1
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
2
|
Unfavorable left ventricular remodeling due to experience of chronic sleep restriction after myocardial infarction: The role of matrix metalloproteinases & oxidative stress. Cardiovasc Pathol 2023; 62:107460. [PMID: 35917906 DOI: 10.1016/j.carpath.2022.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed sleep or sleep loss due to vocational or lifestyle changes following MI is a common problem that may affect many physiological processes involved in left ventricle (LV) remodeling. Herein, we proposed that experience of sleep disruption and/or restriction after myocardial infarction (MI) may aggravate cardiac extracellular matrix remodeling and induce apoptosis in the cardiomyocytes. MI was induced in adult male rats by permanent ligation of the left anterior descending coronary artery. Twenty-four hours after surgery, some animals experienced chronic sleep restriction (CSR) for 6 days. Serum levels of CK-MB, PAB, and TNF-α were evaluated at days 1, 8, and 21 postsurgery. Twenty-one days after surgery, hemodynamic parameters and expression of MMP-2, MMP-9, TIMP-1, and TNF-α, as well as myocardial fibrosis and apoptosis in the noninfarcted area of the LV were assessed. Our results showed a clear decrease in serum concentrations of CK-MB, PAB and TNF-α at day 21 postsurgery in the MI group as compared to MI+SR animals in which these markers remained at high levels. CSR following MI deteriorated LV hemodynamic indexes and also impaired the balance between MMPs and TIMP-1. Further, it yielded an increase in oxidant and inflammatory state which caused deleterious fibrotic and apoptotic effects on cardiomycytes. Our data suggest post-MI sleep loss may cause adverse LV remodeling due to increased inflammatory reactions as well as oxidative burden and/or anti-oxidative insufficiency that in turn impede the balance between MMPs and their inhibitors.
Collapse
|
3
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J. Animal exercise studies in cardiovascular research: Current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors' Association. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:660-674. [PMID: 34454088 PMCID: PMC8724626 DOI: 10.1016/j.jshs.2021.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However, the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated. Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection. However, standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective, high-quality animal studies using exercise to prevent and treat cardiovascular diseases. In our review, we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training, emphasizing the appropriate measurements and analysis in these chronic exercise models. We also provide recommendations for optimal design of animal exercise studies in cardiovascular research, including the choice of exercise models, control of exercise protocols, exercise at different stages of disease, and other considerations, such as age, sex, and genetic background. We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lei Wang
- Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rongjing Ding
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiqing Fan
- Department of Cardiology, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qi Liang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shenghui Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuqin Shen
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200065, China
| | - Guifu Wu
- Department of Cardiology, Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Sun Yat-Sen University, Shenzhen 518033, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Yang
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Guolin Zhang
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lan Guo
- Cardiac Rehabilitation Department, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Sanchis-Gomar F, Lavie CJ, Marín J, Perez-Quilis C, Eijsvogels TMH, O'Keefe JH, Perez MV, Blair SN. Exercise Effects On Cardiovascular Disease: From Basic Aspects To Clinical Evidence. Cardiovasc Res 2021; 118:2253-2266. [PMID: 34478520 DOI: 10.1093/cvr/cvab272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular (CV) disease (CVD) remains the leading cause of major morbidity and CVD- and all-cause mortality in most of the world. It is now clear that regular physical activity (PA) and exercise training (ET) induces a wide range of direct and indirect physiologic adaptations and pleiotropic benefits for human general and CV health. Generally, higher levels of PA, ET, and cardiorespiratory fitness (CRF) are correlated with reduced risk of CVD, including myocardial infarction, CVD-related death, and all-cause mortality. Although exact details regarding the ideal doses of ET, including resistance and, especially, aerobic ET, as well as the potential adverse effects of extreme levels of ET, continue to be investigated, there is no question that most of the world's population have insufficient levels of PA/ET, and many also have lower than ideal levels of CRF. Therefore, assessment and promotion of PA, ET, and efforts to improve levels of CRF should be integrated into all health professionals' practices worldwide. In this state-of-the-art review, we discuss the exercise effects on many areas related to CVD, from basic aspects to clinical practice.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Jorge Marín
- Growth, Exercise, Nutrition and Development Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain
| | - Carme Perez-Quilis
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Thijs M H Eijsvogels
- Radboud Institute for Health Science, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James H O'Keefe
- St. Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Marco V Perez
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Steven N Blair
- Department of Exercise Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
6
|
Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel) 2021; 10:1002. [PMID: 34201562 PMCID: PMC8300666 DOI: 10.3390/antiox10071002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the "nitroso-redox imbalance". Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| |
Collapse
|
7
|
Sedighi M, Sewell RDE, Nazari A, Abbaszadeh S, Cheraghi M, Amini A, Heydari Z, Rafieian-Kopaei M. A Review on the Most Important Medicinal Plants Effective in Cardiac Ischemia-Reperfusion Injury. Curr Pharm Des 2020; 25:352-358. [PMID: 30931852 DOI: 10.2174/1381612825666190329144016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023]
Abstract
Ischemia, referring to reduction and restriction of perfusion to myocardial tissue which involves coronary artery through the formation of misplaced clots and thrombosis, is one of the most important cardiovascular diseases. Plant-based compounds help to improve or prevent disease by affecting the factors involved in the disease. This review was conducted to report the medicinal plants and factors effective in cardiac ischemiareperfusion (I/R) injury to supplement the knowledge about this disease and its prevention and treatment using certain medicinal plants and their active compounds. For this purpose, medicinal plants and their potential antioxidant activities, effects on lipid levels and plaque formation, atherosclerosis and development of cardiovascular diseases and ischemia were reviewed. METHODS To conduct this review, relevant articles published between 1983 and 2018 were retrieved from the Google Scholar, PubMed, Scientific Information Database, Web of Science, and Scopus using search terms antioxidant, ischemia, reperfusion, heart, infarct, inflammation, cholesterol and medicinal plants. Then, the eligible articles were reviewed. RESULTS The active compounds of plants, including phenolic compounds, flavonoids, and antioxidant compounds, can be effective on certain pathogenic factors particularly in decreasing cholesterol and blood pressure, preventing an increase in free radicals and ultimately reducing blood clots and vascular resistance to reduce and prevent ischemic disease and its harmful effects. CONCLUSION Medicinal plants discussed in this article seem to be able to prevent cardiac damage and the disease progression via affecting the factors that are involved in ischemia.
Collapse
Affiliation(s)
- Mehrnoosh Sedighi
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University Of Medical Sciences, Khoramabad, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Afshin Nazari
- Razi Herbal Medicines Research Center and Department of Physiology, Lorestan University of Medical Science, Khorramabad, Iran
| | - Saber Abbaszadeh
- Student Research Committee Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Cheraghi
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University Of Medical Sciences, Khoramabad, Iran
| | - Abdolhakim Amini
- Student Research Committee Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Heydari
- Department of microbiology, Faculty of basic, Sciennces, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Cardiac adaptation to exercise training in health and disease. Pflugers Arch 2019; 472:155-168. [PMID: 31016384 DOI: 10.1007/s00424-019-02266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
The heart is the primary pump that circulates blood through the entire cardiovascular system, serving many important functions in the body. Exercise training provides favorable anatomical and physiological changes that reduce the risk of heart disease and failure. Compared with pathological cardiac hypertrophy, exercise-induced physiological cardiac hypertrophy leads to an improvement in heart function. Exercise-induced cardiac remodeling is associated with gene regulatory mechanisms and cellular signaling pathways underlying cellular, molecular, and metabolic adaptations. Exercise training also promotes mitochondrial biogenesis and oxidative capacity leading to a decrease in cardiovascular disease. In this review, we summarized the exercise-induced adaptation in cardiac structure and function to understand cellular and molecular signaling pathways and mechanisms in preclinical and clinical trials.
