1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Luo M, Hu Z, Liu Z, Tian X, Chen J, Yang J, Liu L, Lin C, Li D, He Q. Methyl protodioscin reduces c-Myc to ameliorate diabetes mellitus erectile dysfunction via downregulation of AKAP12. Diabetes Res Clin Pract 2023; 206:111012. [PMID: 37967586 DOI: 10.1016/j.diabres.2023.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Diabetes mellitus erectile dysfunction (DMED) is one of common complications of diabetes. We aimed to investigate the potential efficacy of methyl protodioscin (MPD) in DMED and explored the underlying mechanism. METHODS Diabetic mice were induced by streptozotocin, while vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were stimulated with high glucose. MPD was administrated in vitro and in vivo to verify its efficacy on DMED. The interaction of c-Myc and AKAP12 was determined by luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS c-Myc and AKAP12 were upregulated in penile tissues in DMED mice. In high glucose-stimulated VSMCs or VECs, MPD intervention enhanced cell viability, inhibited apoptosis, decreased c-Myc and AKAP12, as well as elevated p-eNOS Ser1177. MPD-induced apoptosis inhibition, AKAP12 reduction and p-eNOSSer1177 elevation were reversed by AKAP12 overexpression. c-Myc functioned as a positive regulator of AKAP12. Overexpression of c-Myc reversed the effects induced by MPD in vitro, which was neutralized by AKAP12 silencing. MPD ameliorated erectile function in diabetic mice via inhibiting AKAP12. CONCLUSIONS MPD improved erectile dysfunction in streptozotocin-caused diabetic mice by regulating c-Myc/AKAP12 pathway, indicating that MPD could be developed as a promising natural agent for the treatment of DMED.
Collapse
Affiliation(s)
- Min Luo
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Zongren Hu
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China
| | - Ziyu Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China
| | - Xiaoying Tian
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China
| | - Jisong Chen
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China
| | - Jichang Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Gooeto Internet-Based Hospital, Changsha 410217, Hunan Province, PR China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua 418099, Hunan Province, PR China
| | - Dian Li
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, PR China
| | - Qinghu He
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China.
| |
Collapse
|
3
|
Rupee S, Rupee K, Singh RB, Hanoman C, Ismail AMA, Smail M, Singh J. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence. Heart Fail Rev 2022; 28:627-644. [PMID: 36107271 DOI: 10.1007/s10741-022-10271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Heart failure (HF) is a major deteriorating disease of the myocardium due to weak myocardial muscles. As such, the heart is unable to pump blood efficiently around the body to meet its constant demand. HF is a major global health problem with more than 7 million deaths annually worldwide, with some patients dying suddenly due to sudden cardiac death (SCD). There are several risk factors which are associated with HF and SCD which can negatively affect the heart synergistically. One major risk factor is diabetes mellitus (DM) which can cause an elevation in blood glucose level or hyperglycaemia (HG) which, in turn, has an insulting effect on the myocardium. This review attempted to explain the subcellular, cellular and molecular mechanisms and to a lesser extent, the genetic factors associated with the development of diabetes- induced cardiomyopathy due to the HG which can subsequently lead to chronic heart failure (CHF) and SCD. The study first explained the structure and function of the myocardium and then focussed mainly on the excitation-contraction coupling (ECC) processes highlighting the defects of calcium transporting (SERCA, NCX, RyR and connexin) and contractile regulatory (myosin, actin, titin and troponin) proteins. The study also highlighted new therapies and those under development, as well as preventative strategies to either treat or prevent diabetic cardiomyopathy (DCM). It is postulated that prevention is better than cure.
Collapse
|
4
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
5
|
Energy restriction induced SIRT6 inhibits microglia activation and promotes angiogenesis in cerebral ischemia via transcriptional inhibition of TXNIP. Cell Death Dis 2022; 13:449. [PMID: 35562171 PMCID: PMC9095711 DOI: 10.1038/s41419-022-04866-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Energy restriction (ER) protects against cerebral ischemic injury, but the underlying mechanism remains largely unclear. Here, rats were fed ad libitum (AL) or on an alternate-day food deprivation intermittent fasting (IF) diet for 3 months, followed by middle cerebral artery occlusion (MCAO) surgery. The body weight, infarct volume, and neurological deficit score were accessed at the designated time points. ELISA, qRT-PCR, and Western blotting were used to determine cytokine secretion and the expression of SIRT6, TXNIP, and signaling molecules, respectively. Immunofluorescence evaluated microglial activation and angiogenesis in vivo. For in vitro study, oxygen-glucose deprivation/reoxygenation (OGD/R)-treated cell model was generated. MTT and tube formation assays were employed to determine cell viability and tube formation capability. ChIP assay detected chromatin occupancy of SIRT6 and SIRT6-mediated H3 deacetylation. We found that IF or ER mimetics ameliorated cerebral ischemic brain damage and microglial activation, and potentiated angiogenesis in vivo. ER mimetics or SIRT6 overexpression alleviated cerebral ischemia and reperfusion (I/R)-induced injury in vitro. SIRT6 suppressed TXNIP via deacetylation of H3K9ac and H3K56ac in HAPI cells and BMVECs. Downregulation of SIRT6 reversed ER mimetics-mediated protection during cerebral I/R in vitro. Our study demonstrated that ER-mediated upregulation of SIRT6 inhibited microglia activation and potentiated angiogenesis in cerebral ischemia via suppressing TXNIP.
Collapse
|
6
|
Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics 2022; 14:pharmaceutics14030562. [PMID: 35335938 PMCID: PMC8953310 DOI: 10.3390/pharmaceutics14030562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Although the number of patients with heart failure is increasing, a sufficient treatment agent has not been established. Oxidative stress and inflammation play important roles in the development of myocardial remodeling. When thioredoxin (Trx), an endogenous anti-oxidative and inflammatory modulator with a molecular weight of 12 kDa, is exogenously administered, it disappears rapidly from the blood circulation. In this study, we prepared a long-acting Trx, by fusing human Trx (HSA-Trx) with human serum albumin (HSA) and evaluated its efficacy in treating drug-induced heart failure. Drug-induced cardiomyopathy was created by intraperitoneally administering doxorubicin (Dox) to mice three times per week. A decrease in heart weight, increased myocardial fibrosis and markers for myocardial damage that were observed in the Dox group were suppressed by HSA-Trx administration. HSA-Trx also suppressed the expression of atrogin-1 and myostatin, myocardial atrophy factors in addition to suppressing oxidative stress and inflammation. In the Dox group, a decreased expression of endogenous Trx in cardiac tissue and an increased expression of macrophage migration inhibitory factor were observed, but these changes were restored to normal levels by HSA-Trx administration. These findings suggest that HSA-Trx improves the pathological condition associated with Dox-induced cardiomyopathy by its anti-oxidative/anti-inflammatory and myocardial atrophy inhibitory action.
Collapse
|
7
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
8
|
Heat shock protein A12B gene therapy improves perfusion, promotes neovascularization, and decreases fibrosis in a murine model of hind limb ischemia. Surgery 2021; 170:969-977. [PMID: 34092373 DOI: 10.1016/j.surg.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Heat shock protein A12B expressed in endothelial cells is important and required for angiogenesis to form functional vessels in ischemic tissue. We have previously shown the cardioprotective effects of heat shock protein A12B overexpression in a rat model of diabetic myocardial infarction. In this study, we aim to explore the role of heat shock protein A12B in a surgically-induced murine hind-limb ischemia model. MATERIALS AND METHODS Adult 8- to 12-week-old C57BL/6J mice were divided into 2 groups: treated with Adeno.LacZ (control group) and with Adeno.HSPA12B (experimental group) and, with both groups subjected to right femoral artery ligation. Immediately after surgery, mice in both groups received either Adeno.HSPA12B or Adeno.LacZ (1 × 109 plaque forming units) in both the semimembranosus and gastrocnemius muscles of the right limb. The left limb served as the internal control. Both groups underwent serial laser Doppler imaging preoperatively, and again postoperatively until 28 days. Immunohistochemical analysis was performed 3 and 28 days post-surgery. RESULTS Mice in the Adeno.HSPA12B gene therapy group showed improved motor function and a significantly higher blood perfusion ratio on postoperative days 21 and 28, along with better motor function. Immunohistochemical analysis showed increased expression of vascular endothelial growth factor, thioredoxin-1, heme oxygenase, and hypoxia-inducible factor 1α, along with a decreased expression of A-kinase-anchoring protein 12 and thioredoxin-interacting protein levels. The Adeno.HSPA12B-treated group also showed increased capillary and arteriolar density and an increased capillary-myocyte ratio, along with reduced fibrosis compared to the Adeno.LacZ group. CONCLUSION Our study demonstrates that targeted Adeno.HSPA12B gene delivery into ischemic muscle enhances perfusion and angiogenic protein expression. This molecule shows promise for the management of peripheral vascular disease as a potential target for clinical trials and subsequent drug therapy.
