1
|
Mallidi J, Baylis R, Song EJ. Management of Cancer Therapy-Related Cardiac Dysfunction: A Case-Based Review. Am J Cardiol 2024; 231:20-31. [PMID: 39233062 DOI: 10.1016/j.amjcard.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
With an ever-expanding repertoire of cancer therapies, cardiologists increasingly encounter patients with cancer therapy-related cardiac dysfunction. This can range from asymptomatic mild left ventricular dysfunction to severe symptomatic congestive heart failure. A multidisciplinary approach involving oncologists and cardiologists is needed in the management of these patients. This case-based review provides a practical guide for clinicians regarding the diagnosis and management of cancer therapy-related cardiac dysfunction associated with commonly used cancer treatments: anthracyclines, human epidermal receptor 2-targeted therapies, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jaya Mallidi
- Division of Cardiology, Department of Medicine, Zuckerberg San Francisco General Hospital; Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California.
| | - Richard Baylis
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Evelyn J Song
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024:10.1007/s12012-024-09941-7. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
3
|
Fishbein GA, Bois MC, d'Amati G, Glass C, Masuelli L, Rodriguez ER, Seidman MA. Ultrastructural cardiac pathology: the wide (yet so very small) world of cardiac electron microscopy. Cardiovasc Pathol 2024; 73:107670. [PMID: 38880163 DOI: 10.1016/j.carpath.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Electron microscopy (EM) was a popular diagnostic tool in the 1970s and early 80s. With the adoption of newer, less expensive techniques, such as immunohistochemistry, the role of EM in diagnostic surgical pathology has dwindled substantially. Nowadays, even in academic centers, EM interpretation is relegated to renal pathologists and the handful of (aging) pathologists with experience using the technique. As such, EM interpretation is truly arcane-understood by few and mysterious to many. Nevertheless, there remain situations in which EM is the best or only ancillary test to ascertain a specific diagnosis. Thus, there remains a critical need for the younger generation of surgical pathologists to learn EM interpretation. Recognizing this need, cardiac EM was made the theme of the Cardiovascular Evening Specialty Conference at the 2023 United States and Canadian Academy of Pathology (USCAP) annual meeting in New Orleans, Louisiana. Each of the speakers contributed their part to this article, the purpose of which is to review EM as it pertains to myocardial tissue and provide illustrative examples of the spectrum of ultrastructural cardiac pathology seen in storage/metabolic diseases, cardiomyopathies, infiltrative disorders, and cardiotoxicities.
Collapse
Affiliation(s)
- Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giulia d'Amati
- Department of Oncological, Radiological and Pathological Sciences, Sapienza Università di Roma, Rome, Italy
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - E Rene Rodriguez
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Song L, Qiu Q, Ju F, Zheng C. Mechanisms of doxorubicin-induced cardiac inflammation and fibrosis; therapeutic targets and approaches. Arch Biochem Biophys 2024; 761:110140. [PMID: 39243924 DOI: 10.1016/j.abb.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Doxorubicin plays a pivotal role in the treatment of various malignancies. Despite its efficacy, the cardiotoxicity associated with doxorubicin limits its clinical utility. The cardiotoxic nature of doxorubicin is attributed to several mechanisms, including its interference with mitochondrial function, the generation of reactive oxygen species (ROS), and the subsequent damage to cardiomyocyte DNA, proteins, and lipids. Furthermore, doxorubicin disrupts the homeostasis of cardiac-specific transcription factors and signaling pathways, exacerbating cardiac dysfunction. Oxidative stress, cell death, and other severe changes, such as mitochondrial dysfunction, activation of pro-oxidant enzymes, the renin-angiotensin system (RAS), endoplasmic reticulum (ER) stress, and infiltration of immune cells in the heart after treatment with doxorubicin, may cause inflammatory and fibrotic responses. Fibrosis and inflammation can lead to a range of disorders in the heart, resulting in potential cardiac dysfunction and disease. Various adjuvants have shown potential in preclinical studies to mitigate these challenges associated with cardiac inflammation and fibrosis. Antioxidants, plant-based products, specific inhibitors, and cardioprotective drugs may be recommended to alleviate cardiotoxicity. This review explores the complex mechanisms of doxorubicin-induced heart inflammation and fibrosis, identifies possible cellular and molecular targets, and investigates potential substances that could help reduce these harmful effects.
Collapse
Affiliation(s)
- Linghua Song
- Department of Pharmacy, Yantai Mountain Hospital, Yantai City, Shandong Province, 264001, China
| | - Qingzhuo Qiu
- Medical Imaging Department of Qingdao Women and Children's Hospital, 266000, China
| | - Fei Ju
- Department of Critical Care, Medicine East Hospital of Qingdao Municipal Hospital, 266000, China
| | - Chunyan Zheng
- Cadre Health Office of Zibo Central Hospital in Shandong Province, 255000, China.
| |
Collapse
|
5
|
Xie L, Xue F, Cheng C, Sui W, Zhang J, Meng L, Lu Y, Xiong W, Bu P, Xu F, Yu X, Xi B, Zhong L, Yang J, Zhang C, Zhang Y. Cardiomyocyte-specific knockout of ADAM17 alleviates doxorubicin-induced cardiomyopathy via inhibiting TNFα-TRAF3-TAK1-MAPK axis. Signal Transduct Target Ther 2024; 9:273. [PMID: 39406701 PMCID: PMC11480360 DOI: 10.1038/s41392-024-01977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of doxorubicin-induced cardiomyopathy remains unclear. This study was carried out to test our hypothesis that ADAM17 aggravates cardiomyocyte apoptosis induced by doxorubicin and inhibition of ADAM17 may ameliorate doxorubicin-induced cardiomyopathy. C57BL/6J mice were intraperitoneally injected with a cumulative dose of doxorubicin to induce cardiomyopathy. Cardiomyocyte-specific ADAM17-knockout (A17α-MHCKO) and ADAM17-overexpressing (AAV9-oeA17) mice were generated. In addition, RNA sequencing of the heart tissues in different mouse groups and in vitro experiments in neonatal rat cardiomyocytes (NRCMs) receiving different treatment were performed. Mouse tumor models were constructed in A17fl/fl and A17α-MHCKO mice. In addition, cardiomyocyte-specific TRAF3-knockdown and TRAF3-overexpressing mice were generated. ADAM17 expression and activity were markedly upregulated in doxorubicin-treated mouse hearts and NRCMs. A17α-MHCKO mice showed less cardiomyocyte apoptosis induced by doxorubicin than A17fl/fl mice, and cardiomyocyte ADAM17 deficiency did not affect the anti-tumor effect of doxorubicin. In contrast, AAV9-oeA17 mice exhibited markedly aggravated cardiomyocyte apoptosis relative to AAV9-oeNC mice after doxorubicin treatment. Mechanistically, doxorubicin enhanced the expression of transcription factor C/EBPβ, leading to increased expression and activity of ADAM17 in cardiomyocyte, which enhanced TNF-α shedding and upregulated the expression of TRAF3. Increased TRAF3 promoted TAK1 autophosphorylation, resulting in activated MAPKs pathway and cardiomyocyte apoptosis. ADAM17 acted as a positive regulator of cardiomyocyte apoptosis and cardiac remodeling and dysfunction induced by doxorubicin by upregulating TRAF3/TAK1/MAPKs signaling. Thus, targeting ADAM17/TRAF3/TAK1/MAPKs signaling holds a promising potential for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Xiong
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
6
|
Feng W, Wang Q, Tan Y, Qiao J, Liu Q, Yang B, Yang S, Cui L. Early detection of anthracycline-induced cardiotoxicity. Clin Chim Acta 2024; 565:120000. [PMID: 39401650 DOI: 10.1016/j.cca.2024.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Although anthracyclines are important anticancer agents, their use is limited due to various adverse effects, particularly cardiac toxicity. Mechanisms underlying anthracycline-induced cardiotoxicity (AIC) are complex. Given the irreplaceable role of anthracyclines in treatment of malignancies and other serious diseases, early monitoring of AIC is paramount. In recent years, multiple studies have investigated various biomarkers for early detection of AIC. Currently, the two most common are cardiac troponin and B-type natriuretic peptide. In addition, a range of other molecules, including RNAs, myeloperoxidase (MPO), C-reactive protein (CRP), various genes, and others, also play roles in AIC prediction. Unfortunately, current research indicates a need to validate their sensitivity and specificity of these biomarkers especially in large study populations. In this review, we summarize the mechanisms and potential biomarkers of AIC, although some remain preliminary.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
7
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway. Biotechnol Appl Biochem 2024. [PMID: 39375847 DOI: 10.1002/bab.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Doxorubicin (DOX) is mostly utilized as a wide range of antitumor anthracycline to treat different cancers. The severe antagonistic impacts of DOX on cardiotoxicity constrain its clinical application. Many mechanisms are involved in cardiac toxicity induced by DOX in the human body. Mitochondria is a central part of fatty acid and glucose metabolism. Thus, impaired mitochondrial metabolism can increase heart failure risk, which can play a vital role in cardiomyocyte mitochondrial dysfunction. This study aimed to assess the possible cardioprotective effect of water-extracted Artemisia argyi (AA) against the side effect of DOX in H9c2 cells and whether these protective effects are mediated through IGF-IIR/Drp1/GATA4 signaling pathways. Although several studies proved that AA extract has benefits for various diseases, its cardiac effects have not yet been identified. The H9c2 cells were exposed to 1 μM to establish a model of cardiac toxicity. The results revealed that water-extracted AA could block the expression of IGF-IIR/calcineurin signaling pathways induced by DOX. Notably, our results also showed that AA treatment markedly attenuated Akt phosphorylation and cleaved caspase 3, and the nuclear translocation markers NFATC3 and p-GATA4. Using actin staining for hypertrophy, we determined that AA can reduce the effect of mitochondrial reactive oxygen species and cell size. These findings suggest that water-extracted AA could be a suitable candidate for preventing DOX-induced cardiac damage.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Ohwia caudata inhibits doxorubicin-induced cardiotoxicity by regulating mitochondrial dynamics via the IGF-IIR/p-Drp1/PARP signaling pathway. Biotechnol Appl Biochem 2024; 71:1181-1194. [PMID: 38837810 DOI: 10.1002/bab.2620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Kondo M, Nakamura Y, Kato Y, Nishimura A, Fukata M, Moriyama S, Ito T, Umezawa K, Urano Y, Akaike T, Akashi K, Kanda Y, Nishida M. Inorganic sulfides prevent osimertinib-induced mitochondrial dysfunction in human iPS cell-derived cardiomyocytes. J Pharmacol Sci 2024; 156:69-76. [PMID: 39179336 DOI: 10.1016/j.jphs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024] Open
Abstract
Despite the widespread recognition of the global concern regarding the onset of cardiovascular diseases in a significant number of patients following cancer treatment, definitive strategies for prevention and treatment remain elusive. In this study, we established systems to evaluate the influence of anti-cancer drugs on the quality control of mitochondria, pivotal for energy metabolism, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Osimertinib, an epidermal growth factor receptor tyrosine kinase inhibitor used for treatment in lung cancer, reportedly increases the risk of cardiovascular disease. However, its underlying mechanism is largely unknown. Here, we found that the treatment of hiPSC-CMs with osimertinib and doxorubicin, but not trastuzumab and cisplatin, revealed a concentration-dependent impairment of respiratory function accompanied by mitochondrial fission. We previously reported the significant role of sulfur metabolism in maintaining mitochondrial quality in the heart. Co-treatment with various inorganic sulfur donors (Na2S, Na2S2, Na2S3) alongside anti-cancer drugs demonstrated that Na2S attenuated the cardiotoxicity of osimertinib but not doxorubicin. Osimertinib decreased intracellular reduced sulfur levels, while Na2S treatment suppressed the sulfur leakage, suggesting its potential in mitigating osimertinib-induced cardiotoxicity. These results imply the prospect of inorganic sulfides, such as Na2S, as a seed for precision pharmacotherapy to alleviate osimertinib's cardiotoxic effects.
