1
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
3
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Gawałko M, Saljic A, Li N, Abu-Taha I, Jespersen T, Linz D, Nattel S, Heijman J, Fender A, Dobrev D. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovasc Res 2023; 119:614-630. [PMID: 35689487 PMCID: PMC10409902 DOI: 10.1093/cvr/cvac093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is an important contributing factor to the pathophysiology of atrial fibrillation (AF) and its complications by causing systemic changes, such as altered haemodynamic, increased sympathetic tone, and low-grade chronic inflammatory state. In addition, adipose tissue is a metabolically active organ that comprises various types of fat deposits with discrete composition and localization that show distinct functions. Fatty tissue differentially affects the evolution of AF, with highly secretory active visceral fat surrounding the heart generally having a more potent influence than the rather inert subcutaneous fat. A variety of proinflammatory, profibrotic, and vasoconstrictive mediators are secreted by adipose tissue, particularly originating from cardiac fat, that promote atrial remodelling and increase the susceptibility to AF. In this review, we address the role of obesity-related factors and in particular specific adipose tissue depots in driving AF risk. We discuss the distinct effects of key secreted adipokines from different adipose tissue depots and their participation in cardiac remodelling. The possible mechanistic basis and molecular determinants of adiposity-related AF are discussed, and finally, we highlight important gaps in current knowledge, areas requiring future investigation, and implications for clinical management.
Collapse
Affiliation(s)
- Monika Gawałko
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-197 Warsaw, Poland
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Arnela Saljic
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Port Road, SA 5000 Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- IHU LIRYC Institute, Avenue du Haut Lévêque, 33600 Pessac, Bordeaux, France
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Anke Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
5
|
Romejko K, Rymarz A, Szamotulska K, Bartoszewicz Z, Rozmyslowicz T, Niemczyk S. Resistin Contribution to Cardiovascular Risk in Chronic Kidney Disease Male Patients. Cells 2023; 12:cells12070999. [PMID: 37048072 PMCID: PMC10093733 DOI: 10.3390/cells12070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Resistin is a molecule that belongs to the Resistin-Like Molecules family (RELMs), the group of proteins taking part in inflammatory processes. Increased resistin concentrations are observed in cardiovascular complications. Resistin contributes to the onset of atherosclerosis and intensifies the atherosclerotic processes. The aim of this study was to investigate the relationship between resistin and cardiovascular (CV) risk in men with chronic kidney disease (CKD) not treated with dialysis. MATERIALS AND METHODS One hundred and forty-two men were included in the study: 99 men with eGFR lower than 60 mL/min/1.73 m2 and 43 men with eGFR ≥ 60 mL/min/1.73 m2. CV risk was assessed. Serum resistin, tumor necrosis factor-alpha (TNF-alpha) and plasminogen activator inhibitor-1 (PAI-1) were measured among other biochemical parameters. RESULTS We observed that resistin concentrations were significantly higher in patients with CKD compared to individuals with eGFR ≥ 60 mL/min/1.73 m2 (p = 0.003). In CKD, after estimating the general linear model (GLM), we found that resistin is associated with CV risk (p = 0.026) and PAI-1 serum concentrations (0.012). The relationship of PAI-1 with resistin depends on the level of CV risk in CKD (p = 0.048). CONCLUSIONS Resistin concentrations rise with the increase of CV risk in CKD patients and thus resistin may contribute to the progression of cardiovascular risk in this group of patients. The relationship between resistin and CV risk is modified by PAI-1 concentrations.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Aleksandra Rymarz
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Zbigniew Bartoszewicz
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
6
|
Lin Q, Kumar S, Kariyawasam U, Yang X, Yang W, Skinner JT, Gao WD, Johns RA. Human Resistin Induces Cardiac Dysfunction in Pulmonary Hypertension. J Am Heart Assoc 2023; 12:e027621. [PMID: 36927008 PMCID: PMC10111547 DOI: 10.1161/jaha.122.027621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 03/18/2023]
Abstract
Background Cardiac failure is the primary cause of death in most patients with pulmonary arterial hypertension (PH). As pleiotropic cytokines, human resistin (Hresistin) and its rodent homolog, resistin-like molecule α, are mechanistically critical to pulmonary vascular remodeling in PH. However, it is still unclear whether activation of these resistin-like molecules can directly cause PH-associated cardiac dysfunction and remodeling. Methods and Results In this study, we detected Hresistin protein in right ventricular (RV) tissue of patients with PH and elevated resistin-like molecule expression in RV tissues of rodents with RV hypertrophy and failure. In a humanized mouse model, cardiac-specific Hresistin overexpression was sufficient to cause cardiac dysfunction and remodeling. Dilated hearts exhibited reduced force development and decreased intracellular Ca2+ transients. In the RV tissues overexpressing Hresistin, the impaired contractility was associated with the suppression of protein kinase A and AMP-activated protein kinase. Mechanistically, Hresistin activation triggered the inflammation mediated by signaling of the key damage-associated molecular pattern molecule high-mobility group box 1, and subsequently induced pro-proliferative Ki67 in RV tissues of the transgenic mice. Intriguingly, an anti-Hresistin human antibody that we generated protected the myocardium from hypertrophy and failure in the rodent PH models. Conclusions Our data indicate that Hresistin is expressed in heart tissues and plays a role in the development of RV dysfunction and maladaptive remodeling through its immunoregulatory activities. Targeting this signaling to modulate cardiac inflammation may offer a promising strategy to treat PH-associated RV hypertrophy and failure in humans.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Santosh Kumar
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Udeshika Kariyawasam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Xiaomei Yang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
- Department of AnesthesiologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Wei Yang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
- Department of Cardiovascular MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - John T. Skinner
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Roger A. Johns
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
7
|
Antiresistin Neutralizing Antibody Alleviates Doxorubicin-Induced Cardiac Injury in Mice. DISEASE MARKERS 2022; 2022:3040521. [PMID: 36561112 PMCID: PMC9767745 DOI: 10.1155/2022/3040521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Background Resistin is closely related to cardiovascular diseases, and this study is aimed at examining the role of resistin in doxorubicin- (DOX-) induced cardiac injury. Methods First, 48 mice were divided into 2 groups and treated with saline or DOX, and the expression of resistin at different time points was examined (N = 24). A total of 40 mice were pretreated with the antiresistin neutralizing antibody (nAb) or isotype IgG for 1 hour and further administered DOX or saline for 5 days. The mice were divided into 4 groups: saline-IgG, saline-nAb, DOX-IgG, and DOX-nAb (N = 10). Cardiac injury, cardiomyocyte apoptosis, inflammatory factors, and the biomarkers of M1 and M2 macrophages in each group were analyzed. Result DOX administration increased the expression of resistin. DOX treatment exacerbated the loss of body and heart weight and cardiac vacuolation in mice. The antiresistin nAb reversed these conditions, downregulated the expression of myocardial injury markers, and decreased apoptosis. In addition, the antiresistin nAb decreased p65 pathway activation, decreased M1 macrophage differentiation and the expression of related inflammatory factors, and increased M2 macrophage differentiation and the expression of related inflammatory factors. Conclusion The antiresistin nAb protected against DOX-induced cardiac injury by reducing cardiac inflammation and may be a promising target to relieve DOX-related cardiac injury.
Collapse
|
8
|
Wang L, Zabri H, Gorressen S, Semmler D, Hundhausen C, Fischer JW, Bottermann K. Cardiac ischemia modulates white adipose tissue in a depot-specific manner. Front Physiol 2022; 13:1036945. [DOI: 10.3389/fphys.2022.1036945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in response to MI. However, the role in the post-ischemic remodeling process and the contribution of different depots of adipose tissue is unclear. Here, we employ a mouse model of 60 min cardiac ischemia and reperfusion (I/R) to monitor morphology, cellular infiltrates and gene expression of visceral and subcutaneous white adipose tissue depots (VAT and SAT) for up to 28 days post ischemia. We found that in SAT but not VAT, adipocyte size gradually decreased over the course of reperfusion and that these changes were associated with upregulation of UCP1 protein, indicating white adipocyte conversion to the so-called ‘brown-in-white’ phenotype. While this phenomenon is generally associated with beneficial metabolic consequences, its role in the context of MI is unknown. We further measured decreased lipogenesis in SAT together with enhanced infiltration of MAC-2+ macrophages. Finally, quantitative PCR analysis revealed transient downregulation of the adipokines adiponectin, leptin and resistin in SAT. While adiponectin and leptin have been shown to be cardioprotective, the role of resistin after MI needs further investigation. Importantly, all significant changes were identified in SAT, while VAT was largely unaffected by MI. We conclude that targeted interference with lipolysis in SAT may be a promising approach to promote cardiac healing after ischemia.
