1
|
Buja LM, Mitchell RN. Basic pathobiology of cell-based therapies and cardiac regenerative medicine. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
2
|
Alam P, Maliken BD, Jones SM, Ivey MJ, Wu Z, Wang Y, Kanisicak O. Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. Int J Mol Sci 2021; 22:ijms222313104. [PMID: 34884909 PMCID: PMC8658114 DOI: 10.3390/ijms222313104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.
Collapse
Affiliation(s)
- Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Bryan D. Maliken
- Harrington Physician-Scientist Pathway, Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA;
| | - Shannon M. Jones
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Malina J. Ivey
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (P.A.); (S.M.J.); (M.J.I.); (Z.W.); (Y.W.)
- Correspondence: ; Tel.: +1-513-558-2029; Fax: +1-513-584-3892
| |
Collapse
|
3
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
4
|
Abd Wahab NA, Abas F, Othman I, Naidu R. Diarylpentanoid (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one) (MS13) Exhibits Anti-proliferative, Apoptosis Induction and Anti-migration Properties on Androgen-independent Human Prostate Cancer by Targeting Cell Cycle-Apoptosis and PI3K Signalling Pathways. Front Pharmacol 2021; 12:707335. [PMID: 34366863 PMCID: PMC8343533 DOI: 10.3389/fphar.2021.707335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.
Collapse
Affiliation(s)
- Nurul Azwa Abd Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
5
|
Tao Z, Loo S, Su L, Abdurrachim D, Lalic J, Lee TH, Chen X, Tan RS, Zhang J, Ye L. Dexamethasone inhibits regeneration and causes ventricular aneurysm in the neonatal porcine heart after myocardial infarction. J Mol Cell Cardiol 2020; 144:15-23. [PMID: 32387242 DOI: 10.1016/j.yjmcc.2020.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
AIMS Recently, we demonstrated that the hearts of neonatal pigs (2-day old) have regenerative capacity, likely driven by cardiac myocyte division, but this potential is lost immediately after postnatal day 3. However, it is unknown if corticosteroid, a broad anti-inflammatory agent, will abrogate the regenerative capacity in the hearts of neonatal pigs. The aim of the current study is to evaluate the effect Dexamethasone (Dex), a broad anti-inflammatory agent, on heart regeneration, structure, and function of the neonatal pigs' post-myocardial infarction (MI). METHODS AND RESULTS Dex (0.2 mg/kg/day) was injected intramuscularly into the neonatal pig (age: 2 days postnatal) during the first week post-MI. Myocardial scar and left ventricular function were determined by cardiac magnetic resonance (CMR) imaging. Bromodeoxyuridine (BrdU) pulse-chase labeling, histology, immunohistochemistry, and flow cytometry were performed to determine inflammatory cell infiltration, CM cytokinesis, and myocardial fibrosis. Dex injection during the first-week suppressed acute inflammation post-MI in the pig hearts. It inhibited BrdU incorporation to pig CMs and CM cytokinesis via inhibiting aurora-B protein expression which was associated with mature scar formation and thinned walls at the infarct site. CMR imaging showed Dex caused left ventricular aneurysm and poor ejection fraction. CONCLUSIONS Dex inhibited CM cytokinesis and functional recovery and caused ventricular aneurysm in the hearts of 2-day old pigs post-MI.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Szejie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | | | - Janise Lalic
- Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.
| |
Collapse
|
6
|
Nakao S, Tsukamoto T, Ueyama T, Kawamura T. STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering. Int J Mol Sci 2020; 21:ijms21061937. [PMID: 32178385 PMCID: PMC7139789 DOI: 10.3390/ijms21061937] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the most common cause of death in developed countries, but the medical treatments for heart failure remain limited. In this context, the development of cardiac regeneration therapy for severe heart failure is important. Owing to their unique characteristics, including multiple differentiation and infinitive self-renewal, pluripotent stem cells can be considered as a novel source for regenerative medicine. Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling plays critical roles in the induction, maintenance, and differentiation of pluripotent stem cells. In the heart, JAK/STAT3 signaling has diverse cellular functions, including myocardial differentiation, cell cycle re-entry of matured myocyte after injury, and anti-apoptosis in pathological conditions. Therefore, regulating STAT3 activity has great potential as a strategy of cardiac regeneration therapy. In this review, we summarize the current understanding of STAT3, focusing on stem cell biology and pathophysiology, as they contribute to cardiac regeneration therapy. We also introduce a recently reported therapeutic strategy for myocardial regeneration that uses engineered artificial receptors that trigger endogenous STAT3 signal activation.
Collapse
Affiliation(s)
- Shu Nakao
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tasuku Tsukamoto
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tomoe Ueyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Teruhisa Kawamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (S.N.); (T.T.); (T.U.)
- Ritsumeikan Global Innovation Research Institute, Ritsumeikan University, Kusatsu 525-8577, Japan
- Correspondence: ; Tel.: +81-75-599-4327
| |
Collapse
|
7
|
Non-coding RNAs in Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:163-180. [PMID: 32285411 DOI: 10.1007/978-981-15-1671-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and with the dramatically increasing numbers of heart failure patients in the next 10 years, mortality will only increase [1]. For patients with end-stage heart failure, heart transplantation is the sole option. Regrettably, the number of available donor hearts is drastically lower than the number of patients waiting for heart transplantation. Despite evidence of cardiomyocyte renewal in adult human hearts, regeneration of functional myocardium after injury can be neglected. The limited regenerative capacity due to inadequate proliferation of existing cardiomyocytes is insufficient to repopulate areas of lost myocardium [2]. As a solution, the hypothesis that adult stem cells could be employed to generate functional cardiomyocytes was proposed. One of the early studies that supported this hypothesis involved direct injection of hematopoietic c-kit-positive cells derived from bone marrow into the infarcted heart [3]. However, in sharp contrast, more recent evidence emerged demonstrating that these hematopoietic stem cells only differentiate into cells down the hematopoietic lineage rather than into cardiomyocytes [4, 5], and the focus shifted towards stem cells residing in the heart, called cardiac progenitor cells. These CPCs were extracted and injected into the myocardium to regenerate the heart [6]. In recent years, over 80 pre-clinical studies employing cardiac stem cells in vivo in large and small animals to evaluate the effect on functional parameters were systematically reviewed, identifying differences between large and small animals [7]. Despite the positive outcome of these stem cell therapies on functional parameters, c-kit-positive cardiac progenitor cells were shown to contribute minimally to the generation of functional cardiomyocytes [8, 9]. This heavily debated topic is summarized concisely by van Berlo and Molkentin [10]. Recently, single-cell sequencing and genetic lineage tracing of proliferative cells in the murine heart in both homeostatic and regenerating conditions did not yield a quiescent cardiac stem cell population or other cell types that support transdifferentiation into cardiomyocytes, nor did it support proliferation of cardiac myocytes [11, 12]. Now, the focus is shifting towards exploiting the limited regenerative capacity of the cardiomyocytes themselves, by re-activating proliferation of existing cardiomyocytes through dedifferentiation, reentry into the cell cycle, and cytokinesis. This process is the new focus of research to promote cardiac regeneration, and can be controlled on multiple levels, including cell-cycle manipulation, reprogramming, small molecules, extra-cellular matrix (ECM), proteins, and RNA regulation [13].