Collapse
Affiliation(s)
- Moe Kondo
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Nakamura
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Mitsuhiro Fukata
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keitaro Umezawa
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| |
Collapse
|
10
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
11
|
Meinag FE, Fatahi M, Vahedian V, Maroufi NF, Mosayyebi B, Ahmadi E, Rahmati M. Modulatory effects of miRNAs in doxorubicin resistance: A mechanistic view. Funct Integr Genomics 2024; 24:150. [PMID: 39222264 DOI: 10.1007/s10142-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs and play an important role in controlling vital biological processes, including cell cycle control, apoptosis, metabolism, and development and differentiation, which lead to various diseases such as neurological, metabolic disorders, and cancer. Chemotherapy consider as gold treatment approaches for cancer patients. However, chemotherapeutic is one of the main challenges in cancer management. Doxorubicin (DOX) is an anti-cancer drug that interferes with the growth and spread of cancer cells. DOX is used to treat various types of cancer, including breast, nervous tissue, bladder, stomach, ovary, thyroid, lung, bone, muscle, joint and soft tissue cancers. Also recently, miRNAs have been identified as master regulators of specific genes responsible for the mechanisms that initiate chemical resistance. miRNAs have a regulatory effect on chemotherapy resistance through the regulation of apoptosis process. Also, the effect of miRNAs p53 gene as a key tumor suppressor was confirmed via studies. miRNAs can affect main biological pathways include PI3K pathway. This review aimed to present the current understanding of the mechanisms and effects of miRNAs on apoptosis, p53 and PTEN/PI3K/Akt signaling pathway related to DOX resistance.
Collapse
Affiliation(s)
- Fatemeh Ebadi Meinag
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Fatahi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Sobhy MH, Ismail A, Abdel-Hamid MS, Wagih M, Kamel M. 2-Methoxyestradiol ameliorates doxorubicin-induced cardiotoxicity by regulating the expression of GLUT4 and CPT-1B in female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7129-7139. [PMID: 38652282 PMCID: PMC11422279 DOI: 10.1007/s00210-024-03073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
The clinical usage of doxorubicin (DOX) is hampered due to cardiomyopathy. Studies reveal that estrogen (E2) modulates DOX-induced cardiotoxicity. Yet, the exact mechanism is unclear. The objective of the current study is to evaluate the influence of E2 and more specifically its metabolite 2-methoxyestradiol (2ME) on cardiac remodeling and the reprogramming of cardiac metabolism in rats subjected to DOX cardiotoxicity. Seventy-two female rats were divided into groups. Cardiotoxicity was induced by administering DOX (2.5 mg/kg three times weekly for 2 weeks). In some groups, the effect of endogenous E2 was abolished by ovariectomy (OVX) or by using the estrogen receptor (ER) blocker Fulvestrant (FULV). The effect of administering exogenous E2 or 2ME in the OVX group was studied. Furthermore, the influence of entacapone (COMT inhibitor) on induced cardiotoxicity was investigated. The evaluated cardiac parameters included ECG, histopathology, cardiac-related enzymes (creatine kinase isoenzyme-MB (CK-MB) and lactate dehydrogenase (LDH)), and lipid profile markers (total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL)). The expression levels of key metabolic enzymes (glucose transporter-4 (GLUT4) and carnitine palmitoyltransferase-1B (CPT-1B)) were assessed. Our results displayed that co-treatment of E2 and/or 2ME with DOX significantly reduced DOX-induced cardiomyopathy and enhanced the metabolism of the heart through the maintenance of GLUT4 and CPT-1B enzymes. On the other hand, co-treatment of DOX with OVX, entacapone, or FULV increased the toxic effect of DOX by further reducing these important metabolic enzymes. E2 and 2ME abrogate DOX-induced cardiomyopathy partly through modulation of GLUT 4 and CPT-1B enzymes.
Collapse
Affiliation(s)
- Mohamed H Sobhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Ahmed Ismail
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Abdel-Hamid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mohamed Wagih
- Department of Pathology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
13
|
Cui J, Chen Y, Yang Q, Zhao P, Yang M, Wang X, Mang G, Yan X, Wang D, Tong Z, Wang P, Kong Y, Wang N, Wang D, Dong N, Liu M, E M, Zhang M, Yu B. Protosappanin A Protects DOX-Induced Myocardial Injury and Cardiac Dysfunction by Targeting ACSL4/FTH1 Axis-Dependent Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310227. [PMID: 38984448 PMCID: PMC11425893 DOI: 10.1002/advs.202310227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, but its clinical utility is constrained by dose-dependent cardiotoxicity, partly due to cardiomyocyte ferroptosis. However, the progress of developing cardioprotective medications to counteract ferroptosis has encountered obstacles. Protosappanin A (PrA), an anti-inflammatory compound derived from hematoxylin, shows potential against DOX-induced cardiomyopathy (DIC). Here, it is reported that PrA alleviates myocardial damage and dysfunction by reducing DOX-induced ferroptosis and maintaining mitochondrial homeostasis. Subsequently, the molecular target of PrA through proteome microarray, molecular docking, and dynamics simulation is identified. Mechanistically, PrA physically binds with ferroptosis-related proteins acyl-CoA synthetase long-chain family member 4 (ACSL4) and ferritin heavy chain 1 (FTH1), ultimately inhibiting ACSL4 phosphorylation and subsequent phospholipid peroxidation, while also preventing FTH1 autophagic degradation and subsequent release of ferrous ions (Fe2+) release. Given the critical role of ferroptosis in the pathogenesis of ischemia-reperfusion (IR) injury, this further investigation posits that PrA can confer a protective effect against IR-induced cardiac damage by inhibiting ferroptosis. Overall, a novel pharmacological inhibitor is unveiled that targets ferroptosis and uncover a dual-regulated mechanism for cardiomyocyte ferroptosis in DIC, highlighting additional therapeutic options for chemodrug-induced cardiotoxicity and ferroptosis-triggered disorders.