Collapse
|
9
|
Cai X, Allison MA, Ambale-Venkatesh B, Jorgensen NW, Lima JAC, Muse ED, McClelland RL, Shea S, Lebeche D. Resistin and risks of incident heart failure subtypes and cardiac fibrosis: the Multi-Ethnic Study of Atherosclerosis. ESC Heart Fail 2022; 9:3452-3460. [PMID: 35860859 DOI: 10.1002/ehf2.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS Resistin is a circulating inflammatory biomarker that is associated with cardiovascular disease. We investigated the associations of resistin and incident heart failure (HF) and its subtypes, as well as specific measures of subclinical HF (myocardial fibrosis and relevant biomarkers). METHODS We analysed data from 1968 participants in the Multi-Ethnic Study of Atherosclerosis with measurements of plasma resistin levels at clinic visits from 2002 to 2005. Participants were subsequently followed for a median of 10.5 years for HF events. The associations between resistin levels and incident HF, HF with reduced ejection fraction (HFrEF), and HF with preserved ejection fraction (HFpEF) were examined using multivariable Cox proportional hazards models. Linear regression models assessed the associations between resistin levels and myocardial fibrosis from cardiac magnetic resonance imaging, as well as hs-cTnT and NT-proBNP. RESULTS The mean age of the cohort was 64.7 years, and 50.0% were female. Seventy-four participants (4%) developed incident HF during follow-up. In a Cox proportional hazards model adjusted for age, gender, education level, race/ethnicity, and traditional risk factors, higher resistin levels were significantly associated with incident HF (HR 1.44, CI 1.18-1.75, P = 0.001) and HFrEF (HR 1.47, CI 1.07-2.02, P = 0.016), but not with HFpEF (HR 1.25, CI 0.89-1.75, P = 0.195). Resistin levels showed no significant associations with myocardial fibrosis, NT-proBNP, or hs-cTnT levels. CONCLUSIONS In a multi-ethnic cohort free of cardiovascular disease at baseline, elevated resistin levels were associated with incident HF, more prominently with incident HFrEF than HFpEF, but not with subclinical myocardial fibrosis or biomarkers of HF.
Collapse
Affiliation(s)
- Xinjiang Cai
- Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Specialty Training and Advanced Research (STAR) program, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew A Allison
- Department of Family Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bharath Ambale-Venkatesh
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Neal W Jorgensen
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Joao A C Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Evan D Muse
- Scripps Research Translational Institute and Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA, USA
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Steven Shea
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Physiology, University of Tennessee Health Science Center, 318H Translational Research Building, Memphis, TN, 38163, USA
| |
Collapse
|
10
|
Zhao B, Bouchareb R, Lebeche D. Resistin deletion protects against heart failure injury by targeting DNA damage response. Cardiovasc Res 2022; 118:1947-1963. [PMID: 34324657 PMCID: PMC9239578 DOI: 10.1093/cvr/cvab234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Increased resistin (Retn) levels are associated with development of cardiovascular diseases. However, the role of Retn in heart failure (HF) is still unclear. Here we probed the functional and molecular mechanism underlying the beneficial effect of Retn deletion in HF. METHODS AND RESULTS Wild-type (WT) and adipose tissue-specific Retn-knockout (RKO) mice were subjected to transverse aortic constriction (TAC)-induced HF. Cardiac function and haemodynamic changes were measured by echocardiography and left ventricular catheterization. Adipose tissue Retn deletion attenuated while Retn cardiac-selective overexpression, via a recombinant adeno-associated virus-9 vector, exacerbated TAC-induced hypertrophy, cardiac dysfunction, and myocardial fibrosis in WT and RKO mice. Mechanistically, we showed that Gadd45α was significantly increased in RKO HF mice while cardiac overexpression of Retn led to its downregulation. miR148b-3p directly targets Gadd45α and inhibits its expression. Retn overexpression upregulated miR148b-3p expression and triggered DNA damage response (DDR) in RKO-HF mice. Inhibition of miR148b-3p in vivo normalized Gadd45α expression, decreased DDR, and reversed cardiac dysfunction and fibrosis. In vitro Retn overexpression in adult mouse cardiomyocytes activated miR148b-3p and reduced Gadd45α expression. Gadd45α overexpression in H9C2-cardiomyoblasts protected against hydrogen peroxide- and Retn-induced DDR. CONCLUSION These findings reveal that diminution in circulating Retn reduced myocardial fibrosis and apoptosis, and improved heart function in a mouse model of HF, at least in part, through attenuation of miR148b-3p and DDR. The results of this study indicate that controlling Retn levels may provide a potential therapeutic approach for treating pressure overload-induced HF.
Collapse
Affiliation(s)
- Baoyin Zhao
- Cardiovascular Research Institute, New York, NY 10029, USA
| | | | - Djamel Lebeche
- Cardiovascular Research Institute, New York, NY 10029, USA
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
12
|
Han X, Zhang Y, Zhang X, Ji H, Wang W, Qiao O, Li X, Wang J, Liu C, Huang L, Gao W. Targeting adipokines: A new strategy for the treatment of myocardial fibrosis. Pharmacol Res 2022; 181:106257. [DOI: 10.1016/j.phrs.2022.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
|
13
|
Petroni RC, de Oliveira SJS, Fungaro TP, Ariga SKK, Barbeiro HV, Soriano FG, de Lima TM. Short-term Obesity Worsens Heart Inflammation and Disrupts Mitochondrial Biogenesis and Function in an Experimental Model of Endotoxemia. Inflammation 2022; 45:1985-1999. [PMID: 35411498 DOI: 10.1007/s10753-022-01669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Cardiomyopathy is a well-known complication of sepsis that may deteriorate when accompanied by obesity. To test this hypothesis we fed C57black/6 male mice for 6 week with a high fat diet (60% energy) and submitted them to endotoxemic shock using E. coli LPS (10 mg/kg). Inflammatory markers (cytokines and adhesion molecules) were determined in plasma and heart tissue, as well as heart mitochondrial biogenesis and function. Obesity markedly shortened the survival rate of mouse after LPS injection and induced a persistent systemic inflammation since TNFα, IL-1β, IL-6 and resistin plasma levels were higher 24 h after LPS injection. Heart tissue inflammation was significantly higher in obese mice, as detected by elevated mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα). Obese animals presented reduced maximum respiratory rate after LPS injection, however fatty acid oxidation increased in both groups. LPS decreased mitochondrial DNA content and mitochondria biogenesis factors, such as PGC1α and PGC1β, in both groups, while NRF1 expression was significantly stimulated in obese mice hearts. Mitochondrial fusion/fission balance was only altered by obesity, with no influence of endotoxemia. Obesity accelerated endotoxemia death rate due to higher systemic inflammation and decreased heart mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Ricardo Costa Petroni
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suelen Jeronymo Souza de Oliveira
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Pineda Fungaro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suely K K Ariga
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Francisco Garcia Soriano
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil.
| |
Collapse
|
14
|
Deng J, Liao Y, Liu J, Liu W, Yan D. Research Progress on Epigenetics of Diabetic Cardiomyopathy in Type 2 Diabetes. Front Cell Dev Biol 2022; 9:777258. [PMID: 35004678 PMCID: PMC8740193 DOI: 10.3389/fcell.2021.777258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by diastolic relaxation abnormalities in its initial stages and by clinical heart failure (HF) without dyslipidemia, hypertension, and coronary artery disease in its last stages. DCM contributes to the high mortality and morbidity rates observed in diabetic populations. Diabetes is a polygenic, heritable, and complex condition that is exacerbated by environmental factors. Recent studies have demonstrated that epigenetics directly or indirectly contribute to pathogenesis. While epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, have been recognized as key players in the pathogenesis of DCM, some of their impacts remain not well understood. Furthering our understanding of the roles played by epigenetics in DCM will provide novel avenues for DCM therapeutics and prevention strategies.
