1
|
Chen Q, Wang J, Sun L, Ba B, Shen D. Mechanism of Astragalus membranaceus (Huangqi, HQ) for treatment of heart failure based on network pharmacology and molecular docking. J Cell Mol Med 2024; 28:e18331. [PMID: 38780500 PMCID: PMC11114218 DOI: 10.1111/jcmm.18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, β-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, β-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1β, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan UniversityHubei Key Laboratory of CardiologyWuhanChina
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Wang
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Lihua Sun
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Bayinsilema Ba
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan UniversityHubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
2
|
Martins FL, Ribeiro-Silva JC, Nistala R, Girardi ACC. Bidirectional relation between dipeptidyl peptidase 4 and angiotensin II type I receptor signaling. Am J Physiol Cell Physiol 2024; 326:C1203-C1211. [PMID: 38581656 PMCID: PMC11193519 DOI: 10.1152/ajpcell.00734.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 04/08/2024]
Abstract
Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.
Collapse
Affiliation(s)
- Flavia L Martins
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
- Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Joao Carlos Ribeiro-Silva
- Department of Ophthalmology & Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
3
|
Zhang QQ, Chen QS, Feng F, Cao X, Chen XF, Zhang H. Benzoylaconitine: A promising ACE2-targeted agonist for enhancing cardiac function in heart failure. Free Radic Biol Med 2024; 214:206-218. [PMID: 38369076 DOI: 10.1016/j.freeradbiomed.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Benzoylaconitine is a natural product in the treatment of cardiovascular disease. However, its pharmacological effect, direct target protein, and molecular mechanisms for the treatment of heart failure are unclear. In this study, benzoylaconitine inhibited Ang II-induced cell hypertrophy and fibrosis in rat primary cardiomyocytes and rat fibroblasts, while attenuating cardiac function and cardiac remodeling in TAC mice. Using the limited proteolysis-mass spectrometry (LiP-MS) method, the angiotensin-converting enzyme 2 (ACE2) was confirmed as a direct binding target of benzoylaconitine for the treatment of heart failure. In ACE2-knockdown cells and ACE2-/- mice, benzoylaconitine failed to ameliorate cardiomyocyte hypertrophy, fibrosis, and heart failure. Online RNA-sequence analysis indicated p38/ERK-mediated mitochondrial reactive oxygen species (ROS) and nuclear factor kappa B (NF-κB) activation are the possible downstream molecular mechanisms for the effect of BAC-ACE2 interaction. Further studies in ACE2-knockdown cells and ACE2-/- mice suggested that benzoylaconitine targeted ACE2 to suppress p38/ERK-mediated mitochondrial ROS and NF-κB pathway activation. Our findings suggest that benzoylaconitine is a promising ACE2 agonist in regulating mitochondrial ROS release and inflammation activation to improve cardiac function in the treatment of heart failure.
Collapse
Affiliation(s)
- Qi-Qiang Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qing-Shan Chen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fei Feng
- School of Pharmacy, Naval Medical University (Second Military Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Xiang Cao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao-Fei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Hai Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Chandrasekar B, Mummidi S, DeMarco VG, Higashi Y. Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediators Inflamm 2023; 2023:6112301. [PMID: 37830075 PMCID: PMC10567511 DOI: 10.1155/2023/6112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.
Collapse
Affiliation(s)
- Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Srinivas Mummidi
- Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Vincent G. DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
5
|
Ma E, Wu C, Chen J, Wo D, Ren DN, Yan H, Peng L, Zhu W. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling. Biomed Pharmacother 2023; 165:115275. [PMID: 37541173 DOI: 10.1016/j.biopha.2023.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Pathological cardiac hypertrophy is a hallmark of various cardiovascular diseases (CVD) including chronic heart failure (HF) and an important target for the treatment of these diseases. Aberrant activation of Angiotensin II (Ang II)/AT1R signaling pathway is one of the main triggers of cardiac hypertrophy, which further gives rise to excessive inflammation that is mediated by the key transcription factor NF-κB. Resveratrol (REV) is a natural polyphenol with multiple anti-inflammatory and anti-oxidative effects, however the ability of REV in preventing Ang II-induced cardiac hypertrophy in combination with NF-κB signaling activation remains unclear. METHODS Murine models of cardiac hypertrophy was conducted via implantation of Ang II osmotic pumps. Primary neonatal rat cardiomyocyte and heart tissues were examined to determine the effect and underlying mechanism of REV in preventing Ang II-induced cardiac hypertrophy. RESULTS Administrations of REV significantly prevented Ang II-induced cardiac hypertrophy, as well as robustly attenuated Ang II-induced cardiac fibrosis, and cardiac dysfunction. Furthermore, REV not only directly prevented Ang II/AT1R signal transductions, but also prevented Ang II-induced expressions of pro-inflammatory cytokines and activation of NF-κB signaling pathway. CONCLUSIONS Our study provides important new mechanistic insight into the cardioprotective effects of REV in preventing Ang II-induced cardiac hypertrophy via inhibiting adverse NF-κB signaling activation. Our findings further suggest the therapeutic potential of REV as a promising drug for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- En Ma
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Celiang Wu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jinxiao Chen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hongwei Yan
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Clinical and Translational Research Center, Research Institute of Heart Failure Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Tongji University School of Medicine, Shanghai, China.
