the uptake, the mechanisms of action and biotransformation in baby/human body. Analytical methods used and concentration levels of EDCs in different biological matrices (e.g., placenta, cord plasma, amniotic fluid, breast milk, urine, and blood of pregnant women) are also discussed. Finally, key issues and recommendations were provided to avoid hazardous exposure to these chemicals, taking into account family and lifestyle factors related to this exposure.
Collapse
Affiliation(s)
- Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | - Klaudia Godlewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, 63 Wita Stwosza Street, 80-308 Gdańsk, Poland
| | | | - Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233 Gdańsk, Poland.
| |
Collapse
|
19
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
20
|
Social consequences of rapid environmental change. Trends Ecol Evol 2023; 38:337-345. [PMID: 36473809 DOI: 10.1016/j.tree.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
While direct influences of the environment on population growth and resilience are well studied, indirect routes linking environmental changes to population consequences are less explored. We suggest that social behavior is key for understanding how anthropogenic environmental changes affect the resilience of animal populations. Social structures of animal groups are evolved and emergent phenotypes that often have demographic consequences for group members. Importantly, environmental drivers may directly influence the consequences of social structure or indirectly influence them through modifications to social interactions, group composition, or group size. We have developed a framework to study these demographic consequences. Estimating the strength of direct and indirect pathways will give us tools to understand, and potentially manage, the effect of human-induced rapid environmental changes.
Collapse
|
21
|
Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry 2023; 93:921-933. [PMID: 36906498 DOI: 10.1016/j.biopsych.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Early life represents the most rapid and foundational period of brain development and a time of vulnerability to environmental insults. Evidence indicates that greater exposure to ubiquitous toxicants like fine particulate matter (PM2.5), manganese, and many phthalates is associated with altered developmental, physical health, and mental health trajectories across the lifespan. Whereas animal models offer evidence of their mechanistic effects on neurological development, there is little research that evaluates how these environmental toxicants are associated with human neurodevelopment using neuroimaging measures in infant and pediatric populations. This review provides an overview of 3 environmental toxicants of interest in neurodevelopment that are prevalent worldwide in the air, soil, food, water, and/or products of everyday life: fine particulate matter (PM2.5), manganese, and phthalates. We summarize mechanistic evidence from animal models for their roles in neurodevelopment, highlight prior research that has examined these toxicants with pediatric developmental and psychiatric outcomes, and provide a narrative review of the limited number of studies that have examined these toxicants using neuroimaging with pediatric populations. We conclude with a discussion of suggested directions that will move this field forward, including the incorporation of environmental toxicant assessment in large, longitudinal, multimodal neuroimaging studies; the use of multidimensional data analysis strategies; and the importance of studying the combined effects of environmental and psychosocial stressors and buffers on neurodevelopment. Collectively, these strategies will improve ecological validity and our understanding of how environmental toxicants affect long-term sequelae via alterations to brain structure and function.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Center for Health Minds, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
22
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
23
|
Morin attenuates neurobehavioural deficits, hippocampal oxidative stress, inflammation, and apoptosis in rats co-exposed to bisphenol S and diethyl phthalate. Brain Res 2022; 1794:148068. [PMID: 36041494 DOI: 10.1016/j.brainres.2022.148068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022]
Abstract
Endocrine-disrupting pollutants (EDPs) remain pervasive in the environment. Bisphenol S (BPS) and diethyl phthalates (DEP) are commonly used to replace the more toxic EDPs. However, it is unclear if they induce neurotoxicity, like their predecessors. Morin possesses relevant neuro-pharmacological activities. Hence, we sought to evaluate the protective effects of morin against the neurotoxic effects previously reported for EDPs. Male Wistar rats were exposed to a mixture of BPS and DEP (MBD) and treated with morin for 21 days. Behavioural assessments were conducted, and the hippocampal tissues were processed for analysis. Rats exposed to MBD presented anxiety-like behaviours, impaired cognitive and motor functions compared to the control group. MBD exposure induced hyperactivity of neurosignalling enzymes (AChE, ADA, MAO-A) and depleted hippocampal antioxidants (SOD, CAT, GPx, and GSH). MBD exposure increased calcium levels and inhibited total Ca2+-ATPase activity. Levels of reactive species (NO and H2O2) and oxidative damage markers (MDA and AOPP) were significantly (P < 0.05) elevated compared to control. The hippocampal expressions of IL-1β, TNFα, BAX, and APAF-1 in the MBD-exposed rats were significantly higher compared to control. Correspondingly, NF-κB and caspase-3 pathways were activated in the hippocampus of MBD-exposed rats, while the expressions of IL-10 and BDNF were repressed. However, co-treatment with morin improved the neurobehavioral outcomes, alleviated the hyperactivity of neurosignalling enzymes, while suppressing hippocampal oxidative stress, inflammation, and apoptosis. Histological and stereological evaluations supported these findings. In conclusion, co-exposure to BPS and DEP elicit similar neurotoxic outcomes as their predecessors, while morin confers marked protection against these outcomes.
