1
|
Almusallam N, Alonazi A, Dayel AB, Almubarak A, Ali R, Althakfi W, Ali R, Alrasheed N. Antifibrotic effect of the P2X7 receptor antagonist A740003 against acute myocardial infarction-induced fibrotic remodelling. Saudi Pharm J 2024; 32:102102. [PMID: 39035363 PMCID: PMC11258548 DOI: 10.1016/j.jsps.2024.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
Post-acute myocardial infarction (AMI) fibrosis is a pathophysiologic process characterised by activation of the profibrotic mediator, transforming growth factor-β (TGF-β). AMI is associated with a substantial increase in the levels of extracellular adenosine triphosphate (eATP), which acts on the purinergic P2X7-receptor (P2X7-R) and triggers an inflammatory response that contributes to myocardial fibrotic remodelling. P2X7-R has been implicated in several cardiovascular diseases; however, its role in the regulation of cardiac fibrosis remains unclear. Therefore, the current study aimed to determine the effect of the P2X7-R antagonist, A740003, on post-AMI fibrosis, via the profibrotic TGF-β1/Smad signalling pathway, and elucidate whether its effect is mediated via the modulation of GSK-3β. AMI was induced by surgical ligation of the left anterior descending coronary artery, Thereafter, animals were divided into groups: sham control, MI-untreated, MI-vehicle, and MI-A740003 (50 mg/kg/day) and treated for seven days accordingly. The heart weight/body weight ratio of untreated-ligated rats significantly increased by 15.1 %, creatine kinase-MB (CK-MB) significantly increased by 40 %, troponin-I levels significantly increased by 25.4 %, and lactate dehydrogenase significantly increased by 47.2 %, indicating myocardial damage confirmed by morphological changes and massive cardiac fibrosis. The protein expression of cardiac fibronectin, TGF-β1, and p-Smad2 were also upregulated by 143 %, 40 %, and 8 %, respectively, indicating cardiac fibrosis. The treatment of ligated rats with A740003 led to improvement in all the above-mentioned parameters. Overall, A740003 exhibits potential cardio-protective effects on post-AMI fibrotic remodelling in the animal model of AMI through P2X7-R blockade, possibly by downregulating the profibrotic TGF-β1/Smad signalling pathway and restoring GSK-3β phosphorylation. Altogether, treatment with A740003 could serve as a new cardioprotective strategy to attenuate post-AMI fibrotic remodelling.
Collapse
Affiliation(s)
- Noura Almusallam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Pharmaceutical Care Department, King Saud Medical City, Ministry of Health, Riyadh 11196, Saudi Arabia
| | - Asma Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anfal Bin Dayel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Almubarak
- Experimental Surgery and Animal Laboratory, Prince Naif Bin Abdul Aziz Health Research Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medical Research Center, Medical Research Core Facility and Platforms, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Wajd Althakfi
- Department of Pathology, College of Medicine, KSUMC, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rehab Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nouf Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Vainio L, Taponen S, Kinnunen SM, Halmetoja E, Szabo Z, Alakoski T, Ulvila J, Junttila J, Lakkisto P, Magga J, Kerkelä R. GSK3β Serine 389 Phosphorylation Modulates Cardiomyocyte Hypertrophy and Ischemic Injury. Int J Mol Sci 2021; 22:13586. [PMID: 34948382 PMCID: PMC8707850 DOI: 10.3390/ijms222413586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Prior studies show that glycogen synthase kinase 3β (GSK3β) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3β is constitutionally active and phosphorylation of GSK3β at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3β is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3β S389 phosphorylation in diseased hearts and utilized overexpression of GSK3β carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3β in primary cardiomyocytes. We found that phosphorylation of GSK3β at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3β S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3β mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3β S389A or GSK3β S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3β S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3β at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Saija Taponen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Sini M. Kinnunen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Eveliina Halmetoja
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
| | - Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
| | - Juhani Junttila
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
- Research Unit of Internal Medicine, Division of Cardiology, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Helsinki 00014, Finland;
- Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu 90220, Finland; (L.V.); (S.T.); (S.M.K.); (E.H.); (Z.S.); (T.A.); (J.U.); (J.M.)