Collapse
|
14
|
Khairnar SI, Kulkarni YA, Singh K. Cardioprotective effect of chelidonic acid against doxorubicin-induced cardiac toxicity in rats. Rev Port Cardiol 2024:S0870-2551(24)00264-6. [PMID: 39216530 DOI: 10.1016/j.repc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES The current study evaluates the effect of chelidonic acid on doxorubicin-induced cardiac toxicity. Chelidonic acid (CA) is a natural pyran-skeleton heterocyclic compound found in rhizomes of the perennial plant, celandine (Chelidonium majus). METHODS Wistar rats were given an intraperitoneal injection of doxorubicin (1.25 mg/kg, cumulative dose of 20 mg/kg) four times per week for a duration of four weeks to induce cardiotoxicity. CA treatment (10, 20, and 40 mg/kg orally for four weeks) was started together with doxorubicin. RESULTS CA treatment reduced myocardial damage and improved cardiac dysfunction in doxorubicin-treated rats. It improved blood pressure, restored ST wave height and normalized the QTc interval compared to the rats treated only with doxorubicin. Administration of CA for four weeks reduced left ventricular end-diastolic pressure. Moreover, CA treatment decreased the level of cardiac markers such as creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and cardiac troponin-T. Masson's trichrome, hematoxylin, and eosin staining of heart tissue revealed that CA attenuated the deleterious effects of doxorubicin and prevented further damage and fibrosis in rats. CONCLUSION The study findings confirm that CA treatment can protect the myocardium against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India.
| |
Collapse
|
15
|
Zhai X, Zhou J, Huang X, Weng J, Lin H, Sun S, Chi J, Meng L. LncRNA GHET1 from bone mesenchymal stem cell-derived exosomes improves doxorubicin-induced pyroptosis of cardiomyocytes by mediating NLRP3. Sci Rep 2024; 14:19078. [PMID: 39154102 PMCID: PMC11330485 DOI: 10.1038/s41598-024-70151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Doxorubicin (DOX) is an important chemotherapeutic agent for the treatment of hematologic tumors and breast carcinoma. However, its clinical application is limited owing to severe cardiotoxicity. Pyroptosis is a form of programmed cell death linked to DOX-induced cardiotoxicity. Bone mesenchymal stem cell-derived exosomes (BMSC-Exos) and endothelial progenitor cells-derived exosomes (EPC-Exos) have a protective role in the myocardium. Here we found that BMSC-Exos could improve DOX-induced cardiotoxicity by inhibiting pyroptosis, but EPC-Exos couldn't. Compared with EPCs-Exo, BMSC-Exo-overexpressing lncRNA GHET1 more effectively suppressed pyroptosis, protecting against DOX-induced cardiotoxicity. Further studies showed that lncRNA GHET1 effectively decreased the expression of Nod-like receptor protein 3 (NLRP3), which plays a vital role in pyroptosis by binding to IGF2 mRNA-binding protein 1 (IGF2BP1), a non-catalytic posttranscriptional enhancer of NLRP3 mRNA. In summary, lncRNA GHET1 released by BMSC-Exo ameliorated DOX-induced pyroptosis by targeting IGF2BP1 to reduce posttranscriptional stabilization of NLRP3.
Collapse
Affiliation(s)
- Xiaoya Zhai
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jingfan Weng
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Shimin Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
16
|
Hoeeg C, Follin B, Grandjean CE, Ripa RS, Ekblond A, Kastrup J, Binderup T, Kjaer A. Early Detection of Cardiotoxicity Using [ 64Cu]Cu-NODAGA-E[(cRGDyK)]2 PET Imaging in a Rat Model of Doxorubicin-Induced Heart Failure. Mol Pharm 2024; 21:3909-3920. [PMID: 38936409 DOI: 10.1021/acs.molpharmaceut.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Doxorubicin (DOX) is a common and highly effective chemotherapeutic. However, its use is limited by cardiotoxic effects and the lack of methods to detect these at early time points. In the present study, we evaluated if [64Cu]Cu-NODAGA-E[(cRGDyK)]2 positron emission tomography-computed tomography ([64Cu]Cu-RGD PET/CT) could detect cardiotoxicity in a rat model of DOX-induced heart failure. Male Lewis rats were divided into two groups and treated with either a cumulative dose of 15 mg/kg of DOX or left untreated. Cardiac anatomy and function were assessed using magnetic resonance imaging at baseline and in week 8. [64Cu]Cu-RGD PET/CT scans were performed in week 4. DOX treatment led to a decline in pump function as well as an increase in cardiac and thymic uptake of [64Cu]Cu-RGD. In addition, DOX altered cardiac gene expression, led to infiltration of immune cells, reduced endothelial content, and increased interstitial fibrosis. Furthermore, concentrations of inflammatory plasma proteins were increased in the DOX group. In conclusion, DOX treatment resulted in the development of cardiotoxicity and heart failure, which could be detected using [64Cu]Cu-RGD PET/CT at early time points. [64Cu]Cu-RGD uptake in the myocardial septum and thymus predicted a low left ventricular ejection fraction in week 8.
Collapse
Affiliation(s)
- Cecilie Hoeeg
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Bjarke Follin
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Constance Eline Grandjean
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Tina Binderup
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital─Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Wu J, Feng A, Liu C, Zhou W, Li K, Liu Y, Shi Y, Adu-Amankwaah J, Yu H, Pan X, Sun H. Genistein alleviates doxorubicin-induced cardiomyocyte autophagy and apoptosis via ERK/STAT3/c-Myc signaling pathway in rat model. Phytother Res 2024; 38:3921-3934. [PMID: 38818771 DOI: 10.1002/ptr.8236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Doxorubicin (Dox) is a highly effective anti-neoplastic agent. Still, its utility in the clinic has been hindered by toxicities, including vomiting, hematopoietic suppression and nausea, with cardiotoxicity being the most serious side effect. Genistein (Gen) is a natural product with extensive biological effects, including anti-oxidation, anti-tumor, and cardiovascular protection. This study evaluated whether Gen protected the heart from Dox-induced cardiotoxicity and explored the underlying mechanisms. Male Sprague-Dawley (SD) rats were categorized into control (Ctrl), genistein (Gen), doxorubicin (Dox), genistein 20 mg/kg/day + doxorubicin (Gen20 + Dox) and genistein 40 mg/kg/day + doxorubicin (Gen40 + Dox) groups. Six weeks after injection, immunohistochemistry (IHC), transmission electron microscopy (TEM), and clinical cardiac function analyses were performed to evaluate the effects of Dox on cardiac function and structural alterations. Furthermore, each heart histopathological lesions were given a score of 0-3 in compliance with the articles for statistical analysis. In addition, molecular and cellular response of H9c2 cells toward Dox were evaluated through western blotting, Cell Counting Kit-8 (CCK8), AO staining and calcein AM/PI assay. Dox (5 μM in vitro and 18 mg/kg in vivo) was used in this study. In vivo, low-dose Gen pretreatment protected the rat against Dox-induced cardiac dysfunction and pathological remodeling. Gen inhibited extracellular signal-regulated kinase1/2 (ERK1/2)'s phosphorylation, increased the protein levels of STAT3 and c-Myc, and decreased the autophagy and apoptosis of cardiomyocytes. U0126, a MEK1/2 inhibitor, can mimic the effect of Gen in protecting against Dox-induced cytotoxicity both in vivo and in vitro. Molecular docking analysis showed that Gen forms a stable complex with ERK1/2. Gen protected the heart against Dox-induced cardiomyocyte autophagy and apoptosis through the ERK/STAT3/c-Myc signaling pathway.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ailu Feng
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyang Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxiu Zhou
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Hongli Yu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuhua Pan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Kuang Z, Ge Y, Cao L, Wang X, Liu K, Wang J, Zhu X, Wu M, Li J. Precision Treatment of Anthracycline-Induced Cardiotoxicity: An Updated Review. Curr Treat Options Oncol 2024; 25:1038-1054. [PMID: 39066853 PMCID: PMC11329674 DOI: 10.1007/s11864-024-01238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Anthracycline (ANT)-induced cardiotoxicity (AIC) is a particularly prominent form of cancer therapy-related cardiovascular toxicity leading to the limitations of ANTs in clinical practice. Even though AIC has drawn particular attention, the best way to treat it is remaining unclear. Updates to AIC therapy have been made possible by recent developments in research on the underlying processes of AIC. We review the current molecular pathways leading to AIC: 1) oxidative stress (OS) including enzymatic-induced and other mechanisms; 2) topoisomerase; 3) inflammatory response; 4) cardiac progenitor cell damage; 5) epigenetic changes; 6) renin-angiotensin-aldosterone system (RAAS) dysregulation. And we systematically discuss current prevention and treatment strategies and novel pathogenesis-based therapies for AIC: 1) dose reduction and change; 2) altering drug delivery methods; 3) antioxidants, dexrezosen, statina, RAAS inhibitors, and hypoglycemic drugs; 4) miRNA, natural phytochemicals, mesenchymal stem cells, and cardiac progenitor cells. We also offer a fresh perspective on the management of AIC by outlining the current dilemmas and challenges associated with its prevention and treatment.
