1
|
Kwon SH, Chung H, Seo JW, Kim HS. Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts. BMB Rep 2024; 57:143-148. [PMID: 37817434 PMCID: PMC10979345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybeanderived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis. [BMB Reports 2024; 57(3): 143-148].
Collapse
Affiliation(s)
- Seung-hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
| | - Hyunju Chung
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Jung-Woo Seo
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
| |
Collapse
|
2
|
Neuroprotective Effect of Piclamilast-Induced Post-Ischemia Pharmacological Treatment in Mice. Neurochem Res 2022; 47:2230-2243. [PMID: 35482135 DOI: 10.1007/s11064-022-03609-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
Various studies have evidenced the neuroprotective role of PDE4 inhibitors. However, whether PDE4 inhibitor, Piclamilast pharmacological post-treatment is protective during cerebral ischemia reperfusion-induced injury remains unknown. Therefore, this study design included testing the hypothesis that Piclamilast administered at the beginning of a reperfusion phase (Piclamilast pPost-trt) shows protective effects and explores & probes underlying downstream mechanisms. Swiss albino male mice were subjected to global ischemic and reperfusion injury for 17 min. The animals examined cerebral infarct size, biochemical parameters, inflammatory mediators, and motor coordination. For memory, assessment mice were subjected to morris water maze (MWM) and elevated plus maze (EPM) test. Histological changes were assessed using HE staining. Piclamilast pPost-trt significantly reduced I/R injury-induced deleterious effects on biochemical parameters of oxidative stress, inflammatory parameters, infarct size, and histopathological changes, according to the findings. These neuroprotective effects of pPost-trt are significantly abolished by pre-treatment with selective CREB inhibitor, 666-15. Current study concluded that induced neuroprotective benefits of Piclamilast Post-trt, in all probability, maybe mediated through CREB activation. Hence, its neuroprotective effects can be further explored in clinical settings.
Collapse
|
3
|
Yao L, Fan Z, Han S, Sun N, Che H. Apigenin acts as a partial agonist action at estrogen receptors in vivo. Eur J Pharmacol 2021; 906:174175. [PMID: 34048736 DOI: 10.1016/j.ejphar.2021.174175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The flavone apigenin is widely distributed in vegetables and fruits and has a variety of pharmacological effects. However, there is no definitive scientific evidence that apigenin could act as a phytoestrogen and exert exerting estrogenic or antiestrogenic efficacy in vivo. Therefore, this study was established an ovariectomy (OVX) and estrogenized mouse model to evaluate the effects of apigenin on reproductive target tissues. Our data demonstrated that apigenin could exert a double-directional adjusting estrogenic effect in vivo. Specifically, treatment with apigenin reversed the weight changes caused by abnormal estrogen levels and altered the status of vaginal epithelial cells via the estrogen receptors. In addition, we found that apigenin exhibited a significant estrogenic activity, as indicated by the reversal of uterine atrophy. Apigenin treatment could also regulate the target tissue coefficient changes and estrogen disorders caused by excessive estrogen. Importantly, the administration of apigenin could upregulated the estrogen receptor (ER) α and ER β expression as a partial agonist. Our results demonstrate that apigenin has a double directional adjusting function in different physiological environments.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhuoyan Fan
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shiwen Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
The mKATP Channels and protein-kinase C Are Involved in the Cardioprotective Effects of Genistein on Estrogen-Deficient Rat Hearts Exposed to Ischemia/Reperfusion: Energetic Study. J Cardiovasc Pharmacol 2020; 75:460-474. [PMID: 32195757 DOI: 10.1097/fjc.0000000000000816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Estrogenic deficiency is considered a risk of coronary disease in women. The phytoestrogen genistein could be a safe preventive strategy. The first aim of this work was to validate a model of cardiac stunning in which natural estrogenic deficiency rats, ie, adult young male (YM) and aged female (AgF), are compared with young female rats (YF). The second aim was to study whether the in vivo administration of genistein prevents the stunning in estrogenic deficiency rats. The third aim was to evaluate whether in our estrogenic deficiency model exists a synergy between genistein and estradiol. The fourth aim was to characterize the underlying mechanisms of genistein. Stunning was induced by ischemia/reperfusion (I/R) in isolated hearts inside a calorimeter. The left ventricular pressure (P) and total heat rate (Ht) were simultaneously measured, while diastolic contracture and muscle economy (P/Ht) were calculated. During R, P/Ht and P recovered less in AgF and YM than in YF rat hearts. Genistein through i.p. (GST-ip) improved P and P/Ht in AgF and YM, but not in YF. In YM, the cardioprotections of GST-ip and estradiol were synergistic. After ischemia, GST-ip increased SR Ca leak causing diastolic contracture. The GST-ip cardioprotection neither was affected by blockade of PI3K-Akt, NO synthases, or phosphatases, but it was sensitive to blockade of protein-kinase C and mKATP channels. Results suggest that (1) estrogenic deficiency worsens cardiac stunning, (2) GST-ip was more cardioprotective in estrogenic deficiency and synergistic with estradiol, and (3) cardioprotection of GST-ip depends on the protein-kinase C and mKATP channel pathway activation.
Collapse
|
5
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
6
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
7
|
Thyroid hormone postconditioning protects hearts from ischemia/reperfusion through reinforcing mitophagy. Biomed Pharmacother 2019; 118:109220. [PMID: 31357081 DOI: 10.1016/j.biopha.2019.109220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022] Open
Abstract
Triiodothyronine (T3), the biologically active form of thyroid hormone, was reported to protect myocardium from ischemia/reperfusion (I/R) injury when given before sustained ischemia, but its cardioprotective effects when given at the onset of reperfusion (postconditioning), a protocol with more clinical impact is unknown. Therefore, the present study was designed to determine whether T3 postconditioning (THPostC) is able to protect the heart from reperfusion injury and its underlying mechanisms. Isolated Sprague-Dawley rat hearts were subjected to 30 min ischemia/45 min reperfusion, triiodothyronine was delivered at the first 5 min of reperfusion. Our data shown that T3 from 1 to 10 μM during the first 5-min of reperfusion concentration-dependently improved post-ischemic myocardial function. A similar protection was observed in isolated rat cardiomyocytes characterized by the alleviation of I/R-induced loss of mitochondrial membrane potential and exacerbated cell death. Moreover, mitophagy (selectively recognize and remove damaged mitochondria) was significantly stimulated by myocardial I/R, which was enhanced with THPostC. Meanwhile, we found that THPostC stimulated PINK1/Parkin pathway, a critical regulator for mitophagy. Then, adenoviral knockdown of PINK1 and Parkin conformed its roles in the THPostC-mediated cardioprotection. Our results suggest that THPostC confers cardioprotection against I/R injury at least in part by reinforcing PINK1-dependent mitophagy. These findings reveal new roles and mechanisms of triiodothyronine in the cardioprotection against I/R injury.
Collapse
|
8
|
Qin QJ, Cui LQ, Li P, Wang YB, Zhang XZ, Guo ML. Rhynchophylline ameliorates myocardial ischemia/reperfusion injury through the modulation of mitochondrial mechanisms to mediate myocardial apoptosis. Mol Med Rep 2019; 19:2581-2590. [PMID: 30720139 PMCID: PMC6423601 DOI: 10.3892/mmr.2019.9908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 01/22/2023] Open
Abstract
Rhynchophylline (RP), the primary active ingredient of Uncaria rhynchophylla, has an anti-hypertensive effect and protects against ischemia-induced neuronal damage. The present study aimed to examine the roles and mechanisms of RP in myocardial ischemia-reperfusion (MI/R) injury of rat cardiomyocytes. Cell viability, reactive oxygen species, mitochondrial membrane potential (MMP) and cell apoptosis were examined by a Cell Counting Kit-8 assay and flow cytometry, respectively. An ELISA was performed to assess the expression of oxidative stress markers. Spectrophotometry was used to detect the degree of mitochondrial permeability transition pore (mPTP) openness. Western blotting and reverse transcription- quantitative polymerase chain reaction assays were used to evaluate the associated protein and mRNA expression, respectively. The present results demonstrated that RP increased the cell viability of MI/R-induced cardiomyocytes, and suppressed the MI/R-induced apoptosis of cardiomyocytes. Additionally, RP modulated the Ca2+ and MMP levels in MI/R-induced cardiomyocytes. Furthermore, RP decreased the oxidative stress and mPTP level of MI/R-induced cardiomyocytes. It was additionally observed that RP affected the apoptosis-associated protein expression and regulated the mitochondrial-associated gene expression in MI/R-induced cardiomyocytes. In conclusion, RP ameliorated MI/R injury through the modulation of mitochondrial mechanisms. The potential effects of RP on the protection of MI/R-induced apoptosis of cardiomyocytes suggest that RP may be an effective target for MI/R therapy.