Collapse
Affiliation(s)
- Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University; Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| | - Yunxiu Liao
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Jianpin Liu
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Wenjuan Liu
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University; Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| |
Collapse
|
15
|
OUP accepted manuscript. Cardiovasc Res 2022; 118:1854-1856. [DOI: 10.1093/cvr/cvac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
|
16
|
Singh R, Kaundal RK, Zhao B, Bouchareb R, Lebeche D. Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. Pharmacol Res 2021; 167:105414. [PMID: 33524540 DOI: 10.1016/j.phrs.2020.105414] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Cardiac fibrosis is characterized by excessive deposition of extracellular matrix proteins and myofibroblast differentiation. Our previous findings have implicated resistin in cardiac fibrosis; however, the molecular mechanisms underlying this process are still unclear. Here we investigated the role of resistin in fibroblast-to-myofibroblast differentiation and elucidated the pathways involved in this process. Fibroblast-to-myofibroblast transdifferentiation was induced with resistin or TGFβ1 in NIH-3T3 and adult cardiac fibroblasts. mRNA and protein expression of fibrotic markers were analyzed by qPCR and immunoblotting. Resistin-knockout mice, challenged with a high-fat diet (HFD) for 20 weeks to stimulate cardiac impairment, were analyzed for cardiac function and fibrosis using histologic and molecular methods. Cardiac fibroblasts stimulated with resistin displayed increased fibroblast-to-myofibroblast conversion, with increased levels of αSma, col1a1, Fn, Ccn2 and Mmp9, with remarkable differences in the actin network appearance. Mechanistically, resistin promotes fibroblast-to-myofibroblast transdifferentiation and fibrogenesis via JAK2/STAT3 and JNK/c-Jun signaling pathways, independent of TGFβ1. Resistin-null mice challenged with HFD showed an improvement in cardiac function and a decrease in tissue fibrosis and reduced mRNA levels of fibrogenic markers. These findings are the first to delineate the role of resistin in the process of cardiac fibroblast-to-myofibroblast differentiation via JAK/STAT3 and JNK/c-Jun pathways, potentially leading to stimulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Rajvir Singh
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ravinder K Kaundal
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Baoyin Zhao
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rihab Bouchareb
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
17
|
Chen L, Liu S, Xu W, Zhang Y, Bai J, Li L, Cui M, Sun L. Association of Plasma C1q/TNF-Related Protein 3 (CTRP3) in Patients with Atrial Fibrillation. Mediators Inflamm 2020; 2020:8873152. [PMID: 33424438 PMCID: PMC7781729 DOI: 10.1155/2020/8873152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/12/2020] [Indexed: 01/03/2023] Open
Abstract
Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia characterized by atrial remodeling. Complement C1q tumor necrosis factor-related protein 3 (CTRP3) is one of the adipokines associated with obesity, diabetes, and coronary heart disease. The association between plasma CTRP3 levels and AF is uncertain. The aim of this study was to investigate whether plasma CTRP3 concentrations were correlated with AF. Our study included 75 AF patients who underwent catheter ablation at our hospital and 47 sinus rhythm patients to determine the difference in plasma CTRP3 concentrations. Blood samples before the ablation were collected, and ELISA was used to measure the concentrations of CTRP3. Plasma CTRP3 concentrations were significantly lower in AF patients compared with control group (366.9 ± 105.2 ng/ml vs. 429.1 ± 100.1 ng/ml, p = 0.002). In subgroup studies, patients with persistent AF had lower plasma CTRP3 concentrations than those with paroxysmal AF (328.3 ± 83.3 ng/ml vs. 380.0 ± 109.2 ng/ml, p = 0.037). The concentrations of plasma CTRP3 in the recurrence group after radiofrequency catheter ablation of AF were lower than those in the nonrecurrence group (337.9 ± 77.3 ng/ml vs. 386.6 ± 108.1 ng/ml, p = 0.045). Multivariate regression analysis revealed the independent correlation between plasma CTRP3 level and AF. Plasma CTRP3 concentrations were correlated with the presence of AF and AF recurrence.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Shuwang Liu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Wei Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yuan Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin Bai
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lei Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Lijie Sun
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, 49 Huayuan-Bei Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
18
|
Resistin: Potential biomarker and therapeutic target in atherosclerosis. Clin Chim Acta 2020; 512:84-91. [PMID: 33248946 DOI: 10.1016/j.cca.2020.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Resistin, a cysteine-rich secretory protein, has a pleiotropic role in humans. Resistin usually presents as trimer or hexamer in plasma, and targets specific receptors Toll Like Receptor 4 (TLR4) or Adenylyl Cyclase-Associated Protein 1 (CAP1). Upon binding to TLR4 and CAP1, resistin can trigger various intracellular signal transduction pathways to induce vascular inflammation, lipid accumulation, and plaque vulnerability. These pro-atherosclerotic effects of resistin appear in various cell types, including endothelial cells, vessel smooth muscle cells and macrophages, which cause diverse damages to cardiovascular system from dyslipidemia, atherosclerosis rupture and ventricular remodeling. In this review, we gather recent evidence about the pro- atherosclerotic effects of resistin and highlight it as a candidate therapeutic or diagnostic target for cardiovascular disease.
Collapse
|
19
|
Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. Sci Rep 2020; 10:17138. [PMID: 33051505 PMCID: PMC7553911 DOI: 10.1038/s41598-020-73864-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Myocardial fibrosis is a major determinant of clinical outcomes in heart failure (HF) patients. It is characterized by the emergence of myofibroblasts and early activation of pro-fibrotic signaling pathways before adverse ventricular remodeling and progression of HF. Boron has been reported in recent years to augment the innate immune system and cell proliferation, which play an important role in the repair and regeneration of the injured tissue. Currently, the effect of boron on cardiac contractility and remodeling is unknown. In this study, we investigated, for the first time, the effect of boron supplementation on cardiac function, myocardial fibrosis, apoptosis and regeneration in a rat model myocardial infarction (MI)-induced HF. MI was induced in animals and borax, a sodium salt of boron, was administered for 7 days, p.o., 21 days post-injury at a dose level of 4 mg/kg body weight. Transthoracic echocardiographic analysis showed a significant improvement in systolic and diastolic functions with boron treatment compared to saline control. In addition, boron administration showed a marked reduction in myocardial fibrosis and apoptosis in the injured hearts, highlighting a protective effect of boron in the ischemic heart. Interestingly, we observed a tenfold increase of nuclei in thin myocardial sections stained positive for the cell cycle marker Ki67 in the MI boron-treated rats compared to saline, indicative of increased cardiomyocyte cell cycle activity in MI hearts, highlighting its potential role in regeneration post-injury. We similarly observed increased Ki67 and BrdU staining in cultured fresh neonatal rat ventricular cardiomyocytes. Collectively, the results show that boron positively impacted MI-induced HF and attenuated cardiac fibrosis and apoptosis, two prominent features of HF. Importantly, boron has the potential to induce cardiomyocyte cell cycle entry and potentially cardiac tissue regeneration after injury. Boron might be beneficial as a supplement in MI and may be a good candidate substance for anti-fibrosis approach.
Collapse
|
20
|
Aitken-Buck HM, Babakr AA, Fomison-Nurse IC, van Hout I, Davis PJ, Bunton RW, Williams MJA, Coffey S, Jones PP, Lamberts RR. Inotropic and lusitropic, but not arrhythmogenic, effects of adipocytokine resistin on human atrial myocardium. Am J Physiol Endocrinol Metab 2020; 319:E540-E547. [PMID: 32715745 DOI: 10.1152/ajpendo.00202.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adipocytokine resistin is released from epicardial adipose tissue (EAT). Plasma resistin and EAT deposition are independently associated with atrial fibrillation. The EAT secretome enhances arrhythmia susceptibility and inotropy of human myocardium. Therefore, we aimed to determine the effect of resistin on the function of human myocardium and how resistin contributes to the proarrhythmic effect of EAT. EAT biopsies were obtained from 25 cardiac surgery patients. Resistin levels were measured by ELISA in 24-h EAT culture media (n = 8). The secretome resistin concentrations increased over the culture period to a maximal level of 5.9 ± 1.2 ng/mL. Coculture with β-adrenergic agonists isoproterenol (n = 4) and BRL37344 (n = 13) had no effect on EAT resistin release. Addition of resistin (7, 12, 20 ng/mL) did not significantly increase the spontaneous contraction propensity of human atrial trabeculae (n = 10) when given alone or in combination with isoproterenol. Resistin dose-dependently increased trabecula-developed force (maximal 2.9-fold increase, P < 0.0001), as well as the maximal rates of contraction (2.6-fold increase, P = 0.002) and relaxation (1.8-fold increase, P = 0.007). Additionally, the postrest potentiation capacity of human trabeculae was reduced at all resistin doses, suggesting that the inotropic effect induced by resistin might be due to altered sarcoplasmic reticulum Ca2+ handling. EAT resistin release is not modulated by common arrhythmia triggers. Furthermore, exogenous resistin does not promote arrhythmic behavior in human atrial trabeculae. Resistin does, however, induce an acute dose-dependent positive inotropic and lusitropic effect.