Collapse
|
9
|
Nakayama Y, Mukai N, Wang BF, Yang K, Patwari P, Kitsis RN, Yoshioka J. Txnip C247S mutation protects the heart against acute myocardial infarction. J Mol Cell Cardiol 2021; 155:36-49. [PMID: 33652022 DOI: 10.1016/j.yjmcc.2021.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 01/15/2023]
Abstract
RATIONALE Thioredoxin-interacting protein (Txnip) is a novel molecular target with translational potential in diverse human diseases. Txnip has several established cellular actions including binding to thioredoxin, a scavenger of reactive oxygen species (ROS). It has been long recognized from in vitro evidence that Txnip forms a disulfide bridge through cysteine 247 (C247) with reduced thioredoxin to inhibit the anti-oxidative properties of thioredoxin. However, the physiological significance of the Txnip-thioredoxin interaction remains largely undefined in vivo. OBJECTIVE A single mutation of Txnip, C247S, abolishes the binding of Txnip with thioredoxin. Using a conditional and inducible approach with a mouse model of a mutant Txnip that does not bind thioredoxin, we tested whether the interaction of thioredoxin with Txnip is required for Txnip's pro-oxidative or cytotoxic effects in the heart. METHODS AND RESULTS Overexpression of Txnip C247S in cells resulted in a reduction in ROS, due to an inability to inhibit thioredoxin. Hypoxia (1% O2, 24 h)-induced killing effects of Txnip were decreased by lower levels of cellular ROS in Txnip C247S-expressing cells compared with wild-type Txnip-expressing cells. Then, myocardial ischemic injuries were assessed in the animal model. Cardiomyocyte-specific Txnip C247S knock-in mice had better survival with smaller infarct size following myocardial infarction (MI) compared to control animals. The absence of Txnip's inhibition of thioredoxin promoted mitochondrial anti-oxidative capacities in cardiomyocytes, thereby protecting the heart from oxidative damage induced by MI. Furthermore, an unbiased RNA sequencing screen identified that hypoxia-inducible factor 1 signaling pathway was involved in Txnip C247S-mediated cardioprotective mechanisms. CONCLUSION Txnip is a cysteine-containing redox protein that robustly regulates the thioredoxin system via a disulfide bond-switching mechanism in adult cardiomyocytes. Our results provide the direct in vivo evidence that regulation of redox state by Txnip is a crucial component for myocardial homeostasis under ischemic stress.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America
| | - Bing F Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kristen Yang
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America
| | - Parth Patwari
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
10
|
Song X, Zheng Y, Xue W, Li L, Shen Z, Ding X, Zhai Y, Zhao J. Identification of risk genes related to myocardial infarction and the construction of early SVM diagnostic model. Int J Cardiol 2020; 328:182-190. [PMID: 33352151 DOI: 10.1016/j.ijcard.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Myocardial Infarction (MI) is a fatal cardiovascular system disease. At present, the diagnosis of MI patients is mainly based on the patient's clinical manifestations, dynamic changes in electrocardiogram (ECG), and changes in myocardial enzymes. ECG is insufficient to diagnose an acute coronary syndrome or acute myocardial infarction, since ST-segment deviation might be also present in other conditions, such as acute pericarditis and early repolarization patterns. Given the low specificity and effectiveness of the current diagnostic strategies, an accurate diagnostic approach based on the level of gene expression is urgently needed in the clinic. METHODS AND RESULTS We compared the gene's expression between MI patients and normal samples. The RNAseq data were downloaded from the GEO database. Differentially expressed genes underwent a feature selection process, and the signatures were selected to train a machine-learning model. In this study, we identified the risk genes associated with MI as signatures and uses the SVM to establish a diagnostic model. The accuracy of the model on discovery data is 0.87, which significantly improves the diagnostic efficiency of early detection of MI patients (MIPs). Two independent datasets were applied to verify the diagnostic model. Our model can effectively distinguish the control group from the disease group. CONCLUSIONS We used risk genes to construct a diagnostic model for MI diagnosis, which can effectively distinguish MIPs from normal samples in the both of the discovery data and validation data. In the validation data, we found that percutaneous coronary intervention could indeed reverse MI to a certain extent, and the gene expression level of patients treated with percutaneous coronary intervention (PCI) was closer to the normal state.
Collapse
Affiliation(s)
- Xiaoqin Song
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, China; Depatment of Physical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuanyuan Zheng
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, China; Cancer center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, China; Cancer center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Shen
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, China; Cancer center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianfei Ding
- General ICU, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, China.
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, China; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Demarchi A, Somaschini A, Cornara S, Androulakis E. Peripheral Artery Disease in Diabetes Mellitus: Focus on Novel Treatment Options. Curr Pharm Des 2020; 26:5953-5968. [PMID: 33243109 DOI: 10.2174/1389201021666201126143217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) and peripheral artery disease (PAD) are two clinical entities closely associated. They share many pathophysiological pathways such as inflammation, endothelial dysfunction, oxidative stress and pro-coagulative unbalance. Emerging data focusing on agents targeting these pathways may be promising. Moreover, due to the increased cardiovascular risk, there is a growing interest in cardiovascular and "pleiotropic" effects of novel glucose lowering drugs. This review summarizes the main clinical features of PAD in patients, the diagnostic process and current medical/interventional approaches, ranging from "classical treatment" to novel agents.
Collapse
Affiliation(s)
| | - Alberto Somaschini
- Adult Intensive Care Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | | | - Emmanuel Androulakis
- Adult Intensive Care Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Dexmedetomidine Protects against Myocardial Ischemia/Reperfusion Injury by Ameliorating Oxidative Stress and Cell Apoptosis through the Trx1-Dependent Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8979270. [PMID: 33299886 PMCID: PMC7710428 DOI: 10.1155/2020/8979270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Dexmedetomidine (Dex) was reported to reduce oxidative stress and protect against myocardial Ischemia/Reperfusion (I/R) injury. However, the molecular mechanism involved in its antioxidant property is not fully elucidated. The present study was aimed at investigating whether the Trx1/Akt pathway participated in the cardioprotective effect of Dex. In the present study, I/R-induced myocardial injury in isolated rat hearts and OGD/R-induced injury in H9c2 cardiomyocytes were established. Our findings suggested that Dex ameliorated myocardial I/R injury by improving cardiac function, reducing myocardial apoptosis and oxidative stress, which was manifested by increased GSH and SOD contents, decreased ROS level, and MDA generation in both the isolated rat hearts and OGD/R-treated H9C2 cells. More importantly, it was found that the level of Trx1 was preserved, and Akt phosphorylation was significantly upregulated by Dex treatment. However, these effects of Dex were abolished by PX-12 (a specific Trx1 inhibitor) administration. Taken together, this study suggests that Dex plays a protective role in myocardial I/R injury, improves cardiac function, and relieves oxidative stress and cell apoptosis. Furthermore, our results present a novel signaling mechanism that the cardioprotective effect of Dex is at least partly achieved through the Trx1-dependent Akt pathway.
Collapse
|
13
|
Cai M, Xu Z, Bo W, Wu F, Qi W, Tian Z. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:132-140. [PMID: 35782283 PMCID: PMC9219273 DOI: 10.1016/j.smhs.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exercise training (ET) has been reported to reduce oxidative stress and endoplasmic reticulum (ER) stress in the heart following myocardial infarction (MI). Thioredoxin 1 (Trx1) plays a protective role in the infarcted heart. However, whether Trx1 regulates ER stress of the infarcted heart and participates in ET-induced cardiac protective effects are still not well known. In this work, H9c2 cells were treated with hydrogen peroxide (H2O2) and recombinant human Trx1 protein (TXN), meanwhile, adult male C57B6L mice were used to establish the MI model, and subjected to a six-week aerobic exercise training (AET) with or without the injection of Trx1 inhibitor, PX-12. Results showed that H2O2 significantly increased reactive oxygen species (ROS) level and the expression of TXNIP, CHOP and cleaved caspase12, induced cell apoptosis; TXN intervention reduced ROS level and the expression of CHOP and cleaved caspase12, and inhibited cell apoptosis in H2O2-treated H9c2 cells. Furthermore, AET up-regulated endogenous Trx1 protein expression and down-regulated TXNIP expression, restored ROS level and the expression of ER stress-related proteins, inhibited cell apoptosis as well as improved cardiac fibrosis and heart function in mice after MI. PX-12 partly inhibited the AET-induced beneficial effects in the infarcted heart. This study demonstrates that Trx1 attenuates ER stress-induced cell apoptosis, and AET reduces MI-induced ROS overproduction, ER stress and cell apoptosis partly through up-regulating of Trx1 expression in mice with MI.
Collapse
|
14
|
Khan S, Ahmad SS, Kamal MA. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell. Endocr Metab Immune Disord Drug Targets 2020; 21:268-281. [PMID: 32735531 DOI: 10.2174/1871530320666200731174724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 06/03/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a significant complication of diabetes mellitus characterized by gradually failing heart with detrimental cardiac remodelings, such as fibrosis and diastolic and systolic dysfunction, which is not directly attributable to coronary artery disease. Insulin resistance and resulting hyperglycemia is the main trigger involved in the initiation of diabetic cardiomyopathy. There is a constellation of many pathophysiological events, such as lipotoxicity, oxidative stress, inflammation, inappropriate activation of the renin-angiotensin-aldosterone system, dysfunctional immune modulation promoting increased rate of cardiac cell injury, apoptosis, and necrosis, which ultimately culminates into interstitial fibrosis, cardiac stiffness, diastolic dysfunction, initially, and later systolic dysfunction too. These events finally lead to clinical heart failure of DCM. Herein, The pathophysiology of DCM is briefly discussed. Furthermore, potential therapeutic strategies currently used for DCM are also briefly mentioned.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathophysiology, Wuhan University School of Medicine, Hubei, Wuhan, China
| | - Syed S Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Qasim H, McConnell BK. AKAP12 Signaling Complex: Impacts of Compartmentalizing cAMP-Dependent Signaling Pathways in the Heart and Various Signaling Systems. J Am Heart Assoc 2020; 9:e016615. [PMID: 32573313 PMCID: PMC7670535 DOI: 10.1161/jaha.120.016615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure is a complex clinical syndrome, represented as an impairment in ventricular filling and myocardial blood ejection. As such, heart failure is one of the leading causes of death in the United States. With a mortality rate of 1 per 8 individuals and a prevalence of 6.2 million Americans, it has been projected that heart failure prevalence will increase by 46% by 2030. Cardiac remodeling (a general determinant of heart failure) is regulated by an extensive network of intertwined intracellular signaling pathways. The ability of signalosomes (molecular signaling complexes) to compartmentalize several cellular pathways has been recently established. These signalosome signaling complexes provide an additional level of specificity to general signaling pathways by regulating the association of upstream signals with downstream effector molecules. In cardiac myocytes, the AKAP12 (A-kinase anchoring protein 12) scaffolds a large signalosome that orchestrates spatiotemporal signaling through stabilizing pools of phosphatases and kinases. Predominantly upon β-AR (β2-adrenergic-receptor) stimulation, the AKAP12 signalosome is recruited near the plasma membrane and binds tightly to β-AR. Thus, one major function of AKAP12 is compartmentalizing PKA (protein kinase A) signaling near the plasma membrane. In addition, it is involved in regulating desensitization, downregulation, and recycling of β-AR. In this review, the critical roles of AKAP12 as a scaffold protein in mediating signaling downstream GPCRs (G protein-coupled receptor) are discussed with an emphasis on its reported and potential roles in cardiovascular disease initiation and progression.