Collapse
|
8
|
Flinn MA, Link BA, O'Meara CC. Upstream regulation of the Hippo-Yap pathway in cardiomyocyte regeneration. Semin Cell Dev Biol 2019; 100:11-19. [PMID: 31606277 DOI: 10.1016/j.semcdb.2019.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
The response of the adult mammalian heart to injury such as myocardial infarction has long been described as primarily fibrotic scarring and adverse remodeling with little to no regeneration of cardiomyocytes. Emerging studies have challenged this paradigm by demonstrating that, indeed, adult mammalian cardiomyocytes are capable of completing cytokinesis albeit at levels vastly insufficient to compensate for the loss of functional cardiomyocytes following ischemic injury. Thus, there is great interest in identifying mechanisms to guide adult cardiomyocyte cell cycle re-entry and facilitate endogenous heart regeneration. The Hippo signaling pathway is a core kinase cascade that functions to suppress the transcriptional co-activators Yap and Taz by phosphorylation and therefore cytoplasmic retention or phospho-degradation. This pathway has recently sparked interest in the field of cardiac regeneration as inhibition of Hippo kinase signaling or overdriving the transcriptional co-activator, Yap, significantly promotes proliferation of terminally differentiated adult mammalian cardiomyocytes and can restore function in failing mouse hearts. Thus, the Hippo pathway is an attractive therapeutic target for promoting cardiomyocyte renewal and cardiac regeneration. Although the core kinases and transcriptional activators of the Hippo pathway have been studied extensively over the last twenty years, the regulatory inputs of this pathway, particularly in vertebrates, are poorly understood. Recent studies have elucidated several upstream regulatory inputs to the Hippo pathway in adult mammalian cardiomyocytes that influence cell proliferation and heart regeneration. Considering upstream inputs to the Hippo pathway are thought to be context and cell type specific, targeting these various components could serve as a therapeutic approach for refining Hippo-Yap signaling in the heart. Here, we provide an overview of the emerging regulatory inputs to the Hippo pathway as they relate to mammalian cardiomyocytes and heart regeneration.
Collapse
Affiliation(s)
- Michael A Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Chattergoon NN. Thyroid hormone signaling and consequences for cardiac development. J Endocrinol 2019; 242:T145-T160. [PMID: 31117055 PMCID: PMC6613780 DOI: 10.1530/joe-18-0704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
The fetal heart undergoes its own growth and maturation stages all while supplying blood and nutrients to the growing fetus and its organs. Immature contractile cardiomyocytes proliferate to rapidly increase and establish cardiomyocyte endowment in the perinatal period. Maturational changes in cellular maturation, size and biochemical capabilities occur, and require, a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. Thyroid hormone has long been known to be important for neuronal development, but also for fetal size and survival. Fetal circulating 3,5,3'-triiodothyronine (T3) levels surge near term in mammals and are responsible for maturation of several organ systems, including the heart. Growth factors like insulin-like growth factor-1 stimulate proliferation of fetal cardiomyocytes, while thyroid hormone has been shown to inhibit proliferation and drive maturation of the cells. Several cell signaling pathways appear to be involved in this complicated and coordinated process. The aim of this review was to discuss the foundational studies of thyroid hormone physiology and the mechanisms responsible for its actions as we speculate on potential fetal programming effects for cardiovascular health.
Collapse
Affiliation(s)
- Natasha N Chattergoon
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Haginiwa S, Sadahiro T, Kojima H, Isomi M, Tamura F, Kurotsu S, Tani H, Muraoka N, Miyake N, Miyake K, Fukuda K, Ieda M. Tbx6 induces cardiomyocyte proliferation in postnatal and adult mouse hearts. Biochem Biophys Res Commun 2019; 513:1041-1047. [PMID: 31010673 DOI: 10.1016/j.bbrc.2019.04.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Mammalian cardiomyocytes (CMs) proliferate during embryonic development, whereas they largely lose their regenerative capacity after birth. Defined factors expressed in cardiac progenitors or embryonic CMs may activate the cell cycle and induce CM proliferation in postnatal and adult hearts. Here, we report that the overexpression of Tbx6, enriched in the cardiac mesoderm (progenitor cells), induces CM proliferation in postnatal and adult mouse hearts. By screening 24 factors enriched in cardiac progenitors or embryonic CMs, we found that only Tbx6 could induce CM proliferation in primary cultured postnatal rat CMs. Intriguingly, it did not induce the proliferation of cardiac fibroblasts. We next generated a recombinant adeno-associated virus serotype 9 vector encoding Tbx6 (AAV9-Tbx6) for transduction into mouse CMs in vivo. The subcutaneous injection of AAV9-Tbx6 into neonatal mice induced CM proliferation in postnatal and adult mouse hearts. Mechanistically, Tbx6 overexpression upregulated multiple cell cycle activators including Aurkb, Mki67, Ccna1, and Ccnb2 and suppressed the tumor suppressor Rb1. Thus, Tbx6 promotes CM proliferation in postnatal and adult mouse hearts by modifying the expression of cell cycle regulators.
Collapse
Affiliation(s)
- Sho Haginiwa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Hidenori Kojima
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mari Isomi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Fumiya Tamura
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shota Kurotsu
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoto Muraoka
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Division of Gene Therapy Research Center for Advanced Medical Technology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan.
| |
Collapse
|
11
|
Ye L, D’Agostino G, Loo SJ, Wang CX, Su LP, Tan SH, Tee GZ, Pua CJ, Pena EM, Cheng RB, Chen WC, Abdurrachim D, Lalic J, Tan RS, Lee TH, Zhang J, Cook SA. Early Regenerative Capacity in the Porcine Heart. Circulation 2018; 138:2798-2808. [DOI: 10.1161/circulationaha.117.031542] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Giuseppe D’Agostino
- Programme in Cardiovascular & Metabolic Disorders, Duke-National University of Singapore (G.D., S.A.C.)
| | - Sze Jie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Chen Xu Wang
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Li Ping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Shi Hua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Gui Zhen Tee
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Edgar Macabe Pena
- SingHealth Experimental Medicine Centre, Singapore Health Services Pte Ltd (E.M.P., R.B.C.)
| | - Redmond Belen Cheng
- SingHealth Experimental Medicine Centre, Singapore Health Services Pte Ltd (E.M.P., R.B.C.)
| | - Way Cherng Chen
- Singapore Bioimaging Consortium, A*STAR (W.C.C., D.A., J.L., T.H.L.)
| | | | - Janise Lalic
- Singapore Bioimaging Consortium, A*STAR (W.C.C., D.A., J.L., T.H.L.)
| | - Ru San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
| | - Teck Hock Lee
- Singapore Bioimaging Consortium, A*STAR (W.C.C., D.A., J.L., T.H.L.)
| | - JianYi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (J.Y.Z.)
| | - Stuart Alexander Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore (L.Y., S.J.L., C.X.W., L.P.S., S.H.T., G.Z.T., C.J.P., R.S.T., S.A.C.)
- Programme in Cardiovascular & Metabolic Disorders, Duke-National University of Singapore (G.D., S.A.C.)
- National Heart and Lung Institute, Imperial College, London, United Kingdom (S.A.C.)
| |
Collapse
|
12
|
Gao J, Zhu M, Liu RF, Zhang JS, Xu M. Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats. Chin Med J (Engl) 2018; 131:1333-1341. [PMID: 29786048 PMCID: PMC5987506 DOI: 10.4103/0366-6999.232793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: MicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy. Methods: Twelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and 3H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance. Results: The expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = −2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy. Conclusion: MiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.