Collapse
|
24
|
Rodríguez-Carrillo A, D'Cruz SC, Mustieles V, Suárez B, Smagulova F, David A, Peinado F, Artacho-Cordón F, López LC, Arrebola JP, Olea N, Fernández MF, Freire C. Exposure to non-persistent pesticides, BDNF, and behavioral function in adolescent males: Exploring a novel effect biomarker approach. ENVIRONMENTAL RESEARCH 2022; 211:113115. [PMID: 35292247 DOI: 10.1016/j.envres.2022.113115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Numerous contemporary non-persistent pesticides may elicit neurodevelopmental impairments. Brain-derived neurotrophic factor (BDNF) has been proposed as a novel effect biomarker of neurological function that could help to understand the biological responses of some environmental exposures. OBJECTIVES To investigate the relationship between exposure to various non-persistent pesticides, BDNF, and behavioral functioning among adolescents. METHODS The concentrations of organophosphate (OP) insecticide metabolites 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), malathion diacid (MDA), and diethyl thiophosphate (DETP); metabolites of pyrethroids 3-phenoxybenzoic acid (3-PBA) and dimethylcyclopropane carboxylic acid (DCCA), the metabolite of insecticide carbaryl 1-naphthol (1-N), and the metabolite of ethylene-bis-dithiocarbamate fungicides ethylene thiourea (ETU) were measured in spot urine samples, as well as serum BDNF protein levels and blood DNA methylation of Exon IV of BDNF gene in 15-17-year-old boys from the INMA-Granada cohort in Spain. Adolescents' behavior was reported by parents using the Child Behavior Check List (CBCL/6-18). This study included 140 adolescents of whom 118 had data on BDNF gene DNA methylation. Multivariable linear regression, weighted quantile sum (WQS) for mixture effects, and mediation models were fit. RESULTS IMPy, MDA, DCCA, and ETU were detected in more than 70% of urine samples, DETP in 53%, and TCPy, 3-PBA, and 1-N in less than 50% of samples. Higher levels of IMPy, TCPy, and ETU were significantly associated with more behavioral problems as social, thought problems, and rule-breaking symptoms. IMPy, MDA, DETP, and 1-N were significantly associated with decreased serum BDNF levels, while MDA, 3-PBA, and ETU were associated with higher DNA methylation percentages at several CpGs. WQS models suggest a mixture effect on more behavioral problems and BDNF DNA methylation at several CpGs. A mediated effect of serum BDNF within IMPy-thought and IMPy-rule breaking associations was suggested. CONCLUSION BDNF biomarkers measured at different levels of biological complexity provided novel information regarding the potential disruption of behavioral function due to contemporary pesticides, highlighting exposure to diazinon (IMPy) and the combined effect of IMPy, MDA, DCCA, and ETU. However, further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Shereen C D'Cruz
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Fátima Smagulova
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, INSERM, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Francisco Peinado
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain
| | - Francisco Artacho-Cordón
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Luis C López
- University of Granada, Department of Physiology, 18016, Granada, Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; University of Granada, Department of Preventive Medicine and Public Health, 18016, Granada, Spain
| | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Department of Radiology, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain.
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| |
Collapse
|
25
|
Kuang H, Zhou W, Zeng Y, Xu D, Zhu W, Lin S, Fan R. Dose makes poison: Insights into the neurotoxicity of perinatal and juvenile exposure to environmental doses of 16 priority-controlled PAHs. CHEMOSPHERE 2022; 298:134201. [PMID: 35257710 DOI: 10.1016/j.chemosphere.2022.134201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Whether chronic exposure to environmental doses of polycyclic aromatic hydrocarbons (PAHs) can lead to neurotoxic effects is still unclear. Hence, the neurotoxic effects of perinatal and juvenile exposure to 16 priority-controlled PAHs were investigated. The mice were treated with 0, 0.5, 18.75, 50, 1875 μg/kg/day of PAHs corresponding to various population exposure concentrations from gestation to postnatal day 60. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hippocampal and cortical neurotransmitter levels were determined using liquid chromatography-tandem mass spectrometry. Typical indicators or outcome of neurotoxicity, including, spatial learning and memory ability, hippocampal long-term potentiation (LTP) and dendritic spine density were evaluated via Morris water maze tests, electrophysiological experiments and Golgi-Cox assays, respectively. The results showed that exposure to different levels of PAH could not increase oxidative DNA damage level. Mice exposed to 0.5, 50 and 1875 μg/kg/day PAHs had significantly longer escape latency than the control group only on the 1st day (p < 0.05). The number of platform crossings and the time spent in target quadrant were similar between the control and the PAHs-exposed mice. Compared with the control mice, only those exposed to 50 μg/kg/day PAHs had significantly lower LTP in hippocampal CA1 region and dendritic spine density in hippocampal DG region (p < 0.05). Except for serotonin, no significant difference in hippocampal and cortical neurotransmitter concentrations was observed between the control and PAHs-exposed groups. Taken together, perinatal and juvenile exposure to environmental doses of PAHs had no profound effect on spatial learning and memory abilities, hippocampal LTP, dendritic spines density, and neurotransmitter levels. These unexpected findings were quite different from previous in vivo studies which commonly used 2-3 orders of magnitude higher PAHs doses to treat animals. Thus, the environmental dose is a crucial reference for future toxicological research to reveal the actual toxic mechanisms and human health effects of PAHs exposure.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Wenji Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yingwei Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Da Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wanqi Zhu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shengjie Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
26
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
27
|
Jin ZY, Liu CK, Hong YQ, Liang YX, Liu L, Yang ZM. BHPF exposure impairs mouse and human decidualization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119222. [PMID: 35378203 DOI: 10.1016/j.envpol.2022.119222] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Although BHPF has been widely used in plastic manufacturing as a substitute for BPA, current evidence suggests that BHPF also causes harmful effects on reproduction. However, effects of BHPF on mammalian early pregnancy are still poorly defined. This study aimed to explore the effects of BHPF on early pregnancy, especially decidualization and embryonic development in mice and human beings. The results showed that 50 and 100 mg/kg BHPF exposure reduced birth weight, and implantation site weight on the day 8 of pregnancy in mice. Because BHPF inhibits both embryo development and artificial decidualization in mice, suggesting that the detrimental effects of BHPF should be from its effects on embryo development and decidualization. Under in vitro decidualization, 10 μM BHPF inhibits decidualization and leads to disordered expression of Lamin B1 and collagen in mice. In addition, 10 μM BHPF also inhibits decidualization, and causes disordered expression of both collagen III and Lamin B1 under human in vitro decidualization. However, collagen III supplementation can rescue BHPF inhibition on decidualization. Further, our study demonstrates that BHPF impairs human decidualization through the HB-EGF/EGFR/STAT3/Collagen III pathway. Taken together these data suggest that exposure to BHPF impairs mouse and human decidualization during early pregnancy.