Collapse
|
9
|
Thijssen DHJ, Benda NMM, Kerstens TP, Seeger JPH, van Dijk APJ, Hopman MTE. 12-Week Exercise Training, Independent of the Type of Exercise, Attenuates Endothelial Ischaemia-Reperfusion Injury in Heart Failure Patients. Front Physiol 2019; 10:264. [PMID: 30930798 PMCID: PMC6428763 DOI: 10.3389/fphys.2019.00264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Reperfusion is required to salvage ischaemic tissue, but also causes further damage (i.e., ischaemia/reperfusion-injury). Heart failure patients reveal exaggerated ischaemia/reperfusion-injury, whilst traditional ischaemic preconditioning cannot prevent ischaemia/reperfusion-injury. Exercise training may be a more powerful preconditioning stimulus, especially high-intensity interval training given the similarities with ischaemic preconditioning. Therefore, we examined the impact of 12-week continuous training vs. high-intensity interval training on brachial artery endothelial ischaemia/reperfusion-injury in heart failure patients New York Heart Association-class II-III. Methods: Twenty heart failure patients (male:female 19:1, 64 ± 8 years, ejection fraction 38 ± 6%) were allocated to 12-weeks of high-intensity interval training (10∗1-min 90% maximal workload – 2.5-min 30% maximal workload) or continuous training (30-min 60–75% maximal workload). Before and after the intervention, we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after ischaemia/reperfusion (5-min ischemic exercise, 15-min reperfusion). Results: Ischaemia/reperfusion caused a significant decline in FMD (continuous training (n = 10): 5.2 ± 2.5 to 3.4 ± 1.6%, high-intensity interval training (n = 10): 5.3 ± 2.6 to 3.5 ± 1.6%, P = 0.01), which was not different between groups (P > 0.05). Training improved maximal workload and fitness (P < 0.05), with no differences between groups (P > 0.05). Exercise training did not alter FMD (P > 0.05), whilst ischaemia/reperfusion did not impair FMD after exercise training (continuous training: 4.8 ± 3.0 to 4.2 ± 2.3%, high-intensity interval training: 4.7 ± 2.5 to 3.8 ± 2.3%, P > 0.05). No changes were found in FMD before or after ischaemia/reperfusion after 12-weeks in controls (n = 9). Conclusion: We found that 12-week exercise training in heart failure patients mitigated endothelial ischaemia-reperfusion injury, an effect independent of the type of exercise. These changes may contribute to the cardioprotective effects of exercise training, whilst our findings highlight the potency of exercise as a preconditioning stimulus.
Collapse
Affiliation(s)
- Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Nathalie M M Benda
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Thijs P Kerstens
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Joost P H Seeger
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands.,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Arie P J van Dijk
- Department of Cardiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Maria T E Hopman
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| |
Collapse
|
10
|
Weng X, Zhang Y, Li Z, Yu L, Xu F, Fang M, Hou L, Ge J, Xu Y. Class II transactivator (CIITA) mediates IFN-γ induced eNOS repression by enlisting SUV39H1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:163-172. [PMID: 30716531 DOI: 10.1016/j.bbagrm.2019.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
Endothelial nitric oxide synthase (eNOS), selectively expressed in vascular endothelial cells, plays important roles in a range of biological and pathological processes. eNOS levels can be altered by extrinsic and intrinsic cues at the transcriptional level. Here we examined the epigenetic mechanism whereby the pro-inflammatory cytokine interferon gamma (IFN-γ) represses eNOS transcription. In response to IFN-γ treatment, there was a simultaneous down-regulation of eNOS expression and up-regulation of class II trans-activator (CIITA). Over-expression of CIITA directly repressed eNOS promoter while CIITA knockdown attenuated IFN-γ induced eNOS repression. Chromatin immunoprecipitation (ChIP) assay revealed that IFN-γ stimulation promoted CIITA occupancy on the proximal eNOS (-430/-168). Coincidently, CIITA recruitment to the eNOS promoter was paralleled by the disappearance of trimethylated histone H3K4 (H3K4Me3) and the enrichment of trimethylated H3K9 (H3K9Me3) with no significant changes in the levels of trimethylated H3K27 (H3K27Me3) or trimethylated H4K20 (H4K20Me3). In accordance, CIITA depletion was associated with the normalization of H3K4Me3 and H3K9Me3 on the eNOS promoter. Mechanistically, CIITA interacted with and enlisted the histone H3K9 trimethyltransferase SUV39H1 to the eNOS promoter to repress transcription. IFN-γ treatment augmented SUV39H1 expression and promoted SUV39H1 recruitment to the eNOS promoter in endothelial cells. Silencing of SUV39H1 abrogated eNOS repression by IFN-γ by erasing H3K9Me3 from the eNOS promoter. In conclusion, our data reveal a novel role for CIITA in endothelial cells and present SUV39H1 as a druggable target in the intervention of endothelial dysfunction.
Collapse
Affiliation(s)
- Xinyu Weng
- Institute of Biomedical Sciences, Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Feng Xu
- Scientific Research Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Lei Hou
- Department of Cardiology, Affiliated Tong Ren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Junbo Ge
- Institute of Biomedical Sciences, Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
11
|
Hsieh IC, Ho MY, Wen MS, Chen CC, Hsieh MJ, Lin CP, Yeh JK, Tsai ML, Yang CH, Wu VCC, Hung KC, Wang CC, Wang CY. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int J Cardiol 2018; 261:12-17. [PMID: 29657036 DOI: 10.1016/j.ijcard.2017.11.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/15/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
Irisin, a recently identified myokine, regulates mitochondrial function and energy expenditure. The concentration of irisin is significantly altered after ST-elevation myocardial infarction (STEMI). We hypothesized that serum irisin concentration is associated with adverse cardiovascular outcomes after myocardial infarction. Serum irisin concentrations were measured using enzyme-linked immunosorbent assay (ELISA) in 399 patients 28d after the onset of STEMI in a prospective single-center cohort study. We assessed the association between irisin concentrations and adverse cardiovascular events during a 3-year follow-up. The excess risks of cardiovascular mortality, stroke, heart failure, and revascularization were predominantly seen among those with the highest concentrations of irisin, with concentrations higher than 75th percentile of the overall distribution had a ~4-fold increase in risk (hazard ratio=3.96, 95% confidence interval 1.55 to 10.11, P<0.01). Our findings showed that serum concentrations of irisin are elevated in post-STEMI patients with increased risk for adverse cardiovascular events. Novel therapies targeting irisin may represent a new direction in the treatment of STEMI.
Collapse
Affiliation(s)
- I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chun-Chi Chen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Jer Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chia-Pin Lin
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Victor Chien-Chia Wu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chun-Chieh Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan.
| |
Collapse
|
12
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
13
|
Baghaiee B, Karimi P, Ebrahimi K, Dabagh Nikoo Kheslat S, Sadeghi Zali MH, Daneshian Moghaddam AM, Sadaghian M. Effects of a 12-week aerobic exercise on markers of hypertension in men. J Cardiovasc Thorac Res 2018; 10:162-168. [PMID: 30386537 PMCID: PMC6203869 DOI: 10.15171/jcvtr.2018.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Introduction: This study was aimed at determining the effects of a 12-week aerobic exercise
program on markers of hypertension in men.
Methods: The study was of a semi-experimental design featuring repeated measurements. A total
of 40 men (age range=37.9 ± 2.68) with primary hypertension were divided into two groups,
namely, the exercise group (n=20) and the control group (n=20) (systolic blood pressure [SBP]:
140.531 ± 0.23, diastolic blood pressure [DBP]: 90.71 ± 0.05). The exercise group participated in
a 12-week aerobic exercise program (55% to 70% of HRmax). Blood samples were taken from
both groups at the baseline and at the 4th, 8th, and 12th weeks of the training program for the
assessment of adiponectin, paraoxonase-1 (PON-1), and hydrogen peroxide (H2
O2
) levels as the
markers for investigation. A linear mixed model was also used to evaluate the association among
the markers.