Collapse
Affiliation(s)
- Hamish M Aitken-Buck
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Aram A Babakr
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ingrid C Fomison-Nurse
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Philip J Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine and HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond) 2020; 133:2329-2344. [PMID: 31777927 DOI: 10.1042/cs20190578] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Adipose tissue is classically recognized as the primary site of lipid storage, but in recent years has garnered appreciation for its broad role as an endocrine organ comprising multiple cell types whose collective secretome, termed as adipokines, is highly interdependent on metabolic homeostasis and inflammatory state. Anatomical location (e.g. visceral, subcutaneous, epicardial etc) and cellular composition of adipose tissue (e.g. white, beige, and brown adipocytes, macrophages etc.) also plays a critical role in determining its response to metabolic state, the resulting secretome, and its potential impact on remote tissues. Compared with other tissues, the heart has an extremely high and constant demand for energy generation, of which most is derived from oxidation of fatty acids. Availability of this fatty acid fuel source is dependent on adipose tissue, but evidence is mounting that adipose tissue plays a much broader role in cardiovascular physiology. In this review, we discuss the impact of the brown, subcutaneous, and visceral white, perivascular (PVAT), and epicardial adipose tissue (EAT) secretome on the development and progression of cardiovascular disease (CVD), with a particular focus on cardiac hypertrophy and fibrosis.
Collapse
|
22
|
GIP as a Potential Therapeutic Target for Atherosclerotic Cardiovascular Disease-A Systematic Review. Int J Mol Sci 2020; 21:ijms21041509. [PMID: 32098413 PMCID: PMC7073149 DOI: 10.3390/ijms21041509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that are secreted from enteroendocrine L cells and K cells in response to digested nutrients, respectively. They are also referred to incretin for their ability to stimulate insulin secretion from pancreatic beta cells in a glucose-dependent manner. Furthermore, GLP-1 exerts anorexic effects via its actions in the central nervous system. Since native incretin is rapidly inactivated by dipeptidyl peptidase-4 (DPP-4), DPP-resistant GLP-1 receptor agonists (GLP-1RAs), and DPP-4 inhibitors are currently used for the treatment of type 2 diabetes as incretin-based therapy. These new-class agents have superiority to classical oral hypoglycemic agents such as sulfonylureas because of their low risks for hypoglycemia and body weight gain. In addition, a number of preclinical studies have shown the cardioprotective properties of incretin-based therapy, whose findings are further supported by several randomized clinical trials. Indeed, GLP-1RA has been significantly shown to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes. However, the role of GIP in cardiovascular disease remains to be elucidated. Recently, pharmacological doses of GIP receptor agonists (GIPRAs) have been found to exert anti-obesity effects in animal models. These observations suggest that combination therapy of GLP-1R and GIPR may induce superior metabolic and anti-diabetic effects compared with each agonist individually. Clinical trials with GLP-1R/GIPR dual agonists are ongoing in diabetic patients. Therefore, in this review, we summarize the cardiovascular effects of GIP and GIPRAs in cell culture systems, animal models, and humans.
Collapse
|
23
|
Norman G, Norton GR, Peterson V, Gomes M, Libhaber CD, Sareli P, Woodiwiss AJ. Associations between circulating resistin concentrations and left ventricular mass are not accounted for by effects on aortic stiffness or renal dysfunction. BMC Cardiovasc Disord 2020; 20:35. [PMID: 32000666 PMCID: PMC6993505 DOI: 10.1186/s12872-019-01319-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/24/2019] [Indexed: 01/20/2023] Open
Abstract
Background Although, in-part through an impact on left ventricular mass (LVM), resistin (an adipokine) may contribute to heart failure, whether this is explained by the adverse effects of resistin on aortic stiffness and renal function is unknown. Methods Relationships between circulating resistin concentrations and LVM index (LVMI), and LVM beyond that predicted by stroke work (inappropriate LVM [LVMinappr]) (echocardiography) were determined in 647 randomly selected community participants, and in regression analysis, the extent to which these relations could be explained by aortic pulse wave velocity (PWV) or estimated glomerular filtration rate (eGFR) was evaluated. Results Independent of confounders, resistin concentrations were independently associated with LVMI, LVMinappr, LV hypertrophy (LVH), PWV and eGFR. Furthermore, independent of confounders, LVMI, LVMinappr and LVH were independently associated with PWV and eGFR. However, adjustments for either PWV or eGFR failed to modify the relationships between resistin concentrations and LVMI, LVMinappr or LVH. Moreover, in multivariate regression analysis neither PWV nor eGFR significantly modified the contribution of resistin to LVMinappr or LVMI. Conclusions Independent relationships between circulating concentrations of the adipocytokine resistin and LVM are not explained by the impact of resistin on ventricular-vascular coupling or renal dysfunction. Resistin’s effects on LVM are therefore likely to be through direct actions on the myocardium.
Collapse
Affiliation(s)
- Glenda Norman
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Gavin R Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Vernice Peterson
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Monica Gomes
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Carlos D Libhaber
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Pinhas Sareli
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Angela J Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
24
|
Luo J, Liu H, Zheng X, Lin B, Ye Q, Deng Y, Wu L. Inhibitory Effect of Apelin on Cardiomyocyte Hypertrophy induced by Resistin in H9c2 Cells. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.311.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Schlüter KD, Kutsche HS, Hirschhäuser C, Schreckenberg R, Schulz R. Review on Chamber-Specific Differences in Right and Left Heart Reactive Oxygen Species Handling. Front Physiol 2018; 9:1799. [PMID: 30618811 PMCID: PMC6304434 DOI: 10.3389/fphys.2018.01799] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) exert signaling character (redox signaling), or damaging character (oxidative stress) on cardiac tissue depending on their concentration and/or reactivity. The steady state of ROS concentration is determined by the interplay between its production (mitochondrial, cytosolic, and sarcolemmal enzymes) and ROS defense enzymes (mitochondria, cytosol). Recent studies suggest that ROS regulation is different in the left and right ventricle of the heart, specifically by a different activity of superoxide dismutase (SOD). Mitochondrial ROS defense seems to be lower in right ventricular tissue compared to left ventricular tissue. In this review we summarize the current evidence for heart chamber specific differences in ROS regulation that may play a major role in an observed inability of the right ventricle to compensate for cardiac stress such as pulmonary hypertension. Based on the current knowledge regimes to increase ROS defense in right ventricular tissue should be in the focus for the development of future therapies concerning right heart failure.
Collapse
Affiliation(s)
| | - Hanna Sarah Kutsche
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Rainer Schulz
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Singh R, Moreno P, Hajjar RJ, Lebeche D. A role for calcium in resistin transcriptional activation in diabetic hearts. Sci Rep 2018; 8:15633. [PMID: 30353146 PMCID: PMC6199245 DOI: 10.1038/s41598-018-34112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
The adipokine resistin has been proposed to link obesity, insulin resistance and diabetes. We have previously reported that diabetic hearts express high levels of resistin while overexpression of resistin in adult rat hearts gives rise to a phenotype resembling diabetic cardiomyopathy. The transcriptional regulation of resistin in diabetic cardiac tissue is currently unknown. This study investigated the mechanism of resistin upregulation and the role of Serca2a in its transcriptional suppression. We demonstrate that restoration of Ca2+ homeostasis in diabetic hearts, through normalization of Serca2a function genetically and pharmacologically, suppressed resistin expression via inhibition of NFATc. H9c2 myocytes stimulated with high-glucose concentration or Ca2+ time-dependently increased NFATc and resistin expression while addition of the Ca2+ chelator BAPTA-AM attenuated this effect. NFATc expression was enhanced in hearts from ob/ob diabetic and from cardiac-specific Serca2a−/− mice. Similarly, NFATc increased resistin expression in myocytes cultured in low glucose while the NFATc inhibitor VIVIT blocked glucose-induced resistin expression, suggesting that hyperglycemia/diabetes induces resistin expression possibly through NFATc activation. Interestingly, overexpression of Serca2a or VIVIT mitigated glucose-stimulated resistin and NFATc expression and enhanced AMPK activity, a downstream target of resistin signaling. NFATc direct activation of resistin was verified by resistin promoter luciferase activity and chromatin-immunoprecipitation analysis. Interestingly, activation of Serca2a by a novel agonist, CDN1163, mirrored the effects of AAV9-Serca2a gene transfer on resistin expression and its promoter activity and AMPK signaling in diabetic mice. These findings parse a role for Ca2+ in resistin transactivation and provide support that manipulation of Serca2a-NFATc-Resistin axis might be useful in hyper-resistinemic conditions.