Collapse
Affiliation(s)
- Juan Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Min Zhu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Rui-Feng Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jian-Shu Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
13
|
MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl) 2017; 95:1369-1385. [PMID: 28948298 DOI: 10.1007/s00109-017-1591-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022]
Abstract
An innovative approach for cardiac regeneration following injury is to induce endogenous cardiomyocyte (CM) cell cycle re-entry. In the present study, CMs from adult rat hearts were isolated and transfected with cel-miR-67 (control) and rno-miR-210. A significant increase in CM proliferation and mono-nucleation were observed in miR-210 group, in addition to a reduction in CM size, multi-nucleation, and cell death. When compared to control, β-catenin and Bcl-2 were upregulated while APC (adenomatous polyposis coli), p16, and caspase-3 were downregulated in miR-210 group. In silico analysis predicted cell cycle inhibitor, APC, as a direct target of miR-210 in rodents. Moreover, compared to control, a significant increase in CM survival and proliferation were observed with siRNA-mediated inhibition of APC. Furthermore, miR-210 overexpressing C57BL/6 mice (210-TG) were used for short-term ischemia/reperfusion study, revealing smaller cell size, increased mono-nucleation, decreased multi-nucleation, and increased CM proliferation in 210-TG hearts in contrast to wild-type (NTG). Likewise, myocardial infarction (MI) was created in adult mice, echocardiography was performed, and the hearts were harvested for immunohistochemistry and molecular studies. Compared to NTG, 210-TG hearts showed a significant increase in CM proliferation, reduced apoptosis, upregulated angiogenesis, reduced infarct size, and overall improvement in cardiac function following MI. β-catenin, Bcl-2, and VEGF (vascular endothelial growth factor) were upregulated while APC, p16, and caspase-3 were downregulated in 210-TG hearts. Overall, constitutive overexpression of miR-210 rescues heart function following cardiac injury in adult mice via promoting CM proliferation, cell survival, and angiogenesis. KEY MESSAGES MiRNA-210 transfected adult rat CMs show proliferation and reduced cell death in vitro. Cell cycle inhibitor APC is a target of miR-210. MiR-210 overexpressing (210-TG) mouse hearts show CMs cell cycle re-entry and survival post myocardial injury. 210-TG mice show significant neovascularization and angiogenic potential post myocardial infarction. 210-TG hearts show reduced infarct size following ischemic injury.
Collapse
|
14
|
Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease. Cell Mol Life Sci 2016; 74:1367-1378. [PMID: 27812722 PMCID: PMC5357290 DOI: 10.1007/s00018-016-2404-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cardiomyocytes proliferate profusely during early development and for a brief period after birth in mammals. Within a month after birth, this proliferative capability is dramatically reduced in mammals unlike lower vertebrates where it persists into adult life. The zebrafish, for example, retains the ability to regenerate the apex of the heart following resection by a mechanism predominantly driven by cardiomyocyte proliferation. Differences in proliferative capacity of cardiomyocytes in adulthood between mammals and lower vertebrates are closely liked to ontogenetic or phylogenetic factors. Elucidation of these factors has the potential to provide enormous benefits if they lead to the development of therapeutic strategies that facilitate cardiomyocyte proliferation. In this review, we highlight the differences between Mammalian and Zebrafish cardiomyocytes, which could explain at least in part the different proliferative capacities in these two species. We discuss the advantages of the zebrafish as a model of cardiomyocyte proliferation, particularly at the embryonic stage. We also identify a number of key molecular pathways with potential to reveal key steps in switching cardiomyocytes from a quiescent to a proliferative phenotype.
Collapse
|
15
|
|
16
|
Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, Nishikawa M, Takei I, Oishi A, Narita M, Hoshijima M, Kimura T, Yamanaka S, Yoshida Y. Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 2016; 6:19111. [PMID: 26743035 PMCID: PMC4705488 DOI: 10.1038/srep19111] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. Although transplantation of induced pluripotent stem cell (iPSC)-derived CMs have been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day 4 mesodermal cells, and day 8, day 20, and day 30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day 20 CMs was significantly higher compared to other cells. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. They also demonstrate this model can be used to track the fate of transplanted cells over a long time.
Collapse
Affiliation(s)
- Shunsuke Funakoshi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Kenji Miki
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tadashi Takaki
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Chikako Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takeshi Hatani
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | | | - Misato Nishikawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ikue Takei
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akiko Oishi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masahiko Hoshijima
- Center for Research in Biological Systems and Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, USA
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
miR-134 Modulates the Proliferation of Human Cardiomyocyte Progenitor Cells by Targeting Meis2. Int J Mol Sci 2015; 16:25199-213. [PMID: 26512644 PMCID: PMC4632798 DOI: 10.3390/ijms161025199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocyte progenitor cells play essential roles in early heart development, which requires highly controlled cellular organization. microRNAs (miRs) are involved in various cell behaviors by post-transcriptional regulation of target genes. However, the roles of miRNAs in human cardiomyocyte progenitor cells (hCMPCs) remain to be elucidated. Our previous study showed that miR-134 was significantly downregulated in heart tissue suffering from congenital heart disease, underlying the potential role of miR-134 in cardiogenesis. In the present work, we showed that the upregulation of miR-134 reduced the proliferation of hCMPCs, as determined by EdU assay and Ki-67 immunostaining, while the inhibition of miR-134 exhibited an opposite effect. Both up- and downregulation of miR-134 expression altered the transcriptional level of cell-cycle genes. We identified Meis2 as the target of miR-134 in the regulation of hCMPC proliferation through bioinformatic prediction, luciferase reporter assay and western blot. The over-expression of Meis2 mitigated the effect of miR-134 on hCMPC proliferation. Moreover, miR-134 did not change the degree of hCMPC differentiation into cardiomyocytes in our model, suggesting that miR-134 is not required in this process. These findings reveal an essential role for miR-134 in cardiomyocyte progenitor cell biology and provide new insights into the physiology and pathology of cardiogenesis.
Collapse
|
18
|
Abstract
MicroRNAs (miRs) are a group of small RNAs that play a major role in post-transcriptional regulation of gene expression. In animals, many of the miRs are expressed in a conserved spatiotemporal manner. Muscle tissues, the major cellular systems involved in the locomotion and physiological functions of animals, have been one of the main sites for verification of miR targets and analysis of their developmental functions. During the determination and differentiation of muscle cells, numerous miRs bind to and repress target mRNAs in a highly specific but redundant manner. Interspecific comparisons of the sequences and expression of miRs have suggested that miR regulation became increasingly important during the course of vertebrate evolution. However, the detailed molecular interactions that have led to the highly complex morphological structures still await investigation. In this review, we will summarize the recent findings on the functional and developmental characteristics of miRs that have played major roles in vertebrate myogenesis, and discuss how the evolution of miRs is related to the morphological complexity of the vertebrates.
Collapse
|
19
|
Liang D, Li J, Wu Y, Zhen L, Li C, Qi M, Wang L, Deng F, Huang J, Lv F, Liu Y, Ma X, Yu Z, Zhang Y, Chen YH. miRNA-204 drives cardiomyocyte proliferation via targeting Jarid2. Int J Cardiol 2015; 201:38-48. [PMID: 26298346 DOI: 10.1016/j.ijcard.2015.06.163] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVES In mammals, the heart grows by hypertrophy but not proliferation of cardiomyocytes after birth. The paucity of cardiomyocyte proliferation limits cardiac regeneration in a variety of heart diseases. To explore the efficient strategies that drive cardiomyocyte proliferation, we employed in vitro and in vivo models to investigate the function of miRNA-204, which was demonstrated to regulate the proliferation and differentiation of human cardiac progenitor cells in our previous study. METHODS AND RESULTS miRNA-204 overexpression markedly promoted cardiomyocyte proliferation in both neonatal and adult rat cardiomyocytes in vitro. Transgenic mice with the cardiac-specific overexpression of miRNA-204 exhibited excessive cardiomyocyte proliferation throughout the embryonic and adult stages, leading to a pronounced increase in ventricular mass. Accordingly, the cell cycle regulators, including Cyclin A, Cyclin B, Cyclin D2, Cyclin E, CDC2 and PCNA, were upregulated in miRNA-204 transgenic embryonic hearts. Furthermore, we demonstrated that miRNA-204 directly targeted Jarid2. Knockdown of Jarid2 mimicked the pro-proliferative effect of miRNA-204 overexpression on cultured rat cardiomyocytes, whereas enhanced expression of Jarid2 conferred the myocytes with substantial resistance to proliferation by miRNA-204 overexpression. CONCLUSION Our findings identify a conserved role for miRNA-204 in regulating cardiomyocyte proliferation by targeting the Jarid2 signaling pathway.