Results: In the exercise group, exercise reduced the SBP and DBP at week 12 (P=0.031 and 0.023, respectively), and adiponectin increased at weeks 8 and 12 (P=0.014 and 0.001, respectively). The plasma PON-1 level showed a significant increase in all the three stages of measurement (P=0.007, 0.004, and 0.002 at weeks 4, 8, and 12, respectively), whereas the H2 O2 levels showed a significant decrease at weeks 8 and 12 (P=0.013 and 0.011, respectively). The control group exhibited significantly decreased PON-1 (P=0.003) and adiponectin (P=0.025) levels but significantly increased SBP at week 12 (P=0.032).
Conclusion: The exercise-induced reduction of oxidative stress exerts a considerable effect on the reduction of blood pressure in hypertensive patients. According to our results increase in oxidative stress has the great impact on the of blood pressure.
Collapse
Affiliation(s)
- Behrouz Baghaiee
- Department of Physical Education and Sports Science, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Pouran Karimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadije Ebrahimi
- Department of Physical Education and Sports Science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Saeed Dabagh Nikoo Kheslat
- Department of Exercise Physiology, Faculty of Sport Sciences and Physical Education, University of Tabriz, Tabriz, Iran
| | | | | | - Mohammad Sadaghian
- Department of Pathobiology, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| |
Collapse
|
14
|
Exercise Training Has Contrasting Effects in Myocardial Infarction and Pressure Overload Due to Divergent Endothelial Nitric Oxide Synthase Regulation. Int J Mol Sci 2018; 19:ijms19071968. [PMID: 29986381 PMCID: PMC6073896 DOI: 10.3390/ijms19071968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
The beneficial effects of exercise training (EX) on cardiac pathology are well recognized. Previously, we found that the effects of EX on cardiac dysfunction in mice critically depend on the underlying etiology. EX exerted beneficial effects after myocardial infarction (MI); however, cardiac pathology following pressure overload produced by transverse aortic constriction (TAC) was aggravated by EX. In the presented study, we investigated whether the contrasting effects of EX on cardiac dysfunction can be explained by an etiology-specific response of endothelial nitric oxide (NO) synthase (eNOS) to EX, which divergently affects the balance between nitric oxide and superoxide. For this purpose, mice were exposed to eight weeks of voluntary wheel running or sedentary housing (SED), immediately after sham, MI, or TAC surgery. Left ventricular (LV) function was assessed using echocardiography and hemodynamic measurements. EX ameliorated LV dysfunction and remodeling after MI, but not following TAC, in which EX even aggravated fibrosis. Strikingly, EX attenuated superoxide levels after MI, but exacerbated NOS-dependent superoxide levels following TAC. Similarly, elevated eNOS S-glutathionylation and eNOS monomerization, which were observed in both MI and TAC, were corrected by EX in MI, but aggravated by EX after TAC. Additionally, EX reduced antioxidant activity in TAC, while it was maintained following EX in MI. In conclusion, the present study shows that EX mitigates cardiac dysfunction after MI, likely by attenuating eNOS uncoupling-mediated oxidative stress, whereas EX tends to aggravate cardiac dysfunction following TAC, likely due to exacerbating eNOS-mediated oxidative stress.
Collapse
|
15
|
Ho MY, Wen MS, Yeh JK, Hsieh IC, Chen CC, Hsieh MJ, Tsai ML, Yang CH, Wu VCC, Hung KC, Wang CC, Wang CY. Excessive irisin increases oxidative stress and apoptosis in murine heart. Biochem Biophys Res Commun 2018; 503:2493-2498. [PMID: 30208516 DOI: 10.1016/j.bbrc.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/12/2023]
Abstract
Irisin is an exercise-related myokine. The abundance of irisin is associated with many diseases, such as myocardial infarction, chronic kidney disease, metabolic syndrome, obesity, and diabetes mellitus. In cardiomyocytes, irisin modulates the mitochondrial thermogenesis, regulates ischemic responses, and affects calcium signaling. Previous studies suggested that irisin increases cardiomyoblast mitochondrial functions and protects ischemic and reperfusion injury in ex vivo murine heart. In human, clinical studies have shown that acute myocardial infarction patients with more elevated serum irisin abundances are associated with increased major adverse cardiovascular events. However, the mechanisms responsible for this discrepancy between in myocardial infarction patients and ex vivo murine heart is unclear. Based on the clinical observations, we hypothesized that excessive irisin might lead to mitochondrial dysfunctions and cardiomyocyte damages. Our data showed that overexpression of irisin in mice with the adenovirus resulted in enhanced mitochondrial respiration with a higher oxygen consumption rate. Enhanced irisin expression in heart and irisin treatment in cardiomyocytes increased reactive oxygen species production. Furthermore, irisin treatment in cardiomyocytes enhanced the apoptosis and the cleaved caspase 9 levels in hypoxic condition. Pathway analysis in the murine heart with the overexpression of irisin showed that angiopoietin-Tie2, IL-8, IL-13, TGF-β, and thrombopoietin signaling were affected by irisin. Collectively, these results supported that excessive irisin causes mitochondrial overdrive with a higher reactive oxygen species production, which results in increased apoptosis of cardiomyocytes in a hypoxic environment.
Collapse
Affiliation(s)
- Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan.
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chun-Chi Chen
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Jer Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Victor Chien-Chia Wu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chun-Chieh Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan.
| |
Collapse
|
16
|
|
17
|
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab 2017; 25:1012-1026. [PMID: 28467921 PMCID: PMC5512429 DOI: 10.1016/j.cmet.2017.04.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Collapse
Affiliation(s)
- Rick B Vega
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - John P Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85724, USA
| | - Daniel P Kelly
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL 32827, USA
| | - Leslie A Leinwand
- Molecular, Cellular and Developmental Biology, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
18
|
Aghajani M, Faghihi M, Imani A, Vaez Mahdavi MR, Shakoori A, Rastegar T, Parsa H, Mehrabi S, Moradi F, Kazemi Moghaddam E. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction. Chronobiol Int 2017; 34:587-600. [PMID: 28156163 DOI: 10.1080/07420528.2017.1281823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Marjan Aghajani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdieh Faghihi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Imani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran.,b Occupational Sleep Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Vaez Mahdavi
- c Traditional Medicine Clinical Trial Research Center, Shahed University , Tehran , Iran.,d Department of Physiology , Medical Faculty, Shahed University , Tehran , Iran
| | - Abbas Shakoori
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Tayebeh Rastegar
- f Anatomy Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Hoda Parsa
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Saman Mehrabi
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Moradi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Kazemi Moghaddam
- g Shiraz Burn and Wound Healing Research Center, Amir-al-momenin Burn Hospital, Shiraz University of Medical Sciences , Iran.,h Department of Microbiology , Medical Faculty, Shahed University , Tehran , Iran
| |
Collapse
|
19
|
Cai MX, Shi XC, Chen T, Tan ZN, Lin QQ, Du SJ, Tian ZJ. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci 2016; 149:1-9. [DOI: 10.1016/j.lfs.2016.02.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 01/27/2023]
|
20
|
Ranjbar K, Nazem F, Nazari A, Gholami M, Nezami AR, Ardakanizade M, Sohrabi M, Ahmadvand H, Mottaghi M, Azizi Y. Synergistic effects of nitric oxide and exercise on revascularisation in the infarcted ventricle in a murine model of myocardial infarction. EXCLI JOURNAL 2016; 14:1104-15. [PMID: 26869868 PMCID: PMC4746998 DOI: 10.17179/excli2015-510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022]
Abstract
It has been shown that density of microvessels decreases in the left ventricular after myocardial infarction (MI). The change of angiogenic and angiostatic factors as the main factors in revascularisation after exercise training in area at risk is not determined yet in MI. Therefore, the aim of the present study was the effect of exercise training and L-arginine supplementation on area at risk angiogenesis in myocardial infarction rat. Four weeks after surgery (Left Anterior Descending Coronary artery Ligation), myocardial infarction rats were divided into 4 groups: Sedentary rats (Sed-MI); L-arginine supplementation (La-MI); Exercise training (Ex-MI) and Exercise + L-arginine (Ex+La). Exercise training (ET) lasted for 10 weeks at 17 m/min for 10-50 min day(-1). Rats in the L-arginine-treated groups drank water containing 4 % L-arginine. After ET and L-arginine supplementation, ventricular function was evaluated and angiogenic and angiostatic indices were measured at ~1 mm from the edge of scar tissue (area at risk). Statistical analysis revealed that gene expression of VEGF as an angiogenic factor, angiostatin as an angiostatic factor and caspase-3 at area at risk decrease significantly in response to exercise training compared to the sedentary group. The capillary and arteriolar density in the Ex groups were significantly higher than those of the Sed groups. Compared to the Ex-MI group, the Ex+La group showed a markedly increase in capillary to fiber ratio. No significant differences were found in infarct size among the four groups, but cardiac function increased in response to exercise. Exercise training increases revascularization at area at risk by reduction of angiostatin. L-arginine supplementation causes additional effects on exercise-induced angiogenesis by preventing more reduction of VEGF gene expression in response to exercise. These improvements, in turn, increase left ventricular systolic function and decrease mortality in myocardial infarction rats.