Collapse
Affiliation(s)
- Rajvir Singh
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Pedro Moreno
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Roger J Hajjar
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Graduate School of Biological Sciences, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| |
Collapse
|
27
|
Wang CY, Li SJ, Wu TW, Lin HJ, Chen JW, Mersmann HJ, Ding ST, Chen CY. The role of pericardial adipose tissue in the heart of obese minipigs. Eur J Clin Invest 2018; 48:e12942. [PMID: 29682734 DOI: 10.1111/eci.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Pericardial adipose tissue (PAT) volume is highly associated with the presence and severity of cardiometabolic diseases, but the underlying mechanism is unknown. We previously demonstrated that a high-fat diet (HFD) induced metabolic dysregulation, cardiac fibrosis and accumulation of more PAT in minipigs. This study used our obese minipig model to investigate the characteristics of PAT and omental visceral fat (VAT) induced by a HFD, and the potential link between PAT and HFD-related myocardial fibrosis. MATERIALS AND METHODS Five-month-old Lee-Sung minipigs were made obese by feeding a HFD for 6 months. RESULTS The HFD induced dyslipidemia, cardiac fibrosis and more fat accumulation in the visceral and pericardial depots. The HFD changes the fatty acid composition in the adipose tissue by decreasing the portion of linoleic acid in the VAT and PAT. No arachidonic acid was detected in the VAT and PAT of control pigs, whereas it existed in the same tissues of obese pigs fed the HFD. Compared with the control pigs, elevated levels of malondialdehyde and TNFα were exhibited in the plasma and PAT of obese pigs. HFD induced greater size of adipocytes in VAT and PAT. Higher levels of GH, leptin, OPG, PDGF, resistin, SAA and TGFβ were observed in obese pig PAT compared to VAT. CONCLUSION This study demonstrated the similarities and dissimilarities between PAT and VAT under HFD stimulus. In addition, this study suggested that alteration in PAT contributed to the myocardial damage.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Sin-Jin Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Twin-Way Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Han-Jen Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jyun-Wei Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Farcaş AD, Rusu A, Stoia MA, Vida-Simiti LA. Plasma leptin, but not resistin, TNF-α and adiponectin, is associated with echocardiographic parameters of cardiac remodeling in patients with coronary artery disease. Cytokine 2018; 103:46-49. [PMID: 29324260 DOI: 10.1016/j.cyto.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 01/02/2018] [Indexed: 01/16/2023]
Abstract
The aim of this research was to assess the relationship between plasma adiponectin, leptin, resistin, tumor necrosis factor alpha (TNF-α) levels and echocardiographic parameters of ventricular remodeling in patients with coronary artery disease, without acute myocardial infarction. The study population consisted of 49 patients with echocardiographic measurements performed. After adjustment for age, gender, body mass index, systolic and diastolic blood pressure, and glycaemia, adiponectin was statistically significant associated with interventricular septum thickness (β = -0.304), left ventricular posterior wall thickness (β = -0.402), left ventricular end diastolic diameter (LVEDD; β = 0.385) and left ventricular relative wall thickness (β = -0.448, p < .05 for all). The associations were no longer significant when only patients without diabetes were included in the analysis. Leptin was associated with LVEDD (β = -0.354) and left ventricular relative wall thickness (β = 0.385, p < .05 for all). No associations between resistin, TNF-α and echocardiographic left ventricular parameters assessed were found in these patients. In conclusion, in patients with coronary artery disease and without acute myocardial infarction leptin may represent a potential mechanism of adverse cardiac remodeling. Resistin and TNF-α might not be involved in ventricular remodeling in these patients.
Collapse
Affiliation(s)
- Anca Daniela Farcaş
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Adriana Rusu
- Department of Diabetes and Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania.
| | - Mirela Anca Stoia
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Luminiţa Animarie Vida-Simiti
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
29
|
Akoumianakis I, Akawi N, Antoniades C. Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System. Korean Circ J 2017; 47:670-685. [PMID: 28955384 PMCID: PMC5614942 DOI: 10.4070/kcj.2017.0041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the “obesity paradox,” namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological “quality” of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nadia Akawi
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
30
|
Chou HC, Lin W, Chen CM. Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats. Clin Exp Pharmacol Physiol 2017; 43:906-14. [PMID: 27273502 DOI: 10.1111/1440-1681.12604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/17/2016] [Accepted: 06/04/2016] [Indexed: 11/26/2022]
Abstract
Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×10(5) cells and 1×10(6) cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×10(5) cells), and LPS+MSCs (1×10(6) cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×10(5) cells and 1×10(6) cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways.
Collapse
Affiliation(s)
- Hsiu-Chu Chou
- Department of Anatomy and Cellular Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Hogas S, Bilha SC, Branisteanu D, Hogas M, Gaipov A, Kanbay M, Covic A. Potential novel biomarkers of cardiovascular dysfunction and disease: cardiotrophin-1, adipokines and galectin-3. Arch Med Sci 2017; 13:897-913. [PMID: 28721158 PMCID: PMC5507105 DOI: 10.5114/aoms.2016.58664] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease is one of the main burdens of healthcare systems worldwide. Nevertheless, assessing cardiovascular risk in both apparently healthy individuals and low/high-risk patients remains a difficult issue. Already established biomarkers (e.g. brain natriuretic peptide, troponin) have significantly improved the assessment of major cardiovascular events and diseases but cannot be applied to all patients and in some cases do not provide sufficiently accurate information. In this context, new potential biomarkers that reflect various underlying pathophysiological cardiac and vascular modifications are needed. Also, a multiple biomarker evaluation that shows changes in the cardiovascular state is of interest. This review describes the role of selected markers of vascular inflammation, atherosclerosis, atherothrombosis, endothelial dysfunction and cardiovascular fibrosis in the pathogenesis and prognosis of cardiovascular disease: the potential use of cardiotrophin-1, leptin, adiponectin, resistin and galectin-3 as biomarkers for various cardiovascular conditions is discussed.
Collapse
Affiliation(s)
- Simona Hogas
- Nephrology Department, Dialysis and Renal Transplant Center, "C.I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Stefana C Bilha
- Endocrinology Department, "Sf. Spiridon" Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Dumitru Branisteanu
- Endocrinology Department, "Sf. Spiridon" Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Mihai Hogas
- Physiology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Abduzhappar Gaipov
- Extracorporeal Hemocorrection Unit, JSC "National Scientific Medical Research Center", Astana, Kazakhstan
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "C.I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
32
|
Park HK, Kwak MK, Kim HJ, Ahima RS. Linking resistin, inflammation, and cardiometabolic diseases. Korean J Intern Med 2017; 32:239-247. [PMID: 28192887 PMCID: PMC5339472 DOI: 10.3904/kjim.2016.229] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue secretes a variety of bioactive substances that are associated with chronic inflammation, insulin resistance, and an increased risk of type 2 diabetes mellitus. While resistin was first known as an adipocyte-secreted hormone (adipokine) linked to obesity and insulin resistance in rodents, it is predominantly expressed and secreted by macrophages in humans. Epidemiological and genetic studies indicate that increased resistin levels are associated with the development of insulin resistance, diabetes, and cardiovascular disease. Resistin also appears to mediate the pathogenesis of atherosclerosis by promoting endothelial dysfunction, vascular smooth muscle cell proliferation, arterial inflammation, and the formation of foam cells. Thus, resistin is predictive of atherosclerosis and poor clinical outcomes in patients with cardiovascular disease and heart failure. Furthermore, recent evidence suggests that resistin is associated with atherogenic dyslipidemia and hypertension. The present review will focus on the role of human resistin in the pathogeneses of inflammation and obesity-related diseases.