Collapse
Affiliation(s)
- Hanan Qasim
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonTX
| |
Collapse
|
16
|
Selvaraju V, Thirunavukkarasu M, Joshi M, Oriowo B, Shaikh IA, Rishi MT, Tapias L, Coca-Soliz V, Saad I, Campbell J, Pradeep SR, Swaminathan S, Yee SP, McFadden DW, Alexander Palesty J, Maulik N. Deletion of newly described pro-survival molecule Pellino-1 increases oxidative stress, downregulates cIAP2/NF-κB cell survival pathway, reduces angiogenic response, and thereby aggravates tissue function in mouse ischemic models. Basic Res Cardiol 2020; 115:45. [DOI: 10.1007/s00395-020-0804-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
17
|
Wang J, Xue Z, Lin J, Wang Y, Ying H, Lv Q, Hua C, Wang M, Chen S, Zhou B. Proline improves cardiac remodeling following myocardial infarction and attenuates cardiomyocyte apoptosis via redox regulation. Biochem Pharmacol 2020; 178:114065. [PMID: 32492448 DOI: 10.1016/j.bcp.2020.114065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
At present, ischemic heart failure (HF) caused by coronary heart disease (CHD) has a high morbidity and mortality, placing a heavy burden on global human health. L-Proline (Pro), a nonessential amino acid and the foundation of proteins in the human body, was found to be protective against oxidative stress in various diseases. However, the role of Pro in cardiovascular disease (CVD) remains unclear. In vivo, adult mice were subjected to left anterior descending (LAD) artery ligation for 4 weeks with or without Pro treatment. In vitro, H9c2 cardiomyocytes were pretreated with or without Pro, followed by treatment with hydrogen peroxide (H2O2) (200 μM) for 6 and 12 h. Our data showed that Pro metabolism was disturbing after myocardial infarction (MI). Pro treatment improved cardiac remodeling, reduced infarct size, and decreased oxidative stress and apoptosis in mouse hearts after MI. Pro inhibited the H2O2-induced increase in reactive oxygen species (ROS) in H9c2 cells and protected against H2O2-induced apoptosis. Mechanistically, by RNA sequencing (RNA-seq) and pathway analysis, Pro was shown to exert a protective effect through H2O2 catabolic processes and apoptotic processes, especially oxidative phosphorylation (OXPHOS). Taken together, our findings suggested that Pro protects against MI injury at least partially via redox regulation, highlighting the potential of Pro as a novel therapy for ischemic HF caused by CHD.
Collapse
Affiliation(s)
- Jiacheng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhimin Xue
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Hangying Ying
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chunting Hua
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Siji Chen
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
Wande Y, Jie L, Aikai Z, Yaguo Z, Linlin Z, Yue G, Hang Z. Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells. Exp Cell Res 2020; 390:111910. [PMID: 32147507 DOI: 10.1016/j.yexcr.2020.111910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is closely associated with profound vascular remodeling, especially pulmonary arterial medial hypertrophy and muscularization, due to aberrant proliferation of pulmonary artery smooth muscle cells (PASMCs). Berberine, a drug commonly used to treat inflammation, may be a novel therapeutic option for PAH by improving pulmonary artery remodeling. The present study investigated whether berberine affected Trx1/β-catenin expression and/or activity and whether it could reduce the development of pulmonary hypertension in an experimental rat model and proliferation in human PASMCs (HPASMCs). The results showed that increased proliferation in hypoxia-induced healthy PASMCs or PAH PASMCs was associated with a significant increase in Trx1 and β-catenin expression. Treatment with the Trx1-specific inhibitor PX-12 significantly reduced pulmonary arterial pressure and vascular remodeling, as well as improved in vivo cardiac function and right ventricular hypertrophy, in Su/Hox-induced PAH rats. Berberine reversed right ventricular systolic pressure and right ventricular hypertrophy and decreased pulmonary vascular remodeling in the rats. Furthermore, berberine had an antiproliferative effect on hypoxia-induced HPASMC proliferation in a manner likely mediated by inhibiting Trx1 and its target gene β-catenin expression. Our work will help elucidate novel strategies for PAH treatment involving the traditional Chinese medicine berberine, and Trx1/β-catenin may be a promising therapeutic target.
Collapse
Affiliation(s)
- Yu Wande
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Luo Jie
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhang Aikai
- 3rd College, Nanjing Medical University, Nanjing, China
| | - Zheng Yaguo
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhu Linlin
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gu Yue
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhang Hang
- Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Hou R, Shen M, Wang R, Liu H, Gao C, Xu J, Tao L, Yin Z, Yin T. Thioredoxin1 Inactivation Mediates the Impairment of Ischemia-Induced Angiogenesis and Further Injury in Diabetic Myocardium. J Vasc Res 2020; 57:76-85. [PMID: 31968349 DOI: 10.1159/000505455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus (DM)-induced impairment of collateral formation has been demonstrated in subjects with coronary artery disease, which contributes to unfavorable prognosis among diabetic individuals. In our previous studies, thioredoxin1 (Trx1) activity was shown to be decreased in diabetic cardiac tissues, but the reason of Trx1 inactivation and whether it mediates the impaired angiogenesis in ischemic myocardium is still to be identified. As thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of Trx, is overexpressed in DM due to carbohydrate response element within its promoter, we hypothesized that inhibition of Trx1 by enhanced TXNIP expression in endothelial cells may play a role in hyperglycemia-induced impairment of angiogenesis. In the present study, we found that high glucose-mediated increase of TXNIP expression and TXNIP-Trx1 interaction induced the impairment in endothelial cell function and survival, since these detrimental effects are rescued by silencing TXNIP with small interfering RNA. In diabetic mice, TXNIP knockdown or recombinant human Trx1 treatment counteracted the impairment of angiogenesis, alleviated myocardial ischemic injury, and improved survival rate. All these data implicate that TXNIP upregulation and subsequently the increased formation of TXNIP-Trx1 complex is a novel pathologic pathway by which DM induces insufficient angiogenesis and thereby exacerbates myocardial ischemia injury.
Collapse
Affiliation(s)
- Rongrong Hou
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.,Department of Endocrinology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mingzhi Shen
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.,Department of Cardiology and National Clinical Research Center of Geriatrics Disease, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Haitao Liu
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jing Xu
- Department of Endocrinology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhiyong Yin
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China,
| |
Collapse
|
20
|
Hemling P, Zibrova D, Strutz J, Sohrabi Y, Desoye G, Schulten H, Findeisen H, Heller R, Godfrey R, Waltenberger J. Hyperglycemia-induced endothelial dysfunction is alleviated by thioredoxin mimetic peptides through the restoration of VEGFR-2-induced responses and improved cell survival. Int J Cardiol 2019; 308:73-81. [PMID: 31955977 DOI: 10.1016/j.ijcard.2019.12.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Diabetes mellitus is an important cardiovascular risk factor characterized by elevated plasma glucose levels. High glucose (HG) negatively influences endothelial cell (EC) function, which is characterized by the inability of ECs to respond to vascular endothelial growth factor (VEGF-A) stimulation. We aimed to identify potential strategies to improve EC function in diabetes. METHODS AND RESULTS Human umbilical cord endothelial cells (HUVECs) were subjected to hyperglycemic milieu by exposing cells to HG together with glucose metabolite, methylglyoxal (MG) in vitro. Hyperglycemic cells showed reduced chemotactic responses towards VEGF-A as revealed by Boyden chamber migration assays, indicating the development of "VEGF resistance" phenotype. Furthermore, HG/MG-exposed cells were defective in their general migratory and proliferative responses and were in a pro-apoptotic state. Mechanistically, the exposure to HG/MG resulted in reactive oxygen species (ROS) accumulation which is secondary to the impairment of thioredoxin (Trx) activity in these cells. Pharmacological and genetic targeting of Trx recapitulated VEGF resistance. Functional supplementation of Trx using thioredoxin mimetic peptides (TMP) reversed the HG/MG-induced ROS generation, improved the migration, proliferation, survival and restored VEGF-A-induced chemotaxis and sprouting angiogenesis of hyperglycemic ECs. Importantly, TMP treatment reduced ROS accumulation and improved VEGF-A responses of placental arterial endothelial cells isolated from gestational diabetes mellitus patients. CONCLUSIONS Our findings suggest a putative role for Trx in modulating EC function and its functional impairment in HG conditions contribute to EC dysfunction. Supplementation of TMP could be used as a novel strategy to improve endothelial cell function in diabetes.