Collapse
Affiliation(s)
- Ziyu Kuang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Kexin Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jiaxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xiaojuan Zhu
- The 3rd affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Min Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| |
Collapse
|
19
|
Mandalà M, Bartolini C, Becattini C. Statins to prevent anthracycline-related myocardial toxicity: The jury is still out. Eur J Intern Med 2024; 126:41-42. [PMID: 38852023 DOI: 10.1016/j.ejim.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Mario Mandalà
- Unit of Medical oncology, University of Perugia, Perugia, Italy.
| | | | - Cecilia Becattini
- Internal, Vascular and Emergency Medicine - Stroke Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Badr AM, Alotaibi HN, El-Orabi N. Dibenzazepine, a γ-Secretase Enzyme Inhibitor, Protects Against Doxorubicin-Induced Cardiotoxicity by Suppressing NF-κB, iNOS, and Hes1/Hey1 Expression. Inflammation 2024:10.1007/s10753-024-02046-x. [PMID: 39078585 DOI: 10.1007/s10753-024-02046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic drug; however, its cardiotoxicity and resistance compromise its therapeutic index. The Notch pathway was reported to contribute to DOX cancer resistance. The role of Notch pathway in DOX cardiotoxicity has not been identified yet. Notch receptors are characterized by their extracellular (NECD) and intracellular (NICD) domains (NICD). The γ-secretase enzyme helps in the release of NICD. Dibenzazepine (DBZ) is a γ-secretase inhibitor. The present study investigated the effect of Notch pathway inhibition on DOX cardiotoxicity. Twenty-four male Wistar rats were divided into four groups: control group, DOX group, acute cardiotoxicity was induced by a single dose of DOX (20 mg/kg) i.p., DOX (20 mg/kg) plus DBZ group, and DBZ group. The third and fourth groups received i.p. injection of DBZ daily for 14 days at 2 mg/kg dose. DOX cardiotoxicity increased the level of serum creatine kinase-MB and cardiac troponin I, and it was confirmed by the histopathological examination. Moreover, the antioxidants glutathione peroxidase and superoxide dismutase levels were markedly decreased, and the inflammatory markers, inducible nitric oxide synthase, nuclear factor-ķB, and tumor necrosis factor-α were markedly increased. Furthermore, DOX increased BAX protein and downregulated BCL-2. In addition, DOX upregulated Notch pathway-related parameters: Hes1 and Hey1 mRNA levels, and increased Hes1 protein levels. DBZ ameliorated DOX-induced cardiotoxicity, evidenced by reducing the cardiac injury biomarkers, improving cardiac histopathological changes, correcting antioxidant levels, and reducing inflammatory and apoptotic proteins. Our study indicates the protective effect of Notch inhibitor against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Hind N Alotaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, 11211, Saudi Arabia
| | - Naglaa El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
21
|
Vitale R, Marzocco S, Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci 2024; 25:7477. [PMID: 39000584 PMCID: PMC11242665 DOI: 10.3390/ijms25137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiotoxicity is the main side effect of several chemotherapeutic drugs. Doxorubicin (Doxo) is one of the most used anthracyclines in the treatment of many tumors, but the development of acute and chronic cardiotoxicity limits its clinical usefulness. Different studies focused only on the effects of long-term Doxo administration, but recent data show that cardiomyocyte damage is an early event induced by Doxo after a single administration that can be followed by progressive functional decline, leading to overt heart failure. The knowledge of molecular mechanisms involved in the early stage of Doxo-induced cardiotoxicity is of paramount importance to treating and/or preventing it. This review aims to illustrate several mechanisms thought to underlie Doxo-induced cardiotoxicity, such as oxidative and nitrosative stress, inflammation, and mitochondrial dysfunction. Moreover, here we report data from both in vitro and in vivo studies indicating new therapeutic strategies to prevent Doxo-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.V.); (S.M.)
| |
Collapse
|
22
|
Mohammadpour YH, Khodayar MJ, Khorsandi L, Kalantar H. Betaine alleviates doxorubicin-related cardiotoxicity via suppressing oxidative stress and inflammation via the NLRP3/SIRT1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03261-x. [PMID: 38953971 DOI: 10.1007/s00210-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1β, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1β expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.
Collapse
Affiliation(s)
- Yasaman Hamidavi Mohammadpour
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Chen KH, Sun JM, Lin L, Liu JW, Liu XY, Chen GD, Chen H, Chen ZY. The NEDD8 activating enzyme inhibitor MLN4924 mitigates doxorubicin-induced cardiotoxicity in mice. Free Radic Biol Med 2024; 219:127-140. [PMID: 38614228 DOI: 10.1016/j.freeradbiomed.2024.04.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Doxorubicin (DOX) is a widely utilized chemotherapeutic agent in clinical oncology for treating various cancers. However, its clinical use is constrained by its significant side effects. Among these, the development of cardiomyopathy, characterized by cardiac remodeling and eventual heart failure, stands as a major concern following DOX chemotherapy. In our current investigation, we have showcased the efficacy of MLN4924 in mitigating doxorubicin-induced cardiotoxicity through direct inhibition of the NEDD8-activating enzyme, NAE. MLN4924 demonstrated the ability to stabilize mitochondrial function post-doxorubicin treatment, diminish cardiomyocyte apoptosis, alleviate oxidative stress-induced damage in the myocardium, enhance cardiac contractile function, mitigate cardiac fibrosis, and impede cardiac remodeling associated with heart failure. At the mechanistic level, MLN4924 intervened in the neddylation process by inhibiting the NEDD8 activating enzyme, NAE, within the murine cardiac tissue subsequent to doxorubicin treatment. This intervention resulted in the suppression of NEDD8 protein expression, reduction in neddylation activity, and consequential manifestation of cardioprotective effects. Collectively, our findings posit MLN4924 as a potential therapeutic avenue for mitigating doxorubicin-induced cardiotoxicity by attenuating heightened neddylation activity through NAE inhibition, thereby offering a viable and promising treatment modality for afflicted patients.
Collapse
Affiliation(s)
- Kang Hui Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Jian Min Sun
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Li Lin
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Jian Wen Liu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Xin Yue Liu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Guang Duo Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Hang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| | - Zhao Yang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
24
|
Tiwari V, Gupta P, Malladi N, Salgar S, Banerjee SK. Doxorubicin induces phosphorylation of lamin A/C and loss of nuclear membrane integrity: A novel mechanism of cardiotoxicity. Free Radic Biol Med 2024; 218:94-104. [PMID: 38582228 DOI: 10.1016/j.freeradbiomed.2024.04.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 μM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.
Collapse
Affiliation(s)
- Vikas Tiwari
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Paras Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Navya Malladi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay Salgar
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay K Banerjee
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
25
|
Natesh J, Mondal P, Penta D, Mukhlis Y, Haware DJ, Meeran SM. Protective effect of diindolylmethane-enriched dietary cabbage against doxorubicin-induced cardiotoxicity in mice. J Appl Toxicol 2024; 44:874-891. [PMID: 38327044 DOI: 10.1002/jat.4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Chemotherapy with doxorubicin (Dox) can lead to cardiotoxic effects, presenting a major complication in cancer therapy. Diindolylmethane (DIM), derived from cruciferous vegetables like cabbage, exhibits numerous health benefits. However, its clinical application is limited because of low bioavailability and suboptimal natural concentrations in dietary sources. To address this limitation, we developed a processing methodology, specifically fermentation and boiling, to enhance DIM levels in cabbage. High-performance liquid chromatography (HPLC) analysis revealed a threefold DIM increase in fermented cabbage and a substantial ninefold increase in fermented-boiled cabbage compared to raw cabbage. To evaluate the clinical implications, we formulated a DIM-enriched diet and administered it to mice undergoing Dox treatment. Our in vivo results revealed that Dox treatment led to cardiotoxicity, manifested by changes in body and heart weight, increased mortality, and severe myocardial tissue degeneration. Dietary administration of the DIM-enriched diet enhanced antioxidant defenses and inhibited apoptosis in the cardiac tissue by interfering with mitoptosis and increasing antioxidant enzyme expression. Interestingly, we found that the DIM-enriched diet inhibited the nuclear translocation of NF-kB in cardiac tissue, thereby downregulating the expression of inflammatory mediators such as TNF-α and IL-6. Further, the DIM-enriched diet significantly reduced serum cardiac injury markers elevated by Dox treatment. These results suggest that the DIM-enriched cabbage diet can serve as a complementary dietary intervention for cancer patients undergoing chemotherapy. Further, our research highlights the role of plant-based diets in reducing treatment side effects and improving the quality of life for cancer patients.
Collapse
Affiliation(s)
- Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yahya Mukhlis
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Jaganath Haware
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Food Safety & Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
26
|
Drinković N, Beus M, Barbir R, Debeljak Ž, Tariba Lovaković B, Kalčec N, Ćurlin M, Bekavac A, Gorup D, Mamić I, Mandić D, Micek V, Turčić P, Günday-Türeli N, Türeli E, Vinković Vrček I. Novel PLGA-based nanoformulation decreases doxorubicin-induced cardiotoxicity. NANOSCALE 2024; 16:9412-9425. [PMID: 38650478 DOI: 10.1039/d3nr06269d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.
Collapse
Affiliation(s)
| | - Maja Beus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Željko Debeljak
- JJ Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | | | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Ana Bekavac
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Dunja Gorup
- Department of Neuroradiology, Klinik für Neuroradiology, Universitätspital Zürich Universitätsspital Zürich, 8006 Zürich, Switzerland
| | - Ivan Mamić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Petra Turčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | | | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
- University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
27
|
Kong Y, Wei X, Zhang D, Lin H, Peng M, Shang H. Prevention and treatment of anthracycline-induced cardiotoxicity: A bibliometric analysis of the years 2000-2023. Heliyon 2024; 10:e29926. [PMID: 38698971 PMCID: PMC11064157 DOI: 10.1016/j.heliyon.2024.e29926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Aims This study aimed to evaluate the global research trend in the prevention and treatment of cardiotoxicity caused by anthracyclines from 2000 to 2023, and to explore international cooperation, research hotspots, and frontier trends. Methods The articles on the prevention and treatment of anthracycline-induced cardiotoxicity published from 2000 to 2023 were searched by Web of Science. The bibliometrics software CiteSpace was used for visual analysis of countries, institutions, journals, authors, cited authors, cited references, and keywords. Results This study analyzed the current status of global research on the prevention and treatment of cardiotoxicity caused by anthracyclines. A total of 3,669 papers were searched and 851 studies were included. The number of publications increased gradually throughout the years. Cardiovascular Toxicology (15) is the journal with the most publications. Circulation (547) ranked first among cited journals. In this field, the country with the most publications is the United States (229), and the institution with the most publications is Charles Univ Prague (18). In the analysis of the authors, Tomas S (10) ranked first. Cardinale D (262) ranked first among cited authors. In the ranking of cited literature frequency, the article ranked first is "Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy" (121). The keywords "heart failure" (215) and "oxidative stress" (212) were the most frequent. "Enalapril", "inflammation", "cell death", "NF-κB" and "Nrf2" were the advanced research contents in 2019-2023. Conclusions This study provided valuable information for cardio-oncology researchers to identify potential collaborators and institutions, discover hot topics, and explore new research directions. The prevention and treatment of anthracycline-induced cardiotoxicity focuses on early detection and timely treatment. The results of the current clinical studies on the treatment of anthracycline-induced cardiotoxicity are contradictory, and more studies are needed to provide more reliable clinical evidence in the future.