Collapse
Affiliation(s)
- Kamal Ranjbar
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Nazem
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Afshin Nazari
- Department of Physiology, Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammadreza Gholami
- Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Reza Nezami
- Department of cardiology, Shahid madani hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Malihe Ardakanizade
- Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Maryam Sohrabi
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hasan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Mottaghi
- Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Yaser Azizi
- Department of Physiology, Physiology research center, School of Medicine, Iran Universty of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
van Deel ED, Octavia Y, de Boer M, Juni RP, Tempel D, van Haperen R, de Crom R, Moens AL, Merkus D, Duncker DJ. Normal and high eNOS levels are detrimental in both mild and severe cardiac pressure-overload. J Mol Cell Cardiol 2015; 88:145-54. [PMID: 26436984 DOI: 10.1016/j.yjmcc.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload. To unravel the impact of eNOS on pressure-overload cardiac dysfunction we subjected eNOS deficient, wildtype and eNOS overexpressing transgenic (eNOS-Tg) mice to 8weeks of mild or severe transverse aortic constriction (TAC) and studied cardiac geometry and function at the whole organ and tissue level. In both mild and severe TAC, lack of eNOS ameliorated, whereas eNOS overexpression aggravated, TAC-induced cardiac remodeling and dysfunction. Moreover, the detrimental effects of eNOS in severe TAC were associated with aggravation of TAC-induced NOS-dependent oxidative stress and by further elevation of eNOS monomer levels, consistent with enhanced eNOS uncoupling. In the presence of TAC, scavenging of reactive oxygen species with N-acetylcysteine reduced eNOS S-glutathionylation, eNOS monomer and NOS-dependent superoxide levels in eNOS-Tg mice to wildtype levels. Accordingly, N-acetylcysteine improved cardiac function in eNOS-Tg but not in wildtype mice with TAC. In conclusion, independent of the severity of TAC, eNOS aggravates cardiac remodeling and dysfunction, which appears due to TAC-induced eNOS uncoupling and superoxide production.
Collapse
Affiliation(s)
- Elza D van Deel
- Experimental Cardiology, Thorax Center, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yanti Octavia
- Experimental Cardiology, Thorax Center, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, University of Maastricht, Maastricht, The Netherlands
| | - Martine de Boer
- Experimental Cardiology, Thorax Center, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rio P Juni
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, University of Maastricht, Maastricht, The Netherlands
| | - Dennie Tempel
- Experimental Cardiology, Thorax Center, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rini de Crom
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - An L Moens
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, University of Maastricht, Maastricht, The Netherlands
| | - Daphne Merkus
- Experimental Cardiology, Thorax Center, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Thorax Center, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Heinonen I, Sorop O, de Beer VJ, Duncker DJ, Merkus D. What can we learn about treating heart failure from the heart's response to acute exercise? Focus on the coronary microcirculation. J Appl Physiol (1985) 2015; 119:934-43. [PMID: 26048972 DOI: 10.1152/japplphysiol.00053.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coronary microvascular function and cardiac function are closely related in that proper cardiac function requires adequate oxygen delivery through the coronary microvasculature. Because of the close proximity of cardiomyocytes and coronary microvascular endothelium, cardiomyocytes not only communicate their metabolic needs to the coronary microvasculature, but endothelium-derived factors also directly modulate cardiac function. This review summarizes evidence that the myocardial oxygen balance is disturbed in the failing heart because of increased extravascular compressive forces and coronary microvascular dysfunction. The perturbations in myocardial oxygen balance are exaggerated during exercise and are due to alterations in neurohumoral influences, endothelial function, and oxidative stress. Although there is some evidence from animal studies that the myocardial oxygen balance can partly be restored by exercise training, it is largely unknown to what extent the beneficial effects of exercise training include improvements in endothelial function and/or oxidative stress in the coronary microvasculature and how these improvements are impacted by risk factors such as diabetes, obesity, and hypercholesterolemia.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Oana Sorop
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Vincent J de Beer
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Dirk J Duncker
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Daphne Merkus
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| |
Collapse
|
23
|
Puhl SL, Müller A, Wagner M, Devaux Y, Böhm M, Wagner DR, Maack C. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2015; 309:H345-59. [PMID: 26001415 DOI: 10.1152/ajpheart.00683.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Although exercise mediates beneficial effects in patients after myocardial infarction (MI), the underlying mechanisms as well as the question of whether an early start of exercise after MI is safe or even beneficial are incompletely resolved. The present study analyzed the effects of exercise before and reinitiated early after MI on cardiac remodeling and function. Male C57BL/6N mice were housed sedentary or with the opportunity to voluntarily exercise for 6 wk before MI induction (ligation of the left anterior descending coronary artery) or sham operation. After a 5-day exercise-free phase after MI, mice were allowed to reexercise for another 4 wk. Exercise before MI induced adaptive hypertrophy with moderate increases in heart weight, cardiomyocyte diameter, and left ventricular (LV) end-diastolic volume, but without fibrosis. In sedentary mice, MI induced eccentric LV hypertrophy with massive fibrosis but maintained systolic LV function. While in exercised mice gross LV end-diastolic volumes and systolic function did not differ from sedentary mice after MI, LV collagen content and thinning of the infarcted area were reduced. This was associated with ameliorated activation of inflammation, mediated by TNF-α, IL-1β, and IL-6, as well as reduced activation of matrix metalloproteinase 9. In contrast, no differences in the activation patterns of various MAPKs or adenosine receptor expressions were observed 5 wk after MI in sedentary or exercised mice. In conclusion, continuous exercise training before and with an early reonset after MI ameliorates adverse LV remodeling by attenuating inflammation, fibrosis, and scar thinning. Therefore, an early reonset of exercise after MI can be encouraged.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Andreas Müller
- Klinik für Interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Michael Wagner
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg; and
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Daniel R Wagner
- Division of Cardiology, Centre Hospitalier Luxembourg, Luxembourg
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| |
Collapse
|
24
|
Lira VA. Exercise-induced cardioprotection: more to k‘NO’w. Cardiology 2015; 130:172-174. [PMID: 25720747 DOI: 10.1159/000375399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Vitor A Lira
- Department of Health and Human Physiology, Obesity Research and Education Initiative, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
25
|
Garza MA, Wason EA, Zhang JQ. Cardiac remodeling and physical training post myocardial infarction. World J Cardiol 2015; 7:52-64. [PMID: 25717353 PMCID: PMC4325302 DOI: 10.4330/wjc.v7.i2.52] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/22/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
After myocardial infarction (MI), the heart undergoes extensive myocardial remodeling through the accumulation of fibrous tissue in both the infarcted and noninfarcted myocardium, which distorts tissue structure, increases tissue stiffness, and accounts for ventricular dysfunction. There is growing clinical consensus that exercise training may beneficially alter the course of post-MI myocardial remodeling and improve cardiac function. This review summarizes the present state of knowledge regarding the effect of post-MI exercise training on infarcted hearts. Due to the degree of difficulty to study a viable human heart at both protein and molecular levels, most of the detailed studies have been performed by using animal models. Although there are some negative reports indicating that post-MI exercise may further cause deterioration of the wounded hearts, a growing body of research from both human and animal experiments demonstrates that post-MI exercise may beneficially alter the course of wound healing and improve cardiac function. Furthermore, the improved function is likely due to exercise training-induced mitigation of renin-angiotensin-aldosterone system, improved balance between matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, favorable myosin heavy chain isoform switch, diminished oxidative stress, enhanced antioxidant capacity, improved mitochondrial calcium handling, and boosted myocardial angiogenesis. Additionally, meta-analyses revealed that exercise-based cardiac rehabilitation has proven to be effective, and remains one of the least expensive therapies for both the prevention and treatment of cardiovascular disease, and prevents re-infarction.