Collapse
Affiliation(s)
- Pia Hemling
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Darya Zibrova
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Jasmin Strutz
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria
| | - Yahya Sohrabi
- Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Hannes Findeisen
- Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany; Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany; Department of Internal Medicine I, SRH Central Hospial, Suhl, Germany.
| |
Collapse
|
21
|
Thirunavukkarasu M, Selvaraju V, Joshi M, Coca-Soliz V, Tapias L, Saad I, Fournier C, Husain A, Campbell J, Yee SP, Sanchez JA, Palesty JA, McFadden DW, Maulik N. Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1. J Am Heart Assoc 2019; 7:e007601. [PMID: 30371196 PMCID: PMC6222946 DOI: 10.1161/jaha.117.007601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The present study demonstrates that the ubiquitin E3 ligase, Pellino‐1 (Peli1), is an important angiogenic molecule under the control of vascular endothelial growth factor (VEGF) receptor 2/Flk‐1. We have previously reported increased survivability of ischemic skin flap tissue by adenovirus carrying Peli1 (Ad‐Peli1) gene therapy in Flk‐1+/− mice. Methods and Results Two separate experimental groups of mice were subjected to myocardial infarction (MI) followed by the immediate intramyocardial injection of adenovirus carrying LacZ (Ad‐LacZ) (1×109 pfu) or Ad‐Peli1 (1×109 pfu). Heart tissues were collected for analyses. Compared with wild‐type (WTMI) mice, analysis revealed decreased expressions of Peli1, phosphorylated (p‐)Flk‐1, p‐Akt, p‐eNOS, p‐MK2, p‐IκBα, and NF‐κB and decreased vessel densities in Flk‐1+/− mice subjected to MI (Flk‐1+/−MI). Mice (CD1) treated with Ad‐Peli1 after the induction of MI showed increased β‐catenin translocation to the nucleus, connexin 43 expression, and phosphorylation of Akt, eNOS, MK2, and IκBα, that was followed by increased vessel densities compared with the Ad‐LacZ–treated group. Echocardiography conducted 30 days after surgery showed decreased function in the Flk1+/−MI group compared with WTMI, which was restored by Ad‐Peli1 gene therapy. In addition, therapy with Ad‐Peli1 stimulated angiogenic and arteriogenic responses in both CD1 and Flk‐1+/− mice following MI. Ad‐Peli1 treatment attenuated cardiac fibrosis in Flk‐1+/−MI mice. Similar positive results were observed in CD1 mice subjected to MI after Ad‐Peli1 therapy. Conclusion Our results show for the first time that Peli1 plays a unique role in salvaging impaired collateral blood vessel formation, diminishes fibrosis, and improves myocardial function, thereby offering clinical potential for therapies in humans to mend a damaged heart following MI.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Vaithinathan Selvaraju
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Mandip Joshi
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Vladimir Coca-Soliz
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Leonidas Tapias
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - IbnalWalid Saad
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - Craig Fournier
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Aaftab Husain
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Jacob Campbell
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| | - Siu-Pok Yee
- 4 Center for Mouse Genome Modification University of Connecticut Health Farmington CT
| | - Juan A Sanchez
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - J Alexander Palesty
- 3 Stanley J. Dudrick Department of Surgery Saint Mary's Hospital Waterbury CT
| | - David W McFadden
- 2 Department of Surgery University of Connecticut Health Farmington CT
| | - Nilanjana Maulik
- 1 Molecular Cardiology and Angiogenesis Laboratory University of Connecticut Health Farmington CT.,2 Department of Surgery University of Connecticut Health Farmington CT
| |
Collapse
|
22
|
Zaobornyj T, Mazo T, Perez V, Gomez A, Contin M, Tripodi V, D'Annunzio V, Gelpi RJ. Thioredoxin-1 is required for the cardioprotecive effect of sildenafil against ischaemia/reperfusion injury and mitochondrial dysfunction in mice. Free Radic Res 2019; 53:993-1004. [PMID: 31455116 DOI: 10.1080/10715762.2019.1661404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sildenafil is a phosphodiesterase type 5 inhibitor which confers cardioprotection against myocardial ischaemia/reperfusion (I/R) injury. The aim of this study was to determine if Trx1 participates in cardioprotection exerted by sildenafil in an acute model of I/R, and to evaluate mitochondrial bioenergetics and cellular redox status. Langendorff-perfused hearts from wild type (WT) mice and a dominant negative (DN-Trx1) mutant of Trx1 were assigned to placebo or sildenafil (0.7 mg/kg i.p.) and subjected to 30 min of ischaemia followed by 120 min of reperfusion. WT + S showed a significant reduction of infarct size (51.2 ± 3.0% vs. 30 ± 3.0%, p < .001), an effect not observed in DN-Trx. After I/R, sildenafil preserved state 3 oxygen consumption from WT, but had a milder effect in DN-Trx1 only partially protecting state 3 values. Treatment restored respiratory control (RC) after I/R, which resulted 8% (WT) and 24% (DN-Trx1) lower than in basal conditions. After I/R, a significant increase in H2O2 production was observed both for WT and DN-Trx (WT: 1.17 ± 0.13 nmol/mg protein and DN-Trx: 1.38 ± 0.12 nmol/min mg protein). With sildenafil, values were 21% lower only in WT I/R. Treatment decreased GSSG levels both in WT and DN-Trx1. In addition, GSSG/GSH2 ratio was partially restored by sildenafil. Also, an increase in p-eNOS/eNOS even before the myocardial ischaemia was observed with sildenafil, both in WT (14%, p > .05) and in DN-Trx (35%, p < .05). Active Trx1 is required for the onset of the cardioprotective effects of sildenafil on I/R injury, together with the preservation of cellular redox balance and mitochondrial function.
Collapse
Affiliation(s)
- Tamara Zaobornyj
- Department of Analytical Chemistry and Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina.,Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina
| | - Tamara Mazo
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina
| | - Virginia Perez
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| | - Anabella Gomez
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| | - Mario Contin
- Department of Analytical Chemistry and Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina
| | - Valeria Tripodi
- National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina.,Department of Pharmaceutical Technology, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina
| | - Verónica D'Annunzio
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| | - Ricardo J Gelpi
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
23
|
Sofi MH, Wu Y, Schutt SD, Dai M, Daenthanasanmak A, Heinrichs Voss J, Nguyen H, Bastian D, Iamsawat S, Selvam SP, Liu C, Maulik N, Ogretmen B, Jin J, Mehrotra S, Yu XZ. Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease. J Clin Invest 2019; 129:2760-2774. [PMID: 31045571 DOI: 10.1172/jci122899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is elevated in the recipients of allogeneic hematopoietic transplantation (allo-HCT) and likely contributes to the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production and migration of alloreactive donor T cells, and remains a major cause of morbidity and mortality after allo-HCT. Hence, strategies to limit oxidative stress in GVHD are highly desirable. Thioredoxin1 (Trx1) counteracts oxidative stress by scavenging reactive oxygen species (ROS) and regulating other enzymes that metabolize H2O2. The present study sought to elucidate the role of Trx1 in the pathophysiology of GVHD. Using murine and xenograft models of allogeneic bone marrow transplantation (allo-BMT) and genetic (human Trx1-transgenic, Trx1-Tg) as well as pharmacologic (human recombinant Trx1, RTrx1) strategies; we found that Trx1-Tg donor T cells or administration of the recipients with RTrx1 significantly reduced GVHD severity. Mechanistically, we observed RTrx1 reduced ROS accumulation and cytokine production of mouse and human T cells in response to alloantigen stimulation in vitro. In allo-BMT settings, we found that Trx1-Tg or RTrx1 decreased downstream signaling molecules including NFκB activation and T-bet expression, and reduced proliferation, IFN-γ production and ROS accumulation in donor T cells within GVHD target organs. More importantly, administration of RTrx1 did not impair the graft-versus-leukemia (GVL) effect. Taken together, the current work provides a strong rationale and demonstrates feasibility to target the ROS pathway, which can be readily translated into clinic.