Collapse
Affiliation(s)
- Yifan Kong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Di Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongyuan Lin
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | | | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Weifang Medical University, Weifang, China
| |
Collapse
|
28
|
Domínguez Romero Y, Montoya Ortiz G, Novoa Herrán S, Osorio Mendez J, Gomez Grosso LA. miRNA Expression Profiles in Isolated Ventricular Cardiomyocytes: Insights into Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2024; 25:5272. [PMID: 38791311 PMCID: PMC11121573 DOI: 10.3390/ijms25105272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3β. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3β molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.
Collapse
Affiliation(s)
- Yohana Domínguez Romero
- Doctorate in Biotechnology Program, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Gladis Montoya Ortiz
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Susana Novoa Herrán
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Jhon Osorio Mendez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
- Master in Biochemistry Program, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Luis A. Gomez Grosso
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
29
|
García-Fleitas J, García-Fernández A, Martí-Centelles V, Sancenón F, Bernardos A, Martínez-Máñez R. Chemical Strategies for the Detection and Elimination of Senescent Cells. Acc Chem Res 2024; 57:1238-1253. [PMID: 38604701 PMCID: PMC11079973 DOI: 10.1021/acs.accounts.3c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Cellular senescence can be defined as an irreversible stopping of cell proliferation that arises in response to various stress signals. Cellular senescence is involved in diverse physiological and pathological processes in different tissues, exerting effects on processes as differentiated as embryogenesis, tissue repair and remodeling, cancer, aging, and tissue fibrosis. In addition, the development of some pathologies, aging, cancer, and other age-related diseases has been related to senescent cell accumulation. Due to the complexity of the senescence phenotype, targeting senescent cells is not trivial, is challenging, and is especially relevant for in vivo detection in age-related diseases and tissue samples. Despite the elimination of senescent cells (senolysis) using specific drugs (senolytics) that have been shown to be effective in numerous preclinical disease models, the clinical translation is still limited due to the off-target effects of current senolytics and associated toxicities. Therefore, the development of new chemical strategies aimed at detecting and eliminating senescent cells for the prevention and selective treatment of senescence-associated diseases is of great interest. Such strategies not only will contribute to a deeper understanding of this rapidly evolving field but also will delineate and inspire new possibilities for future research.In this Account, we report our recent research in the development of new chemical approaches for the detection and elimination of senescent cells based on new probes, nanoparticles, and prodrugs. The designed systems take advantage of the over-representation in senescent cells of certain biomarkers such as β-galactosidase and lipofuscin. One- and two-photon probes, for higher tissue penetration, have been developed. Moreover, we also present a renal clearable fluorogenic probe for the in vivo detection of the β-galactosidase activity, allowing for correlation with the senescent burden in living animals. Moreover, as an alternative to molecular-based probes, we also developed nanoparticles for senescence detection. Besides, we describe advances in new therapeutic agents to selectively eradicate senescent cells using β-galactosidase activity-sensitive gated nanoparticles loaded with cytotoxic or senolytic agents or new prodrugs aiming to increase the selectivity and reduction of off-target toxicities of current drugs. Moreover, new advances therapies have been applied in vitro and in vivo. Studies with the probes, nanoparticles, and prodrugs have been applied in several in vitro and in vivo models of cancer, fibrosis, aging, and drug-induced cardiotoxicity in which senescence plays an important role. We discuss the benefits of these chemical strategies toward the development of more specific and sophisticated probes, nanoparticles, and prodrugs targeting senescent cells.
Collapse
Affiliation(s)
- Jessie García-Fleitas
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
| | - Alba García-Fernández
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat
Politècnica de València, Instituto
de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| | - Andrea Bernardos
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Camino de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/Eduardo Primo Yúfera 3, 46100 Valencia, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat
Politècnica de València, Instituto
de Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026 Valencia, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino
de Vera s/n, 46022 València, Spain
| |
Collapse
|
30
|
Alves de Souza RW, Voltarelli V, Gallo D, Shankar S, Tift MS, Young M, Gomperts E, Gomperts A, Otterbein LE. Beneficial Effects of Oral Carbon Monoxide on Doxorubicin-Induced Cardiotoxicity. J Am Heart Assoc 2024; 13:e032067. [PMID: 38700010 PMCID: PMC11179858 DOI: 10.1161/jaha.123.032067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 05/05/2024]
Abstract
BACKGROUND Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.
Collapse
Affiliation(s)
| | - Vanessa Voltarelli
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - David Gallo
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - Sidharth Shankar
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| | - Michael S. Tift
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNCUSA
| | - Mark Young
- Hillhurst Biopharmaceuticals, lncMontroseCAUSA
| | | | | | - Leo E. Otterbein
- Department of SurgeryBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
31
|
Song YH, Cho HM, Ryu YC, Hwang BH, Seo JH. Electrosprayable Levan-Coated Nanoclusters and Ultrasound-Responsive Drug Delivery for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21509-21521. [PMID: 38642038 DOI: 10.1021/acsami.3c18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.
Collapse
Affiliation(s)
- Young Hoon Song
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hye Min Cho
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, South Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
32
|
Li W, Cao J, Zhang Y, Ling G, Tan N, Wei Y, Zhang Y, Wang X, Qian W, Jiang J, Zhang J, Wang W, Wang Y. Aucubin alleviates doxorubicin-induced cardiotoxicity through crosstalk between NRF2 and HIPK2 mediating autophagy and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155473. [PMID: 38422972 DOI: 10.1016/j.phymed.2024.155473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is widely used for the treatment of a variety of cancers. However, its clinical application is limited by dose-dependent cardiotoxicity. Recent findings demonstrated that autophagy inhibition and apoptosis of cardiomyocytes induced by oxidative stress dominate the pathophysiology of DOX-induced cardiotoxicity (DIC), however, there are no potential molecules targeting on these. PURPOSE This study aimed to explore whether aucubin (AU) acting on inimitable crosstalk between NRF2 and HIPK2 mediated the autophagy, oxidative stress, and apoptosis in DIC, and provide a new and alternative strategy for the treatment of DIC. METHODS AND RESULTS We first demonstrated the protection of AU on cardiac structure and function in DIC mice manifested by increased EF and FS values, decreased serum CK-MB and LDH contents and well-aligned cardiac tissue in HE staining. Furthermore, AU alleviated DOX-induced myocardial oxidative stress, mitochondrial damage, apoptosis, and autophagy flux dysregulation in mice, as measured by decreased ROS, 8-OHdG, and TUNEL-positive cells in myocardial tissue, increased SOD and decreased MDA in serum, aligned mitochondria with reduced vacuoles, and increased autophagosomes. In vitro, AU alleviated DOX-induced oxidative stress, autophagy inhibition, and apoptosis by promoting NRF2 and HIPK2 expression. We also identified crosstalk between NRF2 and HIPK2 in DIC as documented by overexpression of NRF2 or HIPK2 reversed cellular oxidative stress, autophagy blocking, and apoptosis aggravated by HIPK2 or NRF2 siRNA, respectively. Simultaneously, AU promoted the expression and nuclear localization of NRF2 protein, which was reversed by HIPK2 siRNA, and AU raised the expression of HIPK2 protein as well, which was reversed by NRF2 siRNA. Crucially, AU did not affect the antitumor activity of DOX against MCF-7 and HepG2 cells, which made up for the shortcomings of previous anti-DIC drugs. CONCLUSION These collective results innovatively documented that AU regulated the unique crosstalk between NRF2 and HIPK2 to coordinate oxidative stress, autophagy, and apoptosis against DIC without compromising the anti-tumor effect of DOX in vitro.