Collapse
Affiliation(s)
- Dandan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Yahan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lixiao Zhen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Changming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Man Qi
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lijie Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Fangfei Deng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Jian Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Fei Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Xiue Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Center for Translational Medicine, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
20
|
Pandey R, Ahmed RPH. MicroRNAs Inducing Proliferation of Quiescent Adult Cardiomyocytes. CARDIOVASCULAR REGENERATIVE MEDICINE 2015; 2:e519. [PMID: 26065031 PMCID: PMC4459736 DOI: 10.14800/crm.519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the United States, each year over 700,000 people suffer from a heart attack and over 25% of deaths are related to heart disease, making it the leading cause of death. Following ischemic injury a part of the heart muscle is replaced by a scar tissue, reducing its functioning capacity. Recent advancements in surgical intervention and pharmacotherapy only provide symptomatic relief and do not address the root cause of the problem which is the massive loss of cardiomyocytes (CM). Therefore, the development of novel therapeutic intervention for the repair and regeneration of ischemic myocardium remains an area of intense research. While existing CM in zebra fish and neonatal mice are known to proliferate and replenish the infarcted heart, it has been shown that adult mammalian CM lose this ability, thus preventing regeneration of the scar tissue. There have been many attempts to facilitate regeneration of ischemic heart but have met with limited success. Micro-RNAs (miRNAs) are one of the promising candidates towards this goal as they are known to play important regulatory roles during differentiation and tissue regeneration, and regulate genetic information by post-transcriptional modification as well as regulation of other miRNAs. While previous work by Eulalio et al., showed miRNAs inducing proliferation in neonatal CM (NCM), we here identify miRNAs inducing proliferation of rat adult-CM (ACM). This commentary while analyses recent work by Eulalio et al[1] also shows some new data with microRNAs in rat adult-CMs. Further work into the mechanism of these miRNAs can determine their therapeutic potential towards regenerating cardiac tissue post ischemic injury.
Collapse
Affiliation(s)
- Raghav Pandey
- Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati OH 45267
| | - Rafeeq P. H. Ahmed
- Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati OH 45267
- Department of Pathology and Laboratory Medicine, University of Cincinnati School of Medicine, Cincinnati OH 45267
| |
Collapse
|
21
|
Tian S, Liu Q, Gnatovskiy L, Ma PX, Wang Z. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. ACTA ACUST UNITED AC 2015; 1. [PMID: 26744736 DOI: 10.19104/jstb.2015.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide. Recent advances in stem cell research hold great potential for heart tissue regeneration through stem cell-based therapy. While multiple cell types have been transplanted into MI heart in preclinical studies or clinical trials, reduction of scar tissue and restoration of cardiac function have been modest. Several challenges hamper the development and application of stem cell-based therapy for heart regeneration. Application of cardiac progenitor cells (CPCs) and cardiac tissue engineering for cell therapy has shown great promise to repair damaged heart tissue. This review presents an overview of the current applications of embryonic CPCs and the development of cardiac tissue engineering in regeneration of functional cardiac tissue and reduction of side effects for heart regeneration. We aim to highlight the benefits of the cell therapy by application of CPCs and cardiac tissue engineering during heart regeneration.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Qihai Liu
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Leonid Gnatovskiy
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
O'Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 2014; 116:804-15. [PMID: 25477501 DOI: 10.1161/circresaha.116.304269] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. OBJECTIVE The objectives of our study were to determine whether myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. METHODS AND RESULTS We derived a core transcriptional signature of injury-induced cardiac myocyte (CM) regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo CM differentiation, in vitro CM explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of CM differentiation processes, including reactivation of latent developmental programs similar to those observed during destabilization of a mature CM phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13, which induced CM cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of interleukin 13 signaling in CMs. These downstream signaling molecules are also modulated in the regenerating mouse heart. CONCLUSIONS Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration.
Collapse
Affiliation(s)
- Caitlin C O'Meara
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Joseph A Wamstad
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Rachel A Gladstone
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Gregory M Fomovsky
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Vincent L Butty
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Avanti Shrikumar
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Joseph B Gannon
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Laurie A Boyer
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.).
| | - Richard T Lee
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.).
| |
Collapse
|
23
|
Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription. J Mol Cell Cardiol 2014; 79:54-68. [PMID: 25450615 PMCID: PMC4312357 DOI: 10.1016/j.yjmcc.2014.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/09/2023]
Abstract
Adult mammalian cardiomyocytes have a very limited capacity to proliferate, and consequently the loss of cells after cardiac stress promotes heart failure. Recent evidence suggests that administration of hydrogen peroxide (H2O2), can regulate redox-dependent signalling pathway(s) to promote cardiomyocyte proliferation in vitro, but the potential relevance of such a pathway in vivo has not been tested. We have generated a transgenic (Tg) mouse model in which the H2O2-generating enzyme, NADPH oxidase 4 (Nox4), is overexpressed within the postnatal cardiomyocytes, and observed that the hearts of 1-3week old Tg mice pups are larger in comparison to wild type (Wt) littermate controls. We demonstrate that the cardiomyocytes of Tg mouse pups have increased cell cycling capacity in vivo as determined by incorporation of 5-bromo-2'-deoxyuridine. Further, microarray analyses of the transcriptome of these Tg mouse hearts suggested that the expression of cyclin D2 is significantly increased. We investigated the molecular mechanisms which underlie this more proliferative phenotype in isolated neonatal rat cardiomyocytes (NRCs) in vitro, and demonstrate that Nox4 overexpression mediates an H2O2-dependent activation of the ERK1/2 signalling pathway, which in turn phosphorylates and activates the transcription factor c-myc. This results in a significant increase in cyclin D2 expression, which we show to be mediated, at least in part, by cis-acting c-myc binding sites within the proximal cyclin D2 promoter. Overexpression of Nox4 in NRCs results in an increase in their proliferative capacity that is ablated by the silencing of cyclin D2. We further demonstrate activation of the ERK1/2 signalling pathway, increased phosphorylation of c-myc and significantly increased expression of cyclin D2 protein in the Nox4 Tg hearts. We suggest that this pathway acts to maintain the proliferative capacity of cardiomyocytes in Nox4 Tg pups in vivo and so delays their exit from the cell cycle after birth.