Collapse
Affiliation(s)
- Hyeong Kyu Park
- Department of Internal Medicine, Soon Chun Hyang University College of Medicine, Seoul, Korea
| | - Mi Kyung Kwak
- Department of Internal Medicine, Soon Chun Hyang University College of Medicine, Seoul, Korea
| | - Hye Jeong Kim
- Department of Internal Medicine, Soon Chun Hyang University College of Medicine, Seoul, Korea
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Correspondence to Rexford S. Ahima, M.D. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, 3rd Floor, #333, 1830 East Monument St, Baltimore, MD 21287, USA Tel: +1-443-287-4719 Fax: +1-410-367-2042 E-mail:
| |
Collapse
|
33
|
Zheng X, Cheng G, Luo J, Ye Q, Deng Y, Wu L. Odanacatib Inhibits Resistin-induced Cardiomyocyte Hypertrophy Through the Inactivation of ERK Signaling Pathway. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.212.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Nagaev I, Andersen M, Olesen MK, Nagaeva O, Wikberg J, Mincheva-Nilsson L, Andersen GN. Resistin Gene Expression is Downregulated in CD4(+) T Helper Lymphocytes and CD14(+) Monocytes in Rheumatoid Arthritis Responding to TNF-α Inhibition. Scand J Immunol 2017; 84:229-36. [PMID: 27434862 DOI: 10.1111/sji.12464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 01/04/2023]
Abstract
Rheumatoid arthritis (RA) is caused by complex interactions between immune cells and sustained by Th1 response cytokines. Resistin [resistance to insulin; (RETN)] is an inflammatory cytokine, first discovered in murine adipocytes. In man, RETN is mainly secreted by monocytes. The distinct role of RETN in the immune reaction is uncertain; however, RETN has pro-inflammatory, pro-fibrotic and possibly tolerogenic properties. The aim was to assess the reaction of RETN gene expression to TNF-α inhibition (I) in pathogenetic immune cell subsets in RA, in the context of Th1, inflammatory and regulatory cytokine gene expressions. Accordingly, we measured RETN, IFN-γ, TNF-β, IL-1β, TNF-α, TGF-β and IL-10 gene expressions in CD14(+) monocytes, CD4(+) T helper (Th) lymphocytes (ly), CD8(+) T cytotoxic (Tc) ly and CD19(+) B ly in active RA before and 3 months after start of TNF-αI. Leucocyte subsets were separated by specific monoclonal antibody-covered beads, RNA extracted and levels of RETN, Th1 response, inflammatory and regulatory cytokine mRNAs measured by quantitative reverse transcription-polymerase chain reaction technique. We found that TNF-αI caused a significant downregulation of RETN gene expression in CD14(+) monocytes and CD4(+) Th ly and was unchanged in CD8(+) Tc ly and CD19(+) B ly. Both in active RA and during TNF-αI, RETN mRNA levels were significantly higher in CD14(+) monocytes than in all other examined cell types. In monocytes, fold change in RETN and TGF-β gene expressions upon TNF-αI correlated significantly. Our findings indicate that RETN has pro-inflammatory as well as proresolving roles in active RA.
Collapse
Affiliation(s)
- I Nagaev
- Division of Clinical Immunology, Department of Clinical Microbiology, Norrland's University Hospital, Umeå, Sweden
| | - M Andersen
- Department of Medicine, North Denmark Regional Hospital/Department of Health Science and Technolgy, University of Aalborg, Aalborg, Denmark
| | - M K Olesen
- Department of Medicine, North Denmark Regional Hospital/Department of Health Science and Technolgy, University of Aalborg, Aalborg, Denmark
| | - O Nagaeva
- Division of Clinical Immunology, Department of Clinical Microbiology, Norrland's University Hospital, Umeå, Sweden
| | - J Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - L Mincheva-Nilsson
- Division of Clinical Immunology, Department of Clinical Microbiology, Norrland's University Hospital, Umeå, Sweden
| | - G N Andersen
- Department of Rheumatology, North Denmark Regional Hospital/Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
35
|
Marcinkiewicz A, Ostrowski S, Drzewoski J. Can the onset of heart failure be delayed by treating diabetic cardiomyopathy? Diabetol Metab Syndr 2017; 9:21. [PMID: 28396699 PMCID: PMC5381046 DOI: 10.1186/s13098-017-0219-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/23/2017] [Indexed: 01/03/2023] Open
Abstract
The pathophysiology of diabetic cardiomyopathy (DC) is not fully understood. This frequently undiagnosed complication of chronic hyperglycemia leads to heart failure (HF). However, it is suggested that an appropriate metabolic control of diabetes at an early stage of this deleterious disease, is able to inhibit the development and progression of DC to HF. Recently, it has been postulated that myocardial ischaemia plays an important role in the development of this pathology. Results of the antianginal pharmacological treatment and revascularization are unsatisfactory and reveal a gap in our knowledge and current approaches to treating DC. Most recent studies emphasize the ischaemic component of DC as a key target for therapeutic strategies, which could change its unfavorable history. More stress is put on an early diagnosis of coronary artery disease (CAD), promoting prompt revascularization. Choosing the accurate time of surgical revascularization, with the inclusion of the metabolic background, can ensure complete revascularization with better prognosis. This review will focus on the complexity of DC and summarize contemporary knowledge of treatment strategies for patients with diabetes and CAD.
Collapse
Affiliation(s)
- Anna Marcinkiewicz
- Department of Cardiac Surgery, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Stanisław Ostrowski
- Department of Cardiac Surgery, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Józef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Luo JW, Zheng X, Cheng GC, Ye QH, Deng YZ, Wu L. Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed Rep 2016; 5:473-478. [PMID: 27699016 DOI: 10.3892/br.2016.749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/18/2016] [Indexed: 11/06/2022] Open
Abstract
It has been reported that resistin induces, whereas apelin inhibits cardiac hypertrophy. However, the underlying molecular mechanisms of apelin inhibiting resistin-induced cardiac hypertrophy remain unclear. The aim of the current study is to investigate the effects of apelin on resistin-induced cardiomyocyte hypertrophy and elucidate the underlying molecular mechanism. H9c2 cells were used in the present study, and cell surface area and protein synthesis were evaluated. Reverse transcription-quantitative polymerase chain reaction was performed to analyze the expression levels of hypertrophic markers, brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, western blotting was conducted to examine phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Following treatment of H9c2 cells with resistin, cell surface area, protein synthesis, and BNP and β-MHC mRNA expression levels were increased. Subsequent to co-treatment of H9c2 cells with apelin and resistin, lead to the inhibition of resistin-induced hypertrophic effects by apelin. In addition, treatment with resistin increased phosphorylation of ERK1/2, whereas pretreatment with apelin decreased phosphorylation of ERK1/2, which was increased by resistin. These results indicate that resistin-induced cardiac hypertrophy is inhibited by apelin via inactivation of ERK1/2 cell signaling.
Collapse
Affiliation(s)
- Jian-Wei Luo
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Xian Zheng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Guan-Chang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Qun-Hui Ye
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yong-Zhi Deng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Lin Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
37
|
Liu P, Cheng GC, Ye QH, Deng YZ, Wu L. LKB1/AMPK pathway mediates resistin-induced cardiomyocyte hypertrophy in H9c2 embryonic rat cardiomyocytes. Biomed Rep 2016; 4:387-391. [PMID: 26998282 DOI: 10.3892/br.2016.593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Resistin has been previously demonstrated to induce cardiac hypertrophy, however, the underlying molecular mechanisms of resistin-induced cardiac hypertrophy remain unclear. Using H9c2 cells, the present study investigated the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway for a potential role in mediating resistin-induced cardiomyocyte hypertrophy. Treatment of H9c2 cells with resistin increased cell surface area, protein synthesis, and expression of hypertrophic marker brain natriuretic peptide and β-myosin heavy chain. Treatment with metformine attenuated these effects of resistin. Furthermore, treatment with resistin decreased phosphorylation of LKB1 and AMPK, whereas pretreatment with metformin increased phosphorylation of LKB1 and AMPK that is reduced by resistin. These results suggest that resistin induces cardiac hypertrophy through the inactivation of the LKB1/AMPK cell signaling pathway.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Guan-Chang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Qun-Hui Ye
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Yong-Zhi Deng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University, and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Lin Wu
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
38
|
Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats. Biosci Rep 2016; 36:BSR20150139. [PMID: 26811539 PMCID: PMC4793300 DOI: 10.1042/bsr20150139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/19/2016] [Indexed: 11/17/2022] Open
Abstract
Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein.