Collapse
Affiliation(s)
- Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Weina Qian
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingmei Zhang
- School of Life Sciences, Tsinghua University, Beijing 100029, China
| | - Wei Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
33
|
Todorova VK, Bauer MA, Azhar G, Wei JY. RNA sequencing of formalin fixed paraffin-embedded heart tissue provides transcriptomic information about chemotherapy-induced cardiotoxicity. Pathol Res Pract 2024; 257:155309. [PMID: 38678848 DOI: 10.1016/j.prp.2024.155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Gene expression of formalin-fixed paraffin-embedded (FFPE) tissue may serve for molecular studies on cardiovascular diseases. Chemotherapeutics, such as doxorubicin (DOX) may cause heart injury, but the mechanisms of these side effects of DOX are not well understood. This study aimed to investigate whether DOX-induced gene expression in archival FFPE heart tissue in experimental rats would correlate with the gene expression in fresh-frozen heart tissue by applying RNA sequencing technology. The results showed RNA from FFPE samples was degraded, resulting in a lower number of uniquely mapped reads. However, DOX-induced differentially expressed genes in FFPE were related to molecular mechanisms of DOX-induced cardiotoxicity, such as inflammation, calcium binding, endothelial dysfunction, senescence, and cardiac hypertrophy signaling. Our data suggest that, despite the limitations, RNA sequencing of archival FFPE heart tissue supports utilizing FFPE tissues from retrospective studies on cardiovascular disorders, including DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Valentina K Todorova
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Michael A Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gohar Azhar
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
34
|
Legault EP, Ribeiro PAB, Petrenyov DR, Drumeva GO, Leduc C, Khullar S, DaSilva JN, Comtois AS, Tournoux FB. Effect of acute high-intensity interval exercise on a mouse model of doxorubicin-induced cardiotoxicity: a pilot study. BMC Sports Sci Med Rehabil 2024; 16:95. [PMID: 38671464 PMCID: PMC11046902 DOI: 10.1186/s13102-024-00881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND It is unknown whether high-intensity interval exercise (HIIE) may potentiate or attenuate the cardiotoxic effect of chemotherapy agents such as doxorubicin (DOX) when performed shortly after treatment. The study aimed to investigate the effect of acute HIIE on cardiac function and structure performed either 1, 2 or 3 days after DOX injection in an animal model. METHODS Female C57bl/6 mice (n = 28), 70 days old, received a bolus 20 mg/kg intravenous tail vein DOX injection. Three exercise groups performed 1 HIIE session (16 sets of 1 min at 85-90% of peak running speed) at 1 (n = 7), 2 (n = 7), and 3 days (n = 8) following the DOX injection. A sedentary (SED) group of mice (n = 6) did not exercise. Animals underwent echocardiography under light anesthesia (isoflurane 0.5-1%) before and 7 days after the DOX injection. Animals were sacrificed on day 9 and hearts were collected for morphometric and histological analysis. RESULTS Animals exercising on day 3 had the smallest pre-post reduction in left ventricular fractional shortening (LVFS) (MΔ= -1.7 ± 3.3; p = 0.406) and the SED group had the largest reduction (MΔ=-6.8 ± 7.5; p = 0.009). After reclassification of animals according to their exercise compliance (performing > 8/16 of high-intensity bouts), LVFS in compliant mice was unchanged over time (LVFS MΔ= -1.3 ± 5.6; p = 0.396) while non-compliant animals had a LVFS reduction similar to sedentary animals. There were no significant differences in myocardial histology between groups. CONCLUSIONS In this pilot murine study, one single HIIE session did not exacerbate acute doxorubicin-induced cardiotoxicity. The timing of the HIIE session following DOX injection and the level of compliance to exercise could influence the negative impact of DOX on cardiac function.
Collapse
Affiliation(s)
- Elise P Legault
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada.
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Paula A B Ribeiro
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Daniil R Petrenyov
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Gergana O Drumeva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Charles Leduc
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Sharmila Khullar
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Alain Steve Comtois
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François B Tournoux
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Service de Cardiologie du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
35
|
Chen Z, Li Z, Xu R, Xie Y, Li D, Zhao Y. Design, Synthesis, and In Vivo Evaluation of Isosteviol Derivatives as New SIRT3 Activators with Highly Potent Cardioprotective Effects. J Med Chem 2024; 67:6749-6768. [PMID: 38572607 DOI: 10.1021/acs.jmedchem.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs) persist as the predominant cause of mortality, urging the exploration of innovative pharmaceuticals. Mitochondrial dysfunction stands as a pivotal contributor to CVDs development. Sirtuin 3 (SIRT3), a prominent mitochondrial deacetylase known for its crucial role in protecting mitochondria against damage and dysfunction, has emerged as a promising therapeutic target for CVDs treatment. Utilizing isosteviol, a natural ent-beyerene diterpenoid, 24 derivatives were synthesized and evaluated in vivo using a zebrafish model, establishing a deduced structure-activity relationship. Among these, derivative 5v exhibited significant efficacy in doxorubicin-induced cardiomyopathy in zebrafish and murine models. Subsequent investigations revealed that 5v selectively elevated SIRT3 expression, leading to the upregulation of SOD2 and OPA1 expression, effectively preventing mitochondrial dysfunction, mitigating oxidative stress, and preserving cardiomyocyte viability. As a novel structural class of SIRT3 activators with robust therapeutic effects, 5v emerges as a promising candidate for further drug development.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyin Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruilong Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yufeng Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Dehuai Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
36
|
Birdal O, Ferah Okkay I, Okkay U, Bayram C, Mokthare B, Ertugrul MS, Hacimuftuoglu A, Aksakal E, Koza Y, Saygi M, Senocak H. Protective effects of arbutin against doxorubicin-induced cardiac damage. Mol Biol Rep 2024; 51:532. [PMID: 38637360 DOI: 10.1007/s11033-024-09488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1β and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1β levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.
Collapse
Affiliation(s)
- Oguzhan Birdal
- Department of Cardiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25100, Turkey.
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Behzad Mokthare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | | | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, 25100, Turkey
| | - Emrah Aksakal
- Department of Cardiology, Erzurum State Hospital, Erzurum, Turkey
| | - Yavuzer Koza
- Department of Cardiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Saygi
- Department of Cardiology, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Huseyin Senocak
- Department of Cardiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
37
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
38
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
39
|
Erfu C, Li L, Weiting Q, Tao C, Liwei M, Hemin Y, Junkun L. Matrine attenuating cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity through improved mitochondrial membrane potential and activation of mitochondrial respiratory chain Complex I pathway. Biomed Pharmacother 2024; 173:116464. [PMID: 38503242 DOI: 10.1016/j.biopha.2024.116464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The study aimed to demonstrate that matrine can reduce apoptosis in H9c2 cells induced by the cardiotoxic anticancer drug doxorubicin (DOX).The researchers pretreated H9c2 cells with different concentrations of matrine before exposing them to DOX and cultured them for 24 h. They assessed cell survival rates using cell counting kit-8 and MTT assay. Hoechst 33258 dye kits were used to determine apoptosis, while laser confocal JC-1 method was applied to test the mitochondrial membrane potential (MMP). Complex I activities were detected following the manufacturer's protocol. The results indicated that matrine pretreatment significantly increased the survival rate of H9c2 cells injured by DOX. Additionally, matrine reduced apoptosis in H9c2 cells through the improvement of MMP and activity of Complex I, which were damaged by DOX.
Collapse
Affiliation(s)
- Chu Erfu
- Department of Cardiology, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical College, Heilongjiang, China.
| | - Liu Li
- Department of Cardiology, First Traditional Medicine Hospital of Zhanjiang, Guangzhou University of Chinese Medicine, Guangdong, 524043, China
| | - Qu Weiting
- Department of Anesthesiology, Qiqihar Jianhua Hospital, Heilongjiang, China
| | - Chi Tao
- Department of Central Lab, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical College, Heilongjiang, China
| | - Ma Liwei
- Department of Institute of Medine & Pharmacy, Qiqihaer Medical College, Heilongjiang, China
| | - Yang Hemin
- Department of Central Lab, Third Affiliated Hospital of Qiqihar Medical College, Qiqihar Medical College, Heilongjiang, China
| | - Lu Junkun
- Department of Cardiology, First Traditional Medicine Hospital of Zhanjiang, Guangzhou University of Chinese Medicine, Guangdong, 524043, China.