Collapse
Affiliation(s)
| | - Yongxia Wu
- Department of Microbiology and Immunology and
| | | | - Min Dai
- Department of Microbiology and Immunology and
| | | | | | - Hung Nguyen
- Department of Microbiology and Immunology and
| | | | | | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Nilanjana Maulik
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Xue-Zhong Yu
- Department of Microbiology and Immunology and.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
24
|
Chakraborty P, Chatterjee S, Kesarwani P, Thyagarajan K, Iamsawat S, Dalheim A, Nguyen H, Selvam SP, Nasarre P, Scurti G, Hardiman G, Maulik N, Ball L, Gangaraju V, Rubinstein MP, Klauber-DeMore N, Hill EG, Ogretmen B, Yu XZ, Nishimura MI, Mehrotra S. Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. J Biol Chem 2019; 294:9198-9212. [PMID: 30971427 DOI: 10.1074/jbc.ra118.006753] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive transfer of tumor epitope-reactive T cells has emerged as a promising strategy to control tumor growth. However, chronically-stimulated T cells expanded for adoptive cell transfer are susceptible to cell death in an oxidative tumor microenvironment. Because oxidation of cell-surface thiols also alters protein functionality, we hypothesized that increasing the levels of thioredoxin (Trx), an antioxidant molecule facilitating reduction of proteins through cysteine thiol-disulfide exchange, in T cells will promote their sustained antitumor function. Using pre-melanosome protein (Pmel)-Trx1 transgenic mouse-derived splenic T cells, flow cytometry, and gene expression analysis, we observed here that higher Trx expression inversely correlated with reactive oxygen species and susceptibility to T-cell receptor restimulation or oxidation-mediated cell death. These Trx1-overexpressing T cells exhibited a cluster of differentiation 62Lhi (CD62Lhi) central memory-like phenotype with reduced glucose uptake (2-NBDGlo) and decreased effector function (interferon γlo). Furthermore, culturing tumor-reactive T cells in the presence of recombinant Trx increased the dependence of T cells on mitochondrial metabolism and improved tumor control. We conclude that strategies for increasing the antioxidant capacity of antitumor T cells modulate their immunometabolic phenotype leading to improved immunotherapeutic control of established tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Annika Dalheim
- the Department of Surgery, Loyola University, Maywood, Illinois 60153, and
| | | | | | | | - Gina Scurti
- the Department of Surgery, Loyola University, Maywood, Illinois 60153, and
| | | | - Nilanjana Maulik
- the Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030
| | | | | | | | | | - Elizabeth G Hill
- Public Health, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | | | | | | |
Collapse
|
25
|
Evaluation of dermal tissue regeneration using resveratrol loaded fibrous matrix in a preclinical mouse model of full-thickness ischemic wound. Int J Pharm 2019; 558:177-186. [DOI: 10.1016/j.ijpharm.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
|
26
|
Navarro-Zaragoza J, Ros-Simó C, Milanés MV, Valverde O, Laorden ML. Binge ethanol and MDMA combination exacerbates HSP27 and Trx-1 (biomarkers of toxic cardiac effects) expression in right ventricle. Life Sci 2019; 220:50-57. [DOI: 10.1016/j.lfs.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 01/16/2023]
|
27
|
Abstract
SIGNIFICANCE Angiogenesis is the formation of new vessels that sprout from existing vessels. This process is highly complex and requires a coordinated shift of the endothelial phenotype from a quiescent cell in the vessel wall into a migrating or proliferating cell. Such change in the life of the endothelial cell is induced by a variety of factors such as hypoxia, metabolic changes, or cytokines. Recent Advances: Within the last years, it became clear that the cellular redox state and oxidation of signaling molecules or phosphatases are critical modulators in angiogenesis. CRITICAL ISSUES According to the wide variety of stimuli that induce angiogenesis, a complex signaling network is needed to support a coordinated response of the endothelial cell. Reactive oxygen species (ROS) now are second messengers that either directly oxidize a target molecule or initiate a cascade of redox sensitive steps that transmit the signal. Further Directions: For the understanding of redox signaling, it is essential to recognize and accept that ROS do not represent master regulators of angiogenetic processes. They rather modulate existing signal cascades. This review summarizes some current findings on redox signaling in angiogenesis.
Collapse
Affiliation(s)
- Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,2 German Center for Cardiovascular Research (DZHK), Rhine-Main, Frankfurt, Germany
| |
Collapse
|
28
|
Neidhardt S, Garbade J, Emrich F, Klaeske K, Borger MA, Lehmann S, Jawad K, Dieterlen MT. Ischemic Cardiomyopathy Affects the Thioredoxin System in the Human Myocardium. J Card Fail 2019; 25:204-212. [PMID: 30721734 DOI: 10.1016/j.cardfail.2019.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/03/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Oxidative stress due to reactive oxygen species (ROS) production is a key factor in the development of heart failure (HF). This study investigated the thioredoxin (Trx) system, which plays a major role in antioxidant defense, in patients suffering from ischemic (ICM) or dilated (DCM) cardiomyopathy. METHODS AND RESULTS Myocardial tissue from ICM (n = 13) and DCM (n = 13) patients, as well as septal tissue of patients with aortic stenosis but without diagnosed hypertrophic cardiomyopathy or subaortic stenosis (control; n = 12), was analyzed for Trx1, Trx-interacting protein (TXNIP) and E3 ligase ITCH (E3 ubiquitin-protein ligase Itchy homolog) expression. Trx-reductase 1 (TXNRD1) amount and activity, cytosolic cytochrome C content, and apoptosis markers were quantified by means of enzyme-linked immunosorbent assay and multiplexing. Compared with control samples, ITCH and Trx1 expression, TXNRD1 amount and activity were reduced and TXNIP expression was increased in ICM (ITCH: P = .013; Trx1: P = .028; TXNRD1 amount: P = .035; TXNRD1 activity: P = .005; TXNIP: P = .014) but not in DCM samples. A higher level of the downstream apoptosis marker caspase-9 (ICM: 582 ± 262 MFI [P = .995]; DCM: 1251 ± 548 MFI [P = .002], control: 561 ± 214 MFI) was detected in DCM tissue. A higher expression of Bcl-2 was found in DCM (P = .011). CONCLUSION The Trx system was impaired in ICM but not in DCM. ITCH appeared to be responsible for the down-regulation of the Trx system. ROS-induced mitochondrial instability appeared to play a role in DCM.
Collapse
Affiliation(s)
- Stephan Neidhardt
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Fabian Emrich
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Kristin Klaeske
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Sven Lehmann
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Khalil Jawad
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany.
| |
Collapse
|
29
|
Early inhibition of endothelial retinoid uptake upon myocardial infarction restores cardiac function and prevents cell, tissue, and animal death. J Mol Cell Cardiol 2018; 126:105-117. [PMID: 30472251 DOI: 10.1016/j.yjmcc.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Physiologically, following myocardial infarction (MI), retinoid levels elevate locally in the infarcted area. Whereas therapeutic systemic application of retinoids was shown to reduce the progression of ventricular dilatation and the onset of heart failure, the role of acute physiologically increased retinoids in the infarction zone is unknown to date. To reveal the role of local retinoids in the MI zone is the central aim of this study. Using human cell culture and co-culture models for hypoxia as well as various assays systems, lentivirus-based transgene expression, in silico molecular docking studies, and an MI model in rats, we analysed the impact of the retinoid all-trans retinoic acid (ATRA) on cell signalling, cell viability, tissue survival, heart function, and MI-induced death in rats. Based on our results, ATRA-mediated signalling does aggravate the MI phenotype (e.g. 2.5-fold increased mortality compared to control), whereas 5'-methoxyleoligin (5ML), a new agent which interferes with ATRA-signalling rescues the ATRA-dependent phenotype. On the molecular level, ATRA signalling causes induction of TXNIP, a potent inhibitor of the physiological antioxidant thioredoxin (TRX1) and sensitizes cells to necrotic cell death upon hypoxia. 5ML-mediated prevention of ATRA effects were shown to be based on the inhibition of cellular ATRA uptake by interference with the cholesterol (and retinol) binding motif of the transmembrane protein STRA6. 5ML-mediated inhibition of ATRA uptake led to a strong reduction of ATRA-dependent gene expression, reduced ROS formation, and protection from necrotic cell death. As 5ML exerted a cardioprotective effect, also independent of its inhibition of cellular ATRA uptake, the agent likely has another cardioprotective property, which may rely on the induction of TRX1 activity. In summary, this is the first study to show i) that local retinoids in the early MI zone may worsen disease outcome, ii) that inhibition of endothelial retinoid uptake using 5ML may constitute a novel treatment strategy, and iii) that targeting endothelial and myocardial retinoid uptake (e.g. via STRA6 inhibition) may constitute a novel treatment target in acute MI.
Collapse
|
30
|
Saad I, Fournier CT, Wilson RL, Lakshmanan R, Selvaraju V, Thirunavukkarasu M, Alexander Palesty J, McFadden DW, Maulik N. Thioredoxin-1 augments wound healing and promote angiogenesis in a murine ischemic full-thickness wound model. Surgery 2018; 164:1077-1086. [PMID: 30131176 DOI: 10.1016/j.surg.2018.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/06/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nonhealing wounds are a continuing health problem in the United States. Overproduction of reactive oxygen species is a major causative factor behind delayed wound healing. Previously we reported that thioredoxin-1 treatment could alleviate oxidative stress under ischemic conditions, such as myocardial infarction and hindlimb ischemia. In this study, we explored the potential for thioredoxin-1 gene therapy to effectively aid wound healing through improved angiogenesis in a murine ischemic wound model. METHODS Full-thickness, cutaneous, ischemic wounds were created in the dorsum skin flap of 8- to 12-week-old CD1 mice. Nonischemic wounds created lateral to the ischemic skin flap served as internal controls. Mice with both ischemic wounds and nonischemic wounds were treated with Adeno-LacZ (1 × 109 pfu) or Adeno-thioredoxin-1 (1 × 109 pfu), injected intradermally around the wound. Digital imaging was performed on days 0, 3, 6, and 9 to assess the rate of wound closure. Tissue samples collected at predetermined time intervals were processed for immunohistochemical analysis. RESULTS No significant differences in wound closure were identified among the nonischemic wounds control, nonischemic wounds-LacZ, and nonischemic wounds-thioredoxin-1 groups. Hence, only mice with ischemic wounds were further analyzed. The ischemic wounds-thioredoxin-1 group had significant improvement in wound closure on days 6 and 9 after surgery compared with the ischemic wounds control and ischemic wounds-LacZ groups. Immunohistochemical analysis indicated increased thioredoxin-1, vascular endothelial cell growth factor, and β-catenin levels in the ischemic wounds-thioredoxin-1 group compared with the ischemic wounds control and ischemic wounds-LacZ groups, as well as increased capillary density and cell proliferation, as represented by Ki-67 staining. CONCLUSION Taken together, thioredoxin-1 gene therapy promotes vascular endothelial cell growth factor signaling and re-epithelialization and activates wound closure in mice with ischemic wounds.