Collapse
|
24
|
Zhou N, Fu Y, Wang Y, Chen P, Meng H, Guo S, Zhang M, Yang Z, Ge Y. p27 kip1 haplo-insufficiency improves cardiac function in early-stages of myocardial infarction by protecting myocardium and increasing angiogenesis by promoting IKK activation. Sci Rep 2014; 4:5978. [PMID: 25099287 PMCID: PMC4124466 DOI: 10.1038/srep05978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/11/2014] [Indexed: 11/09/2022] Open
Abstract
p27kip1 (p27) is widely known as a potent cell cycle inhibitor in several organs, especially in the heart. However, its role has not been fully defined during the early phase of myocardial infarction (MI). In this study, we investigated the relationships between p27, vascular endothelial growth factor/hepatocyte growth factor (VEGF/HGF) and NF-κB in post-MI cardiac function repair both in vivo and in the hypoxia/ischemia-induced rat myocardiocyte model. In vivo, haplo-insufficiency of p27 improved cardiac function, diminished the infarct zone, protected myocardiocytes and increased angiogenesis by enhancing the production of VEGF/HGF. In vitro, the presence of conditioned medium from hypoxia/ischemia-induced p27 knockdown myocardiocytes reduced the injury caused by hypoxia/ischemia in myocardiocytes, and this effect was reversed by VEGF/HGF neutralizing antibodies, consistent with the cardioprotection being due to VEGF/HGF secretion. We also observed that p27 bound to IKK and that p27 haplo-insufficiency promoted IKK/p65 activation both in vivo and in vitro, thereby inducing the NF-κB downstream regulator, VEGF/HGF. Furthermore, IKKi and IKK inhibitor negated the effect of VEGF/HGF. Therefore, we conclude that p27 haplo-insufficiency protects against heart injury by VEGF/HGF mediated cardioprotection and increased angiogenesis through promoting IKK activation.
Collapse
Affiliation(s)
- Ningtian Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuxuan Fu
- Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yunle Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Pengsheng Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shouyu Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Kalozoumi G, Yacoub M, Sanoudou D. MicroRNAs in heart failure: Small molecules with major impact. Glob Cardiol Sci Pract 2014; 2014:79-102. [PMID: 25419522 PMCID: PMC4220439 DOI: 10.5339/gcsp.2014.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as potent modulators of mammalian gene expression, thereby broadening the spectrum of molecular mechanisms orchestrating human physiological and pathological cellular functions. Growing evidence suggests that these small non-coding RNA molecules are pivotal regulators of cardiovascular development and disease. Importantly, multiple miRNAs have been specifically implicated in the onset and progression of heart failure, thus providing a new platform for battling this multi-faceted disease. This review introduces the basic concepts of miRNA biology, describes representative examples of miRNAs associated with multiple aspects of HF pathogenesis, and explores the prognostic, diagnostic and therapeutic potential of miRNAs in the cardiology clinic.
Collapse
Affiliation(s)
- Georgia Kalozoumi
- Department of Pharmacology, Medical School, University of Athens, Greece
| | | | | |
Collapse
|
26
|
Sala V, Bergerone S, Gatti S, Gallo S, Ponzetto A, Ponzetto C, Crepaldi T. MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine. Cell Mol Life Sci 2014; 71:1439-52. [PMID: 24218009 PMCID: PMC11113160 DOI: 10.1007/s00018-013-1504-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are natural, single-stranded, small RNA molecules which subtly control gene expression. Several studies indicate that specific miRNAs can regulate heart function both in development and disease. Despite prevention programs and new therapeutic agents, cardiovascular disease remains the main cause of death in developed countries. The elevated number of heart failure episodes is mostly due to myocardial infarction (MI). An increasing number of studies have been carried out reporting changes in miRNAs gene expression and exploring their role in MI and heart failure. In this review, we furnish a critical analysis of where the frontier of knowledge has arrived in the fields of basic and translational research on miRNAs in cardiac ischemia. We first summarize the basal information on miRNA biology and regulation, especially concentrating on the feedback loops which control cardiac-enriched miRNAs. A focus on the role of miRNAs in the pathogenesis of myocardial ischemia and in the attenuation of injury is presented. Particular attention is given to cardiomyocyte death (apoptosis and necrosis), fibrosis, neovascularization, and heart failure. Then, we address the potential of miR-diagnosis (miRNAs as disease biomarkers) and miR-drugs (miRNAs as therapeutic targets) for cardiac ischemia and heart failure. Finally, we evaluate the use of miRNAs in the emerging field of regenerative medicine.
Collapse
Affiliation(s)
- V. Sala
- Department of Oncology, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - S. Bergerone
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - S. Gatti
- Department of Oncology, University of Turin, Turin, Italy
| | - S. Gallo
- Department of Oncology, University of Turin, Turin, Italy
| | - A. Ponzetto
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - C. Ponzetto
- Department of Oncology, University of Turin, Turin, Italy
| | - T. Crepaldi
- Department of Oncology, University of Turin, Turin, Italy
- Institute of Anatomy, Corso Massimo d’Azeglio 52, 10126 Turin, Italy
| |
Collapse
|
27
|
Zacchigna S, Giacca M. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovasc Res 2014; 102:312-20. [PMID: 24623280 DOI: 10.1093/cvr/cvu057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the striking differences that distinguish the adult from the embryonic heart in mammals and set it apart from the heart in urodeles and teleosts is the incapacity of cardiomyocytes to respond to damage by proliferation. While the molecular reasons underlying these characteristics still await elucidation, mounting evidence collected over the last several years indicates that cardiomyocyte proliferation can be modulated by different extracellular molecules. The exogenous administration of selected growth factors is capable of inducing neonatal and, in some instances, also adult cardiomyocyte proliferation. Other diffusible factors can regulate the proliferation and cardiac commitment of endogenous or implanted stem cells. While the individual role of these factors in the paracrine control of normal heart homeostasis still needs to be defined, this information is relevant for the development of novel therapeutic strategies for cardiac regeneration. In addition, recent evidence indicates that postnatal cardiomyocyte proliferation is controlled by genetically defined pathways, such as the Hippo pathway, and can be modulated by perturbing the endogenous cardiomyocyte microRNA network; the identification of the cytokines that activate these molecular circuits holds great potential for clinical translation.
Collapse
Affiliation(s)
- Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology , Padriciano, 99, Trieste 34149, Italy
| | | |
Collapse
|
28
|
Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014; 173:1-11. [PMID: 24636549 DOI: 10.1016/j.ijcard.2014.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/29/2013] [Accepted: 02/08/2014] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications which are defined by DNA methylation, histone modifications and microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes. Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that inhibit DNA methyltransferases such as 5-methyl Aza cytidine are under trials. Histone modifications which include acetylation, methylation, phosphorylation, ADP ribosylation, sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy, cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of circadian clockwork is regulated by miR122, they have a profound role in regulating biological clock and this may explain the high cardiovascular risk during the morning time. This review highlights the role of epigenetics which can be helpful in disease management strategies.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
29
|
Lebogo KW, Mokgotho MP, Bagla VP, Matsebatlela TM, Mbazima V, Shai LJ, Mampuru L. Semi-purified extracts of Commelina benghalensis (Commelinaceae) induce apoptosis and cell cycle arrest in Jurkat-T cells. Altern Ther Health Med 2014; 14:65. [PMID: 24555704 PMCID: PMC3941970 DOI: 10.1186/1472-6882-14-65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/05/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Commelina benghalensis (CB) is a small plant whose fleshy stems are used in South Africa to treat skin conditions (e.g., cancerous skin outgrowths). This study was aimed at evaluating the effect of sub-fractions of acetone extracts of CB stems on growth-associated molecular events of apoptosis and cell division cycle of Jurkat-T (JT) cells. METHODS Acetone extract of CB stems were subfractioned into n-hexane (F1) and dichloromethane (F2) fractions. After treatment of JT cells with these subfractions, cell proliferation, viability and apoptosis were determined using a haemocytometer, the trypan blue dye exclusion assay, and Hoechst 33258 staining, respectively. Cell division cycle distribution profiles were analysed using an Epics Alba Flow Cytometer and the expression of cell division cycle regulatory genes was analysed using RT-PCR, while immunoreactive proteins were detected on western blots. RESULTS The F1 and F2 fractions inhibited the proliferation and viability of JT cells in a concentration- and time-dependent manner, with IC50 values of 32.5 μg/mℓ and 56 μg/mℓ, respectively. The observed cytotoxicity was established to be a consequence of apoptosis. as verified using Hoechst staining method. Both fractions induced a G1/S interphase arrest of the cell division cycle of JT cells.RT-PCR analyses showed an up-regulatory effect by the F1 fraction in the expression of cyclin B1, cdc2 and bax, with a down-regulatory effect in the expression levels of bcl-2. Fraction F1 also increased the protein expression levels of p53 and its downstream regulators, p21 and Cdc2. However, protein Bax and p21 and p53 transcripts were undetectable under the same experimental conditions. On the other hand, fraction F2 increased the mRNA expression levels of bax, bcl-2, cyclin B1 and cdc2. Concomitantly, fraction F2 showed an up-regulation in the protein expression levels of Cdc2, Bcl-2, Cyclin B1 and p21. Despite the up-regulation in protein expression levels by fraction F2, there was no observable expression levels of the p53 protein and p21 and p53 mRNAs under similar experimental conditions. CONCLUSION These findings suggest that the F1 and F2 fractions of CB may provide a valuable lead for the development of novel and effective anti-neoplastic drug(s).