- Biocenter Oulu, University of Oulu, Oulu 90220, Finland;
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| |
Collapse
|
3
|
Ni M, Zhou H, Zhang J, Jin D, Lu T, Busuttil RW, Kupiec-Weglinski JW, Wang X, Zhai Y. Isoform- and Cell Type-Specific Roles of Glycogen Synthase Kinase 3 N-Terminal Serine Phosphorylation in Liver Ischemia Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2020; 205:1147-1156. [PMID: 32680958 DOI: 10.4049/jimmunol.2000397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Glycogen synthase kinase 3 (Gsk3) α and β are both constitutively active and inhibited upon stimulation by N-terminal serine phosphorylation. Although roles of active Gsk3 in liver ischemia reperfusion injury (IRI) have been well appreciated, whether Gsk3 N-terminal serine phosphorylation has any functional significance in the disease process remains unclear. In a murine liver partial warm ischemia model, we studied Gsk3 N-terminal serine mutant knock-in (KI) mice and showed that liver IRI was decreased in Gsk3αS21A but increased in Gsk3βS9A mutant KI mice. Bone marrow chimeric experiments revealed that the Gsk3α, but not β, mutation in liver parenchyma protected from IRI, and both mutations in bone marrow-derived cells exacerbated liver injuries. Mechanistically, mutant Gsk3α protected hepatocytes from inflammatory (TNF-α) cell death by the activation of HIV-1 TAT-interactive protein 60 (TIP60)-mediated autophagy pathway. The pharmacological inhibition of TIP60 or autophagy diminished the protection of the Gsk3α mutant hepatocytes from inflammatory cell death in vitro and the Gsk3α mutant KI mice from liver IRI in vivo. Thus, Gsk3 N-terminal serine phosphorylation inhibits liver innate immune activation but suppresses hepatocyte autophagy in response to inflammation. Gsk3 αS21, but not βS9, mutation is sufficient to sustain Gsk4 activities in hepatocytes and protect livers from IRI via TIP60 activation.
Collapse
Affiliation(s)
- Ming Ni
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Haoming Zhou
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Jing Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Dan Jin
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Department of Obstetrics and Gynecology, Shanghai Jiaotong University, Shanghai 200025, China; and
| | - Tianfei Lu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095.,Liver Surgery, Renji Hospital, Shanghai Jiaotong University, Shanghai 200025, China
| | - Ronald W Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095
| | - Xuehao Wang
- Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China;
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
4
|
Markussen LK, Winther S, Wicksteed B, Hansen JB. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep 2018; 8:3469. [PMID: 29472592 PMCID: PMC5823915 DOI: 10.1038/s41598-018-21795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2018] [Indexed: 01/23/2023] Open
Abstract
Brown adipose tissue is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. β-Adrenergic stimulation of brown adipocytes leads to an increase in oxygen consumption and induction of a thermogenic gene program that includes uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21). In kinase inhibitor screens, we have identified glycogen synthase kinase 3 (GSK3) as a negative regulator of basal and β-adrenergically stimulated Fgf21 expression in cultured brown adipocytes. In addition, inhibition of GSK3 also caused increased Ucp1 expression and oxygen consumption. β-Adrenergic stimulation triggered an inhibitory phosphorylation of GSK3 in a protein kinase A (PKA)-dependent manner. Mechanistically, inhibition of GSK3 activated the mitogen activated protein kinase (MAPK) kinase 3/6-p38 MAPK-activating transcription factor 2 signaling module. In summary, our data describe GSK3 as a novel negative regulator of β-adrenergic signaling in brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Chen Z, Xie J, Hao H, Lin H, Wang L, Zhang Y, Chen L, Cao S, Huang X, Liao W, Bin J, Liao Y. Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3β/cyclin D1 signalling pathway. Cardiovasc Res 2017; 113:620-632. [PMID: 28453729 PMCID: PMC5412017 DOI: 10.1093/cvr/cvx001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/27/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS To resolve the controversy as to whether periostin plays a role in myocardial regeneration after myocardial infarction (MI), we created a neonatal mouse model of MI to investigate the influence of periostin ablation on myocardial regeneration and clarify the underlying mechanisms. METHODS AND RESULTS Neonatal periostin-knockout mice and their wildtype littermates were subjected to MI or sham surgery. In the wildtype mice after MI, fibrosis was detectable at 3 days and fibrotic tissue was completely replaced by regenerated myocardium at 21 days. In contrast, in the knockout mice, significant fibrosis in the infarcted area was present at even 3 weeks after MI. Levels of phosphorylated-histone 3 and aurora B in the myocardium, detected by immunofluorescence and western blotting, were significantly lower in knockout than in wildtype mice at 7 days after MI. Similarly, angiogenesis was decreased in the knockout mice after MI. Expression of both the endothelial marker CD-31 and α-smooth muscle actin was markedly lower in the knockout than in wildtype mice at 7 days after MI. The knockout MI group had elevated levels of glycogen synthase kinase (GSK) 3β and decreased phosphatidylinositol 3-kinase (PI3K), phosphorylated serine/threonine protein kinase B (p-Akt), and cyclin D1, compared with the wildtype MI group. Similar effects were observed in experiments using cultured cardiomyocytes from neonatal wildtype or periostin knockout mice. Administration of SB216763, a GSK3β inhibitor, to knockout neonatal mice decreased myocardial fibrosis and increased angiogenesis in the infarcted area after MI. CONCLUSION Ablation of periostin suppresses post-infarction myocardial regeneration by inhibiting the PI3K/GSK3β/cyclin D1 signalling pathway, indicating that periostin is essential for myocardial regeneration.