Collapse
Affiliation(s)
- Qiao-Ji Qin
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li-Qiang Cui
- Department of Anesthesiology, Chengyang People's Hospital, Qingdao, Shandong 266109, P.R. China
| | - Peng Li
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yong-Bin Wang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xue-Zhi Zhang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ming-Lei Guo
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
9
|
Chen GH, Xu CS, Zhang J, Li Q, Cui HH, Li XD, Chang LP, Tang RJ, Xu JY, Tian XQ, Huang PS, Xu J, Jin C, Yang YJ. Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1. Front Pharmacol 2017; 8:775. [PMID: 29163161 PMCID: PMC5670141 DOI: 10.3389/fphar.2017.00775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: Tongxinluo (TXL) is a multifunctional traditional Chinese medicine that has been widely used to treat cardiovascular and cerebrovascular diseases. However, no studies have explored whether TXL can protect human cardiomyocytes (HCMs) from ischemia/reperfusion (I/R) injury. Reperfusion Injury Salvage Kinase (RISK) pathway activation was previously demonstrated to protect the hearts against I/R injury and it is generally activated via Akt or (and) Erk 1/2, and their common downstream protein, ribosomal protein S6 kinase (p70s6k). In addition, prior studies proved that TXL treatment of cells promoted secretion of VEGF, which could be stimulated by the increased phosphorylation of one p70s6k subtype, p70s6k1. Consequently, we hypothesized TXL could protect HCMs from I/R injury by activating p70s6k1 and investigated the underlying mechanism. Methods and Results: HCMs were exposed to hypoxia (18 h) and reoxygenation (2 h) (H/R), with or without TXL pretreatment. H/R reduced mitochondrial membrane potential, increased bax/bcl-2 ratios and cytochrome C levels and induced HCM apoptosis. TXL preconditioning reversed these H/R-induced changes in a dose-dependent manner and was most effective at 400 μg/mL. The anti-apoptotic effect of TXL was abrogated by rapamycin, an inhibitor of p70s6k. However, inhibitors of Erk1/2 (U0126) or Akt (LY294002) failed to inhibit the protective effect of TXL. TXL increased p70s6k1 expression and, thus, enhanced its phosphorylation. Furthermore, transfection of cardiomyocytes with siRNA to p70s6k1 abolished the protective effects of TXL. Among the micro-RNAs (miR-145-5p, miR-128-3p and miR-497-5p) previously reported to target p70s6k1, TXL downregulated miR-128-3p in HCMs during H/R, but had no effects on miR-145-5p and miR-497-5p. An in vivo study confirmed the role of the p70s6k1 pathway in the infarct-sparing effect of TXL, demonstrating that TXL decreased miR-128-3p levels in the rat myocardium during I/R. Transfection of HCMs with a hsa-miR-128-3p mimic eliminated the protective effects of TXL. Conclusions: The miR-128-3p/p70s6k1 signaling pathway is involved in protection by TXL against HCM apoptosis during H/R. Overexpression of p70s6k1 is, therefore, a potential new strategy for alleviating myocardial reperfusion injury.
Collapse
Affiliation(s)
- Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuan-Sheng Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qing Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He-He Cui
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiang-Dong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ping Chang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia-Qiu Tian
- Department of Surgical Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Feng Y, Madungwe NB, da Cruz Junho CV, Bopassa JC. Activation of G protein-coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy. Br J Pharmacol 2017; 174:4329-4344. [PMID: 28906548 PMCID: PMC5715577 DOI: 10.1111/bph.14033] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Recent evidence indicates that GPER (G protein‐coupled oestrogen receptor 1) mediates acute pre‐ischaemic oestrogen‐induced protection of the myocardium from ischaemia/reperfusion injury via a signalling cascade that includes PKC translocation, ERK1/2/ GSK‐3β phosphorylation and inhibition of the mitochondrial permeability transition pore (mPTP) opening. Here, we investigated the impact and mechanism involved in post‐ischaemic GPER activation in ischaemia/reperfusion injury. We determined whether GPER activation at the onset of reperfusion confers cardioprotective effects by protecting against mitochondrial impairment and mitophagy. Experimental Approach In vivo rat hearts were subjected to ischaemia followed by reperfusion with oestrogen (17β‐oestradiol, E2), E2 + G15, a GPER antagonist, or vehicle. Myocardial infarct size, the threshold for the opening of mPTP, mitophagy, mitochondrial membrane potential, ROS production, proteins ubiquitinated including cyclophilin D, and phosphorylation levels of ERK and GSK‐3β were measured. Results We found that post‐ischaemic E2 administration to both male and female ovariectomized‐rats reduced myocardial infarct size. Post‐ischaemic E2 administration preserved mitochondrial structural integrity and this was associated with a decrease in ROS production and increased mitochondrial membrane potential, as well as an increase in the mitochondrial Ca2+ load required to induce mPTP opening via activation of the MEK/ERK/GSK‐3β axis. Moreover, E2 reduced mitophagy via the PINK1/Parkin pathway involving LC3I, LC3II and p62 proteins. All these post‐ischaemic effects of E2 were abolished by G15 suggesting a GPER‐dependent mechanism. Conclusion These results indicate that post‐ischaemic GPER activation induces cardioprotective effects against ischaemia/reperfusion injury in males and females by protecting mitochondrial structural integrity and function and reducing mitophagy.
Collapse
Affiliation(s)
- Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carolina Victoria da Cruz Junho
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Center of Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
11
|
Mitochondrial Bioenergetics During Ischemia and Reperfusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:141-167. [PMID: 28551786 DOI: 10.1007/978-3-319-55330-6_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During ischemia and reperfusion (I/R) mitochondria suffer a deficiency to supply the cardiomyocyte with chemical energy, but also contribute to the cytosolic ionic alterations especially of Ca2+. Their free calcium concentration ([Ca2+]m) mainly depends on mitochondrial entrance through the uniporter (UCam) and extrusion in exchange with Na+ (mNCX) driven by the electrochemical gradient (ΔΨm). Cardiac energetic is frequently estimated by the oxygen consumption, which determines metabolism coupled to ATP production and to the maintaining of ΔΨm. Nevertheless, a better estimation of heart energy consumption is the total heat release associated to ATP hydrolysis, metabolism, and binding reactions, which is measurable either in the presence or the absence of oxygenation or perfusion. Consequently, a mechano-calorimetrical approach on isolated hearts gives a tool to evaluate muscle economy. The mitochondrial role during I/R depends on the injury degree. We investigated the role of the mitochondrial Ca2+ transporters in the energetic of hearts stunned by a model of no-flow I/R in rat hearts. This chapter explores an integrated view of previous and new results which give evidences to the mitochondrial role in cardiac stunning by ischemia o hypoxia, and the influence of thyroid alterations and cardioprotective strategies, such as cardioplegic solutions (high K-low Ca, pyruvate) and the phytoestrogen genistein in both sex. Rat ventricles were perfused in a flow-calorimeter at either 30 °C or 37 °C to continuously measure the left ventricular pressure (LVP) and total heat rate (Ht). A pharmacological treatment was done before exposing to no-flow I and R. The post-ischemic contractile (PICR as %) and energetical (Ht) recovery and muscle economy (Eco: P/Ht) were determined during stunning. The functional interaction between mitochondria (Mit) and sarcoplasmic reticulum (SR) was evaluated with selective mitochondrial inhibitors in hearts reperfused with Krebs-10 mM caffeine-36 mM Na+. The caffeine induced contracture (CIC) was due to SR Ca2+ release, while relaxation mainly depends on mitochondrial Ca2+ uptake since neither SL-NCX nor SERCA are functional under this media. The ratio of area-under-curves over ischemic values (AUC-ΔHt/AUC-ΔLVP) estimates the energetical consumption (EC) to maintain CIC. Relaxation of CIC was accelerated by inhibition of mNCX or by adding the aerobic substrate pyruvate, while both increased EC. Contrarily, relaxation was slowed by cardioplegia (high K-low Ca Krebs) and by inhibition of UCam. Thus, Mit regulate the cytosolic [Ca2+] and SR Ca2+ content. Both, hyperthyroidism (HpT) and hypothyroidism (HypoT) reduced the peak of CIC but increased EC, in spite of improving PICR. Both, CIC and PICR in HpT were also sensitive to inhibition of mNCX or UCam, suggesting that Mit contribute to regulate the SR store and Ca2+ release. The interaction between mitochondria and SR and the energetic consequences were also analyzed for the effects of genistein in hearts exposed to I/R, and for the hypoxia/reoxygenation process. Our results give evidence about the mitochondrial regulation of both PICR and energetic consumption during stunning, through the Ca2+ movement.