Collapse
|
30
|
Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, Moyes KW, Narazaki G, Kuwahara K, Laflamme M, Matsuoka S, Nakatsuji N, Nakao K, Kwon C, Kass DA, Engel FB, Yamashita JK. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. ACTA ACUST UNITED AC 2013; 6:624-33. [PMID: 24141057 DOI: 10.1161/circgenetics.113.000330] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. METHODS AND RESULTS To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes. CONCLUSIONS Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies.
Collapse
Affiliation(s)
- Hideki Uosaki
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Matsushita N, Eigler T, Marbán E. Targeted MicroRNA Interference Promotes Postnatal Cardiac Cell Cycle Re-Entry. ACTA ACUST UNITED AC 2013; 2:2. [PMID: 24910852 DOI: 10.4172/2325-9620.1000108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammalian heart cells undergo a marked reduction in proliferative activity shortly after birth, and thereafter grow predominantly by hypertrophy. Our understanding of the molecular mechanisms underlying cardiac maturation and senescence is based largely on studies at the whole-heart level. Here, we investigate the molecular basis of the acquired quiescence of purified neonatal and adult cardiomyocytes, and use microRNA interference as a novel strategy to promote cardiomyocyte cell cycle re-entry. Expression of cyclins and cyclin-dependent kinases (CDKs) and positive modulators were down-regulated, while CDK inhibitors and negative cell cycle modulators were up-regulated during postnatal maturation of cardiomyocytes. The expression pattern of microRNAs also changed dramatically, including increases in miR-29a, miR-30a and miR-141. Treatment of neonatal cardiomyocytes with miRNA inhibitors anti-miR-29a, anti-miR-30a, and antimiR-141 resulted in more cycling cells and enhanced expression of Cyclin A2 (CCNA2). Thus, targeted microRNA interference can reactivate postnatal cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Department of Medicine/Cardiology, University of Washington, USA ; Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Noriko Matsushita
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Tamar Eigler
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
32
|
Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012; 492:376-81. [PMID: 23222520 DOI: 10.1038/nature11739] [Citation(s) in RCA: 785] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/31/2012] [Indexed: 12/15/2022]
Abstract
In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.
Collapse
|
33
|
Faucherre A, Jopling C. The heart's content-renewable resources. Int J Cardiol 2012; 167:1141-6. [PMID: 23044434 DOI: 10.1016/j.ijcard.2012.09.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/23/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
Heart regeneration is a huge, complex area involving numerous lines of research ranging from the stem cell therapy to xenografts and bioengineering. This review will focus on two avenues of regenerative research, cardiac progenitor cells and adult cardiomyocyte proliferation, both of which offer great promise for the field of heart regeneration. However, the principles behind how this could be achieved by either technique are very different. Cardiac progenitor cells represent a population of somatic stem cells which reside within the adult heart. These cells appear to have the capacity to proliferate and differentiate into the different cell types found within the adult heart and thus have the potential, if the correct stimuli can be found, to effectively regenerate a heart damaged by ischemia/infarction. Inducing adult cardiomyocytes to proliferate offers a different approach to achieving the same goal. In this case, the cardiomyocytes that remain after the damage has occurred would need to be stimulated into effecting a regenerative response. In this review, we will discuss the current understanding of how heart regeneration could be achieved by either of these very different approaches.
Collapse
Affiliation(s)
- Adèle Faucherre
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Labex ICST, Montpellier F-34094, France
| | | |
Collapse
|
34
|
Hou J, Kang YJ. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. Pharmacol Ther 2012; 135:337-54. [PMID: 22750195 DOI: 10.1016/j.pharmthera.2012.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/05/2023]
Abstract
Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming.
Collapse
Affiliation(s)
- Jianglong Hou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
35
|
|
36
|
Karam JP, Muscari C, Montero-Menei CN. Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 2012; 33:5683-95. [PMID: 22594970 DOI: 10.1016/j.biomaterials.2012.04.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/08/2012] [Indexed: 12/18/2022]
Abstract
An increasing number of studies in cardiac cell therapy have provided encouraging results for cardiac repair. Adult stem cells may overcome ethical and availability concerns, with the additional advantages, in some cases, to allow autologous grafts to be performed. However, the major problems of cell survival, cell fate determination and engraftment after transplantation, still remain. Tissue-engineering strategies combining scaffolds and cells have been developed and have to be adapted for each type of application to enhance stem cell function. Scaffold properties required for cardiac cell therapy are here discussed. New tissue engineering advances that may be implemented in combination with adult stem cells for myocardial infarction therapy are also presented. Biomaterials not only provide a 3D support for the cells but may also mimic the structural architecture of the heart. Using hydrogels or particulate systems, the biophysical and biochemical microenvironments of transplanted cells can also be controlled. Advances in biomaterial engineering have permitted the development of sophisticated drug-releasing materials with a biomimetic 3D support that allow a better control of the microenvironment of transplanted cells.
Collapse
|
37
|
O'Neill TJ, Mack CP, Taylor JM. Germline deletion of FAK-related non-kinase delays post-natal cardiomyocyte mitotic arrest. J Mol Cell Cardiol 2012; 53:156-64. [PMID: 22555221 DOI: 10.1016/j.yjmcc.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/11/2022]
Abstract
The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state impacts normal heart development and pathologic myocardial remodeling, yet the signaling mechanisms that regulate this vital process are incompletely understood. Studies from our lab and others indicate that focal adhesion kinase (FAK) is a critical regulator of cardiac growth and remodeling and we found that expression of the endogenous FAK inhibitor, FAK-related non kinase (FRNK) coincided with postnatal cardiomyocyte arrest. Mis-expression of FRNK in the embryonic heart led to pre-term lethality associated with reduced cardiomyocyte proliferation and led us to speculate that the postnatal FRNK surge might be required to promote quiescence in this growth promoting environment. Herein, we provide strong evidence that endogenous FRNK contributes to post-mitotic arrest. Depletion of FRNK promoted DNA synthesis in post-natal day (P) 10 hearts accompanied by a transient increase in DNA content and multi-nucleation by P14, indicative of DNA replication without cell division. Interestingly, a reduction in tri- and tetra-nucleated cardiomyocytes, concomitant with an increase in bi-nucleated cells by P21, indicated the possibility that FRNK-depleted cardiomyocytes underwent eventual cytokinesis. In support of this conclusion, Aurora B-labeled central spindles (a hallmark of cytokinesis) were observed in tetra-nucleated P20 FRNK(-/-) but not wt cardiomyocytes, while no evidence of apoptosis was observed. Moreover, hearts from FRNK null mice developed ventricular enlargement that persisted until young adulthood which resulted from myocyte expansion rather than myocyte hypertrophy or interstitial growth. These data indicate that endogenous FRNK serves an important role in limiting DNA synthesis and regulating the un-coupling between DNA synthesis and cytokinesis in the post-natal myocardium.