Collapse
Affiliation(s)
- Zhenhuan Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Jiahe Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Huixin Hao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Long Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Yingxue Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Lin Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Shiping Cao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838, Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
6
|
Lucas A, Mialet-Perez J, Daviaud D, Parini A, Marber MS, Sicard P. Gadd45γ regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovasc Res 2015; 108:254-67. [PMID: 26370247 DOI: 10.1093/cvr/cvv219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Post-infarction remodelling is accompanied and influenced by perturbations in mitogen-activated protein kinase (MAPK) signalling. The growth arrest and DNA-damage-inducible 45 (Gadd45) proteins are small acidic proteins involved in DNA repair and modulation of MAPK activity. Little is known about the role of Gadd45 in the heart. Here, we explored the potential contribution of Gadd45 gamma (γ) isoform to the acute and late phase of heart failure (HF) after myocardial infarction (MI) and determined the mechanisms underlying Gadd45γ actions. METHODS AND RESULTS The Gadd45γ isoform is up-regulated in murine cardiomyocytes subjected to simulated ischaemia and in the mouse heart during MI. To mimic the situation observed during MI, we enhanced Gadd45γ content in cardiomyocytes with a single injection of an adeno-associated viral (AAV9) vector encoding Gadd45γ under the cTNT promoter. Gadd45γ overexpression induces cardiomyocyte apoptosis, fibrosis, left ventricular dysfunction, and HF. On the other hand, genetic deletion of Gadd45γ in knockout mice confers resistance to ischaemic injury, at least in part by limiting cardiomyocyte apoptosis. Mechanistically, Gadd45γ activates receptor-interacting protein 1 (RIP1) and caspase-8 in a p38 MAPK-dependent manner to promote cardiomyocyte death. CONCLUSION This work is the first to demonstrate that Gadd45γ accumulation during MI promotes the development and persistence of HF by inducing cardiomyocyte apoptosis in a p38 MAPK-dependent manner. We clearly identify Gadd45γ as a therapeutic target in the development of HF.
Collapse
Affiliation(s)
- Alexandre Lucas
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Jeanne Mialet-Perez
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Danièle Daviaud
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Angelo Parini
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| | - Michael S Marber
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, UK
| | - Pierre Sicard
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases, 1 Avenue Jean Poulhes, 31432 Toulouse, France University Paul Sabatier, CHU of Toulouse, 31432 Toulouse, France
| |
Collapse
|
7
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is one of the few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in several diseases including heart failure, bipolar disorder, diabetes mellitus, Alzheimer disease, aging, inflammation, and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review, we will focus on its expanding role in the heart, concentrating primarily on recent studies that have used cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis, and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction after myocardial infarction by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature.
Collapse
Affiliation(s)
- Hind Lal
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.).
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.)
| | - James Woodgett
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.)
| | - Thomas Force
- From the Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (H.L., F.A., T.F.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.W.).
| |
Collapse
|
8
|
|
9
|
Clark JE, Marber MS. Advancements in pressure-volume catheter technology - stress remodelling after infarction. Exp Physiol 2012; 98:614-21. [PMID: 23064506 DOI: 10.1113/expphysiol.2012.064733] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microconductance catheters have been successfully applied to measure left ventricular (LV) function in the mouse to assess cardiac or pharmacological interventions for a number of years. New complex admittance methods produce an estimate of the parallel admittance of cardiac muscle that can be used to correct the measurement in real time. This contrasts with existing conductance technologies that require in vivo calibration using a bolus of hypertonic saline. Here, we report the application of this emerging technology in the context of myocardial infarction and LV remodelling. Using a combination of high-resolution ultrasound and LV conductance catheters, we compared measures of LV function using an admittance system and a traditional conductance-derived pressure-volume (PV) system. We subjected C57BL/6 mice to focal myocardial ischaemia-reperfusion by transient ligation of the left anterior descending coronary artery and assessed cardiac function with different systems to determine the reliability and accuracy of these methods to distinguish between normal and dysfunctional ventricle. We demonstrate that the admittance PV system, in our hands, provides a straightforward solution for assessing LV function in mice. Using this technique in combination with other established methods, we measured LV dysfunction following coronary artery occlusion and reperfusion, which can be ameliorated using a known preconditioning agent (CORM-3), and found that functional read-outs are representative of other methods. We have found that, especially in diseased tissue, LV pressure-volume loops derived from complex admittance provide a reproducible and reliable method of determining LV function without the need for technically challenging calibration. Our data suggest that admittance records accurate/physiological LV cavity volumes when compared with other invasive methods in the same animal. This emerging technology is both effective and reproducible for measuring LV function and dysfunction in the mouse, without the need for complicated interventions to calibrate the measurements or training in a new technology. This may mark the way towards a fast and accurate assessment of murine cardiac function in normal animals and disease models.