Collapse
|
12
|
Chen L, Cai P, Cheng Z, Zhang Z, Fang J. Pharmacological postconditioning with atorvastatin calcium attenuates myocardial ischemia/reperfusion injury in diabetic rats by phosphorylating GSK3β. Exp Ther Med 2017; 14:25-34. [PMID: 28672889 PMCID: PMC5488387 DOI: 10.3892/etm.2017.4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes is an independent risk factor for myocardial ischemia, and many epidemiological data and laboratory studies have revealed that diabetes significantly exacerbated myocardial ischemia/reperfusion injury and ameliorated protective effects. The present study aimed to determine whether pharmacological postconditioning with atorvastatin calcium lessened diabetic myocardial ischemia/reperfusion injury, and investigated the role of glycogen synthase kinase (GSK3β) in this. A total of 72 streptozotocin-induced diabetic rats were randomly divided into six groups, and 24 age-matched male non-diabetic Sprague-Dawley rats were randomly divided into two groups. Rats all received 40 min myocardial ischemia followed by 180 min reperfusion, except sham-operated groups. Compared with the non-diabetic ischemia/reperfusion model group, the diabetic ischemia/reperfusion group had a comparable myocardial infarct size, but a higher level of serum cardiac troponin I (cTnI) and morphological alterations to their myocardial cells. Compared with the diabetic ischemia/reperfusion group, the group that received pharmacological postconditioning with atorvastatin calcium had smaller myocardial infarct sizes, lower levels of cTnI, reduced morphological alterations to myocardial cells, higher levels of p-GSK3β, heat shock factor (HSF)-1 and heat shock protein (HSP)70. The cardioprotective effect conferred by atorvastatin calcium did not attenuate myocardial ischemia/reperfusion injury following application of TDZD-8, which phosphorylates and inactivates GSK3β. Pharmacological postconditioning with atorvastatin calcium may attenuate diabetic heart ischemia/reperfusion injury in the current context. The phosphorylation of GSK3β serves a critical role during the cardioprotection in diabetic rats, and p-GSK3β may accelerate HSP70 production partially by activating HSF-1 during myocardial ischemic/reperfusion injury.
Collapse
Affiliation(s)
- Linyan Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Ping Cai
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Zhendong Cheng
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Zaibao Zhang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Jun Fang
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
13
|
Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 2017; 8:e2577. [PMID: 28151484 PMCID: PMC5386498 DOI: 10.1038/cddis.2017.7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/17/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
Abstract
Pretreatment of berbamine protects the heart from ischemia/reperfusion (I/R) injury. However it is unknown whether it has cardioprotection when given at the onset of reperfusion (postconditioning (PoC)), a protocol with more clinical impact. Autophagy is upregulated in I/R myocardium and exacerbates cardiomyocyte death during reperfusion. However, it is unknown whether the autophagy during reperfusion is regulated by berbamine. Here we investigated whether berbamine PoC (BMPoC) protects the heart through regulation of autophagy by analyzing the effects of BMPoC on infarct size and/or cell death, functional recovery and autophagy in perfused rat hearts and isolated cardiomyocytes subjected to I/R. Berbamine from 10 to 100 nM given during the first 5 min of reperfusion concentration-dependently improved post-ischemic myocardial function and attenuated cell death. Similar protections were observed in cardiomyocytes subjected to simulated I/R. Meanwhile, BMPoC prevented I/R-induced impairment of autophagosome processing in cardiomyocytes, characterized by increased LC3-II level and GFP-LC3 puncta, and decreased p62 degradation. Besides, lysosomal inhibitor chloroquine did not induce additional increase of LC3-II and P62 abundance after I/R but it reversed the effects of BMPoC in those parameters in cardiomyocytes, suggesting that I/R-impaired autophagic flux is restored by BMPoC. Moreover, I/R injury was accompanied by enhanced expression of Beclin 1, which was significantly inhibited by BMPoC. In vitro and in vivo adenovirus-mediated knockdown of Beclin 1 in myocardium and cardiomyocytes restored I/R-impaired autophagosome processing, associated with an improvement of post-ischemic recovery of myocardial contractile function and a reduction of cell death, but it did not have additive effects to BMPoC. Conversely, overexpression of Beclin 1 abolished the cardioprotection of BMPoC as did by overexpression of an essential autophagy gene Atg5. Furthermore, BMPoC-mediated cardioprotection was abolished by a specific Akt1/2 inhibitor A6730. Our results demonstrate that BMPoC confers cardioprotection by modulating autophagy during reperfusion through the activation of PI3K/Akt signaling pathway.
Collapse
|
14
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 2016; 29:35-44. [PMID: 27223841 DOI: 10.1016/j.mito.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Genistein (4',5,7-trihydroxyisoflavone; C15H10O5), an isoflavone, has been investigated as an anti-cancer agent due to its ability to trigger cell death (both intrinsic and extrinsic apoptotic pathways) in different cancer cells in vitro and in vivo. Furthermore, genistein has been viewed as a mitochondriotropic molecule due to the direct effects this isoflavone induces in mitochondria, such as modulation of enzymatic activity of components of the oxidative phosphorylation system. Apoptosis triggering may also be mediated by genistein through activation of the mitochondria-dependent pathway by a mechanism associated with mitochondrial dysfunction (i.e., disruption of the mitochondrial membrane potential - MMP, release of cytochrome c, activation of the apoptosome, among others). Efforts have been made in order to elucidate how genistein coordinate these biochemical phenomena. Nonetheless, some areas of the mitochondria-associated research (mitochondrial biogenesis, redox biology of mitochondria, and mitochondria-associated bioenergetic parameters) need to be explored regarding the role of genistein as a mitochondria-targeted agent. This is a pharmacologically relevant issue due to the possibility of using genistein as a mitochondria-targeted drug in cases of cancer, neurodegeneration, cardiovascular, and endocrine disease, for example. The present review aims to describe, compare, and discuss relevant data about the effects of genistein upon mitochondria.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Programa de Pós-Graduação em Química (PPGQ), Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brasil.
| |
Collapse
|
16
|
Ekambaram P, Balan C, Susai CJM. Genistein attenuates oxidative damage in preeclamptic placental trophoblast. Hypertens Pregnancy 2016; 35:250-63. [DOI: 10.3109/10641955.2016.1143484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Colareda GA, Ragone MI, Consolini AE. Sex differences in the mechano-energetic effects of genistein on stunned rat and guinea pig hearts. Clin Exp Pharmacol Physiol 2015; 43:102-15. [DOI: 10.1111/1440-1681.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/12/2015] [Accepted: 10/02/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Germán A Colareda
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
| | - María I Ragone
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
- National Council of Scientific and Technical Research (CONICET); La Plata Argentina
| | - Alicia E Consolini
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
| |
Collapse
|
18
|
Zhang G, Gao S, Li X, Zhang L, Tan H, Xu L, Chen Y, Geng Y, Lin Y, Aertker B, Sun Y. Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep 2015; 5:9858. [PMID: 25928542 PMCID: PMC4415575 DOI: 10.1038/srep09858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
This study investigated whether pharmacological postconditioning with lactic acid and hydrogen rich saline can provide benefits similar to that of mechanical postconditioning. To our knowledge, this is the first therapeutic study to investigate the co-administration of lactic acid and hydrogen. SD rats were randomly divided into 6 groups: Sham, R/I, M-Post, Lac, Hyd, and Lac + Hyd. The left coronary artery was occluded for 45 min. Blood was withdrawn from the right atrium to measure pH. The rats were sacrificed at different time points to measure mitochondrial absorbance, infarct size, serum markers and apoptotic index. Rats in Lac + Hyd group had similar blood pH and ROS levels when compared to the M-Post group. Additionally, the infarct area was reduced to the same extent in Lac + Hyd and M-Post groups with a similar trends observed for serum markers of myocardial injury and apoptotic index. Although the level of P-ERK in Lac + Hyd group was lower, P-p38/JNK, TNFα, Caspase-8, mitochondrial absorbance and Cyt-c were all similar in Lac + Hyd and M-Post groups. The Lac and Hyd groups were able to partially mimic this protective role. These data suggested that pharmacological postconditioning with lactic acid and hydrogen rich saline nearly replicates the benefits of mechanical postconditioning.