Collapse
Affiliation(s)
- Zhi-Yong Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Cheng-Kan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Qi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Xiang Liang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Experimental Animal Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Li Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Soloperto S, Nihoul F, Olivier S, Poret A, Couteau J, Halm-Lemeille MP, Danger JM, Aroua S. Effects of 17α-Ethinylestradiol (EE2) exposure during early life development on the gonadotropic axis ontogenesis of the European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111260. [PMID: 35724955 DOI: 10.1016/j.cbpa.2022.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Exposure of young organisms to oestrogenic endocrine disrupting chemicals (EDCs) can elicit adverse effects, particularly on the reproductive function. In fish, as in other vertebrates, reproduction is controlled by the neuroendocrine gonadotropic axis, whose components are mainly regulated by sex steroids and may then be targets for EDCs. In the present study, we investigated the effects of a xenoestrogen exposure on the ontogenesis of the gonadotropic axis in European sea bass. After exposure of hatching larvae for 8 days to 17α-ethinylestradiol (EE2) (0.5 nM and 50 nM), gene expression for kisspeptins (kiss1, kiss2), gonadotropin-releasing hormones (gnrh1, gnrh2, gnrh3), gonadotropin beta subunits (lhβ and fshβ) and brain type aromatase (cyp19a1b) were measured using quantitative real-time PCR. Our results demonstrate that EE2 strongly stimulated the expression of brain type aromatase (cyp19a1b) in sea bass larvae. In addition, EE2 exposure also affected the mRNA levels of kiss1, gnrh1 and gnrh3 by inducing a downregulation of these genes during the early developmental stages, while no effect was seen in gnrh2, lhβ and fshβ. These results reinforce the idea that the larval development is a sensitive critical period in regard to endocrine disruption and that the gonadotropic axis in the developing sea bass is sensitive to xenoestrogen exposure.
Collapse
Affiliation(s)
- Sofia Soloperto
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Florent Nihoul
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Stéphanie Olivier
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Agnès Poret
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | | | | | - Jean-Michel Danger
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France
| | - Salima Aroua
- UMR-I 02 INERIS-URCA-ULH SEBIO, Normandie Univ, UNIHAVRE, FR CNRS 3730 Scale, Le Havre, France.
| |
Collapse
|
29
|
Individual and Combined Effects of Paternal Deprivation and Developmental Exposure to Firemaster 550 on Socio-Emotional Behavior in Prairie Voles. TOXICS 2022; 10:toxics10050268. [PMID: 35622681 PMCID: PMC9147230 DOI: 10.3390/toxics10050268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022]
Abstract
The prevalence of neurodevelopmental disorders (NDDs) is rapidly rising, suggesting a confluence of environmental factors that are likely contributing, including developmental exposure to environmental contaminants. Unfortunately, chemical exposures and social stressors frequently occur simultaneously in many communities, yet very few studies have sought to establish the combined effects on neurodevelopment or behavior. Social deficits are common to many NDDs, and we and others have shown that exposure to the chemical flame retardant mixture, Firemaster 550 (FM 550), or paternal deprivation impairs social behavior and neural function. Here, we used a spontaneously prosocial animal model, the prairie vole (Microtus ochrogaster), to explore the effects of perinatal chemical (FM 550) exposure alone or in combination with an early life stressor (paternal absence) on prosocial behavior. Dams were exposed to vehicle (sesame oil) or 1000 µg FM 550 orally via food treats from conception through weaning and the paternal absence groups were generated by removing the sires the day after birth. Adult offspring of both sexes were then subjected to open-field, sociability, and a partner preference test. Paternal deprivation (PD)-related effects included increased anxiety, decreased sociability, and impaired pair-bonding in both sexes. FM 550 effects include heightened anxiety and partner preference in females but reduced partner preference in males. The combination of FM 550 exposure and PD did not exacerbate any behaviors in either sex except for distance traveled by females in the partner preference test and, to a lesser extent, time spent with, and the number of visits to the non-social stimulus by males in the sociability test. FM 550 ameliorated the impacts of parental deprivation on partner preference behaviors in both sexes. This study is significant because it provides evidence that chemical and social stressors can have unique behavioral effects that differ by sex but may not produce worse outcomes in combination.