Collapse
|
26
|
Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci 2015; 123:100-6. [PMID: 25632833 PMCID: PMC4339313 DOI: 10.1016/j.lfs.2015.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/05/2014] [Accepted: 01/02/2015] [Indexed: 02/08/2023]
Abstract
Aerobic exercise training (AET) attenuates or reverses pathological cardiac remodeling after insults such as chronic hypertension and myocardial infarction. The phenotype of the pathologically hypertrophied heart depends on the insult; therefore, it is likely that distinct types of pathological hypertrophy require different exercise regimens. However, the mechanisms by which AET improves the structure and function of the pathologically hypertrophied heart are not well understood, and exercise research uses highly inconsistent exercise regimens in diverse patient populations. There is a clear need for systematic research to identify precise exercise prescriptions for different conditions of pathological hypertrophy. Therefore, this review synthesizes existing evidence for the distinct mechanisms by which AET benefits the heart in different pathological hypertrophy conditions, suggests strategic exercise prescriptions for these conditions, and highlights areas for future research.
Collapse
Affiliation(s)
- Emily J Johnson
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Brad P Dieter
- Graduate Program in Movement Sciences, College of Education, University of Idaho, Moscow, ID, USA; Section of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Susan A Marsh
- Section of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
27
|
Abstract
Exercise is the archetype of physiologic demands placed on the cardiovascular system. Acute responses provide an informative assessment of cardiovascular function and fitness, while repeated exercise promotes cardiovascular health and evokes important molecular, structural, and functional changes contributing to its effects in primary and secondary prevention. Here we examine the use of exercise in murine models, both as a phenotypic assay and as a provocative intervention. We first review the advantages and limitations of exercise testing for assessing cardiac function, then highlight the cardiac structural and cellular changes elicited by chronic exercise and key molecular pathways that mediate these effects.
Collapse
Affiliation(s)
- Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Nicholas Houstis
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215.,Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
28
|
Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda) 2014; 29:27-38. [PMID: 24382869 DOI: 10.1152/physiol.00030.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury can cause ventricular cell death and is a major pathological event leading to morbidity and mortality in those with coronary artery disease. Interestingly, as few as five bouts of exercise on consecutive days can rapidly produce a cardiac phenotype that resists IR-induced myocardial injury. This review summarizes the development of exercise-induced cardioprotection and the mechanisms responsible for this important adaptive response.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | | | | |
Collapse
|
29
|
Chen T, Cai MX, Li YY, He ZX, Shi XC, Song W, Wang YH, Xi Y, Kang YM, Tian ZJ. Aerobic exercise inhibits sympathetic nerve sprouting and restores β-adrenergic receptor balance in rats with myocardial infarction. PLoS One 2014; 9:e97810. [PMID: 24842290 PMCID: PMC4026473 DOI: 10.1371/journal.pone.0097810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022] Open
Abstract
Background Cardiac sympathetic nerve sprouting and the dysregulation of β-adrenergic receptor (β-AR) play a critical role in the deterioration of cardiac function after myocardial infarction (MI). Growing evidence indicates that exercise provides protection against MI. The aims of this study were to investigate whether aerobic exercise following MI could inhibit sympathetic nerve sprouting and restore the balance of β3-AR/β1-AR. Methods Male Sprague-Dawley rats were divided into three groups: sham-operated control group (SC), MI group (MI), and MI with aerobic exercise group (ME). The rats in ME group were assigned to 8 weeks of exercise protocol (16 m/min, 50 min/d, 5 d/wk). The expression of nerve growth factor (NGF), the sympathetic nerve marker-tyrosine hydroxylase (TH), the nerve sprouting marker-growth associated protein 43 (GAP43), and β1- and β2-AR expression in the peri-infarct area of the left ventricle (LV) were measured by Western blot and immunohistochemistry, while β3-AR expression was determined by Western blot and immunofluorescence. Endothelial nitric oxide synthase (NOS2), phospho-NOS2 (p-NOS2), and neuronal nitric oxide synthase (NOS1) were measured by Western blot. Results MI increased LV end-diastolic pressure (LVEDP), and decreased LV systolic pressure (LVSP). Compared with the MI group, aerobic exercise significantly decreased LVEDP and increased LVSP. The protein expression of TH, GAP43 and NGF was significantly increased after MI, which was normalized by exercise. Compared with the SC group, the ratios of β2-AR/β1-AR and β3-AR/β1-AR were elevated in the MI group, and the protein expression of β3-AR and NOS1 increased after MI. Compared with the MI group, the ratios of β2-AR/β1-AR and β3-AR/β1-AR were normalized in the ME group, while the protein expression of β3-AR and NOS1 significantly increased, and NOS2 was activated by exercise. Conclusions Aerobic exercise inhibits cardiac sympathetic nerve sprouting, restores β3-AR/β1-AR balance and increases β3-AR expression through the activation of NOS2 and NOS1 after myocardial infarction.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
- Department of Sports and Exercise, Tibet University for Nationalities, Xian yang, Shaanxi, P. R. China
| | - Meng-Xin Cai
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - You-You Li
- Department of Physiology and Department of Cardiology, Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Zhi-Xiong He
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Xiu-Chao Shi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Wei Song
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - You-Hua Wang
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Yue Xi
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi, P. R. China
| | - Zhen-Jun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
30
|
Ito D, Ito O, Mori N, Cao P, Suda C, Muroya Y, Hao K, Shimokawa H, Kohzuki M. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure. Clin Exp Pharmacol Physiol 2014; 40:617-25. [PMID: 23735016 DOI: 10.1111/1440-1681.12130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/30/2022]
Abstract
There is an interaction between heart and kidney diseases, which is a condition termed cardiorenal syndrome. Exercise training has cardioprotective effects, involving upregulation of endothelial (e) nitric oxide synthase (NOS) in the cardiovascular system. However, the effects of exercise training on NOS in the kidney with heart disease are unknown. The aim of the present study was to investigate whether exercise training upregulates NOS in the kidney, left ventricle and aorta of rats with chronic heart failure (CHF). Male Sprague-Dawley rats underwent left coronary artery ligation (LCAL) to induce CHF and were randomly assigned to sedentary or treadmill exercise groups 4 weeks after LCAL. Three days after exercising for 4 weeks, urine samples were collected for 24 h and blood samples were collected following decapitation. Nitric oxide synthase activity and protein expression were examined. Significant interactions between CHF and exercise training were observed on parameters of cardiac and renal function. Exercise training improved cardiac function, decreased plasma B-type natriuretic peptide levels, decreased urinary albumin excretion and increased creatinine clearance in CHF rats. Nitric oxide synthase activity, eNOS expression and neuronal (n) NOS expression were significantly decreased in the left ventricle and kidney of CHF rats. Exercise training significantly increased NOS activity and eNOS and nNOS expression. Upregulation of NOS in the kidney and left ventricle may contribute, in part, to the renal and cardiac protective effects of exercise training in cardiorenal syndrome in CHF rats.