Collapse
Affiliation(s)
- Guoming Zhang
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Song Gao
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Xiaoyan Li
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Lulu Zhang
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Hong Tan
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Lin Xu
- Department of Cardiology, the General Hospital of Jinan Military Command, Jinan 250031, China
| | - Yaoyu Chen
- Department of Hematology, School of Pharmacology, Nanjing Medical University, Nanjing, 210029, China
| | - Yongjian Geng
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yanliang Lin
- Department of Center Laboratory, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Benjamin Aertker
- The Center of Cardiovascular Biology and Atherosclerosis Research, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Yuanyuan Sun
- Department of Ultrasound, the General Hospital of Jinan Military Command, Jinan 250031, China
| |
Collapse
|
19
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
20
|
Pagliaro P, Penna C. Redox signalling and cardioprotection: translatability and mechanism. Br J Pharmacol 2015; 172:1974-95. [PMID: 25303224 DOI: 10.1111/bph.12975] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
The morbidity and mortality from coronary artery disease (CAD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of culprit coronary arteries. Although it is mandatory to reperfuse the ischaemic territory as soon as possible, paradoxically this leads to additional myocardial injury, namely ischaemia/reperfusion (I/R) injury, in which redox stress plays a pivotal role and for which no effective therapy is currently available. In this review, we report evidence that the redox environment plays a pivotal role not only in I/R injury but also in cardioprotection. In fact, cardioprotective strategies, such as pre- and post-conditioning, result in a robust reduction in infarct size in animals and the role of redox signalling is of paramount importance in these conditioning strategies. Nitrosative signalling and cysteine redox modifications, such as S-nitrosation/S-nitrosylation, are also emerging as very important mechanisms in conditioning cardioprotection. The reasons for the switch from protective oxidative/nitrosative signalling to deleterious oxidative/nitrosative/nitrative stress are not fully understood. The complex regulation of this switch is, at least in part, responsible for the diminished or lack of cardioprotection induced by conditioning protocols observed in ageing animals and with co-morbidities as well as in humans. Therefore, it is important to understand at a mechanistic level the reasons for these differences before proposing a safe and useful transition of ischaemic or pharmacological conditioning. Indeed, more mechanistic novel therapeutic strategies are required to protect the heart from I/R injury and to improve clinical outcomes in patients with CAD.
Collapse
Affiliation(s)
- P Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Turin, Italy
| | | |
Collapse
|
21
|
Gao Y, Hao J, Zhang H, Qian G, Jiang R, Hu J, Wang J, Lei Z, Zhao G. Protective effect of the combinations of glycyrrhizic, ferulic and cinnamic acid pretreatment on myocardial ischemia-reperfusion injury in rats. Exp Ther Med 2014; 9:435-445. [PMID: 25574212 PMCID: PMC4280987 DOI: 10.3892/etm.2014.2134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to find an effective drug cocktail pretreatment to protect myocardial tissue of the heart from ischemia-reperfusion (I/R) injury. The mechanisms underlying the effects of the drug cocktail were subsequently explored in order to expand the application of Dang-gui-si-ni-tang (DGSN), a Traditional Chinese Medicine. The active components of DGSN in the serum following oral administration were investigated using high-performance liquid chromatography. The activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels were then analyzed to show the effect of the active components in the treatment of myocardial I/R injury. An L16 (44) orthogonal experiment was utilized to determine the most effective cocktail mix and the mechanism underlying the effect of this mix on myocardial I/R injury was investigated. It was observed that FCG, a mixture of glycyrrhizic (50 mg/kg), cinnamic (200 mg/kg) and ferulic (300 mg/kg) acid, was the optimal drug cocktail present in DGSN. This was absorbed into the blood following oral administration and was shown to decrease MDA levels and increase the activity of SOD. In conclusion, the findings suggest that FCG, a combination of active ingredients in the DGSN decoction, can be absorbed into the blood and protect the myocardium from I/R injury.
Collapse
Affiliation(s)
- Yuqin Gao
- Department of Cardiology, Ninth Affiliated Hospital of the Medical College of Xi'an Jiaotong University and Railway Central Hospital of Xi'an, Xi'an, Shanxi 710054, P.R. China ; College of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiping Hao
- Department of Cardiology, Ninth Affiliated Hospital of the Medical College of Xi'an Jiaotong University and Railway Central Hospital of Xi'an, Xi'an, Shanxi 710054, P.R. China
| | - Hongkao Zhang
- Department of Nursing Science, Huanghuai University, Zhumadian, Henan 463000, P.R. China
| | - Guoqiang Qian
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Renwang Jiang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing Hu
- College of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jianing Wang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhang Lei
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Guoping Zhao
- College of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
22
|
Khusniyati E, Sari AA, Yueniwati Y, Noorhamdani N, Nurseta T, Keman K. The effects of Vigna unguiculata on cardiac oxidative stress and aorta estrogen receptor-β expression of ovariectomized rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(14)60037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Moreira AC, Silva AM, Santos MS, Sardão VA. Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. J Steroid Biochem Mol Biol 2014; 143:61-71. [PMID: 24583026 DOI: 10.1016/j.jsbmb.2014.01.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/03/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Abstract
Menopause is characterized by an altered hormonal status and by a decrease in life quality due to the appearance of uncomfortable symptoms. Nowadays, with increasing life span, women spend one-third of their lifetime under menopause. Understanding menopause-associated pathophysiology and developing new strategies to improve the treatment of menopausal-associated symptoms is an important topic in the clinic. This review describes physiological and hormone alterations observed during menopause and therapeutic strategies used during this period. We critically address the benefits and doubts associated with estrogen/progesterone-based hormone replacement therapy (HRT) and discuss the use of phytoestrogens (PEs) as a possible alternative. These relevant plant-derived compounds have structural similarities to estradiol, interacting with cell proteins and organelles, presenting several advantages and disadvantages versus traditional HRT in the context of menopause. However, a better assessment of PEs safety/efficacy would warrant a possible widespread clinical use.
Collapse
Affiliation(s)
- Ana C Moreira
- Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria S Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
24
|
Yuan X, Jing S, Wu L, Chen L, Fang J. Pharmacological postconditioning with tanshinone IIA attenuates myocardial ischemia-reperfusion injury in rats by activating the phosphatidylinositol 3-kinase pathway. Exp Ther Med 2014; 8:973-977. [PMID: 25120632 PMCID: PMC4113531 DOI: 10.3892/etm.2014.1820] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/09/2014] [Indexed: 01/04/2023] Open
Abstract
Tanshinone IIA, one of the active ingredients in the Chinese medicine Danshen, is cardioprotective when applied prior to sustained myocardial ischemia. The present study aimed to investigate whether pharmacological postconditioning with tanshinone IIA attenuates myocardial ischemia-reperfusion injury when applied prior to prolonged reperfusion following a sustained ischemia. A total of 88 Sprague-Dawley rats received 30 min myocardial ischemia followed by 5 or 120 min reperfusion. Compared with the ischemia-reperfusion model group, the group that received an intravenous injection of 10 mg/kg tanshinone IIA prior to reperfusion had a reduced myocardial infarct size, higher levels of phospho-Akt and phospho-endothelial nitric oxide synthase and less reduction in the optical density of the mitochondria at 540 nm, indicating that the mitochondrial permeability transition (MPT) was attenuated. The cardioprotective effect conferred by tanshinone IIA was abolished by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). These results demonstrate that tanshinone IIA postconditioning protects the myocardium from ischemia-reperfusion injury through the PI3K/Akt pathway, and the MPT may be also involved in this process.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Songbo Jing
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Lingzhen Wu
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Jun Fang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
25
|
Catalase influence in the regulation of coronary resistance by estrogen: joint action of nitric oxide and hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:159852. [PMID: 24669281 PMCID: PMC3941593 DOI: 10.1155/2014/159852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/25/2013] [Indexed: 01/24/2023]
Abstract
We tested the influence of estrogen on coronary resistance regulation by modulating nitric oxide (NO) and hydrogen peroxide (H2O2) levels in female rats. For this, estrogen levels were manipulated and the hearts were immediately excised and perfused at a constant flow using a Langendorff's apparatus. Higher estrogen levels were associated with a lower coronary resistance, increased nitric oxide bioavailability, and higher levels of H2O2. When oxide nitric synthase blockade by L-NAME was performed, no significant changes were found in coronary resistance of ovariectomized rats. Additionally, we found an inverse association between NO levels and catalase activity. Taken together, our data suggest that, in the absence of estrogen influence and, therefore, reduced NO bioavailability, coronary resistance regulation seems to be more dependent on the H2O2 that is maintained at low levels by increased catalase activity.
Collapse
|
26
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
27
|
Protective Effects of Shen-Yuan-Dan, a Traditional Chinese Medicine, against Myocardial Ischemia/Reperfusion Injury In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:956397. [PMID: 24454518 PMCID: PMC3885196 DOI: 10.1155/2013/956397] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/03/2013] [Indexed: 01/15/2023]
Abstract
Objectives. The study was to investigate the effects and mechanisms of Shen-Yuan-Dan (SYD) pharmacological postconditioning on myocardial ischemia/reperfusion (I/R) injury. Methods. In the in vivo experiment, myocardial injury markers and histopathology staining were examined. In the in vitro experiment, cell viability and cell apoptosis were, respectively, detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and Hoechst 33342 fluorochrome staining. The protein expressions of Bcl-2 and Bax were determined by immunocytochemistry assay. Results. Both low and high doses of SYD protected myocardium against I/R injury in rat model by reducing lactic dehydrogenase (LDH) and creatine kinase-MB (CK-MB) activity and malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activity and attenuating histopathology injury. Meanwhile, in the in vitro experiment, SYD promoted cell viability and inhibited the cardiomyocyte apoptosis. The level of Bcl-2 protein was restored to the normal level by SYD pharmacological postconditioning. In contrast, the Bax protein level was markedly reduced by SYD pharmacological postconditioning. These effects of SYD were inhibited by LY294002. Conclusions. The results of this study suggested that SYD pharmacological postconditioning has protective effects against myocardial I/R injury in both in vivo and in vitro models, which are related to activating the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway.