Collapse
Affiliation(s)
- Thomas J O'Neill
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
38
|
Jopling C, Suñe G, Morera C, Izpisua Belmonte JC. p38α MAPK regulates myocardial regeneration in zebrafish. Cell Cycle 2012; 11:1195-201. [PMID: 22391208 DOI: 10.4161/cc.11.6.19637] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although adult mammals are unable to significantly regenerate their heart, this is not the case for a number of other vertebrate species. In particular, zebrafish are able to fully regenerate their heart following amputation of up to 20% of the ventricle. Soon after amputation, cardiomyocytes dedifferentiate and proliferate to regenerate the missing tissue. More recently, identical results have also been obtained in neonatal mice. Ventricular amputation of neonates leads to a robust regenerative response driven by the proliferation of existing cardiomyocytes in a similar manner to zebrafish. However, this ability is progressively lost during the first week of birth. The fact that adult zebrafish retain the capacity to regenerate their heart suggests that they either possess a unique regenerative mechanism, or that adult mammals lose/ inhibit this process. p38α ΜAPK has previously been shown to negatively regulate the proliferation of adult mammalian cardiomyocytes. We sought to determine whether a similar mechanism exists in adult zebrafish, and whether this needs to be overcome to allow regeneration to proceed. To determine whether p38α ΜAPK also regulates zebrafish cardiomyocytes in a similar manner, we generated conditional transgenic zebrafish in which either dominant-negative or active p38α ΜAPK are specifically expressed in cardiomyocytes. We found that active p38α ΜAPK but not dominantnegative p38α ΜAPK blocks proliferation of adult zebrafish cardiomyocytes and, consequently, heart regeneration as well. It appears that adult zebrafish cardiomyocytes share many characteristics with adult mammalian cardiomyocytes, including p38α MAPK-mediated cell cycle inhibition. These findings raise the possibility that zebrafish-like heart regeneration could be achieved in adult mammals.
Collapse
Affiliation(s)
- Chris Jopling
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Yamada K, Tamamori-Adachi M, Goto I, Iizuka M, Yasukawa T, Aso T, Okazaki T, Kitajima S. Degradation of p21Cip1 through anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated ubiquitylation is inhibited by cyclin-dependent kinase 2 in cardiomyocytes. J Biol Chem 2011; 286:44057-44066. [PMID: 22045811 DOI: 10.1074/jbc.m111.236711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510
| | - Mimi Tamamori-Adachi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510; Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605.
| | - Ikuko Goto
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605
| | - Takashi Yasukawa
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Teijiro Aso
- Department of Functional Genomics, Kochi Medical School, Kohasu, Oko-cho, Nankoku City, Kochi, 783-8505, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605
| | - Shigetaka Kitajima
- Laboratory of Genome Structure and Regulation, School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510; Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510
| |
Collapse
|
40
|
Rémond MC, Iaffaldano G, O'Quinn MP, Mezentseva NV, Garcia V, Harris BS, Gourdie RG, Eisenberg CA, Eisenberg LM. GATA6 reporter gene reveals myocardial phenotypic heterogeneity that is related to variations in gap junction coupling. Am J Physiol Heart Circ Physiol 2011; 301:H1952-64. [PMID: 21908788 DOI: 10.1152/ajpheart.00635.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined transgenic mice whose expression of a β-galactosidase (lacZ) reporter is driven by a GATA6 gene enhancer. Previous investigations established that transcription of the transgene was associated with precardiac mesoderm and primary heart tube myocardium, which decreased progressively, so that its expression was no longer observed within ventricular myocardium by midgestation. Expression of this reporter in the adult was investigated for insights into myocyte homeostasis and cardiovascular biology. Morphometric analysis determined that <1% of myocytes, often found in small clusters, express this GATA6-associated reporter in the adult heart. LacZ expression was also found in the ascending aorta. Myocardial expression of the transgene was not associated with a proliferative phenotype or new myocyte formation, as lacZ-positive myocytes neither labeled with cell division markers nor following 5-bromodeoxyuridine pulse-chase experimentation. Despite exhibiting normal adherens junctions, these myocytes appeared to exhibit decreased connexin 43 gap junctions. Treatment with the gap junctional blocker heptanol both in vivo and in culture elevated myocardial β-galactosidase activity, suggesting that deficient gap junctional communication underlies expression of the transgenic reporter. LacZ expression within the myocardium was also enhanced in response to cryoinjury and isoproterenol-induced hypertrophy. These results reveal a previously uncharacterized phenotypic heterogeneity in the myocardium and suggest that decreased gap junctional coupling leads to induction of a signaling pathway that utilizes a unique GATA6 enhancer. Upregulation of lacZ reporter gene expression following cardiac injury indicates this transgenic mouse may serve as a model for examining the transition of the heart from healthy to pathological states.
Collapse
Affiliation(s)
- Mathieu C Rémond
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Department of Physiology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Deqiang Li
- From the Department of Cell and Developmental Biology, the Cardiovascular Institute, and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jonathan A. Epstein
- From the Department of Cell and Developmental Biology, the Cardiovascular Institute, and the Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
42
|
Lluís M, Fernández-Solà J, Castellví-Bel S, Sacanella E, Estruch R, Urbano-Márquez A. Evaluation of myocyte proliferation in alcoholic cardiomyopathy: telomerase enzyme activity (TERT) compared with Ki-67 expression. Alcohol Alcohol 2011; 46:534-41. [PMID: 21733836 DOI: 10.1093/alcalc/agr071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Although the human heart was classically considered a terminal organ, recent studies have reported a myocyte proliferation response versus some aggressions. Excessive ethanol consumption induces development of cardiomyopathy (CMP) through myocyte apoptosis. We evaluated myocyte proliferation response in the heart of chronic alcoholic donors with telomerase activity (telomerase reverse transcriptase (TERT)) compared with Ki-67 nuclear expression. METHODS Heart samples were prospectively obtained from organ donors on life support. We included donors with (1) high lifetime alcohol consumption (n = 15), (2) longstanding hypertension (n = 14), (3) other causes of CMP (valve, coronary or idiopathic) (n = 8) and (4) previously healthy donors (n = 6). Groups 2 and 3 were subdivided according to the presence of CMP. Evaluation comprised parameters of ethanol consumption, left ventricular function by chest X-ray and 2D echocardiography, and histology and immunohistochemical studies. Myocyte proliferation was evaluated using an assay for Ki-67 expression and measuring telomerase gene activity by real-time PCR. RESULTS Forty-three donors were included in the study, 35 having CMP. Nuclear Ki-67 activity was low in healthy controls and significantly increased in the other groups, mainly in those with CMP. Alcoholics with CMP had a non-significantly lower proliferation response than the other CMP groups. No proliferation activity was detected with TERT in any case. CONCLUSION Heart Ki-67 proliferation activity increases in organ donors with CMP, independently of its origin. Alcoholics presented non-significant lower myocyte proliferation capacity compared with the other groups of CMP. TERT activity was not a useful marker of proliferation in this model. Ki-67 is a better procedure to evaluate proliferation than TERT expression in alcohol-induced heart damage.
Collapse
Affiliation(s)
- Meritxell Lluís
- Alcohol Research Unit, Department of Internal Medicine, Institut d'Investigació August Pi i Sunyer, Hospital Clínic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 2011; 12:79-89. [PMID: 21252997 DOI: 10.1038/nrm3043] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ultimate goal of regenerative medicine is to replace lost or damaged cells. This can potentially be accomplished using the processes of dedifferentiation, transdifferentiation or reprogramming. Recent advances have shown that the addition of a group of genes can not only restore pluripotency in a fully differentiated cell state (reprogramming) but can also induce the cell to proliferate (dedifferentiation) or even switch to another cell type (transdifferentiation). Current research aims to understand how these processes work and to eventually harness them for use in regenerative medicine.