Collapse
Affiliation(s)
- James E Clark
- Department of Cardiology, King's College London, British Heart Foundation Excellence Centre, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.
| | | |
Collapse
|
10
|
Lal H, Zhou J, Ahmad F, Zaka R, Vagnozzi RJ, Decaul M, Woodgett J, Gao E, Force T. Glycogen synthase kinase-3α limits ischemic injury, cardiac rupture, post-myocardial infarction remodeling and death. Circulation 2011; 125:65-75. [PMID: 22086876 DOI: 10.1161/circulationaha.111.050666] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The molecular pathways that regulate the extent of ischemic injury and post-myocardial infarction (MI) remodeling are not well understood. We recently demonstrated that glycogen synthase kinase-3α (GSK-3α) is critical to the heart's response to pressure overload. However, the role, if any, of GSK-3α in regulating ischemic injury and its consequences is not known. METHODS AND RESULTS MI was induced in wild-type (WT) versus GSK-3α((-/-)) (KO) littermates by left anterior descending coronary artery ligation. Pre-MI, WT, and KO hearts had comparable chamber dimensions and ventricular function, but as early as 1 week post-MI, KO mice had significantly more left ventricular dilatation and dysfunction than WT mice. KO mice also had increased mortality during the first 10 days post-MI (43% versus 22%; P=0.04), and postmortem examination confirmed cardiac rupture as the cause of most of the deaths. In the mice that survived the first 10 days, left ventricular dilatation and dysfunction remained worse in the KO mice throughout the study (8 weeks). Hypertrophy, fibrosis, and heart failure were all increased in the KO mice. Given the early deaths due to rupture and the significant reduction in left ventricular function evident as early as 1 week post-MI, we examined infarct size following a 48-hour coronary artery ligation and found it to be increased in the KO mice. This was accompanied by increased apoptosis in the border zone of the MI. This increased susceptibility to ischemic injury-induced apoptosis was also seen in cardiomyocytes isolated from the KO mice that were exposed to hypoxia. Finally, Bax translocation to the mitochondria and cytochrome C release into the cytosol were increased in the KO mice. CONCLUSION GSK-3α confers resistance to ischemic injury, at least in part, via limiting apoptosis. Loss of GSK-3α promotes ischemic injury, increases risk of cardiac rupture, accentuates post-MI remodeling and left ventricular dysfunction, and increases the progression to heart failure. These findings are in striking contrast to multiple previous reports in which deletion or inhibition of GSK-3β is protective.
Collapse
Affiliation(s)
- Hind Lal
- Center for Translational Medicine, Thomas Jefferson University, College Building, Rm 316, 1025 Walnut St., Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cheng H, Woodgett J, Maamari M, Force T. Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol 2010; 51:607-13. [PMID: 21163265 DOI: 10.1016/j.yjmcc.2010.11.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
The GSK-3 family of serine/threonine kinases, which is comprised of two isoforms (α and β), was initially identified as a negative regulator of glycogen synthase, the rate limiting enzyme of glycogen synthesis [1,2]. In the 30 years since its initial discovery, the family has been reported to regulate a host of additional cellular processes and, consequently, disease states such as bipolar disorders, diabetes, inflammatory diseases, cancer, and neurodegenerative diseases including Alzheimer's Disease and Parkinson's Disease [3,4]. As a result, there has been intense interest on the part of the pharmaceutical industry in developing small molecule antagonists of GSK-3. Herein, we will review the roles played by GSK-3s in the heart, focusing primarily on recent studies that have employed global and tissue-specific gene deletion. We will highlight roles in various pathologic processes, including pressure overload and ischemic injury, focusing on some striking isoform-specific effects of the family. Due to space limitations and/or the relatively limited data in gene-targeted mice, we will not be addressing the family's roles in ischemic pre-conditioning or its many interactions with various pro- and anti-apoptotic factors. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Hui Cheng
- Center for Translational Medicine and Cardiology Division, Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|