Collapse
Affiliation(s)
- Ibnalwalid Saad
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT; Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, CT
| | - Craig T Fournier
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT; Department of Plastic and Reconstructive Surgery, Albany Medical Center, Albany, NY
| | - Rickesha L Wilson
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT
| | - J Alexander Palesty
- Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, CT
| | | | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, UConn Health, Farmington, CT; Department of Surgery, UConn Health, Farmington, CT.
| |
Collapse
|
31
|
Mazo T, D´Annunzio V, Zaobornyj T, Perez V, Gomez A, Berg G, Barchuk M, Ossani G, Martinefski M, Tripodi V, Lago N, Gelpi RJ. High-fat diet abolishes the cardioprotective effects of ischemic postconditioning in murine models despite increased thioredoxin-1 levels. Mol Cell Biochem 2018; 452:153-166. [DOI: 10.1007/s11010-018-3421-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/01/2018] [Indexed: 12/30/2022]
|
32
|
Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol Med Rep 2018; 18:3547-3554. [PMID: 30106145 PMCID: PMC6131612 DOI: 10.3892/mmr.2018.9375] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-ischemia (H-I) is frequently observed in perinatal asphyxia and other diseases. It can lead to serious cardiac injury, cerebral damage, neurological disability and mortality. Previous studies have demonstrated that the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which regulates a wide range of cellular functions, is involved in the resistance response to H-I through the activation of proteins associated with survival and inactivation of apoptosis-associated proteins. It can also regulate the expression of hypoxia-induced factor-1α (HIF-1α). HIF-1α can further regulate the expression of downstream proteins involved in glucose metabolism and angiogenesis, such as vascular endothelial growth factor and erythropoietin, to facilitate ischemic adaptation. Notably, HIF-1α may also induce detrimental effects. The effects of HIF-1 on ischemic outcomes may be dependent on the H-I duration, animal age and species. Thus, further investigation of the PI3K/Akt signaling pathway may provide further insights of the potential targets for treating diseases accompanied by H-I.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510100, P.R. China
| | - Li Yao
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| | - Jinhua Yang
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| | - Zhenkang Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Gang Du
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| |
Collapse
|
33
|
Aldosterone Impairs Mitochondrial Function in Human Cardiac Fibroblasts via A-Kinase Anchor Protein 12. Sci Rep 2018; 8:6801. [PMID: 29717226 PMCID: PMC5931570 DOI: 10.1038/s41598-018-25068-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/06/2018] [Indexed: 12/26/2022] Open
Abstract
Aldosterone (Aldo) contributes to mitochondrial dysfunction and cardiac oxidative stress. Using a proteomic approach, A-kinase anchor protein (AKAP)-12 has been identified as a down-regulated protein by Aldo in human cardiac fibroblasts. We aim to characterize whether AKAP-12 down-regulation could be a deleterious mechanism which induces mitochondrial dysfunction and oxidative stress in cardiac cells. Aldo down-regulated AKAP-12 via its mineralocorticoid receptor, increased oxidative stress and induced mitochondrial dysfunction characterized by decreased mitochondrial-DNA and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expressions in human cardiac fibroblasts. CRISPR/Cas9-mediated knock-down of AKAP-12 produced similar deleterious effects in human cardiac fibroblasts. CRISPR/Cas9-mediated activation of AKAP-12 blunted Aldo effects on mitochondrial dysfunction and oxidative stress in human cardiac fibroblasts. In Aldo-salt-treated rats, cardiac AKAP-12, mitochondrial-DNA and PGC-1α expressions were decreased and paralleled increased oxidative stress. In myocardial biopsies from patients with aortic stenosis (AS, n = 26), AKAP-12, mitochondrial-DNA and PGC-1α expressions were decreased as compared to Controls (n = 13). Circulating Aldo levels inversely correlated with cardiac AKAP-12. PGC-1α positively associated with AKAP-12 and with mitochondrial-DNA. Aldo decreased AKAP-12 expression, impairing mitochondrial biogenesis and increasing cardiac oxidative stress. AKAP-12 down-regulation triggered by Aldo may represent an important event in the development of mitochondrial dysfunction and cardiac oxidative stress.
Collapse
|
34
|
Zhai CG, Xu YY, Tie YY, Zhang Y, Chen WQ, Ji XP, Mao Y, Qiao L, Cheng J, Xu QB, Zhang C. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways. J Mol Cell Cardiol 2018; 114:243-252. [DOI: 10.1016/j.yjmcc.2017.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
|
35
|
Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1. Oncotarget 2017; 7:11889-98. [PMID: 26933812 PMCID: PMC4914256 DOI: 10.18632/oncotarget.7726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
Thioredoxin-1 (Trx1) protects the heart from ischemia/reperfusion (I/R) injury. Given that the age at which the first episode of coronary disease takes place has considerably decreased, life at middle-aged (MA) emerges as a new field of study. The aim was determine whether infarct size, Trx1 expression and activity, Akt and GSK-3β were altered in young (Y) and MA mice overexpressing cardiac Trx1, and in a dominant negative (DN-Trx1) mutant of Trx1. Langendorff-perfused hearts were subjected to 30 minutes of ischemia and 120 minutes of reperfusion (R). We used 3 and 12 month-old male of wild type (WT), Trx1, and DN-Trx1. Trx1 overexpression reduced infarct size in young mice (WT-Y: 46.8±4.1% vs. Trx1-Y: 27.6±3.5%, p < 0.05). Trx1 activity was reduced by 52.3±3.2% (p < 0.05) in Trx1-MA, accompanied by an increase in nitration by 17.5±0.9%, although Trx1 expression in transgenic mice was similar between young and middle-aged. The expression of p-Akt and p-GSK-3β increased during reperfusion in Trx1-Y. DN-Trx1 mice showed neither reduction in infarct size nor Akt and GSK-3β phosphorylation. Our data suggest that the lack of protection in Trx1 middle-aged mice even with normal Trx1 expression may be associated to decreased Trx1 activity, increased nitration and inhibition of p-Akt and p-GSK-3β.
Collapse
|
36
|
Wilson RL, Selvaraju V, Lakshmanan R, Thirunavukkarasu M, Campbell J, McFadden DW, Maulik N. Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. J Surg Res 2017; 220:68-78. [PMID: 29180214 PMCID: PMC7904090 DOI: 10.1016/j.jss.2017.06.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sepsis is a leading cause of mortality among patients in intensive care units across the USA. Thioredoxin-1 (Trx-1) is an essential 12 kDa cytosolic protein that, apart from maintaining the cellular redox state, possesses multifunctional properties. In this study, we explored the possibility of controlling adverse myocardial depression by overexpression of Trx-1 in a mouse model of severe sepsis. METHODS Adult C57BL/6J and Trx-1Tg/+ mice were divided into wild-type sham (WTS), wild-type cecal ligation and puncture (WTCLP), Trx-1Tg/+sham (Trx-1Tg/+S), and Trx-1Tg/+CLP groups. Cardiac function was evaluated before surgery, 6 and 24 hours after CLP surgery. Immunohistochemical and Western blot analysis were performed after 24 hours in heart tissue sections. RESULTS Echocardiography analysis showed preserved cardiac function in the Trx-1Tg/+ CLP group compared with the WTCLP group. Similarly, Western blot analysis revealed increased expression of Trx-1, heme oxygenase-1 (HO-1), survivin (an inhibitor of apoptosis [IAP] protein family), and decreased expression of thioredoxin-interacting protein (TXNIP), caspase-3, and 3- nitrotyrosine in the Trx-1Tg/+CLP group compared with the WTCLP group. Immunohistochemical analysis showed reduced 4-hydroxynonenal, apoptosis, and vascular leakage in the cardiac tissue of Trx-1Tg/+CLP mice compared with mice in the WTCLP group. CONCLUSIONS Our results indicate that overexpression of Trx-1 attenuates cardiac dysfunction during CLP. The mechanism of action may involve reduction of oxidative stress, apoptosis, and vascular permeability through activation of Trx-1/HO-1 and anti-apoptotic protein survivin.