Collapse
|
30
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
31
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. ENVIRONMENTAL RESEARCH 2022; 207:112658. [PMID: 34990614 DOI: 10.1016/j.envres.2021.112658] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Many classes of compounds are known or suspected to disrupt the endocrine system of vertebrate and invertebrate organisms. This review of the sources and fate of selected endocrine disrupting chemicals (EDCs) in the environment includes classes of compounds that are "legacy" contaminants, as well as contaminants of emerging concern. EDCs included for discussion are organochlorine compounds, halogenated aromatic hydrocarbons, brominated flame retardants, per- and polyfluoroalkyl substances, alkylphenols, phthalates, bisphenol A and analogues, pharmaceuticals, drugs of abuse and steroid hormones, personal care products, and organotins. An exhaustive survey of the fate of these contaminants in all environmental media (e.g., air, water, soil, biota, foods and beverages) is beyond the scope of this review, so the priority is to highlight the fate of EDCs in environmental media for which there is a clear link between exposure and endocrine effects in humans or in biota from other taxa. Where appropriate, linkages are also made between the fate of EDCs and regulatory limits such as environmental quality guidelines for water and sediments and total daily intake values for humans.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques du Québec. Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
32
|
Yue M, Liu Q, Wang F, Zhou W, Liu L, Wang L, Zou Y, Zhang L, Zheng M, Zeng S, Gao J. Urinary neonicotinoid concentrations and pubertal development in Chinese adolescents: A cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 163:107186. [PMID: 35325769 DOI: 10.1016/j.envint.2022.107186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Animal studies suggest that exposure to certain neonicotinoids may interfere with the normal function of endocrine system in mammals. However, evidence from human studies is limited. OBJECTIVES This study conducted a cross-sectional analysis to examine urinary neonicotinoids concentrations in Chinese adolescents and its association with pubertal development. METHODS 774 urine samples from 439 boys (median age: 13.7 years; 25th-75th percentile: 12.7-14.5 years) and 335 girls (median age: 13.7 years; 25th-75th percentile: 12.7-14.5 years) were collected for determination of ten neonicotinoids (imidacloprid, nitenpyram, acetamiprid, thiacloprid, imidaclothiz, thiamethoxam, clothianidin, dinotefuran, flonicamid, sulfoxaflor) and one metabolite (N-desmethyl-acetamiprid). Urinary creatinine was detected for concentration adjustment. Pubertal development including pubic hair, axillary hair, genitalia (boys), testicular volume (boys) and breast (girls) assessed by Tanner stages and others (spermarche, facial hair for boys and menarche for girls) were obtained by physical examination and questionnaire. Logistic and bayesian kernel machine regression were used to investigate the association between neonicotinoids concentrations and pubertal developments. RESULTS High detection rates ranged from 72.0% to 100.0% for all neonicotinoids. Boys and girls with thiacloprid concentration at the >75th percentile had lower stage of genitalia development (OR: 0.83, 95% CI: 0.33-0.93) and higher stage of axillary hair development (OR: 1.46, 95% CI: 1.12-3.41), respectively, compared with those at the <25th percentile. The estimate change in genitalia stage was significantly different at or above the 75th percentile concentration of neonicotinoids mixture compared to the 50th percentile concentration. No associations were found between other urinary neonicotinoids and other indicators of puberty. CONCLUSIONS Higher thiacloprid concentration was associated with delayed genitalia development in boys and early axillary hair development in girls. Neonicotinoids mixture was negatively associated with genitalia stage in the joint effect. Given the characteristic of the cross-sectional study, our results need further confirmation of the causal relationship.
Collapse
Affiliation(s)
- Min Yue
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Qin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Wenli Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liying Liu
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Lu Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Yong Zou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyu Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Meilin Zheng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, PR China
| | - Jieying Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
33
|
Nuñez P, Arguelles J, Perillan C. Sex-specific influence of maternal exposure to bisphenol A on sodium and fluid balance in response to dipsogenic challenges in rats. Appetite 2022; 176:106091. [DOI: 10.1016/j.appet.2022.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
|
34
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
35
|
White-Traut R, Gillette P, Simpson P, Zhang L, Nazarloo HP, Carter CS. Early Postpartum Maternal and Newborn Responses to Auditory, Tactile, Visual, Vestibular, and Olfactory Stimuli. J Obstet Gynecol Neonatal Nurs 2022; 51:402-417. [PMID: 35469779 DOI: 10.1016/j.jogn.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To compare maternal psychological well-being, newborn behavior, and maternal and newborn salivary oxytocin (OT) and cortisol before and after two maternally administered multisensory behavioral interventions or an attention control group. DESIGN Randomized prospective clinical trial. SETTING U.S. Midwest community hospital. PARTICIPANTS Newborns and their mothers (n = 102 dyads) participated. Mothers gave birth vaginally at term gestation and had no physical or mental health diagnoses. Newborns with low Apgar scores, receipt of oxygen, suspected infection, or congenital anomalies were excluded. METHODS Dyads were randomly assigned to the auditory, tactile, visual, and vestibular (ATVV) intervention, the ATVV with odor from a baby lotion (ATVVO), or the attention control (AC) Group. Maternal psychological well-being, newborn behavior, and endocrine responses (salivary cortisol and OT) were measured before and after the intervention. RESULTS Newborns in the ATVV and ATVVO groups exhibited increases in potent engagement behaviors (p < .0001 and p = .001, respectively). Newborns in the AC group exhibited a decrease in potent engagement (p = .013) and an increase in potent disengagement (p = .029). Mothers in the ATVVO group exhibited an increase in OT (p = .01) and the largest change in OT (p = .02) compared to mothers in the ATVV and AC groups. We noted no change in maternal psychological well-being or newborn endocrine responses. CONCLUSION Inclusion of an odor via lotion with a behavioral intervention (ATVV) influenced maternal OT more than the behavioral intervention alone. Newborns were behaviorally responsive to the interventions; however, endocrine measures were not associated with intervention changes.