Collapse
Affiliation(s)
- Chris Jopling
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | | |
Collapse
|
45
|
Di Stefano V, Giacca M, Capogrossi MC, Crescenzi M, Martelli F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem 2011; 286:8644-8654. [PMID: 21209082 DOI: 10.1074/jbc.m110.184549] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proliferation of mammalian cardiomyocytes stops rapidly after birth and injured hearts do not regenerate adequately. High cyclin-dependent kinase inhibitor (CKI) levels have been observed in cardiomyocytes, but their role in maintaining cardiomyocytes in a post-mitotic state is still unknown. In this report, it was investigated whether CKI knockdown by RNA interference induced cardiomyocyte proliferation. We found that triple transfection with p21(Waf1), p27(Kip1), and p57(Kip2) siRNAs induced both neonatal and adult cardiomyocyte to enter S phase and increased the nuclei/cardiomyocyte ratio; furthermore, a subpopulation of cardiomyocytes progressed beyond karyokynesis, as assessed by the detection of mid-body structures and by straight cardiomyocyte counting. Intriguingly, cardiomyocyte proliferation occurred in the absence of overt DNA damage and aberrant mitotic figures. Finally, CKI knockdown and DNA synthesis reactivation correlated with a dramatic change in adult cardiomyocyte morphology that may be a prerequisite for cell division. In conclusion, CKI expression plays an active role in maintaining cardiomyocyte withdrawal from the cell cycle.
Collapse
Affiliation(s)
- Valeria Di Stefano
- From the Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Maurizio C Capogrossi
- Vascular Pathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, 00167 Rome, Italy, and
| | - Marco Crescenzi
- the Department of Environment and Primary Prevention, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Fabio Martelli
- Vascular Pathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, 00167 Rome, Italy, and.
| |
Collapse
|
46
|
Effect of a low-protein diet during pregnancy on expression of genes involved in cardiac hypertrophy in fetal and adult mouse offspring. J Dev Orig Health Dis 2010; 1:371-5. [DOI: 10.1017/s2040174410000541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Du Y, Plante E, Janicki JS, Brower GL. Temporal evaluation of cardiac myocyte hypertrophy and hyperplasia in male rats secondary to chronic volume overload. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1155-63. [PMID: 20651227 DOI: 10.2353/ajpath.2010.090587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The temporal myocardial remodeling induced by chronic ventricular volume overload in male rats was examined. Specifically, left ventricular (LV) cardiomyocyte length and width, sarcomere length, and number of nuclei were measured in male rats (n = 8 to 17) at 1, 3, 5, 7, 21, 35, and 56 days after creation of an infrarenal aortocaval fistula. In contrast to previously published reports of progressive increases in cardiomyocyte length and cross-sectional area at 5 days post-fistula and beyond in female hearts, cardiomyocyte length and width did not increase significantly in males during the first 35 days of volume overload. Furthermore, a significant decrease in cardiomyocyte length relative to age-matched controls, together with a reduced number of sarcomeres per cell, was noted in male hearts at 5 days post-fistula. There was a concurrent increase in the percentage of mononucleated cardiomyocytes from 11.6% to 18% at 5 days post-fistula. These initial differences could not be attributed to cardiomyocyte proliferation, and treatment with a microtubule stabilizing agent prevented them from occurring. The subsequent significant increase in LV weight without corresponding increases in cardiomyocyte dimensions is indicative of hyperplasia. Thus, these findings indicate hyperplasia resulting from cytokinesis of cardiomyocytes is a key mechanism, independent of hypertrophy, that contributes to the significant increase in LV mass in male hearts subjected to chronic volume overload.
Collapse
Affiliation(s)
- Yan Du
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
48
|
Sleep E, Boué S, Jopling C, Raya M, Raya A, Izpisua Belmonte JC. Transcriptomics approach to investigate zebrafish heart regeneration. J Cardiovasc Med (Hagerstown) 2010; 11:369-80. [PMID: 20179605 DOI: 10.2459/jcm.0b013e3283375900] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mammals, after a myocardial infarction episode, the damaged myocardium is replaced by scar tissue with negligible cardiomyocyte proliferation. Zebrafish, in contrast, display an extensive regenerative capacity, as they are able to restore completely lost cardiac tissue after partial ventricular amputation. Although questions about the early signals that drive the regenerative response and the relative role of each cardiac cell type in this process still need to be answered, the zebrafish is emerging as a very valuable tool to understand heart regeneration and to devise strategies that may be of potential value to treat human cardiac disease. Here, we performed a genome-wide transcriptome profile analysis focusing on the early time points of zebrafish heart regeneration and compared our results with those of previously published data. Our analyses confirmed the differential expression of several transcripts and identified additional genes whose expression is differentially regulated during zebrafish heart regeneration. We validated the microarray data by conventional and/or quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For a subset of these genes, their expression pattern was analyzed by in-situ hybridization and shown to be upregulated in the regenerating area of the heart. Our results offer new insights into the biology of heart regeneration in the zebrafish and, together with future experiments in mammals, may be of potential interest for clinical applications.
Collapse
Affiliation(s)
- Eduard Sleep
- Center for Regenerative Medicine, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Jopling C, Sleep E, Raya M, Martí M, Raya A, Belmonte JCI. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010; 464:606-9. [PMID: 20336145 PMCID: PMC2846535 DOI: 10.1038/nature08899] [Citation(s) in RCA: 984] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 02/09/2010] [Indexed: 12/22/2022]
Abstract
Although mammalian hearts show almost no ability to regenerate, there is a growing initiative to determine whether existing cardiomyocytes or progenitor cells can be coaxed into eliciting a regenerative response. In contrast to mammals, several non-mammalian vertebrate species are able to regenerate their hearts, including the zebrafish, which can fully regenerate its heart after amputation of up to 20% of the ventricle. To address directly the source of newly formed cardiomyocytes during zebrafish heart regeneration, we first established a genetic strategy to trace the lineage of cardiomyocytes in the adult fish, on the basis of the Cre/lox system widely used in the mouse. Here we use this system to show that regenerated heart muscle cells are derived from the proliferation of differentiated cardiomyocytes. Furthermore, we show that proliferating cardiomyocytes undergo limited dedifferentiation characterized by the disassembly of their sarcomeric structure, detachment from one another and the expression of regulators of cell-cycle progression. Specifically, we show that the gene product of polo-like kinase 1 (plk1) is an essential component of cardiomyocyte proliferation during heart regeneration. Our data provide the first direct evidence for the source of proliferating cardiomyocytes during zebrafish heart regeneration and indicate that stem or progenitor cells are not significantly involved in this process.
Collapse
Affiliation(s)
- Chris Jopling
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sleep
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
- Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marina Raya
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Martí
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
- Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Juan Carlos Izpisúa Belmonte
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
50
|
Riley BB, Sweet EM, Heck R, Evans A, McFarland KN, Warga RM, Kane DA. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division. Dev Dyn 2010; 239:828-43. [PMID: 20146251 PMCID: PMC3086590 DOI: 10.1002/dvdy.22227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division.
Collapse
Affiliation(s)
- Bruce B. Riley
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | - Elly M. Sweet
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | - Rebecca Heck
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | - Adrienne Evans
- Department of Biology, Texas A&M University, College Station, TX 77843-3258
| | - Karen N. McFarland
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Rachel M. Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Donald A. Kane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| |
Collapse
|