Collapse
Affiliation(s)
- Rickesha L Wilson
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut.
| | - Jacob Campbell
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
37
|
Thiagarajan D, O’ Shea K, Sreejit G, Ananthakrishnan R, Quadri N, Li Q, Schmidt AM, Gabbay K, Ramasamy R. Aldose reductase modulates acute activation of mesenchymal markers via the β-catenin pathway during cardiac ischemia-reperfusion. PLoS One 2017; 12:e0188981. [PMID: 29190815 PMCID: PMC5708684 DOI: 10.1371/journal.pone.0188981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Aldose reductase (AR: human, AKR1B1; mouse, AKR1B3), the first enzyme in the polyol pathway, plays a key role in mediating myocardial ischemia/reperfusion (I/R) injury. In earlier studies, using transgenic mice broadly expressing human AKR1B1 to human-relevant levels, mice devoid of Akr1b3, and pharmacological inhibitors of AR, we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects the heart from I/R injury. In this study, our objective was to investigate if AR modulates the β-catenin pathway and consequent activation of mesenchymal markers during I/R in the heart. To test this premise, we used two different experimental models: in vivo, Akr1b3 null mice and wild type C57BL/6 mice (WT) were exposed to acute occlusion of the left anterior descending coronary artery (LAD) followed by recovery for 48 hours or 28 days, and ex-vivo, WT and Akr1b3 null murine hearts were perfused using the Langendorff technique (LT) and subjected to 30 min of global (zero-flow) ischemia followed by 60 min of reperfusion. Our in vivo results reveal reduced infarct size and improved functional recovery at 48 hours in mice devoid of Akr1b3 compared to WT mice. We demonstrate that the cardioprotection observed in Akr1b3 null mice was linked to acute activation of the β-catenin pathway and consequent activation of mesenchymal markers and genes linked to fibrotic remodeling. The increased activity of the β-catenin pathway at 48 hours of recovery post-LAD was not observed at 28 days post-infarction, thus indicating that the observed increase in β-catenin activity was transient in the mice hearts devoid of Akr1b3. In ex vivo studies, inhibition of β-catenin blocked the cardioprotection observed in Akr1b3 null mice hearts. Taken together, these data indicate that AR suppresses acute activation of β-catenin and, thereby, blocks consequent induction of mesenchymal markers during early reperfusion after myocardial ischemia. Inhibition of AR might provide a therapeutic opportunity to optimize cardiac remodeling after I/R injury.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Karen O’ Shea
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Gopalkrishna Sreejit
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Radha Ananthakrishnan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Qing Li
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
| | - Kenneth Gabbay
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chung CC, Kao YH, Yao CJ, Lin YK, Chen YJ. A comparison of left and right atrial fibroblasts reveals different collagen production activity and stress-induced mitogen-activated protein kinase signalling in rats. Acta Physiol (Oxf) 2017; 220:432-445. [PMID: 27875022 DOI: 10.1111/apha.12835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022]
Abstract
AIM Atrial fibrosis plays a pivotal role in the pathophysiology of heart failure (HF). The left atrium (LA) experiences greater fibrosis than the right atrium (RA) during HF. It is not clear whether LA cardiac fibroblasts contain distinctive activities that predispose LA to fibrosis. METHODS LA and RA fibrosis were evaluated in healthy and isoproterenol-induced HF Sprague Dawley rats. Rat LA and RA primary isolated fibroblasts were subjected to proliferation assay, oxidative stress assay, cell migration analysis, collagen measurement, cytokine array and Western blot. RESULTS Healthy rat LA and RA had a similar extent of collagen deposition. HF significantly increased fibrosis to a greater severity in LA than in RA. Compared to isolated RA fibroblasts, the in vitro experiments showed that isolated LA fibroblasts had higher oxidative stress and exhibited higher collagen, transforming growth factor-β1, connective tissue growth factor production and less vascular endothelial growth factor (VEGF) production, but had similar migration, myofibroblast differentiation and proliferation activities. VEGF significantly increased the collagen production ability of LA fibroblasts, but not RA fibroblasts. LA fibroblasts had more phosphorylated ERK1/2 and P38 expression. ERK inhibitor (PD98059, 50 μmol L-1 ) significantly attenuated collagen production and increased VEGF production in RA fibroblasts but not in LA fibroblasts. P38 inhibitor (SB203580, 30 μmol L-1 ) significantly attenuated collagen production in LA fibroblasts but not in RA fibroblasts. P38 inhibitor also significantly increased VEGF production in RA and LA fibroblasts. CONCLUSIONS Differences in profibrotic activity between LA and RA fibroblasts may be caused by different responses to mitogen-activated protein kinase signalling.
Collapse
Affiliation(s)
- C.-C. Chung
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Y.-H. Kao
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Medical Education and Research; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - C.-J. Yao
- Cancer Center; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
- Department of Internal Medicine; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Y.-K. Lin
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Y.-J. Chen
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
39
|
Deletion of TXNIP Mitigates High-Fat Diet-Impaired Angiogenesis and Prevents Inflammation in a Mouse Model of Critical Limb Ischemia. Antioxidants (Basel) 2017; 6:antiox6030047. [PMID: 28661427 PMCID: PMC5618075 DOI: 10.3390/antiox6030047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Previous work demonstrated that high-fat diet (HFD) triggered thioredoxin-interacting protein (TXNIP) and that silencing TXNIP prevents diabetes-impaired vascular recovery. Here, we examine the impact of genetic deletion of TXNIP on HFD-impaired vascular recovery using hind limb ischemia model. Methods: Wild type mice (WT, C57Bl/6) and TXNIP knockout mice (TKO) were fed either normal chow diet (WT-ND and TKO-ND) or 60% high-fat diet (WT-HFD and TKO-HFD). After four weeks of HFD, unilateral hind limb ischemia was performed and blood flow was measured using Laser doppler scanner at baseline and then weekly for an additional three weeks. Vascular density, nitrative stress, infiltration of CD68+ macrophages, and expression of inflammasome, vascular endothelial growth factor (VEGF), VEGF receptor-2 were examined by slot blot, Western blot and immunohistochemistry. Results: By week 8, HFD caused similar increases in weight, cholesterol and triglycerides in both WT and TKO. At week 4 and week 8, HFD significantly impaired glucose tolerance in WT and to a lesser extent in TKO. HFD significantly impaired blood flow and vascular density (CD31 labeled) in skeletal muscle of WT mice compared to ND but not in TKO. HFD and ischemia significantly induced tyrosine nitration, and systemic IL-1β and infiltration of CD68+ cells in skeletal muscle from WT but not from TKO. HFD significantly increased cleaved-caspase-1 and IL-1 β compared to ND. Under both ND, ischemia tended to increase VEGF expression and increased VEGFR2 activation in WT only but not TKO. Conclusion: Similar to prior observation in diabetes, HFD-induced obesity can compromise vascular recovery in response to ischemic insult. The mechanism involves increased TXNIP-NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome activation, nitrative stress and impaired VEGFR2 activation. Deletion of TXNIP restored blood flow, reduced nitrative stress and blunted inflammasome-mediated inflammation; however, it did not impact VEGF/VEGFR2 in HFD. Targeting TXNIP-NLRP3 inflammasome can provide potential therapeutic target in obesity-induced vascular complication.
Collapse
|
40
|
Overexpression of Thioredoxin1 enhances functional recovery in a mouse model of hind limb ischemia. J Surg Res 2017; 216:158-168. [PMID: 28807201 DOI: 10.1016/j.jss.2017.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is keen interest in finding nonsurgical treatments for peripheral vascular disease (PVD). Previously, we demonstrated that selective activation of Thioredoxin1 (Trx1), a 12-kDa cytosolic protein, initiates redox-dependent signaling and promotes neovascularization after ischemic heart disease. Therefore, Trx1 might possess immense potential to not only treat murine hind limb ischemia (HLI) through effective angiogenesis but also provide PVD patients with nonsurgical therapy to enhance neovascularization and improve blood perfusion. METHODS To determine whether activation of Trx1 increases blood perfusion in HLI, two different strategies were used-gene therapy and transgenic model system. In adenoviral-mediated gene therapy, 8- to 12-wk-old mice were divided into two groups: (1) control Adeno-LacZ (Ad-LacZ) and (2) Adeno-Thiroedoxin1 (Ad-Trx1). The mice underwent surgical intervention to induce right HLI followed by injection with Ad-LacZ or Ad-Trx1, respectively. In the second strategy, we used wild-type and transgenic mice overexpressing Trx1 (Trx1Tg/+). All the animals underwent Doppler imaging for the assessment of limb perfusion followed by immunohistochemistry and Western blot analysis. RESULTS Significant increases in perfusion ratio were observed in all the Trx1 overexpressed groups compared with their corresponding controls. Expressions of heme oxygenase-1, vascular endothelial growth factor, and the vascular endothelial growth factor receptors Flk-1 and Flt-1 were increased in Trx1 overexpressed mice compared with their respective controls. Blood perfusion in the ischemic limb gradually improved and significantly recovered in Trx1Tg/+ and Ad-Trx1 groups compared with their corresponding controls. The capillary and arteriolar density in the ischemic zone were found to be higher in Trx1Tg/+ group compared with wild type. CONCLUSIONS The overall outcomes of our study demonstrate that Trx1 enhances blood perfusion and increases angiogenic protein expression in a rodent HLI model. These results suggest that Trx1 is a potential target for clinical trials and drug therapy for the treatment of PVD.
Collapse
|
41
|
Redox regulation of ischemic limb neovascularization - What we have learned from animal studies. Redox Biol 2017; 12:1011-1019. [PMID: 28505880 PMCID: PMC5430575 DOI: 10.1016/j.redox.2017.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/08/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.