Collapse
|
36
|
Quo Vadis Psychiatry? Why It Is Time to Endorse Evolutionary Theory. J Nerv Ment Dis 2022; 210:235-245. [PMID: 35349502 DOI: 10.1097/nmd.0000000000001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent decades, psychiatry and the neurosciences have made little progress in terms of preventing, diagnosing, classifying, or treating mental disorders. Here we argue that the dilemma of psychiatry and the neurosciences is, in part, based on fundamental misconceptions about the human mind, including misdirected nature-nurture debates, the lack of definitional concepts of "normalcy," distinguishing defense from defect, disregarding life history theory, evolutionarily uninformed genetic and epigenetic research, the "disconnection" of the brain from the rest of the body, and lack of attention to actual behavior in real-world interactions. All these conceptual difficulties could potentially benefit from an approach that uses evolutionary theory to improve the understanding of causal mechanisms, gene-environment interaction, individual differences in behavioral ecology, interaction between the gut (and other organs) and the brain, as well as cross-cultural and across-species comparison. To foster this development would require reform of the curricula of medical schools.
Collapse
|
37
|
Zhao KM, Zhong SS, Zhang J, Zhang CS, Dang Z, Liu ZH. Activity measurement of arylsulfatase and β-glucuronidase in activated sludge: HPLC-based versus classical spectrophotometric method. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10704. [PMID: 35373470 DOI: 10.1002/wer.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Arylsulfatase and β-glucuronidase are two important enzymes in wastewater and surface water, which play important roles on cleavage of sulfate/glucuronide estrogens. In this work, a high-performance liquid chromatography (HPLC)-based new method was firstly established for arylsulfatase/β-glucuronidase with determination of p-nitrophenyl sulfate (pNPS)/p-nitrophenyl-β-D-glucuronide (pNPG). The limits of detections (LODs) of the developed method for pNPS and pNPG were 0.164 and 0.098 μM, respectively. Intraday and interday reproducibility expressed as relative standard deviation (RSD) values of retention times and peak areas was 0.39%-3.68% and 0.23%-4.74%, respectively. The respective recovery efficiencies of this HPLC-based method spiking at three different concentrations for p-nitrophenol (pNP), pNPS, and pNPG in activated sludge were 76.5%-88.1%, 79.2%-93.1%, and 84.2%-96.1%, with RSD below 3.9%. The HPLC-based method was finally applied to estimate the enzyme activity of arylsulfatase/β-glucuronidase in one activated sludge system and along which the classical spectrophotometric method was also evaluated. Compared with the classic spectrophotometric analytical method, the HPLC-based new method could simultaneously measure arylsulfatase/β-glucuronidase one time, which was convenient and time-saving. Moreover, the developed method could effectively avoid possible underestimation that the spectrophotometric method might encounter. PRACTITIONER POINTS: A new HPLC-based method for activity estimation of arylsulfatase and β-glucuronidase was developed. The HPLC-based method can simultaneously estimate enzyme activity of both arylsulfatase and β-glucuronidase. The HPLC-based method can avoid possible underestimation that spectrophotometric method may encounter.
Collapse
Affiliation(s)
- Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
| | - Cun-Sheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
| |
Collapse
|
38
|
How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data. Int J Mol Sci 2022; 23:ijms23063153. [PMID: 35328575 PMCID: PMC8952789 DOI: 10.3390/ijms23063153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
This review provides an overview of the assessment of the endocrine disrupting (ED) properties of carbon disulfide (CS2), following the methodology used at the European level to identify endocrine disruptors. Relevant in vitro, in vivo studies and human data are analyzed. The assessment presented here focuses on one endocrine activity, i.e., thyroid disruption, and two main adverse effects, neurotoxicity and cardiotoxicity. The data available on the different ED or non-ED modes of action (MoA), known to trigger these adverse effects, are described and the strength of evidence of the different MoA is weighted. We conclude that the adverse effects could be due to systemic toxicity rather than endocrine-mediated toxicity. This assessment illustrates the scientific and regulatory challenges in differentiating a specific endocrine disruption from an indirect endocrine effect resulting from a non-ED mediated systemic toxicity. This issue of evaluating the ED properties of highly toxic and reactive substances has been insufficiently developed by European guidance so far and needs to be further addressed. Finally, this example also raises questions about the capacity of the technics available in toxicology to address such a complex issue with certainty.
Collapse
|
39
|
Prenatal Exposure to an EDC Mixture, NeuroMix: Effects on Brain, Behavior, and Stress Responsiveness in Rats. TOXICS 2022; 10:toxics10030122. [PMID: 35324748 PMCID: PMC8954446 DOI: 10.3390/toxics10030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022]
Abstract
Humans and wildlife are exposed to endocrine-disrupting chemicals (EDCs) throughout their lives. Environmental EDCs are implicated in a range of diseases/disorders with developmental origins, including neurodevelopment and behavior. EDCs are most often studied one by one; here, we assessed outcomes induced by a mixture designed to represent the real-world situation of multiple simultaneous exposures. The choice of EDCs, which we refer to as “NeuroMix,” was informed by evidence for neurobiological effects in single-compound studies and included bisphenols, phthalates, vinclozolin, and perfluorinated, polybrominated, and polychlorinated compounds. Pregnant Sprague Dawley rats were fed the NeuroMix or vehicle, and then offspring of both sexes were assessed for effects on postnatal development and behaviors and gene expression in the brain in adulthood. In order to determine whether early-life EDCs predisposed to subsequent vulnerability to postnatal life challenges, a subset of rats were also given a stress challenge in adolescence. Prenatal NeuroMix exposure decreased body weight and delayed puberty in males but not females. In adulthood, NeuroMix caused changes in anxiety-like, social, and mate preference behaviors only in females. Effects of stress were predominantly observed in males. Several interactions of NeuroMix and stress were found, especially for the mate preference behavior and gene expression in the brain. These findings provide novel insights into how two realistic environmental challenges lead to developmental and neurobehavioral deficits, both alone and in combination, in a sex-specific manner.