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sponton CH, Esposti R, Rodovalho CM, Ferreira MJ, Jarrete AP, Anaruma CP, Bacci M, Zanesco A. The presence of the NOS3 gene polymorphism for intron 4 mitigates the beneficial effects of exercise training on ambulatory blood pressure monitoring in adults. Am J Physiol Heart Circ Physiol 2014; 306:H1679-91. [PMID: 24748593 DOI: 10.1152/ajpheart.00844.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of studies that have evaluated exercise training (ET) and nitric oxide synthase (NOS)3 gene polymorphisms is scarce. The present study was designed to evaluate the relationship between exercise training and NOS3 polymorphisms at -786T>C, 894G>T, and intron 4b/a on blood pressure (BP) using 24-h ambulatory BP monitoring (ABPM), nitrate/nitrite levels (NOx), and redox state. Eighty-six volunteers (51 ± 0.6 yr old) were genotyped into nonpolymorphic and polymorphic groups for each of the three positions of NOS3 polymorphisms. Auscultatory BP, ABPM, SOD activity, catalase activity, NOx levels, and malondialdehyde levels were measured. DNA was extracted from leukocytes, and PCR followed by sequencing was applied for genotype analysis. Aerobic ET consisted of 24 sessions for 3 days/wk for 40 min at moderate intensity. This study was performed in a double-blind and crossover format. ET was effective in lowering office BP (systolic BP: 3.2% and diastolic BP: 3%) as well as ABPM (systolic BP: 2% and diastolic BP: 1.3%). Increased SOD and catalase activity (42.6% and 15.1%, respectively) were also observed. The NOS3 polymorphism for intron 4 mitigated the beneficial effect of ET for systolic BP (nonpolymorphic group: -3.0% and polymorphic group: -0.6%) and diastolic BP (nonpolymorphic group: -3.2% and polymorphic group: -0.5%), but it was not associated with NOx level and redox state. Paradoxical responses were found for positions T786-C and G894T for the NOS3 gene. Consistently, the presence of the polymorphism for intron 4 blunted the beneficial effects of ET in middle-aged adults. Possibly, this effect might be as consequence of intron 4 acting as a short intronic repeat RNA controlling endothelial NOS activity epigenetically.
Collapse
Affiliation(s)
- Carlos H Sponton
- Laboratory of Cardiovascular Physiology and Exercise Science, University of São Paulo State, Rio Claro, São Paulo, Brazil; and
| | - Rodrigo Esposti
- Laboratory of Cardiovascular Physiology and Exercise Science, University of São Paulo State, Rio Claro, São Paulo, Brazil; and
| | - Cynara M Rodovalho
- Laboratory of Molecular Evolution, Institute of Bioscience, University of São Paulo State, Rio Claro, São Paulo, Brazil
| | - Maycon J Ferreira
- Laboratory of Cardiovascular Physiology and Exercise Science, University of São Paulo State, Rio Claro, São Paulo, Brazil; and
| | - Aline P Jarrete
- Laboratory of Cardiovascular Physiology and Exercise Science, University of São Paulo State, Rio Claro, São Paulo, Brazil; and
| | - Chadi P Anaruma
- Laboratory of Cardiovascular Physiology and Exercise Science, University of São Paulo State, Rio Claro, São Paulo, Brazil; and
| | - Mauricio Bacci
- Laboratory of Molecular Evolution, Institute of Bioscience, University of São Paulo State, Rio Claro, São Paulo, Brazil
| | - Angelina Zanesco
- Laboratory of Cardiovascular Physiology and Exercise Science, University of São Paulo State, Rio Claro, São Paulo, Brazil; and
| |
Collapse
|
32
|
Lerchenmüller C, Rosenzweig A. Mechanisms of exercise-induced cardiac growth. Drug Discov Today 2014; 19:1003-9. [PMID: 24637046 DOI: 10.1016/j.drudis.2014.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/02/2023]
Abstract
Exercise is a well-established intervention for the prevention and treatment of cardiovascular disease. Increase in cardiomyocyte size is likely to be the central mechanism of exercise-induced cardiac growth, but recent research also supports a role for the generation of new cardiomyocytes as a contributor to physiological cardiac growth. Other cardiac cell types also respond to exercise. For example, endothelial cells are important for the regulation of large vessels and expansion of microvasculature in meeting demands of the growing heart. Cardiac fibroblasts are known to generate and respond to important signals from their environment, but their role in exercise is less well defined. Therefore, cardiac growth relies on complex, finely regulated and interdependent signaling pathways as well as cross-talk among cardiac cell types.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anthony Rosenzweig
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Duncker DJ, van Deel ED, de Waard MC, de Boer M, Merkus D, van der Velden J. Exercise training in adverse cardiac remodeling. Pflugers Arch 2014; 466:1079-91. [PMID: 24573174 DOI: 10.1007/s00424-014-1464-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 12/14/2022]
Abstract
Cardiac remodeling in response to a myocardial infarction or chronic pressure-overload is an independent risk factor for the development of heart failure. In contrast, cardiac remodeling produced by regular physical exercise is associated with a decreased risk for heart failure. There is evidence that exercise training has a beneficial effect on disease progression and survival in patients with cardiac remodeling and dysfunction, but concern has also been expressed that exercise training may aggravate pathological remodeling and dysfunction. Here we present studies from our laboratory into the effects of exercise training on pathological cardiac remodeling and dysfunction in mice. The results indicate that even in the presence of a large infarct, exercise training exerts beneficial effects on the heart. These effects were mimicked in part by endothelial nitric oxide synthase (eNOS) overexpression and abrogated by eNOS deficiency, demonstrating the importance of nitric oxide signaling in mediating the cardiac effects of exercise. Exercise prior to a myocardial infarction was also cardioprotective. In contrast, exercise tended to aggravate pathological cardiac remodeling and dysfunction in the setting of pressure-overload produced by an aortic stenosis. These observations emphasize the critical importance of the underlying pathological stimulus for cardiac hypertrophy and remodeling, in determining the effects of exercise training. Future studies are needed to define the influence of exercise type, intensity and duration in different models and severities of pathological cardiac remodeling. Together such studies will aid in optimizing the therapy of exercise training in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus MC University Medical Center Rotterdam, PO Box 2040, 3000, CA, Rotterdam, The Netherlands,
| | | | | | | | | | | |
Collapse
|
34
|
Kwon JS, Kim YS, Cho AS, Cho HH, Kim JS, Hong MH, Jeong HY, Kang WS, Hwang KK, Bae JW, Jeong MH, Cho MC, Ahn Y. Regulation of MMP/TIMP by HUVEC transplantation attenuates ventricular remodeling in response to myocardial infarction. Life Sci 2014; 101:15-26. [PMID: 24560960 DOI: 10.1016/j.lfs.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 01/10/2023]
Abstract
AIMS We elucidated the therapeutic potential of human umbilical vein endothelial cells (HUVECs) for ameliorating progressive heart failure in a myocardial infarction (MI) rat model. MAIN METHODS MI was induced by ligation of left anterior descending artery, and HUVEC was transplanted 1week after MI. Cardiac function was evaluated by echocardiography, and histological analyses were performed. KEY FINDINGS Phosphate-buffered saline (MI-V, n=5) or HUVEC (MI-HV, n=5) were injected into the border zone and infarcted area 7days after ligation of the left coronary artery in rats. The MI-HV group showed attenuation of left ventricular (LV) remodeling compared with the MI-V group. In the infarcted myocardium, a few of injected HUVEC was retained up to 28days. The ratios of matrix metalloproteinase (MMP)-2 or MMP-9 to tissue inhibitor of metalloproteinase (TIMP)-1 or TIMP-3 were decreased in the MI-HV group compared with the MI-V group. In vivo zymography analysis showed that HUVEC transplantation decreased the activities of MMP-2 and MMP-9. In immunohistochemistry, decreased MMP-2 and increased TIMP-1 and TIMP-3 expression were observed at 48h after HUVEC transplantation. These effects on MMP/TIMP balance were inhibited by L-NAME administration (an eNOS inhibitor, 10mg/kg). NOS inhibition decreased the protein expressions of TIMP-1 and TIMP-3 but did not change the protein expressions of MMP-2 and MMP-9. SIGNIFICANCE Our data suggest that altered balance between MMP and TIMP by HUVEC transplantation contributed to attenuation of ventricular remodeling after MI via eNOS.