Collapse
|
28
|
Local Administration of Lactic Acid and a Low Dose of the Free Radical Scavenger, Edaravone, Alleviates Myocardial Reperfusion Injury in Rats. J Cardiovasc Pharmacol 2013; 62:369-78. [DOI: 10.1097/01.fjc.0000432860.48345.9d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Al-Nakkash L, Janjulia T, Peterson K, Lucy D, Wilson D, Peterson A, Prozialeck W, Broderick TL. Genistein and exercise do not improve cardiovascular risk factors in the ovariectomized rat. Climacteric 2013; 17:136-47. [PMID: 23679226 DOI: 10.3109/13697137.2013.804503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effect of either genistein, or exercise, or both, on parameters that are indicators of cardiovascular health. METHODS We investigated the effect of genistein treatment (300 mg genisten/kg body weight/day), or exercise training, or combined genistein and exercise training, for a period of 6 weeks on physical characteristics, cardiovascular plasma markers, blood pressure, aortic morphology, cardiac structure and oxidative stress in the ovariectomized (OVX) Sprague-Dawley rat. Comparisons were made with intact rats. RESULTS Ovariectomy (compared to intact) resulted in significant decreases in uterine weight (6-fold, p < 0.0001), insulin levels (4-fold, p = 0.0214), insulin/glucose ratio (3-fold, p = 0.0029), and tumor necrosis factor-α plasma levels (2-fold, p < 0.0001). Similarly, aortic blood pressure was significantly increased (by 8%, p < 0.0033) in OVX rats, without changes in aortic luminal or wall dimensions. Heart surface area was significantly increased (by 16%, p = 0.0160) in OVX rats and this was without changes in non-protein thiol levels (a marker of oxidative stress). Physical characteristics were not altered by treatment with genistein, or genistein with exercise, with the exception of increased uterine weight in OVX rats treated under these same conditions. There were no effects of genistein or exercise on indices of blood pressure and aortic morphology in the OVX rat. However, right ventricular nuclei count was reduced in sedentary genistein-treated rats compared to non-treated control OVX rats. CONCLUSION Our results indicate that administration of genistein at this dose, treadmill running, or the combination of both, are not associated with any improvement in cardiovascular function and structure, and risk factors in an ovariectomy model of postmenopause.
Collapse
Affiliation(s)
- L Al-Nakkash
- * Department of Physiology, Midwestern University, Arizona College of Osteopathic Medicine , Glendale, AZ
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Al-Nakkash L, Martin JB, Petty D, Lynch SM, Hamrick C, Lucy D, Robinson J, Peterson A, Rubin LJ, Broderick TL. Dietary genistein induces sex-dependent effects on murine body weight, serum profiles, and vascular function of thoracic aortae. ACTA ACUST UNITED AC 2012; 9:295-308. [PMID: 22863843 DOI: 10.1016/j.genm.2012.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND The influence on, or interaction of, sex and dietary genistein on serum markers of cardiovascular health and cardiovascular function remain unclear. OBJECTIVES Our purpose was to examine the effects of a genistein-containing diet (600 mg/kg food) (600G) and a genistein-free diet (0G), on cardiovascular risk parameters of male and female mice. METHODS C57BL/6J mice were fed the diets for 1 month, after which time blood pressure, serum markers, and in vitro vascular reactivity was measured. RESULTS Males fed the 600G diet gained significantly less weight than males fed the 0G diet (by 1.71 g); diet had no effect on female weight gain. Males fed the 600G diet also exhibited significantly elevated serum insulin (2.9 [0.5] vs 1.8 [0.4] ng/dL), and decreased serum glucose (0.15 [0.01] vs 0.24 [0.02] ng/dL) levels, resulting in a significant increase in the ratio of insulin to glucose; insulin and glucose levels were not changed by dietary genistein in females. Arterial pressure measurements from 0G-fed males were lower than other groups. However, basal vascular reactivity of isolated aortic rings was significantly increased by the 600G diet in both males (from 0.55 [0.03] to 0.94 [0.18] g) and females (from 0.45 [0.04] to 0.78 [0.09] g). Aortic wall thickness was not affected by diet. Norepinephrine-mediated contractility was also greater in aortic rings of male and female mice fed the 600G diet, and differences from the 0G diet persisted in the presence of L-NG-nitroarginine methyl ester but were completely accounted for by increased basal reactivity. CONCLUSION Our data indicate that 1 month of a 600G or 0G diet significantly alters vascular function independent of sex. In contrast, sex-dependent differences exist in well-established serum markers of cardiovascular health and disease.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- Department of Physiology, Midwestern University, Glendale, Arizona, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramos JE, Al-Nakkash L, Peterson A, Gump BS, Janjulia T, Moore MS, Broderick TL, Carroll CC. The soy isoflavone genistein inhibits the reduction in Achilles tendon collagen content induced by ovariectomy in rats. Scand J Med Sci Sports 2012; 22:e108-14. [PMID: 22852581 DOI: 10.1111/j.1600-0838.2012.01516.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effects of genistein and moderate intensity exercise on Achilles tendon collagen and cross-linking in intact and ovariectomized (OVX) female Sprague-Dawley rats. Rats were separated into eight groups (n = 9/group): intact or OVX, treadmill exercised or sedentary, genistein-treated (300 mg/kg/day) or vehicle. After 6 weeks, tendons were assayed for the collagen-specific amino acid hydroxyproline and hydroxylyslpyridinoline (HP). Collagen content was not influenced by exercise (P = 0.40) but was lower (P < 0.001) in OVX-vehicle rats compared with intact vehicle rats (OVX: 894 ± 35 μg collagen/mg dry weight; intact: 1185 ± 72 μg collagen/mg dry weight). In contrast, collagen content in OVX rats treated with genistein was greater (P = 0.010, 1198 ± 121 μg collagen/mg dry weight) when compared with untreated rats and was not different from intact rats (P = 0.89). HP content was lower in OVX genistein-treated rats when compared with intact genistein-treated rats, but only within the sedentary animals (P = 0.05, intact-treated: 232 ± 39 mmol/mol collagen; OVX-treated: 144 ± 21 mmol/mol collagen). Our findings suggest that ovariectomy leads to a reduction in tendon collagen, which is prevented by genistein. HP content, however, may not have increased in proportion to the addition of collagen. Genistein may be useful for improving tendon collagen content in conditions of estrogen deficiency.
Collapse
Affiliation(s)
- J E Ramos
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, Amjedi M, Eghbali M. Genistein, a soy phytoestrogen, reverses severe pulmonary hypertension and prevents right heart failure in rats. Hypertension 2012; 60:425-30. [PMID: 22753213 PMCID: PMC4252152 DOI: 10.1161/hypertensionaha.112.191445] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pretreatment with a phytoestrogen genistein has been shown to attenuate the development of pulmonary hypertension (PH). Because PH is not always diagnosed early, we examined whether genistein could also reverse preexisting established PH and prevent associated right heart failure (RHF). PH was induced in male rats by 60 mg/kg of monocrotaline. After 21 days, when PH was well established, rats received daily injection of genistein (1 mg/kg per day) for 10 days or were left untreated to develop RHF by day 30. Effects of genistein on human pulmonary artery smooth muscle cell and endothelial cell proliferation and neonatal rat ventricular myocyte hypertrophy were assessed in vitro. Severe PH was evident 21 days after monocrotaline, as peak systolic right ventricular pressure increased to 66.35±1.03 mm Hg and right ventricular ejection fraction reduced to 41.99±1.27%. PH progressed to RHF by day 30 (right ventricular pressure, 72.41±1.87 mm Hg; RV ejection fraction, 29.25±0.88%), and mortality was ≈75% in RHF rats. Genistein therapy resulted in significant improvement in lung and heart function as right ventricular pressure was significantly reduced to 43.34±4.08 mm Hg and right ventricular ejection fraction was fully restored to 65.67±1.08% similar to control. Genistein reversed PH-induced pulmonary vascular remodeling in vivo and inhibited human pulmonary artery smooth muscle cell proliferation by ≈50% in vitro likely through estrogen receptor-β. Genistein also reversed right ventricular hypertrophy (right ventricular hypertrophy index, 0.35±0.029 versus 0.70±0.080 in RHF), inhibited neonatal rat ventricular myocyte hypertrophy, and restored PH-induced loss of capillaries in the right ventricle. These improvements in cardiopulmonary function and structure resulted in 100% survival by day 30. Genistein restored PH-induced downregulation of estrogen receptor-β expression in the right ventricle and lung. In conclusion, genistein therapy not only rescues preexisting severe PH but also prevents the progression of severe PH to RHF.