Collapse
|
40
|
Adam N, Mhaouty-Kodja S. Behavioral Effects of Exposure to Phthalates in Female Rodents: Evidence for Endocrine Disruption? Int J Mol Sci 2022; 23:2559. [PMID: 35269705 PMCID: PMC8910129 DOI: 10.3390/ijms23052559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Phthalates have been widely studied for their reprotoxic effects in male rodents and in particular on testosterone production, for which reference doses were established. The female rodent brain can also represent a target for exposure to these environmental endocrine disruptors. Indeed, a large range of behaviors including reproductive behaviors, mood-related behaviors, and learning and memory are regulated by sex steroid hormones. Here we review the experimental studies addressing the effects and mechanisms of phthalate exposure on these behaviors in female rodents, paying particular attention to the experimental conditions (period of exposure, doses, estrous stage of analyses etc.). The objective of this review is to provide a clear picture of the consistent effects that can occur in female rodents and the gaps that still need to be filled in terms of effects and mode(s) of action for a better risk assessment for human health.
Collapse
Affiliation(s)
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine—Institut de Biologie Paris Seine, 7 quai Saint Bernard, 75005 Paris, France;
| |
Collapse
|
41
|
Gillette R, Dias M, Reilly MP, Thompson LM, Castillo NJ, Vasquez EL, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Effects on Social Behaviors in Rats, and Analysis by Machine Learning. TOXICS 2022; 10:toxics10010030. [PMID: 35051072 PMCID: PMC8779176 DOI: 10.3390/toxics10010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
All individuals are directly exposed to extant environmental endocrine-disrupting chemicals (EDCs), and indirectly exposed through transgenerational inheritance from our ancestors. Although direct and ancestral exposures can each lead to deficits in behaviors, their interactions are not known. Here we focused on social behaviors based on evidence of their vulnerability to direct or ancestral exposures, together with their importance in reproduction and survival of a species. Using a novel "two hits, three generations apart" experimental rat model, we investigated interactions of two classes of EDCs across six generations. PCBs (a weakly estrogenic mixture Aroclor 1221, 1 mg/kg), Vinclozolin (antiandrogenic, 1 mg/kg) or vehicle (6% DMSO in sesame oil) were administered to pregnant rat dams (F0) to directly expose the F1 generation, with subsequent breeding through paternal or maternal lines. A second EDC hit was given to F3 dams, thereby exposing the F4 generation, with breeding through the F6 generation. Approximately 1200 male and female rats from F1, F3, F4 and F6 generations were run through tests of sociability and social novelty as indices of social preference. We leveraged machine learning using DeepLabCut to analyze nuanced social behaviors such as nose touching with accuracy similar to a human scorer. Surprisingly, social behaviors were affected in ancestrally exposed but not directly exposed individuals, particularly females from a paternally exposed breeding lineage. Effects varied by EDC: Vinclozolin affected aspects of behavior in the F3 generation while PCBs affected both the F3 and F6 generations. Taken together, our data suggest that specific aspects of behavior are particularly vulnerable to heritable ancestral exposure of EDC contamination, that there are sex differences, and that lineage is a key factor in transgenerational outcomes.
Collapse
Affiliation(s)
- Ross Gillette
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Michelle Dias
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Michael P. Reilly
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Lindsay M. Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Norma J. Castillo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Erin L. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
- Correspondence:
| |
Collapse
|
42
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
43
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial and seasonal variations of endocrine disrupting compounds in water and sediment samples of Markman Canal and Swartkops River Estuary, South Africa and their ecological risk assessment. MARINE POLLUTION BULLETIN 2021; 173:113012. [PMID: 34607130 DOI: 10.1016/j.marpolbul.2021.113012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 05/12/2023]
Abstract
The presence of pharmaceuticals in surface water and sediment has sparked up a global concern, as they could cause harm to human health. In this study, we investigated five pharmaceuticals (caffeine, carbamazepine, sulfamethoxazole, testosterone, and trimethoprim) in surface water and sediment samples from Swartkops River Estuary and Markman Stormwater Canal, in the Eastern Cape Province, South Africa. Ultra-Performance Liquid Chromatography (UPLC) systems coupled with a hyphenated quadrupole-time-of-flight mass spectrometry (QTOF-MS) was used for the analysis. Of the five pharmaceuticals investigated, three were detected in sediment samples at concentrations ranging from BDL - 23.86 μg/kg (dw). Caffeine and sulfamethoxazole were below the detection limit. The finding of this current study suggests that Markman and Motherwell's stormwater canals were potential contributors to pollution in Swartkops River Estuary. Ecotoxicity risk assessment indicated that trimethoprim and carbamazepine could constitute potential risk to aquatic organisms in Markman Canal and Swartkops Estuary, suggesting the need for proper control measure to prevent the pollution from toxicants in aquatic resources.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa; Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
44
|
Bonaldo B, Casile A, Bettarelli M, Gotti S, Panzica G, Marraudino M. Effects of chronic exposure to bisphenol A in adult female mice on social behavior, vasopressin system, and estrogen membrane receptor (GPER1). Eur J Histochem 2021; 65:3272. [PMID: 34755506 PMCID: PMC8607277 DOI: 10.4081/ejh.2021.3272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific "critical periods" of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO); Department of Neuroscience "Rita Levi-Montalcini", University of Turin.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO).
| | | | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO); Department of Neuroscience "Rita Levi-Montalcini", University of Turin.