| |
Collapse
|
40
|
Chen J, Xu X, Shao Y, Bian X, Li R, Zhang Y, Xiao Y, Lu M, Jiang Q, Zeng Y, Yan F, Ye J, Li Z. AKT2 deficiency alleviates doxorubicin-induced cardiac injury via alleviating oxidative stress in cardiomyocytes. Int J Biochem Cell Biol 2024; 169:106539. [PMID: 38290690 DOI: 10.1016/j.biocel.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Doxorubicin (DOX), a widely used chemotherapy agent in cancer treatment, encounters limitations in clinical efficacy due to associated cardiotoxicity. This study aims to explore the role of AKT serine/threonine kinase 2 (AKT2) in mitigating DOX-induced oxidative stress within the heart through both intracellular and extracellular signaling pathways. Utilizing Akt2 knockout (KO) and Nrf2 KO murine models, alongside neonatal rat cardiomyocytes (NRCMs), we systematically investigate the impact of AKT2 deficiency on DOX-induced cardiac injury. Our findings reveal that DOX administration induces significant oxidative stress, a primary contributor to cardiac injury. Importantly, Akt2 deficiency exhibits a protective effect by alleviating DOX-induced oxidative stress. Mechanistically, Akt2 deficiency facilitates nuclear translocation of NRF2, thereby suppressing intracellular oxidative stress by promoting the expression of antioxidant genes. Furthermore, We also observed that AKT2 inhibition facilitates superoxide dismutase 2 (SOD2) expression both inside macrophages and SOD2 secretion to the extracellular matrix, which is involved in lowering oxidative stress in cardiomyocytes upon DOX stimulation. The present study underscores the important role of AKT2 in mitigating DOX-induced oxidative stress through both intracellular and extracellular signaling pathways. Additionally, our findings propose promising therapeutic strategies for addressing DOX-induced cardiomyopathy in clinic.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuru Shao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yubin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Zeng
- Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
41
|
Zhang H, Pan J, Huang S, Chen X, Chang ACY, Wang C, Zhang J, Zhang H. Hydrogen sulfide protects cardiomyocytes from doxorubicin-induced ferroptosis through the SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2 activation. Redox Biol 2024; 70:103066. [PMID: 38359744 PMCID: PMC10877437 DOI: 10.1016/j.redox.2024.103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Recent studies have demonstrated that ferroptosis, a novel form of nonapoptotic regulated cell death plays an important role in doxorubicin (DOX)-induced cardiotoxicity (DoIC). Hydrogen sulfide (H2S) is emerging as the third important gaseous mediator in cardiovascular system. However, whether H2S has an effect on DOX-induced ferroptosis remains unknown. Here, we found that DOX not only triggered cardiomyocyte ferroptosis but also significantly inhibited the synthesis of endogenous H2S in the murine model of chronic DoIC. Application of NaHS, an H2S donor obviously activated the SLC7A11/GSH/GPx4 antioxidant pathway and thus alleviated DOX-induced ferroptosis and cardiac injury in mice. In contrast, cardiac-specific knockout of cystathionine γ-lyase gene (Cse) in mice (Csef/f/Cre+) to abolish the cardiac synthesis of endogenous H2S evidently exacerbated DOX-induced ferroptosis and cardiac dysfunction. A further suppression of SLC7A11/GSH/GPx4 pathway was obtained in Csef/f/Cre+ mice with DoIC, as compared to Csef/f/Cre- mice with DoIC. The aggravation caused by cardiac-specific Cse deficiency was remarkably rescued by exogenous supplementation of NaHS. Moreover, in DOX-stimulated H9c2 cardiomyocytes, pretreatment with NaHS dose-dependently enhanced the activity of SLC7A11/GSH/GPx4 pathway and subsequently mitigated ferroptosis and mitochondrial impairment. On the contrary, transfection with Cse siRNA in DOX-stimulated H9c2 cardiomyocytes markedly inhibited SLC7A11/GSH/GPx4 pathway, thus leading to aggravated ferroptosis and more damage to mitochondrial structure and function. In addition, the protective effect of NaHS on DOX-induced ferroptosis was closely related to the S-sulfhydrated Keap1, which in turn promoted nuclear translocation of Nrf2 and the transcription of SLC7A11 and GPx4. In conclusion, our findings suggest that H2S may exert protective effect on DoIC by inhibiting DOX-induced ferroptosis via Keap1/Nrf2-dependent SLC7A11/GSH/GPx4 antioxidant pathway.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huili Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
42
|
Zhu P, Ren Q, Zhang R, Zhang L, Xia X, Zheng C, Ye T. Exploring the effects of calycosin on anthracycline-induced cardiotoxicity: a network pharmacology, molecular docking, and experimental study. Front Cardiovasc Med 2024; 11:1286620. [PMID: 38576421 PMCID: PMC10991710 DOI: 10.3389/fcvm.2024.1286620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Chemotherapy with anthracyclines can cause cardiotoxicity, possibly leading to stopping treatment in some cancer patients. In cardio-oncology research, preventing and minimizing anthracycline-induced cardiotoxicity (AIC) is a hot issue. For the treatment of AIC, calycosin (CA), an isoflavone component in astragali radix (AR), has become a research focus. However, the elaborate mechanisms of calycosin treating AIC remain to be unrevealed. Aim of the study To explore the effects of CA on AIC through multiple dimensions concerning network pharmacology, molecular docking, and experimental evaluations. Methods The study evaluated calycosin's potential targets and mechanisms for treating AIC using network pharmacology and molecular docking. The candidate genes/targets of CA and AIC were screened using the online-available database. Protein-protein interactions (PPI) between the common targets were constructed using the STRING platform, and the results were then visualized using Cytoscape. Molecular docking was used to evaluate the strength of the binding force between CA and the common targets. The possible pharmacological mechanisms of CA were explained by pathway enrichment and GSEA. Subsequently, the candidate targets were identified in vitro experiments. Results Network pharmacology effectively discovered the CA's multitarget intervention in AIC, including TNF, ABCC1, TOP2A, ABCB1, and XDH. CA binds to the ATP-binding cassette subfamily B member 1(ABCB1) had the highest binding energy (-7.5 kcal/mol) according to the molecular docking analysis and was selected and visualized for subsequent analysis. In vitro experiments showed that ABCB1 exhibited significant time-curve changes under different doses of doxorubicin (DOX) compared with DMSO control experiments. The anti-AIC pharmacological mechanism of CA were revealed by highlighting the biological processes of oxidative stress (OR) and inflammation. Conclusions We employed a practicable bioinformatics method to connect network and molecular docking to determine the calycosin's therapeutic mechanism against AIC and identified some bioinformatics results in in vitro experiments. The results presented show that CA may represent an encouraging treatment for AIC.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, China
| | - Qianqian Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ruizhi Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Licai Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianhe Ye
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
43
|
Shati AA, Eid RA, El-kott AF, Alqahtani YA, Shatoor AS, Ahmed Zaki MS. Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative Stress, preventing inflammation and apoptosis: Ultrastructural and computational approaches. Heliyon 2024; 10:e27164. [PMID: 38468941 PMCID: PMC10926088 DOI: 10.1016/j.heliyon.2024.e27164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Currently, doxorubicin (DOX) is one of the medications commonly used in chemotherapy to treat different types of tumors.Nonetheless, despite being effective in multiple tumors, yet its use is limited owing to its cytotoxic effects, the therapeutic use of DOX has been limited. This work aimed to explore whether curcumin (CMN) can prevents DOX-induced cardiotoxicity in rats. Four groups of rats were created, with the first functioning as a control, while the second group received CMN. DOX alone was administered to the third group, whereas CMN and DOX were administered to the fourth group. Lipid peroxidation assessed as Malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), oxidative stress markers as catalase (CAT), superoxide dismutase (SOD), and inflammatory markers as tumor necrosis factor-alpha (TNF-α) in heart homogenates, each one was assessed. Heart specimens was investigated histologically and ultrastructurally. Increased, AST, and ALT serum levels, increased MDA levels, decreased SOD and CAT levels, and increased TNF-α concentrations in heart homogenates were all signs of DOX-induced myocardial injury. Histological and ultrastructural examinations revealed vacuoles and larger, swollen mitochondria in the cytoplasm. Furthermore, DOX caused significant changes in the myocardium, most notably nuclei disintegration, myofibrillar loss, and myocyte vacuolization. Using CMN with DOX reduced the harmful consequences of DOX on the myocardium by returning the increased AST and ALT levels to their original levels as compared to the control and reducing them. In cardiac tissue, CMN significantly increased the concentrations of SOD and CAT and significantly decreased the concentrations of MDA and TNF-α. Biochemical and histological studies have demonstrated that CMN has a heart-protective effect that might be related to its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Attalla F. El-kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah S. Shatoor
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
44
|
Wang J, Liu S, Meng X, Zhao X, Wang T, Lei Z, Lehmann HI, Li G, Alcaide P, Bei Y, Xiao J. Exercise Inhibits Doxorubicin-Induced Cardiotoxicity via Regulating B Cells. Circ Res 2024; 134:550-568. [PMID: 38323433 PMCID: PMC11233173 DOI: 10.1161/circresaha.123.323346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to μMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to μMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Shuqin Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Zhiyong Lei
- CDL Research (Z.L.)
- Department of Cardiology, Laboratory of Experimental Cardiology (Z.L.)
- UMC Utrecht Regenerative Medicine Center (Z.L.)
- University Medical Center, Utrecht University, the Netherlands (Z.L.)
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA (H.I.L., G.L.)
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA (H.I.L., G.L.)
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (P.A.)
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education) (J.W., S.L., T.W., Y.B., J.X.), Shanghai University, China
- Cardiac Regeneration and Ageing Laboratory, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine (J.W., S.L., X.M., X.Z., T.W., Y.B., J.X.), Shanghai University, China
| |
Collapse
|
45
|
Zhu S, Li X, Luo Z, Ding M, Shi S, Zhang T. Combined immunochemotherapy achieving targeted co-delivery of chlorogenic acid and doxorubicin by sialic acid-modified liposomes enhances anti-cancer efficacy. Drug Deliv Transl Res 2024; 14:718-729. [PMID: 37679600 DOI: 10.1007/s13346-023-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Malignant melanoma is a high-grade aggressive skin tumor with an increasing incidence and mortality rates worldwide. Chemotherapeutic drugs such as doxorubicin have limited efficacy against melanoma due to their poor sensitivity, severe side effects, and drug resistance. Recent studies have shown that combinations of immunotherapy and chemotherapy have a synergistic effect in enhancing the anti-tumor effect. Here, we have developed liposomes co-loaded with chlorogenic acid (CA) and doxorubicin (DOX), modified with sialic acid-octadecylamine conjugate (SA-ODA), designated CA-DOX-SAL, that facilitate drug delivery by recognizing Siglec-1 receptor on TAMs. The physicochemical studies revealed the particle size and zeta potential of CA-DOX-SAL as 128.3 ± 0.8 nm and - 4.33 ± 0.50 mV, respectively. In vitro, CA-DOX-SAL demonstrated robust cellular uptake through SA receptor-mediated tumor-associated macrophages (TAM) targeting and exerted greater cytotoxicity on tumor cells. In vivo, targeted liposomes were found to accumulate in the tumor area, leading to an improvement in anti-tumor efficacy. In addition, CA-DOX-SAL effectively inhibited B16F10 melanoma tumor growth by stimulating the transition from tumor-promoting M2-type to anti-tumor M1-type and directly killing tumor cells. Overall, the co-delivery of immunomodulatory CA and chemotherapeutic DOX presents a promising therapeutic strategy to enhance clinical outcomes in the treatment of melanoma.