Collapse
|
39
|
Nagy K, Ujszaszi A, Czira ME, Remport A, Kovesdy CP, Mathe Z, Rhee CM, Mucsi I, Molnar MZ. Association between serum resistin level and outcomes in kidney transplant recipients. Transpl Int 2016; 29:352-61. [PMID: 26639524 DOI: 10.1111/tri.12728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
Resistin is an adipocytokine that is associated with inflammation, coronary artery disease, and other types of cardiovascular disease among patients with normal kidney function. However, little is known about the association of resistin with outcomes in kidney transplant recipients. We collected socio-demographic and clinical parameters, medical and transplant history, and laboratory data from 988 prevalent kidney transplant recipients enrolled in the Malnutrition-Inflammation in Transplant-Hungary Study (MINIT-HU study). Serum resistin levels were measured at baseline. Associations between serum resistin level and death with a functioning graft over a 6-year follow-up period were examined in unadjusted and adjusted models. The mean±SD age of the study population was 51 ± 13 years, among whom 57% were men and 21% were diabetics. Median serum resistin concentrations were significantly higher in patients who died with a functioning graft as compared to those who did not die during the follow-up period (median [IQR]: 22[15-26] vs. 19[14-22] ng/ml, respectively; P < 0.001). Higher serum resistin level was associated with higher mortality risk in both unadjusted and fully adjusted models: HRs (95% CI): 1.33(1.16-1.54) and 1.21(1.01-1.46), respectively. In prevalent kidney transplant recipients, serum resistin was an independent predictor of death with a functioning graft.
Collapse
Affiliation(s)
- Kristof Nagy
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Akos Ujszaszi
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Maria E Czira
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
| | - Adam Remport
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Nephrology Section, Memphis Veterans Affairs Medical Center, Memphis, TN, USA
| | - Zoltan Mathe
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Connie M Rhee
- Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA
| | - Istvan Mucsi
- Division of Nephrology and Multiorgan Transplant Program, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Miklos Z Molnar
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
40
|
Abd Alla J, Graemer M, Fu X, Quitterer U. Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice. J Biol Chem 2015; 291:2583-600. [PMID: 26670611 DOI: 10.1074/jbc.m115.702688] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/12/2022] Open
Abstract
Impairment of myocardial fatty acid substrate metabolism is characteristic of late-stage heart failure and has limited treatment options. Here, we investigated whether inhibition of G-protein-coupled receptor kinase 2 (GRK2) could counteract the disturbed substrate metabolism of late-stage heart failure. The heart failure-like substrate metabolism was reproduced in a novel transgenic model of myocardium-specific expression of fatty acid synthase (FASN), the major palmitate-synthesizing enzyme. The increased fatty acid utilization of FASN transgenic neonatal cardiomyocytes rapidly switched to a heart failure phenotype in an adult-like lipogenic milieu. Similarly, adult FASN transgenic mice developed signs of heart failure. The development of disturbed substrate utilization of FASN transgenic cardiomyocytes and signs of heart failure were retarded by the transgenic expression of GRKInh, a peptide inhibitor of GRK2. Cardioprotective GRK2 inhibition required an intact ERK axis, which blunted the induction of cardiotoxic transcripts, in part by enhanced serine 273 phosphorylation of Pparg (peroxisome proliferator-activated receptor γ). Conversely, the dual-specific GRK2 and ERK cascade inhibitor, RKIP (Raf kinase inhibitor protein), triggered dysfunctional cardiomyocyte energetics and the expression of heart failure-promoting Pparg-regulated genes. Thus, GRK2 inhibition is a novel approach that targets the dysfunctional substrate metabolism of the failing heart.
Collapse
Affiliation(s)
- Joshua Abd Alla
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich
| | - Muriel Graemer
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich
| | - Xuebin Fu
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich, the Department of Clinical Research, University of Bern, 3010 Bern, and
| | - Ursula Quitterer
- From the Department of Chemistry and Applied Biosciences, Molecular Pharmacology Unit, Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich, the Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Abstract
Cardiovascular disease, including heart failure (HF), is the major cause of death in patients with diabetes. A contributing factor to the occurrence of HF in such patients is the development of diabetic cardiomyopathy. Recent evidence demonstrates that perturbations associated with adipokines secretion and signaling result in lusitropic and inotropic defects in diabetic cardiomyopathy. This perspective editorial will discuss the central role of resistin, a recently discovered adipokine, in the maladaptive cardiac phenotype seen in diabetic hearts. Given the pleiotropic effects of resistin, strategies targeting the control of resistin levels may constitute a potentially viable therapeutic utility in patients with diabetes and diabetes-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Djamel Lebeche
- Cardiovascular Research Institute, Graduate School of Biological Sciences, Department of Medicine, Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
42
|
Adipokines and their receptors: potential new targets in cardiovascular diseases. Future Med Chem 2015; 7:139-57. [PMID: 25686003 DOI: 10.4155/fmc.14.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is an 'endocrine organ' that influences diverse physiological and pathological processes via adipokines secretion. Strong evidences suggest that epicardial and perivascular adipose tissue can directly regulate heart and vessels' structure and function. Indeed, in obesity there is a shift toward the secretion of adipokines that promote a pro-inflammatory status and contribute to obesity cardiomyopathy. The prospect of modulating adipokines and/or their receptors represents an attractive perspective to the treatment of cardiovascular diseases. In this paper, we described the most important actions of certain adipokines and their receptors that are capable of influencing cardiovascular physiology as well as their possible use as therapeutic targets.
Collapse
|
43
|
Norman G, Norton GR, Libhaber CD, Michel F, Majane OH, Millen AM, Sareli P, Woodiwiss AJ. Independent associations between resistin and left ventricular mass and myocardial dysfunction in a community sample with prevalent obesity. Int J Cardiol 2015; 196:81-7. [DOI: 10.1016/j.ijcard.2015.05.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/27/2015] [Indexed: 01/02/2023]
|
44
|
Bagi Z, Broskova Z, Feher A. Obesity and coronary microvascular disease - implications for adipose tissue-mediated remote inflammatory response. Curr Vasc Pharmacol 2015; 12:453-61. [PMID: 24846234 DOI: 10.2174/1570161112666140423221843] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/26/2022]
Abstract
It is believed that obesity has detrimental effects on the coronary circulation. These include immediate changes in coronary arterial vasomotor responsiveness and the development of occlusive large coronary artery disease. Despite its critical role in regulating myocardial perfusion, the altered behavior of coronary resistance arteries, which gives rise to coronary microvascular disease (CMD) is poorly understood in obesity. A chronic, low-grade vascular inflammation has been long considered as one of the main underlying pathology behind CMD. The expanded adipose tissue and the infiltrating macrophages are the major sources of pro-inflammatory mediators that have been implicated in causing inadequate myocardial perfusion and, in a long term, development of heart failure in obese patients. Much less is known the mechanisms regulating the release of these cytokines into the circulation that enable them to exert their remote effects in the coronary microcirculation. This mini review aims to examine recent studies describing alterations in the vasomotor function of coronary resistance arteries and the role of adipose tissue-derived pro-inflammatory cytokines and adipokines in contributing to CMD in obesity. We provide examples of regulatory mechanisms by which adipokines are released from adipose tissue to exert their remote inflammatory effects on coronary microvessels. We identify some of the important challenges and opportunities going forward.
Collapse
Affiliation(s)
| | | | - Attila Feher
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
45
|
Chou HC, Chen CM. Maternal nicotine exposure during gestation and lactation induces cardiac remodeling in rat offspring. Reprod Toxicol 2014; 50:4-10. [DOI: 10.1016/j.reprotox.2014.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022]
|
46
|
Yamaji-Kegan K, Takimoto E, Zhang A, Weiner NC, Meuchel LW, Berger AE, Cheadle C, Johns RA. Hypoxia-induced mitogenic factor (FIZZ1/RELMα) induces endothelial cell apoptosis and subsequent interleukin-4-dependent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1090-103. [PMID: 24793164 DOI: 10.1152/ajplung.00279.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure that leads to progressive right heart failure and ultimately death. Injury to endothelium and consequent wound repair cascades have been suggested to trigger pulmonary vascular remodeling, such as that observed during PH. The relationship between injury to endothelium and disease pathogenesis in this disorder remains poorly understood. We and others have shown that, in mice, hypoxia-induced mitogenic factor (HIMF, also known as FIZZ1 or RELMα) plays a critical role in the pathogenesis of lung inflammation and the development of PH. In this study, we dissected the mechanism by which HIMF and its human homolog resistin (hRETN) induce pulmonary endothelial cell (EC) apoptosis and subsequent lung inflammation-mediated PH, which exhibits many of the hallmarks of the human disease. Systemic administration of HIMF caused increases in EC apoptosis and interleukin (IL)-4-dependent vascular inflammatory marker expression in mouse lung during the early inflammation phase. In vitro, HIMF, hRETN, and IL-4 activated pulmonary microvascular ECs (PMVECs) by increasing angiopoietin-2 expression and induced PMVEC apoptosis. In addition, the conditioned medium from hRETN-treated ECs had elevated levels of endothelin-1 and caused significant increases in pulmonary vascular smooth muscle cell proliferation. Last, HIMF treatment caused development of PH that was characterized by pulmonary vascular remodeling and right heart failure in wild-type mice but not in IL-4 knockout mice. These data suggest that HIMF contributes to activation of vascular inflammation at least in part by inducing EC apoptosis in the lung. These events lead to subsequent PH.