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO); Department of Neuroscience "Rita Levi-Montalcini", University of Turin.
| | | |
Collapse
|
45
|
Vandenberg LN, Pelch KE. Systematic Review Methodologies and Endocrine Disrupting Chemicals: Improving Evaluations of the Plastic Monomer Bisphenol A. Endocr Metab Immune Disord Drug Targets 2021; 22:748-764. [PMID: 34610783 DOI: 10.2174/1871530321666211005163614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are found in plastics, personal care products, household items, and other consumer goods. Risk assessments are intended to characterize a chemical's hazards, identify the doses at which adverse outcomes are observed, quantify exposure levels, and then compare these doses to determine the likelihood of risk in a given population. There are many problems with risk assessments for EDCs, allowing people to be exposed to levels that are later associated with serious health outcomes in epidemiology studies. OBJECTIVE In this review, we examine issues that affect the evaluation of EDCs in risk assessments (e.g., use of insensitive rodent strains and absence of disease-oriented outcomes in hazard assessments; inadequate exposure assessments). We then review one well-studied chemical, Bisphenol A (BPA; CAS #80-05-7) an EDC found in plastics, food packaging, and other consumer products. More than one hundred epidemiology studies suggest associations between BPA exposures and adverse health outcomes in environmentally exposed human populations. FINDINGS We present support for the use of systematic review methodologies in the evaluation of BPA and other EDCs. Systematic reviews would allow studies to be evaluated for their reliability and risk of bias. They would also allow all data to be used in risk assessments, which is a requirement for some regulatory agencies. CONCLUSION Systematic review methodologies can be used to improve evaluations of BPA and other EDCs. Their use could help to restore faith in risk assessments and ensure that all data are utilized in decision-making. Regulatory agencies are urged to conduct transparent, well-documented and proper systematic reviews for BPA and other EDCs.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | | |
Collapse
|
46
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
47
|
Chen CY, Sun CY, Hsu HJ, Wu IW, Chen YC, Lee CC. Xenoestrogen exposure and kidney function in the general population: Results of a community-based study by laboratory tests and questionnaire-based interviewing. ENVIRONMENT INTERNATIONAL 2021; 155:106585. [PMID: 33910077 DOI: 10.1016/j.envint.2021.106585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a growing concern worldwide. Exposure to xenoestrogens (XEs), such as phthalates, parabens, and phenols, lead to CKD. However, kidney function and its complex relationship with XEs, lifestyle, and dietary habits are not well understood. METHODS In the present cross-sectional community-based cohort study, we enrolled 887 subjects for a questionnaire-based interview and laboratory tests. XE exposure concerning lifestyle/dietary habits were evaluated using questionnaires. Urinary levels of 17XE metabolites were measured in 60 subjects with high exposure risk scores and 60 subjects with low exposure risk scores. RESULTS Univariate and multivariate linear regression showed that a high exposure score (β ± SE: 4.226 ± 1.830, P = 0.021) was independently negatively associated with eGFR in 887 subjects. Univariate and multivariate linear regression to urinary XEs and urine albumin creatinine excretion ratio (UACR) in 120 subjects indicated that ethylparaben (EP) (β: 1.934, 95% CI: 0.135-3.733, P = 0.035) was significantly associated with increased UACR. Multivariate regression analyses of the CKD subgroup (n = 38), after adjusting for age, showed that higher levels of mono-(2-ethylhexyl) phthalate (MEHP), EP, nonylphenol (NP), and benzophenone-3 (BP-3) were significantly associated with lower estimated glomerular filtration rate (eGFR). Higher urinary levels of MEHP (OR: 3.037, 95% CI: 1.274-7.241) were more likely associated with high exposure scores (>5 points), after adjusting for diabetes, gender, eGFR, age, Na, Ca, albumin, vitamin D, systolic blood pressure (SBP), white blood cell count, total bilirubin, aspartate transaminase, and heart rate. MEHP (β ± SE: 0.033 ± 0.009, P < 0.001) was also significantly positively associated with total exposure scores after applying multivariate linear regression analyses. CONCLUSION XE exposure scores obtained from the questionnaires were negatively associated with kidney function. Urinary metabolites of XEs, including EP, NP, BP-3, and MEHP, are potential risk factors for microalbuminuria and decline in kidney function. MEHP seemed to have the strongest correlation with high exposure scores and decline in kidney function.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fuxing St., Guishan Dist., Taoyuan City 333423, Taiwan, ROC
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan, ROC; College of Medicine, Chang Gung University, Taipei, Taiwan, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC.