Collapse
Affiliation(s)
- Jin-Sook Kwon
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Yong Sook Kim
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ae Shin Cho
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyang Hee Cho
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jeong Sook Kim
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Moon Hwa Hong
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hye-Yun Jeong
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea; Center of Molecular Medicine, Graduate School, Chonnam National University, Republic of Korea
| | - Wan Seok Kang
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea; Center of Molecular Medicine, Graduate School, Chonnam National University, Republic of Korea
| | - Kyung-Kuk Hwang
- Department of Cardiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jang-Whan Bae
- Department of Cardiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Myeong-Chan Cho
- Department of Cardiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
| | - Youngkeun Ahn
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, Republic of Korea; Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
35
|
Davis B, Moriguchi T, Sumpio B. Optimizing cardiovascular benefits of exercise: a review of rodent models. Int J Angiol 2014; 22:13-22. [PMID: 24436579 DOI: 10.1055/s-0033-1333867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health.
Collapse
Affiliation(s)
- Brittany Davis
- Department of Vascular Surgery, Yale School of Medicine, New Haven, Connecticut ; Veterans Administration Health Care System, West Haven, Connecticut
| | - Takeshi Moriguchi
- Department of Vascular Surgery, Yale School of Medicine, New Haven, Connecticut ; Veterans Administration Health Care System, West Haven, Connecticut
| | - Bauer Sumpio
- Department of Vascular Surgery, Yale School of Medicine, New Haven, Connecticut ; Veterans Administration Health Care System, West Haven, Connecticut
| |
Collapse
|
36
|
Calvert JW, Lefer DJ. Role of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection. Physiology (Bethesda) 2013; 28:216-24. [PMID: 23817796 DOI: 10.1152/physiol.00011.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exercise promotes cardioprotection in both humans and animals not only by reducing risk factors associated with cardiovascular disease but by reducing myocardial infarction and improving survival following ischemia. This article will define the role that nitric oxide and β-adrenergic receptors play in mediating the cardioprotective effects of exercise in the setting of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | |
Collapse
|
37
|
Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, Obert P, Cazorla O, Tanguy S, Reboul C. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol 2013; 108:389. [PMID: 24105420 DOI: 10.1007/s00395-013-0389-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/08/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.
Collapse
Affiliation(s)
- C Farah
- Laboratoire de Pharm-Ecologie Cardiovasculaire (EA4278), Faculty of Sciences, Avignon University, 33 rue Louis Pasteur, 84000, Avignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li J, Zhang Y, Li C, Xie J, Liu Y, Zhu W, Zhang X, Jiang S, Liu L, Ding Z. HSPA12B attenuates cardiac dysfunction and remodelling after myocardial infarction through an eNOS-dependent mechanism. Cardiovasc Res 2013; 99:674-84. [PMID: 23729663 DOI: 10.1093/cvr/cvt139] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS HSPA12B is a newly discovered and endothelial-cell-specifically expressed heat shock protein. We have reported recently that overexpression of HSPA12B increased endothelial nitric oxide synthase (eNOS) expression in mouse cardiac tissues during endotoxemia. Endothelial NOS has been shown to protect heart from ischaemic injury. We hypothesized that overexpression of HSPA12B will attenuate cardiac dysfunction and remodelling after myocardial infarction (MI) through an eNOS-dependant mechanism. METHODS AND RESULTS MI was induced by permanent ligation of the left anterior descending coronary artery in the transgenic mice (Tg) overexpressing hspa12b gene and its wild-type (WT) littermates. Echocardiographic analysis revealed that Tg mice exhibited improvements in cardiac dysfunction and remodelling at 1 and 4 weeks after MI. These improvements were accompanied by a significant decrease in cardiomyocyte apoptosis and increase in capillary and arteriolar densities. Significant up-regulation of eNOS, VEGF, Ang-1, and Bcl-2 was also observed in Tg hearts compared with WT hearts after MI. However, pharmacological inhibition of eNOS abolished the HSPA12B-induced decrease in cardiomyocyte apoptosis and increase in capillary formation after MI. Most importantly, inhibition of eNOS abrogated the protection of HSPA12B against cardiac dysfunction and remodelling after MI. CONCLUSIONS These data demonstrate for the first time that the overexpression of HSPA12B attenuates cardiac dysfunction and remodelling after MI. This action of HSPA12B was mediated, at least in part, by prevention of cardiomyocyte apoptosis and promotion of myocardial angiogenesis via an eNOS-dependent mechanism. HSPA12B could be a novel target for the management of patients with post-MI cardiac dysfunction and remodelling.