Collapse
Affiliation(s)
- Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland;
| | - Eiki Takimoto
- Division of Cardiology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ailan Zhang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Noah C Weiner
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Lucas W Meuchel
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Alan E Berger
- Divison of Allergy and Clinical Immunology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chris Cheadle
- Divison of Allergy and Clinical Immunology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
47
|
Schwartz DR, Briggs ER, Qatanani M, Sawaya H, Sebag IA, Picard MH, Scherrer-Crosbie M, Lazar MA. Human resistin in chemotherapy-induced heart failure in humanized male mice and in women treated for breast cancer. Endocrinology 2013; 154:4206-14. [PMID: 23981771 PMCID: PMC3800765 DOI: 10.1210/en.2013-1399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Resistin is a circulating mediator of insulin resistance mainly expressed in human monocytes and responsive to inflammatory stimuli. Recent clinical studies have connected elevated resistin levels with the development and severity of heart failure. To further our understanding of the role of human resistin in heart failure, we studied a humanized mouse model lacking murine resistin but transgenic for the human Retn gene (Hum-Retn mice), which exhibits basal and inflammation-stimulated resistin levels similar to humans. Specifically, we explored whether resistin underlies acute anthracycline-induced cardiotoxicity. Remarkably, doxorubicin (25mg/kg ip) led to a 4-fold induction of serum resistin levels in Hum-Retn mice. Moreover, doxorubicin-induced cardiotoxicity was greater in the Hum-Retn mice than in littermate controls not expressing human resistin (Retn(-/-)). Hum-Retn mice showed increased cardiac mRNA levels of inflammatory and cell adhesion genes compared with Retn(-/-) mice. Macrophages, but not cardiomyocytes, from Hum-Retn mice treated with doxorubicin in vitro showed dramatic induction of hRetn (human resistin) mRNA and protein expression. We also examined resistin levels in anthracycline-treated breast cancer patients with and without cardiotoxicity. Intriguingly, serum resistin levels in women undergoing anthracycline-containing chemotherapy increased significantly at 3 months and remained elevated at 6 months in those with subsequent cardiotoxicity. Further, elevation in resistin correlated with decline in ejection fraction in these women. These results suggest that elevated resistin is a biomarker of anthracycline-induced cardiotoxicity and may contribute in the development of heart failure via its direct effects on macrophages. These results further implicate resistin as a link between inflammation, metabolism, and heart disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/adverse effects
- Breast Neoplasms/drug therapy
- Cells, Cultured
- Doxorubicin/adverse effects
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heart Failure/chemically induced
- Humans
- Macrophages, Peritoneal
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Resistin/genetics
- Resistin/metabolism
- Trastuzumab
Collapse
Affiliation(s)
- Daniel R Schwartz
- MD, PhD, 3400 Civic Center Blvd, Smilow Center for Translational Research, 12-102, Philadelphia, PA 19104.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Both immune and non-immune mechanisms are involved in muscle damage and dysfunction occurring in idiopathic inflammatory myopathies (IIMs). Crosstalk among inflammatory cells, muscle and endothelial cells is essential in the pathogenesis of IIMs. Resistin, originally described as an adipokine linking obesity and insulin resistance in rodents, has been shown a pro-inflammatory molecule in humans. Besides its direct effect on production of several inflammatory mediators, resistin influences chemotaxis, migration, proliferation, cell survival, endothelial dysfunction and metabolism--all aspects implicated in the pathogenesis of IIMs. Up-regulation of resistin in muscle tissue and elevated serum resistin levels have been recently demonstrated in patients with IIMs. In addition, serum levels of resistin reflected global disease activity, including extramuscular organ involvement, in patients with this disease. However, there are currently not sufficient data to distinguish the features of resistin that cause injury of muscle tissue from those that promote muscle regeneration and repair. The aim of this review is therefore to summarize current knowledge about potential implication of resistin in idiopathic inflammatory myopathies.
Collapse
Affiliation(s)
- Mária Filková
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University in Prague, Na Slupi 4, 128 50, Prague 2, Czech Republic.
| | | | | |
Collapse
|
49
|
Chemaly ER, Kang S, Zhang S, McCollum L, Chen J, Bénard L, Purushothaman KR, Hajjar RJ, Lebeche D. Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol 2013; 591:5337-55. [PMID: 24018949 DOI: 10.1113/jphysiol.2013.258731] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathological left ventricle (LV) hypertrophy (LVH) results in reactive and replacement fibrosis. Volume overload LVH (VOH) is less profibrotic than pressure overload LVH (POH). Studies attribute subendocardial fibrosis in POH to ischaemia, and reduced fibrosis in VOH to collagen degradation favouring dilatation. However, the mechanical origin of the relative lack of fibrosis in VOH is incompletely understood. We hypothesized that reduced ischaemia propensity in VOH compared to POH accounted for the reduced replacement fibrosis, along with reduced reactive fibrosis. Rats with POH (ascending aortic banding) evolved into either compensated-concentric POH (POH-CLVH) or dilated cardiomyopathy (POH-DCM); they were compared to VOH (aorta-caval fistula). We quantified LV fibrosis, structural and haemodynamic factors of ischaemia propensity, and the activation of profibrotic pathways. Fibrosis in POH-DCM was severe, subendocardial and subepicardial, in contrast with subendocardial fibrosis in POH-CLVH and nearly no fibrosis in VOH. The propensity for ischaemia was more important in POH versus VOH, explaining different patterns of replacement fibrosis. LV collagen synthesis and maturation, and matrix metalloproteinase-2 expression, were more important in POH. The angiotensin II-transforming growth-factor β axis was enhanced in POH, and connective tissue growth factor (CTGF) was overexpressed in all types of LVH. LV resistin expression was markedly elevated in POH, mildly elevated in VOH and independently reflected chronic ischaemic injury after myocardial infarction. In vitro, resistin is induced by angiotensin II and induces CTGF in cardiomyocytes. Based on these findings, we conclude that a reduced ischaemia propensity and attenuated upstream reactive fibrotic pathways account for the attenuated fibrosis in VOH versus POH.
Collapse
Affiliation(s)
- Elie R Chemaly
- D. Lebeche: Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu A, Zheng Y, Zhang R, Huang J, Zhu Z, Zhou R, Jin D, Yang Z. Resistin impairs SIRT1 function and induces senescence-associated phenotype in hepatocytes. Mol Cell Endocrinol 2013; 377:23-32. [PMID: 23827175 DOI: 10.1016/j.mce.2013.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023]
Abstract
Resistin is a cysteine-rich secreted protein which significantly inhibits phosphorylation of AMP-activated protein kinase in both human and mouse hepatocytes. It has been demonstrated that resistin plays an important role in inducing hepatic insulin resistance. However, whether resistin has other unknown influences on hepatocytes still remains poorly studied. Here, we show that recombinant resistin protein significantly reduces expression of SIRT1, attenuates the interaction between SIRT1 and PPARα as well as PGC-1α, and increases PGC-1α acetyl-lysine levels in HepG2 cells. In line with this, resistin treatment weakens the association between SIRT1 and major satellite repeats and alters the transcription level of SIRT1 target genes in mouse primary hepatocytes. Resistin treatment also significantly increases senescence-associated β-galactosidase activity in mouse primary hepatocytes and this effect can be eliminated by co-treatment with the SIRT1 agonists resveratrol and nicotinamide mononucleotide. Our findings suggest that resistin is a negative regulator of SIRT1 in both human hepatoma cell line HepG2 and mouse hepatocytes and that it might also play an important role in the development of senescence-associated liver diseases.
Collapse
Affiliation(s)
- An Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, HuaZhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|