| |
Collapse
|
48
|
Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, Rojello Fernández S, Hogberg HT, Kwiatkowski CF, Page JD, Soehl A, Stapleton HM. Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:105001. [PMID: 34612677 PMCID: PMC8493874 DOI: 10.1289/ehp9285] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND To date, the toxicity of organophosphate esters has primarily been studied regarding their use as pesticides and their effects on the neurotransmitter acetylcholinesterase (AChE). Currently, flame retardants and plasticizers are the two largest market segments for organophosphate esters and they are found in a wide variety of products, including electronics, building materials, vehicles, furniture, car seats, plastics, and textiles. As a result, organophosphate esters and their metabolites are routinely found in human urine, blood, placental tissue, and breast milk across the globe. It has been asserted that their neurological effects are minimal given that they do not act on AChE in precisely the same way as organophosphate ester pesticides. OBJECTIVES This commentary describes research on the non-AChE neurodevelopmental toxicity of organophosphate esters used as flame retardants and plasticizers (OPEs). Studies in humans, mammalian, nonmammalian, and in vitro models are presented, and relevant neurodevelopmental pathways, including adverse outcome pathways, are described. By highlighting this scientific evidence, we hope to elevate the level of concern for widespread human exposure to these OPEs and to provide recommendations for how to better protect public health. DISCUSSION Collectively, the findings presented demonstrate that OPEs can alter neurodevelopmental processes by interfering with noncholinergic pathways at environmentally relevant doses. Application of a pathways framework indicates several specific mechanisms of action, including perturbation of glutamate and gamma-aminobutyric acid and disruption of the endocrine system. The effects may have implications for the development of cognitive and social skills in children. Our conclusion is that concern is warranted for the developmental neurotoxicity of OPE exposure. We thus describe important considerations for reducing harm and to provide recommendations for government and industry decision makers. https://doi.org/10.1289/EHP9285.
Collapse
Affiliation(s)
- Heather B. Patisaul
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carol F. Kwiatkowski
- Green Science Policy Institute, Berkeley, California, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jamie D. Page
- Cancer Prevention & Education Society, Meads House, Leighterton, Tetbury, Gloucestershire, UK
| | - Anna Soehl
- Green Science Policy Institute, Berkeley, California, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
49
|
Hao K, Luo J, Sun J, Ge H, Wang Z. Associations of urinary bisphenol A and its alternatives bisphenol S and F concentrations with depressive symptoms among adults. CHEMOSPHERE 2021; 279:130573. [PMID: 33878692 DOI: 10.1016/j.chemosphere.2021.130573] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol S (BPS) and bisphenol F (BPF), as substitutes for bisphenol A (BPA), are synthetic compounds detected increasingly frequently in plastics and resins. BPA, BPS, and BPF are endocrine disruptors with unclear effects on depressive symptoms. This study aims to evaluate the effects of these compounds on depressive symptoms in adults. METHODS We used data from the U.S. National Health and Nutrition Examination Survey (NHANES) 2007-2016 for BPA (N = 7,085) and NHANES 2013-2016 for BPS and BPF (N = 2,707). BPA, BPS and BPF were detected in urine samples. Depressive symptoms were assessed with a nine-item patient health questionnaire (PHQ-9). Logistic regression models were used to investigate the effects of urinary BPA, BPS, and BPF concentrations on depressive symptoms. RESULTS In the general population, no significant association was observed between urinary BPA, BPS, and BPF and depressive symptoms. However, in stratified analyses, urinary BPS was positively associated with depressive symptoms in men (odds ratio [OR], 2.90; 95% confidence interval [CI], 1.13-7.47). In elderly men (≥60 years old), urinary BPA and BPS were positively correlated with depressive symptoms with ORs (95% CIs) of 5.53 (1.55-19.70) and 28.89 (4.23-192.75), respectively. In addition, urinary BPS was negatively associated with depressive symptoms (OR, 0.16; 95% CI, 0.04-0.59) in elderly women (≥60 years old). CONCLUSIONS This study indicated that exposure to BPA and BPS was positively associated with depressive symptoms, especially in men. However, BPS was negatively associated with depressive symptoms in elderly women.
Collapse
Affiliation(s)
- Kangyu Hao
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Honghan Ge
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhaoguo Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China; Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao, Shandong, 266034, China.
| |
Collapse
|
50
|
Salazar P, Villaseca P, Cisternas P, Inestrosa NC. Neurodevelopmental impact of the offspring by thyroid hormone system-disrupting environmental chemicals during pregnancy. ENVIRONMENTAL RESEARCH 2021; 200:111345. [PMID: 34087190 DOI: 10.1016/j.envres.2021.111345] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Everyday use chemicals have been demonstrated to be endocrine disruptors. Since normal thyroid function during pregnancy is transcendental for the neurodevelopment of the offspring, knowledge of endocrine disrupting chemicals (EDC) is of main importance. The aim of our study is to recognize and describe EDC actions in pregnant women and focus on neurodevelopmental processes that can lead to neurotransmitter imbalance and cognitive impairment, and the possible clinical outcomes in the newborn and child. We searched PubMed databases for animal studies and clinical trials evaluating chemicals recognized as thyroid disruptors -perchlorate, phthalates, bisphenol A-, as well as chemicals with potential thyroid disruption activity -parabens, pesticides and persistent organic pollutants, on thyroid hormones (THs) levels and their bioavailability during pregnancy, and the outcome in newborns, infants and children. We also exhibit evidence from worldwide cohort studies to this regard. The publications reviewed show: 1) known endocrine disruptors have an association with hormonal thyroid levels, where an effect of increase or decrease in TH concentrations has been reported depending on the chemical exposed 2) associations between TH, EDCs and neurocognitive disorders have been addressed, such as ADHD, though no conclusive impact on potential related disorders as autism has been established, 3) perchlorate has demonstrated effects on thyroid levels on iodine uptake. In conclusion, detrimental risks and long-term consequences after in-utero exposure to EDCs are being reported in several cohort studies and further research must be conducted to establish a well-known cause-effect association.
Collapse
Affiliation(s)
- Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Villaseca
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|