Collapse
|
42
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
43
|
Selvaraju V, Suresh SC, Thirunavukkarasu M, Mannu J, Foye JLC, Mathur PP, Palesty JA, Sanchez JA, McFadden DW, Maulik N. Regulation of A-Kinase-Anchoring Protein 12 by Heat Shock Protein A12B to Prevent Ventricular Dysfunction Following Acute Myocardial Infarction in Diabetic Rats. J Cardiovasc Transl Res 2017; 10:209-220. [PMID: 28281242 DOI: 10.1007/s12265-017-9734-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
We examined the effects of overexpressing HSPA12B on angiogenesis and myocardial function by intramyocardial administration of adenovirus encoding HSPA12B (Ad. HSPA12B) in a streptozotocin-induced diabetic rat subjected to myocardial infarction. Rats were divided randomly into six groups: control sham (CS) + Ad.LacZ, control myocardial infarction (CMI) + Ad.LacZ, control MI + Ad.HSPA12B, diabetic sham (DS) + Ad.LacZ, diabetic MI + Ad.LacZ and diabetic MI + Ad.HSPA12B. Following MI or sham surgery, the respective groups received either Ad.LacZ or Ad.HSPA12B via intramyocardial injections. We observed increased capillary and arteriolar density along with reduced fibrosis and preserved heart functions in DMI-AdHSPA12B compared to DMI-AdLacZ group. Western blot analysis demonstrated enhanced HSPA12B, vascular endothelial growth factor (VEGF), thioredoxin-1 (Trx-1) expression along with decreased expression of thioredoxin interacting protein (TXNIP) and A kinase anchoring protein 12 (AKAP12) in the DMI-AdHSPA12B compared to DMI-AdLacZ group. Our findings reveal that HSPA12B overexpression interacts with AKAP12 and downregulate TXNIP in diabetic rats following acute MI.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Jayakanthan Mannu
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - Premendu P Mathur
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India.,KIIT University, Bhubaneshwar, India
| | | | - Juan A Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA.
| |
Collapse
|
44
|
Kamaleddin MA. The paradoxical pro- and antiangiogenic actions of resveratrol: therapeutic applications in cancer and diabetes. Ann N Y Acad Sci 2016; 1386:3-15. [PMID: 27880855 DOI: 10.1111/nyas.13283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Resveratrol, a polyphenol found in grapes, peanuts, and red wine, plays different roles in diseases such as cancer and diabetes. Existing information indicates that resveratrol provides cardioprotection, as evidenced by superior postischemic ventricular recovery, reduced myocardial infarct size, and decreased number of apoptotic cardiomyocytes associated with resveratrol treatment in animal models. Cardiovascular benefits are experienced in humans with routine but not acute consumption of red wine. In this concise review, the paradoxical pro- and antiangiogenic effects of resveratrol are described, and different roles for resveratrol in the formation of new blood vessels are explained through different mechanisms. It is hypothesized that the effects of resveratrol on different cell types are not only dependent on its concentration but also on the physical and chemical conditions surrounding cells. The findings discussed herein shed light on potential therapeutic proapoptotic and antiangiogenic applications of low-dose resveratrol treatment in the prevention and treatment of different diseases.
Collapse
|
45
|
Perez V, D'Annunzio V, Valdez LB, Zaobornyj T, Bombicino S, Mazo T, Carbajosa NL, Gironacci MM, Boveris A, Sadoshima J, Gelpi RJ. Thioredoxin-1 Attenuates Ventricular and Mitochondrial Postischemic Dysfunction in the Stunned Myocardium of Transgenic Mice. Antioxid Redox Signal 2016; 25:78-88. [PMID: 27000416 DOI: 10.1089/ars.2015.6459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM We evaluated the effect of thioredoxin1 (Trx1) system on postischemic ventricular and mitochondrial dysfunction using transgenic mice overexpressing cardiac Trx1 and a dominant negative (DN-Trx1) mutant (C32S/C35S) of Trx1. Langendorff-perfused hearts were subjected to 15 min of ischemia followed by 30 min of reperfusion (R). We measured left ventricular developed pressure (LVDP, mmHg), left ventricular end diastolic pressure (LVEDP, mmHg), and t63 (relaxation index, msec). Mitochondrial respiration, SERCA2a, phospholamban (PLB), and phospholamban phosphorylation (p-PLB) Thr17 expression (Western blot) were also evaluated. RESULTS At 30 min of reperfusion, Trx1 improved contractile state (LVDP: Trx1: 57.4 ± 4.9 vs. Wt: 27.1 ± 6.3 and DN-Trx1: 29.2 ± 7.1, p < 0.05); decreased myocardial stiffness (LVEDP: Wt: 24.5 ± 4.8 vs. Trx1: 11.8 ± 2.9, p < 0.05); and improved the isovolumic relaxation (t63: Wt: 63.3 ± 3.2 vs. Trx1: 51.4 ± 1.9, p < 0.05). DN-Trx1 mice aggravated the myocardial stiffness and isovolumic relaxation. Only the expression of p-PLB Thr17 increased at 1.5 min R in Wt and DN-Trx1 groups. At 30 min of reperfusion, state 3 mitochondrial O2 consumption was impaired by 13% in Wt and by 33% in DN-Trx1. ADP/O ratios for Wt and DN-Trx1 decrease by 25% and 28%, respectively; whereas the Trx1 does not change after ischemia and reperfusion (I/R). Interestingly, baseline values of complex I activity were increased in Trx1 mice; they were 24% and 47% higher than in Wt and DN-Trx1 mice, respectively (p < 0.01). INNOVATION AND CONCLUSION These results strongly suggest that Trx1 ameliorates the myocardial effects of I/R by improving the free radical-mediated damage in cardiac and mitochondrial function, opening the possibility of new therapeutic strategies in coronary artery disease. Antioxid. Redox Signal. 25, 78-88.
Collapse
Affiliation(s)
- Virginia Perez
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Veronica D'Annunzio
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Laura B Valdez
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Tamara Zaobornyj
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Silvina Bombicino
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Tamara Mazo
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| | - Nadia Longo Carbajosa
- 4 Department of Biological Chemistry and IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Mariela M Gironacci
- 4 Department of Biological Chemistry and IQUIFIB, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Alberto Boveris
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,3 School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires, Argentina
| | - Junichi Sadoshima
- 5 Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University , Newark, New Jersey
| | - Ricardo J Gelpi
- 1 Institute of Biochemistry and Molecular Medicine (IBIMOL , UBA-CONICET), Buenos Aires, Argentina .,2 Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
46
|
Jin P, Li T, Li X, Shen X, Zhao Y. Suppression of oxidative stress in endothelial progenitor cells promotes angiogenesis and improves cardiac function following myocardial infarction in diabetic mice. Exp Ther Med 2016; 11:2163-2170. [PMID: 27284297 PMCID: PMC4887798 DOI: 10.3892/etm.2016.3236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction is a major contributor to morbidity and mortality in diabetes, which is characterized by inadequate angiogenesis and consequent poor blood reperfusion in the diabetic ischemic heart. The aim of the present study was to investigate the effect that oxidative stress in endothelial progenitor cells (EPCs) has on cardiac angiogenesis in diabetic mice. EPCs derived from diabetic mice revealed reductions in superoxide dismutase (SOD) expression levels and activity compared with those from normal mice. An endothelial tube formation assay showed that angiogenesis was markedly delayed for diabetic EPCs, compared with normal controls. EPCs subjected to various pretreatments were tested as a cell therapy in a diabetic mouse model of myocardial infarction. Induction of oxidative stress in normal EPCs by H2O2 or small interfering RNA-mediated knockdown of SOD reduced their angiogenic activity in the ischemic myocardium of the diabetic mice. Conversely, cell therapy using EPCs from diabetic mice following SOD gene overexpression or treatment with the antioxidant Tempol normalized their ability to promote angiogenesis. These results indicate that decreased expression levels of SOD in EPCs contribute to impaired angiogenesis. In addition, normalization of diabetic EPCs by ex vivo SOD gene therapy accelerates the ability of the EPCs to promote angiogenesis and improve cardiac function when used as a cell therapy following myocardial infarction in diabetic mice.
Collapse
Affiliation(s)
- Peng Jin
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tao Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueqi Li
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinghua Shen
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanru Zhao
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
47
|
Ma H, Lu T, Zhang X, Li C, Xiong J, Huang L, Liu P, Li Y, Liu L, Ding Z. HSPA12B: a novel facilitator of lung tumor growth. Oncotarget 2016; 6:9924-36. [PMID: 25909170 PMCID: PMC4496407 DOI: 10.18632/oncotarget.3533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
Lung tumor progression is regulated by proangiogenic factors. Heat shock protein A12B (HSPA12B) is a recently identified regulator of expression of proangiogenic factors. However, whether HSPA12B plays a role in lung tumor growth is unknown. To address this question, transgenic mice overexpressing HSPA12B (Tg) and wild-type littermates (WT) were implanted with Lewis lung cancer cells to induce lung tumorigenesis. Tg mice showed significantly higher number and bigger size of tumors than WT mice. Tg tumors exhibited increased angiogenesis and proliferation while reduced apoptosis compared with WT tumors. Interestingly, a significantly enhanced upregulation of Cox-2 was detected in Tg tumors than in WT tumors. Also, Tg tumors demonstrated upregulation of VEGF and angiopoietin-1, downregulation of AKAP12, and increased eNOS phosphorylation compared with WT tumors. Celecoxib, a selective Cox-2 inhibitor, suppressed the HSPA12B-induced increase in lung tumor burden. Moreover, celecoxib decreased angiogenesis and proliferation whereas increased apoptosis in Tg tumors. Additionally, celecoxib reduced angiopoietin-1 expression and eNOS phosphorylation but increased AKAP12 levels in Tg tumors. Our results indicate that HSPA12B stimulates lung tumor growth via a Cox-2-dependent mechanism. The present study identified HSPA12B as a novel facilitator of lung tumor growth and a potential therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- He Ma
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ting Lu
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Jingwei Xiong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Maulik N, Thirunavukkarasu M, Selvaraju V, Suresh SC. Reply to the letter "thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy is a promising feasible therapeutic approach for myocardial infarction". Int J Cardiol 2016; 207:277-8. [PMID: 26808992 DOI: 10.1016/j.ijcard.2016.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
49
|
Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice. Mol Cell Biochem 2016; 415:67-76. [PMID: 26932791 DOI: 10.1007/s11010-016-2677-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/18/2016] [Indexed: 01/04/2023]
Abstract
Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals.
Collapse
|
50
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|