Collapse
Affiliation(s)
- Shunyao Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xixi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ziyi Luo
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310018, China
| | - Meihong Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Senlin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
46
|
Myat YY, Sahatsapan N, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Antibody-decorated chitosan-iodoacetamide-coated nanocarriers for the potential delivery of doxorubicin to breast cancer cells. Int J Biol Macromol 2024; 258:128797. [PMID: 38104687 DOI: 10.1016/j.ijbiomac.2023.128797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Using an active targeting approach of chemotherapeutics-loaded nanocarriers (NCs) with monoclonal antibodies is a potential strategy to improve the specificity of the delivery systems and reduce adverse reactions of chemotherapeutic drugs. Specific targeting of the human epidermal growth factor receptor-2 (HER-2), expressed excessively in HER-2-positive breast cancer cells, can be achieved by conjugating NCs with an anti-HER-2 monoclonal antibody. We constructed trastuzumab-conjugated chitosan iodoacetamide-coated NCs containing doxorubicin (Tras-Dox-CHI-IA-NCs) as a tumor-targeted drug delivery system, during the study. Chitosan-iodoacetamide (CHI-IA) was synthesized and utilized to prepare trastuzumab-conjugated NCs (Tras-NCs). The morphology, physicochemical properties, drug loading, drug release, and biological activities of the NCs were elucidated. The Tras-NCs were spherical, with a particle size of approximately 76 nm, and had a positive zeta potential; after incorporating the drug, the size of the Tras-NC increased. A prolonged, 24-h drug release from the NCs was achieved. The Tras-NCs exhibited high cellular accumulation and significantly higher antitumor activity against HER-2-positive breast cancer cells than the unconjugated NCs and the drug solution. Therefore, Tras-Dox-CHI-IA-NCs could be a promising nanocarrier for HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Yin Yin Myat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nitjawan Sahatsapan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
47
|
Matthews ER, Johnson OD, Horn KJ, Gutiérrez JA, Powell SR, Ward MC. Anthracyclines induce cardiotoxicity through a shared gene expression response signature. PLoS Genet 2024; 20:e1011164. [PMID: 38416769 PMCID: PMC10927150 DOI: 10.1371/journal.pgen.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024] Open
Abstract
TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines (AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone Mitoxantrone (MTX). It is unclear whether women would experience the same adverse effects from all drugs in this class, or if specific drugs would be preferable for certain individuals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab (TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i induce cell death at concentrations observed in cancer patient serum, while TRZ does not. A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression changes over time, giving rise to four distinct gene expression response signatures, denoted as TOP2i early-acute, early-sustained, and late response genes, and non-response genes. There is no drug- or AC-specific signature. TOP2i early response genes are enriched in chromatin regulators, which mediate AC sensitivity across breast cancer patients. However, there is increased transcriptional variability between individuals following AC treatments. To investigate potential genetic effects on response variability, we first identified a reported set of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next, we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of the genes that respond to at least one TOP2i, respond to all ACs with the same direction of effect. Our data demonstrate that TOP2i induce thousands of shared gene expression changes in cardiomyocytes, including genes near SNPs associated with inter-individual variation in response to DOX treatment and AC-induced cardiotoxicity.
Collapse
Affiliation(s)
- E. Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar D. Johnson
- Biochemistry, Cellular and Molecular Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kandace J. Horn
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - José A. Gutiérrez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simon R. Powell
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle C. Ward
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
48
|
Zhang J, Li W, Xue S, Gao P, Wang H, Chen H, Hong Y, Sun Q, Lu L, Wang Y, Wang Q. Qishen granule attenuates doxorubicin-induced cardiotoxicity by protecting mitochondrial function and reducing oxidative stress through regulation of Sirtuin3. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117134. [PMID: 37714227 DOI: 10.1016/j.jep.2023.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Doxorubicin (DOX) is one of the most potent chemotherapy drugs available today. However, the adverse effect of cardiotoxicity limits its clinical application. New approaches are being investigated for the treatment of doxorubicin-induced cardiotoxicity (DIC). Doxorubicin is enriched in mitochondria and it could induce imbalance of protein modification, including acetylation of mitochondria proteins, thereby inducing DIC. Restoration of mitochondria function is an effective way to attenuate DIC. The formula for traditional Chinese medicine Granules of Qishen (QSG) was derived from the classic formula "Zhen-Wu-Tang" which has been extensively used in the treatment of myocardial infarction. It consists of six traditional Chinese medicines, including Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao (Fabaceae), Salvia miltiorrhiza Bunge (Lamiaceae), Lonicera japonica Thunb. (Caprifoliaceae), Aconitum carmichaelii Debeaux (Ranunculaceae), Scrophularia ningpoensis Hemsl. (Scrophulariaceae), and Glycyrrhiza uralensis Fisch. (Fabaceae). QSG is a potential anti-DIC formula. A better understanding of the effectiveness and pharmacological mechanisms of QSG will aid in the prevention and treatment of DIC. AIM OF THE STUDY The purpose of this research was to explore the effectiveness of QSG in the treatment of DIC and to explore whether QSG could protect mitochondrial function and reduce oxidative damage by activating Sirtuin3(SIRT3)/Acetylated-superoxide dismutase 2(Ac-SOD2) signaling pathway. MATERIALS AND METHODS DOX was injected into mice through the tail vein to construct a mouse model of DOX-induced cardiotoxicity to explore the therapeutic effect of QSG in animals. Meanwhile, the H9C2 cell model was used to study the mechanism of QSG. The cardiac function was evaluated by echocardiography, hematoxylin-eosin (H&E) staining and measurement of serum levels of creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH). Oxidative damage was evaluated by 2',7'-dichlorodihydro fluorescein diacetate (DCFH-DA) staining and Mito-SOX Red staining. Levels of total superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured by following the instructions of commercially available kits. In order to detect the changes in mitochondrial membrane potential, cells were stained using the mitochondrial membrane potential detection kit (JC-1). Western blot analysis was applied to detect protein expressions of SIRT3, Ac-SOD2, Acetylation Lysine (Ac-Lys), Bax and Bcl-2. H9C2 cells were treated with SIRT3 inhibitor, in order to determine if QSG had effects via the SIRT3/Ac-SOD2 pathway. RESULTS In vivo studies showed that QSG ameliorated doxorubicin-induced damage of cardiac function in DIC mice model. The ejection fraction (EF) and fractional shortening (FS) were all up-regulated by QSG treatment. QSG decreased MDA levels and increased SOD activity. Meanwhile, doxorubicin induced high level of protein acetylation and QSG restored the acetylated protein back to normal levels. In particular, QSG upregulated expression of SIRT3 and downregulated Ac-SOD level. In vitro study demonstrated that QSG restored mitochondrial membrane potential, increased ATP level and reduced mitochondrial ROS production. When H9C2 cells were co-incubated with SIRT3 inhibitor, the efficacies of QSG on mitochondrial function were abrogated. Meanwhile, the regulative effects of QSG on SIRT3/Ac-SOD2 pathway were also abolished. CONCLUSION This study demonstrates that QSG is effective in treating DIC. QSG ameliorates oxidative damage and protects mitochondrial function partly by restoring protein acetylation level and by activating the SIRT3/Ac-SOD2 pathway.
Collapse
Affiliation(s)
- Jingmei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siming Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengrong Gao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiqin Hong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qianbin Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linghui Lu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China.
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China.
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
49
|
Abstract
Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.
Collapse
Affiliation(s)
- Romina B Cejas
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| | - Kateryna Petrykey
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
50
|
Manavi MA, Fathian Nasab MH, Mohammad Jafari R, Dehpour AR. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. J Chemother 2024:1-31. [PMID: 38179685 DOI: 10.1080/1120009x.2023.2300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Dose-limiting toxicities (DLTs) are severe adverse effects that define the maximum tolerated dose of a cancer drug. In addition to the specific mechanisms of each drug, common contributing factors include inflammation, apoptosis, ion imbalances, and tissue-specific enzyme deficiencies. Among various DLTs are bleomycin-induced pulmonary fibrosis, doxorubicin-induced cardiomyopathy, cisplatin-induced nephrotoxicity, methotrexate-induced hepatotoxicity, vincristine-induced neurotoxicity, paclitaxel-induced peripheral neuropathy, and irinotecan, which elicits severe diarrhea. Currently, specific treatments beyond dose reduction are lacking for most toxicities. Further research on cellular and molecular pathways is imperative to improve their management. This review synthesizes preclinical and clinical data on the pharmacological mechanisms underlying DLTs and explores possible treatment approaches. A comprehensive perspective reveals knowledge gaps and emphasizes the need for future studies to develop more targeted strategies for mitigating these dose-dependent adverse effects. This could allow the safer administration of fully efficacious doses to maximize patient survival.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|