Collapse
Affiliation(s)
- Humann Matori
- Department of Anesthesiology, Division of Molecular Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pacing postconditioning: impact of pacing algorithm, gender, and diabetes on its myocardial protective effects. J Cardiovasc Transl Res 2012; 5:727-34. [PMID: 22826102 DOI: 10.1007/s12265-012-9390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/21/2012] [Indexed: 01/01/2023]
Abstract
Pacing postconditioning (PPC) induces cardioprotection. The aim of this study was to determine the optimal pacing algorithm and possible influence of gender and diabetes on PPC. Unprotected regional ischemia for 30 min served as negative control and classical PPC (ten cycles of 30 s left ventricular pacing alternated with 30 s right atrial pacing) as positive control. Area at risk and infarct size were determined by blue dye and triphenyltetrazolium chloride staining. For achieving protection, the minimal number of PPC cycles was seven and the minimal duration of a PPC protocol was 200 s. The protective effect of PPC was comparable in male and female hearts, but no protection could be induced by PPC in diabetic hearts. PPC can provide myocardial protection when using at least seven cycles of ventricular pacing. PPC protection is independent of gender, but sensitive to experimental diabetes.
Collapse
|
34
|
Sun Z, Biela LM, Hamilton KL, Reardon KF. Concentration-dependent effects of the soy phytoestrogen genistein on the proteome of cultured cardiomyocytes. J Proteomics 2012; 75:3592-604. [PMID: 22521270 DOI: 10.1016/j.jprot.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/23/2022]
Abstract
The soy-derived phytoestrogen genistein (GEN) has received attention for its potential benefits on the cardiovascular system by providing direct protection to cardiomyocytes against pathophysiological stresses. Here, we employed a proteomic approach to study the concentration-dependent effects of GEN treatments on cardiomyocytes. Cultured HL-1 cardiomyocytes were treated with low (1μM) and high (50μM) concentrations of GEN. Proteins were pre-fractionated by sequential hydrophilic/hydrophobic extraction and both protein fractions from each treatment group were separated by 2D gel electrophoresis (2DE). Overall, approximately 2,700 spots were visualized on the 2D gels. Thirty-nine and 99 spots changed in volume relative to controls (p<0.05) following the low- and high-concentration GEN treatments, respectively. From these spots, 25 and 62 protein species were identified by ESI-MS/MS and Mascot database searching, respectively. Identified proteins were further categorized according to their functions and possible links to cardioprotection were discussed. MetaCore gene ontology analysis suggested that 1μM GEN significantly impacted the anti-apoptosis process, and that both the low and high concentrations of GEN influenced the glucose catabolic process and regulation of ATPase activity. This proteomics study provides the first global insight into the molecular events triggered by GEN treatment in cardiomyocytes.
Collapse
Affiliation(s)
- Zeyu Sun
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | | | | | | |
Collapse
|
35
|
Umar S, Rabinovitch M, Eghbali M. Estrogen paradox in pulmonary hypertension: current controversies and future perspectives. Am J Respir Crit Care Med 2012; 186:125-31. [PMID: 22561960 DOI: 10.1164/rccm.201201-0058pp] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the incidence of pulmonary hypertension is higher in female patients, numerous experimental studies have demonstrated better outcome in female animals, exacerbation of the disease after ovariectomy, and a strong protective effect of estrogen: a phenomenon known as the "estrogen paradox" of pulmonary hypertension. On the other hand, some clinical studies have indirectly linked estrogen to increased risk of portopulmonary hypertension, whereas others implicate increased estrogen metabolism and high levels of certain estrogen metabolites in promoting pulmonary vascular remodeling in familial pulmonary arterial hypertension. In this review we investigate the estrogen paradox through highlighting the differential receptor-mediated effects of estrogen. Although estrogen and estrogen receptor-based therapies have shown promise in rescuing preexisting pulmonary hypertension in animals, their role is yet to be defined in humans.
Collapse
Affiliation(s)
- Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, USA
| | | | | |
Collapse
|
36
|
Huang L, Wang C, Zhang Y, Li J, Zhong Y, Zhou Y, Chen Y, Zuo Z. Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2012; 87:369-375. [PMID: 22209252 DOI: 10.1016/j.chemosphere.2011.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
It is reported that the most abundant polycyclic aromatic hydrocarbons (PAHs) in weathered crude oils are cardiotoxic. However, the action mechanism of PAHs on vertebrate cardiovascular development and disease is unclear. In the present study, the cardiac morphology and functioning of zebrafish embryos exposed to benzo[a]pyrene [B(a)P], as a high-ring PAHs, for 72 h were observed and determined. The results showed that B(a)P exposure resulted in cardiac developmental defects in zebrafish embryos. Significant changes in expression level of multiple genes potentially critical for regulating the B(a)P-induced cardiovascular developmental defects were also found. A gene network regulating cardiac development perturbed by B(a)P exposure was identified and established by computational analysis and employment of some databases. The information from the network could provide a clue for further mechanistic studies explaining molecular events regulating B(a)P-mediated cardiovascular defects and consequences.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Somers SJ, Lacerda L, Opie L, Lecour S. Age, genetic characteristics and number of cycles are critical factors to consider for successful protection of the murine heart with postconditioning. Physiol Res 2011; 60:971-4. [PMID: 21995895 DOI: 10.33549/physiolres.932129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Postconditioning (PostC) is a recently discovered phenomenon whereby brief repetitive cycles of ischaemia with intermittent reperfusion following prolonged ischaemia elicit cardioprotection. This study investigated whether the age, genetic characteristics or number of repetitive cycles influenced the protective effect of PostC in mice. C57BL/6 floxed or non-floxed STAT-3 mice aged between 14-16 weeks (young) or 18-20 weeks (older) were perfused on a Langendorff apparatus and subjected to 35 min global ischaemia and 45 min reperfusion. PostC was elicited by either 3 (PostC-3) or 6 cycles (PostC-6) of 10 s ischaemia and 10 s reperfusion. PostC-3 and PostC-6 in both young and older non-floxed mice reduced the myocardial infarct size. In contrast, only PostC-3 reduced myocardial infarct size in young floxed mice. Neither PostC-3 nor PostC-6 reduced the infarct in older floxed mice. Our data reveal that genetic characteristics, a minute difference in age or the number of postconditioning cycles are critical factors to be considered for the successful effect of ischaemic postconditioning in a murine model. Moreover, these factors should be taken into consideration for future experimental research or clinical applications of this protective phenomenon.
Collapse
Affiliation(s)
- S J Somers
- Hatter Cardiovascular Research Institute, University of Cape Town, Cape Town, South Africa.
| | | | | | | |
Collapse
|
38
|
Rohilla A, Rohilla S, Kushnoor A. Myocardial postconditioning: next step to cardioprotection. Arch Pharm Res 2011; 34:1409-15. [PMID: 21975801 DOI: 10.1007/s12272-011-0901-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/29/2011] [Accepted: 03/03/2011] [Indexed: 12/25/2022]
Abstract
Myocardial ischemia is a condition in which lack of blood flow to the cardiac muscle occurs resulting in deficient oxygen and nutrient supply to the heart. The restoration of blood flow to an organ or tissue is termed reperfusion. Brief episodes of ischemia and reperfusion given after prolonged ischemia and at the onset of reperfusion denotes postconditioning. Myocardial postconditioning is a phenomenon in which myocardium from lethal ischemia-reperfusion injury is protected. However, numerous experimental studies reveal that the cardioprotective effects of postconditioning are suppressed in various pathological states. This review critically discusses the mechanisms involved in the cardioprotective effects of postconditioning and factors affecting the cardioprotective potential of myocardial postconditioning.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmaceutical Sciences, Shri Gopi Chand, Group of Institutions, Baghpat 250609, UP, India.
| | | | | |
Collapse
|
39
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Several signal transduction pathways are activated by cardioprotective stimuli, including ischemic or pharmacological postconditioning. These pathways converge on a common target, the mitochondria, and cardioprotection by postconditioning is associated with preserved mitochondrial function after ischemia/reperfusion. The present review discusses the role of mitochondria in cardioprotection, especially the involvement of ATP-dependent potassium channels, reactive oxygen species, and the mitochondrial permeability transition pore, and focuses on the effects of postconditioning on mitochondrial function (i.e., their oxygen consumption and calcium retention capacity). The contribution of mitochondria to loss of protection by postconditioning in diseased or aged myocardium is also addressed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Hufelandstrasse 55, Essen, Germany.