Collapse
Affiliation(s)
- Jingjin Li
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Nina Mann
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Harvard/MIT Health Sciences and Technology Program, Boston, MA
| | - Anthony Rosenzweig
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Uryash A, Wu H, Bassuk J, Kurlansky P, Adams JA. Preconditioning with periodic acceleration (pGz) provides second window of cardioprotection. Life Sci 2012; 91:178-85. [DOI: 10.1016/j.lfs.2012.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/30/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
|
41
|
Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J Mol Cell Cardiol 2012; 52:1257-64. [DOI: 10.1016/j.yjmcc.2012.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/19/2022]
|
42
|
Budiono BP, See Hoe LE, Peart JN, Sabapathy S, Ashton KJ, Haseler LJ, Headrick JP. Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1091-100. [DOI: 10.1152/ajpregu.00406.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise triggers hormesis, conditioning hearts against damaging consequences of subsequent ischemia-reperfusion (I/R). We test whether “low-stress” voluntary activity modifies I/R tolerance and molecular determinants of cardiac survival. Male C57BL/6 mice were provided 7-day access to locked (7SED) or rotating (7EX) running-wheels before analysis of cardiac prosurvival (Akt, ERK 1/2) and prodeath (GSK3β) kinases, transcriptomic adaptations, and functional tolerance of isolated hearts to 25-min ischemia/45-min reperfusion. Over 7 days, 7EX mice increased running from 2.1 ± 0.2 to 5.3 ± 0.3 km/day (mean speed 38 ± 2 m/min), with activity improving myocardial I/R tolerance: 7SED hearts recovered 43 ± 3% of ventricular force with diastolic contracture of 33 ± 3 mmHg, whereas 7EX hearts recovered 63 ± 5% of force with diastolic dysfunction reduced to 23 ± 2 mmHg ( P < 0.05). Cytosolic expression (total protein) of Akt and GSK3β was unaltered, while ERK 1/2 increased 30% in 7EX vs. 7SED hearts. Phosphorylation of Akt and ERK 1/2 was unaltered, whereas GSK3β phosphorylation increased ∼90%. Microarray interrogation identified significant changes (≥1.3-fold expression change, ≤5% FDR) in 142 known genes, the majority (92%) repressed. Significantly modified paths/networks related to inflammatory/immune function (particularly interferon-dependent), together with cell movement, growth, and death. Of only 14 induced transcripts, 3 encoded interrelated sarcomeric proteins titin, α-actinin, and myomesin-2, while transcripts for protective actin-stabilizing ND1-L and activator of mitochondrial biogenesis ALAS1 were also induced. There was no transcriptional evidence of oxidative heat-shock or other canonical “stress” responses. These data demonstrate that relatively brief voluntary activity substantially improves cardiac ischemic tolerance, an effect independent of shifts in Akt, but associated with increased total ERK 1/2 and phospho-inhibition of GSK3β. Transcriptomic data implicate inflammatory/immune and sarcomeric modulation in activity-dependent protection.
Collapse
Affiliation(s)
- Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Louise E. See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Surendran Sabapathy
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Luke J. Haseler
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| |
Collapse
|
43
|
Duncker DJ, van Deel ED. Endothelial nitric oxide synthase and cardiac remodelling: location, location, location? Cardiovasc Res 2012; 93:383-5. [PMID: 22278063 DOI: 10.1093/cvr/cvs021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Araki S, Izumiya Y, Hanatani S, Rokutanda T, Usuku H, Akasaki Y, Takeo T, Nakagata N, Walsh K, Ogawa H. Akt1-mediated skeletal muscle growth attenuates cardiac dysfunction and remodeling after experimental myocardial infarction. Circ Heart Fail 2011; 5:116-25. [PMID: 22135402 DOI: 10.1161/circheartfailure.111.964783] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is appreciated that aerobic endurance exercise can attenuate unfavorable myocardial remodeling following myocardial infarction. In contrast, little is known about the effects of increasing skeletal muscle mass, typically achieved through resistance training, on this process. Here, we utilized transgenic (TG) mice that can induce the growth of functional skeletal muscle by switching Akt1 signaling in muscle fibers to assess the impact of glycolytic muscle growth on post-myocardial infarction cardiac remodeling. METHODS AND RESULTS Male-noninduced TG mice and their nontransgenic littermates (control) were subjected to left anterior coronary artery ligation. Two days after surgery, mice were provided doxycycline in their drinking water to activate Akt1 transgene expression in a skeletal muscle-specific manner. Myogenic Akt1 activation led to diminished left ventricular dilation and reduced contractile dysfunction compared with control mice. Improved cardiac function in Akt1 TG mice was coupled to diminished myocyte hypertrophy, decreased interstitial fibrosis, and increased capillary density. ELISA and protein array analyses demonstrated that serum levels of proangiogenic growth factors were upregulated in Akt1 TG mice compared with control mice. Cardiac eNOS was activated in Akt1 TG mice after myocardial infarction. The protective effect of skeletal muscle Akt activation on cardiac remodeling and systolic function was abolished by treatment with the eNOS inhibitor l-NAME. CONCLUSIONS Akt1-mediated skeletal muscle growth attenuates cardiac remodeling after myocardial infarction and is associated with an increased capillary density in the heart. This improvement appears to be mediated by skeletal muscle to cardiac communication, leading to activation of eNOS-signaling in the heart.
Collapse
Affiliation(s)
- Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kazakov A, Müller P, Jagoda P, Semenov A, Böhm M, Laufs U. Endothelial nitric oxide synthase of the bone marrow regulates myocardial hypertrophy, fibrosis, and angiogenesis. Cardiovasc Res 2011; 93:397-405. [DOI: 10.1093/cvr/cvr305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
46
|
Tarin C, Lavin B, Gomez M, Saura M, Diez-Juan A, Zaragoza C. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion. Free Radic Biol Med 2011; 51:387-95. [PMID: 21570464 DOI: 10.1016/j.freeradbiomed.2011.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection.
Collapse
Affiliation(s)
- Carlos Tarin
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011; 2011:972807. [PMID: 21403846 PMCID: PMC3051318 DOI: 10.4061/2011/972807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
Abstract
Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
48
|
Abstract
Exercise training has been shown to reduce many risk factors related to cardiovascular disease, including high blood pressure, high cholesterol, obesity, and insulin resistance. More importantly, exercise training has been consistently shown to confer sustainable protection against myocardial infarction in animal models and has been associated with improved survival following a heart attack in humans. It is still unclear how exercise training is able to protect the heart, but some studies have suggested that it increases a number of classical signalling molecules. For instance, exercise can increase components of the endogenous antioxidant defences (i.e. superoxide dismutase and catalase), increase the expression of heat shock proteins, activate ATP-sensitive potassium (K(ATP)) channels, and increase the expression and activity of endothelial nitric oxide (NO) synthase resulting in an increase in NO levels. This review article will provide a brief summary of the role that these signalling molecules play in mediating the cardioprotective effects of exercise. In particular, it will highlight the role that NO plays and introduce the idea that the stable NO metabolite, nitrite, may play a major role in mediating these cardioprotective effects.
Collapse
Affiliation(s)
- John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 550 Peachtree Street NE, Atlanta, GA 30308, USA.
| |
Collapse
|
49
|
Bansal A, Dai Q, Chiao YA, Hakala KW, Zhang JQ, Weintraub ST, Lindsey ML. Proteomic analysis reveals late exercise effects on cardiac remodeling following myocardial infarction. J Proteomics 2010; 73:2041-9. [PMID: 20601275 DOI: 10.1016/j.jprot.2010.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/22/2010] [Accepted: 06/27/2010] [Indexed: 01/31/2023]
Abstract
Exercise has been shown to improve function of the left ventricle (LV) following myocardial infarction (MI). The mechanisms to explain this benefit have not been fully delineated, but may involve improved mechanics resulting in unloading effects and increased endothelial nitric oxide synthase levels [1,2]. Accordingly, the goal of this study was to determine how the LV infarct proteome is altered by a post-MI exercise regimen. Sprague-Dawley rats underwent ligation of the left descending coronary artery to induce MI. Exercise training was initiated four weeks post-MI and continued for 8 weeks in n=12 rats. Compared with the sedentary MI group (n=10), the infarct region of rats receiving exercise showed 20 protein spots with altered intensities in two-dimensional gels (15 increased and 5 decreased; p<0.05). Of 52 proteins identified in 20 spots, decreased levels of voltage-dependent anion-selective channel 2 and increased levels of glutathione perioxidase and manganese superoxide were confirmed by immunoblotting. Cardiac function was preserved in rats receiving exercise training, and the beneficial effect was linked with changes in these 3 proteins. In conclusion, our results suggest that post-MI exercise training increases anti-oxidant levels and decreases ion channel levels, which may explain, in part, the improved cardiac function seen with exercise.
Collapse
Affiliation(s)
- Arvin Bansal
- Department of Medicine, Division of Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Widder JD, Ertl G. Exercise, eNOS and the heart after myocardial infarction. J Mol Cell Cardiol 2010; 48:1029-30. [PMID: 20193692 DOI: 10.1016/j.yjmcc.2010.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 01/12/2023]
|