| | | | | |
Collapse
|
41
|
Al-Nakkash L, Markus B, Batia L, Prozialeck WC, Broderick TL. Genistein induces estrogen-like effects in ovariectomized rats but fails to increase cardiac GLUT4 and oxidative stress. J Med Food 2010; 13:1369-75. [PMID: 20954809 PMCID: PMC3133466 DOI: 10.1089/jmf.2009.0271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/26/2010] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine whether a 2-week genistein treatment induced estrogen-like effects in ovariectomized (OVX) Sprague-Dawley rats, after 2 weeks of subcutaneous genistein injections (250 mg/kg of body weight/day). Uterine weight, uterine-to-body weight ratio, femur weight, and femur-to-body weight ratio were all significantly increased with genistein in OVX rats. Body weight was significantly decreased with genistein in OVX rats. Genistein had no effect on the weights of heart, heart-to-body ratio, and fat pad but significantly decreased heart rate and pulse pressure. Genistein had no effect on cardiac GLUT4 protein, oxidative stress, plasma glucose, nonesterified fatty acids, or low-density lipoprotein levels; however, plasma insulin levels were significantly increased. Our results show that a 2-week genistein treatment produced favorable estrogen-like effects on some physical and physiological characteristics in OVX rats. However, based on our experimental conditions, the effects of genistein were not associated with changes in cardiac GLUT4 or oxidative stress.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA.
| | | | | | | | | |
Collapse
|
42
|
Ma XJ, Yin SJ, Jin JC, Wu CF, Huang Y, Shi DZ, Yin HJ. Synergistic protection of Danhong injection (丹红注射液) and ischemic postconditioning on myocardial reperfusion injury in minipigs. Chin J Integr Med 2010; 16:531-6. [PMID: 21110179 DOI: 10.1007/s11655-010-0567-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore the synergistic protection of Danhong Injection (丹红注射液, DHI) and ischemic postconditioning on myocardial reperfusion injury in minipigs. METHODS Acute myocardial infarction model was made by balloon occlusion in left anterior descending coronary artery (LAD) of minipigs, and then postconditioning was simulated through inflation/deflation of the angioplasty balloon. Minipigs were divided into four groups: the sham operation group (SH group), the ischemia/reperfusion group (I/R group), the ischemic postconditioning group (POC group) and DHI combined with ischemic postconditioning group (PAD group, DHI 20 mL through ear vein), six in each group. After 24-h continuous observation, myocardial infarction size was assessed by triphenyltetrazolium staining (TTC). Morphological changes of ischemic myocardium were observed by light microscopy, and cardiomyocyte ultrastructure was studied with electron microscopy. The superoxide dismutase (SOD) and malondialdehyde (MDA) activity in heart homogenates were measured by a biochemical method. RESULTS The myocardial infarction size was smaller in the POC group than in the I/R group (0.26 ± 0.02 vs. 0.37 ± 0.09, P<0.05), and the PAD group (0.14 ± 0.08) displayed a significantly reduced infarction size relative to the I/R group (P<0.01) and POC group (P<0.05). The damage of myocardial tissue was severe in the I/R group shown by light and electron microscopy: myocardial fibers disorder, sarcoplasmic dissolution, myofilament fracture, mitochondria swelling and even vacuolization formation and a large number of inflammatory cell infiltrations. Compared with the I/R group, reduction of reperfusion injury in the PAD group included more orderly arranged myocardial fibers, less infiltration of inflammatory cells and maintenance of mitochondrial integrity. Compared with the I/R group, the damage of myocardial tissue in the POC group was improved, but not as significant as that in the PAD group. SOD levels in the POC group and the PAD group were significantly higher than those in the I/R group (96.96 ± 13.43, 112.25 ± 22.75 vs. 76.32 ± 10.63, P<0.05), and MDA was significantly lower in the POC group and the PAD group compared to the I/R group (1.27 ± 0.19, 1.09 ± 0.21 vs. 1.47 ± 0.16, P<0.05). CONCLUSION DHI and ischemic postconditioning show a synergistic cardioprotection on myocardial reperfusion injury in minipigs.
Collapse
Affiliation(s)
- Xiao-juan Ma
- Department of Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | | | | | | | | | | | | |
Collapse
|
43
|
The protective effect of capsaicin receptor-mediated genistein postconditioning on gastric ischemia-reperfusion injury in rats. Dig Dis Sci 2010; 55:3070-7. [PMID: 20198432 DOI: 10.1007/s10620-010-1151-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 02/03/2010] [Indexed: 12/09/2022]
Abstract
BACKGROUND No published study has addressed the effect of genistein postconditioning on gastric ischemia-reperfusion (GI-R) injury in rats. AIM To examine whether capsaicin receptor-mediated genistein postconditioning protects against gastric ischemia-reperfusion injury via the PI3K/Akt signal pathway. METHODS AND RESULTS Chloraldurat-anesthetized rats underwent occlusion of the celiac artery for 30 min, followed by 60 min of reperfusion. Based on this animal model of gastric ischemia-reperfusion injury, genistein at doses of 100, 500 or 1,000 μg/kg was administered via peripheral vein 5 min before reperfusion. The dose of 500 μg/kg was optimal for postconditioning, at which the severity of I-R-induced gastric injury significantly decreased. Immunohistochemistry also showed that gastric mucosal cell apoptosis decreased. Capsazepine (CPZ), a specific antagonist for the capsaicin receptor, was administered (1,000 μg/kg, i.v.) just before ischemia. Capsaicin (50 mg/kg, s.c.) once a day for 4 days reversed the protective effects of genistein. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed increased calcitonin gene-related peptide (CGRP) expression in genistein group but not in capsazepine or capsaicin group. CGRP inhibitor CGRP8-37 also prevented the effects of genistein in decreasing gastric mucosal injury index. In addition, PI3K inhibitor LY294002 (1.5 mg/kg) reversed the protective effect of genistein. Compared with genistein group, Western blots also demonstrated decreased Akt phosphorylation in LY294002 group. CONCLUSION Our data suggest that capsaicin receptors mediated the protective effects of genistein postconditioning. CGRP secreted by activated capsaicin-sensitive neurons played an important role in the protective effects of genistein. PI3K/Akt pathway was also involved in the protective effects of genistein.
Collapse
|
44
|
Kim DS, Kwon DY, Kim MS, Kim HK, Lee YC, Park SJ, Yoo WH, Chae SW, Chung MJ, Kim HR, Chae HJ. The involvement of endoplasmic reticulum stress in flavonoid-induced protection on cardiac cell death caused by ischaemia/reperfusion. J Pharm Pharmacol 2010; 62:197-204. [PMID: 20487199 DOI: 10.1211/jpp.62.02.0007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES We have investigated whether endoplasmic reticulum stress and Bcl-2 proteins were linked to the protective effect exerted by flavonoids on ischaemia/reperfusion-induced cardiac damage. METHODS Cell viability and immunoblotting were performed. KEY FINDINGS H9c2 cardiac muscle cells were exposed to flavonoids such as biochanin A, daidzein, genistein, luteolin, quercetin and rutin, followed by ischaemia 12 h/reperfusion 4 h. The flavonoids protected against cell death induced by ischaemia/reperfusion. Flavonoid treatment significantly increased the expression level of the anti-apoptotic protein, Bcl-2, but decreased that of the proapoptotic protein, Bax. The flavonoids down-regulated the expression levels of endoplasmic reticulum stress proteins, glucose-regulated protein-78, activating transcription factor 6alpha, X-box binding protein 1, inositol-requiring protein-1, phosphor-eukaryotic initiation factor 2alpha, and C/EBP-homologous protein. CONCLUSIONS This study suggested that the protective mechanisms of flavonoids included regulation of Bcl-2/Bax proteins as well as the endoplasmic reticulum stress proteins.
Collapse
Affiliation(s)
- Do-Sung Kim
- Department of Pharmacology and Institute of Cardiovascular Research, Jeonju, Chonbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jankowski M, Wang D, Danalache B, Gangal M, Gutkowska J. Cardiac oxytocin receptor blockade stimulates adverse cardiac remodeling in ovariectomized spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 299:H265-74. [PMID: 20671291 DOI: 10.1152/ajpheart.00487.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasing amount of evidence demonstrates the beneficial role of oxytocin (OT) in the cardiovascular system. Similar actions are attributed to genistein, an isoflavonic phytoestrogen. The treatment with genistein activates the OT system in the aorta of ovariectomized (OVX) Sprague-Dawley (SD) rats. The objective of this study was to determine the effects of low doses of genistein on the OT-induced effects in rat hypertension. The hypothesis tested was that treatment of OVX spontaneously hypertensive rats (SHRs) with genistein improves heart structure and heart work through a mechanism involving the specific OT receptor (OTR). OVX SHRs or SD rats were treated with genistein (in microg/g body wt sc, 10 days) in the presence or absence of an OT antagonist (OTA) [d(CH(2))(5), Tyr(Me)(2), Orn(8)]-vasotocin or a nonspecific estrogen receptor antagonist (ICI-182780). Vehicle-treated OVX rats served as controls. RT-PCR and Western blot analysis demonstrated that left ventricular (LV) OTR, downregulated by ovariectomy, increased in response to genistein. In SHRs or SD rats, this effect was blocked by OTA or ICI-182780 administration. The OTR was mainly localized in microvessels expressing the CD31 marker and colocalized with endothelial nitric oxide synthase. In SHRs, the genistein-stimulated OTR increases were associated with improved fractional shortening, decreased blood pressure (12 mmHg), decreased heart weight-to-body weight ratio, decreased fibrosis, and lowered brain natriuretic peptide in the LV. The prominent finding of the study is the detrimental effect of OTA treatment on the LV of SHRs. OTA treatment of OVX SHRs resulted in a dramatic worsening of ejection fractions and an augmented fibrosis. In conclusion, these results demonstrate that cardiac OTRs are involved in the regulation of cardiac function of OVX SHRs. The decreases of OTRs may contribute to cardiac pathology following menopause.
Collapse
Affiliation(s)
- Marek Jankowski
- Centre de recherche, CHUM-Hôtel-Dieu Pav. De Boulion, 3840, rue Saint-Urbain, Montréal, QC, H2W 1T8, Canada.
| | | | | | | | | |
Collapse
|
46
|
Liu T, Jin H, Sun QR, Xu JH, Hu HT. Neuroprotective effects of emodin in rat cortical neurons against beta-amyloid-induced neurotoxicity. Brain Res 2010; 1347:149-60. [PMID: 20573598 DOI: 10.1016/j.brainres.2010.05.079] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 12/21/2022]
Abstract
Accumulation of beta-amyloid protein (Abeta) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). In this study, the neuroprotective effect of emodin extracted from the traditional Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc against Abeta(25-35)-induced cell death in cultured cortical neurons was investigated. We found that pre-treatment with emodin prevented the cultured cortical neurons from beta-amyloid-induced toxicity. The preventive effect of emodin was blocked by pre-treatment with a phosphatidylinositol-3-kinase (PI3K) pathway inhibitor LY294002 or an estrogen receptor (ER) specific antagonist ICI182780, but not by pre-treatment with an extracellular signal-related kinases (ERK) inhibitor U0126. Furthermore, we found that emodin exposure induced the activation of the Akt serine/threonine kinase and increased the level of Bcl-2 expression. Moreover, the application of emodin for 24h was able to induce the activation of Abeta(25-35)-suppressed Akt and decrease the activation of the Jun-N-terminal kinases (JNK), but not of ERK. Interestingly, the up-regulation of Akt and Bcl-2 did not occur in the presence of LY294002 or ICI182780, suggesting that emodin-up-regulated Bcl-2 is mediated via the ER and PI3K/Akt pathway. Taken together, our results suggest that emodin is an effective neuroprotective drug and is a viable candidate for treating AD.
Collapse
Affiliation(s)
- Tao Liu
- Department of Human Anatomy and Histology & Embryology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | | | | | | |
Collapse
|
47
|
Effect of Morphine Postconditioning on Rat Cardiac Sarcolemmal KATP Channels*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism. Anesthesiology 2010; 112:73-85. [PMID: 19996950 DOI: 10.1097/aln.0b013e3181c4a607] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of endothelial nitric oxide synthase (eNOS) in isoflurane postconditioning (IsoPC)-elicited cardioprotection is poorly understood. The authors addressed this issue using eNOS mice. METHODS In vivo or Langendorff-perfused mouse hearts underwent 30 min of ischemia followed by 2 h of reperfusion in the presence and absence of postconditioning produced with isoflurane 5 min before and 3 min after reperfusion. Ca+-induced mitochondrial permeability transition (MPT) pore opening was assessed in isolated mitochondria. Echocardiography was used to evaluate ventricular function. RESULTS Postconditioning with 0.5, 1.0, and 1.5 minimum alveolar concentrations of isoflurane decreased infarct size from 56 +/- 10% (n = 10) in control to 48 +/- 10%, 41 +/- 8% (n = 8, P < 0.05), and 38 +/- 10% (n = 8, P < 0.05), respectively, and improved cardiac function in wild-type mice. Improvement in cardiac function by IsoPC was blocked by N-nitro-L-arginine methyl ester (a nonselective nitric oxide synthase inhibitor) administered either before ischemia or at the onset of reperfusion. Mitochondria isolated from postconditioned hearts required significantly higher in vitro Ca+ loading than did controls (78 +/- 29 microm vs. 40 +/- 25 microm CaCl2 per milligram of protein, n = 10, P < 0.05) to open the MPT pore. Hearts from eNOS mice displayed no marked differences in infarct size, cardiac function, and sensitivity of MPT pore to Ca+, compared with wild-type hearts. However, IsoPC failed to alter infarct size, cardiac function, or the amount of Ca+ necessary to open the MPT pore in mitochondria isolated from the eNOS hearts compared with control hearts. CONCLUSIONS IsoPC protects mouse hearts from reperfusion injury by preventing MPT pore opening in an eNOS-dependent manner. Nitric oxide functions as both a trigger and a mediator of cardioprotection produced by IsoPC.
Collapse
|
49
|
Couvreur N, Tissier R, Pons S, Chetboul V, Gouni V, Bruneval P, Mandet C, Pouchelon JL, Berdeaux A, Ghaleh B. Chronic heart rate reduction with ivabradine improves systolic function of the reperfused heart through a dual mechanism involving a direct mechanical effect and a long-term increase in FKBP12/12.6 expression. Eur Heart J 2009; 31:1529-37. [PMID: 20028694 DOI: 10.1093/eurheartj/ehp554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS To investigate the adaptations of left ventricular function and calcium handling to chronic heart rate reduction with ivabradine in the reperfused heart. METHODS AND RESULTS Rabbits underwent 20 min coronary artery occlusion followed by 3 weeks of reperfusion. Throughout reperfusion, rabbits received ivabradine (10 mg/kg/day) or vehicle (control). Ivabradine reduced heart rate by about 20% and improved both ejection fraction (+35%) and systolic displacement (+26%) after 3 weeks of treatment. Interestingly, this was associated with a two-fold increase expression of FKBP12/12.6. There was no difference in the expressions of phospholamban, SERCA2a, calsequestrin, ryanodine, phospho-ryanodine, and Na(2+)/Ca(2+) exchanger in the two groups. Infarct scar and vascular density were similar in both groups. Administration of a single intravenous bolus of ivabradine (1 mg/kg) in control rabbits at 3 weeks of reperfusion also significantly improved acutely ejection fraction and systolic displacement. CONCLUSION Chronic heart rate reduction protects the myocardium against ventricular dysfunction induced by myocardial ischaemia followed by 3 weeks of reperfusion. Beyond pure heart rate reduction, ivabradine improves global and regional systolic function of the reperfused heart through a dual mechanism involving a direct mechanical effect and a long-term adaptation in calcium handling, as supported by the increase in FKBP12/12.6 expression.
Collapse
Affiliation(s)
- Nicolas Couvreur
- INSERM U955 Equipe 03, 8, rue du Général Sarrail, Créteil F-94010, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Du D, Ma X, Zhang J, Zhang Y, Zhou X, Li Y. Cellular and molecular mechanisms of 17beta-estradiol postconditioning protection against gastric mucosal injury induced by ischemia/reperfusion in rats. Life Sci 2009; 86:30-8. [PMID: 19931544 DOI: 10.1016/j.lfs.2009.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/15/2022]
Abstract
AIMS To investigate the protective effects of 17beta-estradiol postconditioning against ischemia/reperfusion (I-R)-induced gastric mucosal injury in rats. MAIN METHODS The animal model of gastric ischemia/reperfusion was established by clamping of the celiac artery for 30 min and reperfusion for 30 min, 1h, 3h, 6h, 12h or 24h. 17beta-estradiol at doses of 5, 50 or 100 microg/kg (rat) was administered via peripheral veins 2 min before reperfusion. In a subgroup of rats, the estrogen receptor antagonist fulvestrant (Ful, 2mg/kg) was intravenously injected prior to 17beta-estradiol administration. Histological and immunohistochemical methods were employed to assess the gastric mucosal injury index and gastric mucosal cell apoptosis and proliferation. The malondialdehyde (MDA) concentration, superoxide dismutase (SOD) activity, xanthine oxidase (XOD) activity and hydroxyl free radical (-OH) inhibitory ability were determined by colorimetric assays. Subsequently, the expression of Bcl-2 and Bax in rat gastric mucosa was examined by western blotting. KEY FINDINGS 17beta-estradiol dose-dependently inhibited gastric I-R (GI-R) injury, and 17beta-estradiol (50 microg/kg) markedly attenuated GI-R injury 1h after reperfusion. 17beta-estradiol inhibited gastric mucosal cell apoptosis and promoted gastric mucosal cell proliferation in addition to increasing SOD activity and -OH inhibitory ability and decreasing the MDA content and XOD activity. The Bax protein level increased 1h after GI-R and was markedly reduced by intravenous administration of 17beta-estradiol. In contrast, the level of Bcl-2 protein decreased 1h after GI-R and was restored to normal levels by intravenous administration of 17beta-estradiol. These effects of 17beta-estradiol were inhibited by pretreatment with fulvestrant. SIGNIFICANCE 17beta-estradiol postconditioning should be investigated further as a possible strategy against gastric mucosal injury.
Collapse
Affiliation(s)
- Dongshu Du
- Department of Physiology, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|