| | - Weidong Zhu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Yu L, Ren L, Dong L. BMAL1 plays a critical role in the protection against cardiac hypertrophy through autophagy in vitro. BMC Cardiovasc Disord 2022; 22:381. [PMID: 35996077 PMCID: PMC9396899 DOI: 10.1186/s12872-022-02822-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Heart disease could result from a malfunction in the core clock gene BMAL1, according to studies conducted on animals and humans in vitro and in vivo. However, in pathological conditions, the role of BMAL1 was not clear. In the present study, we identified a potential link between BMAL1 and cardiac hypertrophy. Methods Primary cultured neonatal rat cardiomyocytes were stimulated by Ang II. Cardiomyocytes immunofluorescence analysis was performed to observe the cell size. RT-PCR and Western blot were used to find out the gene and protein expression. Cell apoptosis was measured by TUNEL staining. The Elisa assay was performed which determine the release of cytokines led to the activation of cardiac fibro-blasts in cell-free supernatants. Furthermore, gain- and loss-of-function studies revealed that BMAL1 has an effect on Ang II-induced cardiac hypertrophy. Results We found that Ang II-induced cardiac hypertrophy as a result BMAL1 expression was reduced. However, overexpression of BMAL1 could prevent Ang II-induced hypertrophy. Additionally, although BMAL1 overexpression in hypertrophic cardiomyocytes could not prevent hypertrophy, it did reduce the apoptosis of hypertrophic cardiomyocytes after Ang II had induced it. In addition, BMAL1 knockdown did not aggravate Ang II-induced hypertrophy but accelerated its development. Finally, BMAL1 overexpression significantly resisted the effects of Ang II on oxidative stress, autophagy and, cardiac fibrosis in cardiomyocytes. Conclusions Our results showed that overexpression of BMAL1 effectively resisted cardiac hypertrophy induced by Ang II. Our findings provided a novel potential target for the treatment of cardiac hypertrophy. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02822-3.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Physical Education, Jiangsu Second Normal University, 6 Xinhe West Rd, Nanjing, 211200, Jiangsu, China.
| | - Lei Ren
- Institute of Physical Education, Jiangsu Second Normal University, 6 Xinhe West Rd, Nanjing, 211200, Jiangsu, China
| | - Linchang Dong
- Institute of Physical Education, Jiangsu Second Normal University, 6 Xinhe West Rd, Nanjing, 211200, Jiangsu, China
| |
Collapse
|
7
|
Oridonin Relieves Angiotensin II-Induced Cardiac Remodeling via Inhibiting GSDMD-Mediated Inflammation. Cardiovasc Ther 2022; 2022:3167959. [PMID: 35360548 PMCID: PMC8938085 DOI: 10.1155/2022/3167959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Myocardial remodeling is one of the main lesions in the late stage of chronic heart failure and seriously affects the prognosis of patients. Continuous activation of the renin-angiotensin-aldosterone system (RAAS) contributes to the development of myocardial remodeling greatly, and angiotensin II (Ang II), its main constituent, can directly lead to cardiac remodeling through an inflammatory response and oxidative stress. Since Ang II-induced myocardial remodeling is closely related to inflammation, we tried to explore whether the anti-inflammatory drug oridonin (Ori) can reverse this process and its possible mechanism. Our study investigated that hypertrophy and fibrosis can be induced after being treated with Ang II in cardiomyocytes (H9c2 cells and primary rat cardiomyocytes) and C57BL/6J mice. The anti-inflammatory drug oridonin could effectively attenuate the degree of cardiac remodeling both in vivo and vitro by inhibiting GSDMD, a key protein of intracellular inflammation which can further activate kinds of inflammation factors such as IL-1β and IL-18. We illustrated that oridonin reversed cardiac remodeling by inhibiting the process of inflammatory signaling through GSDMD. After inhibiting the expression of GSDMD in cardiomyocytes by siRNA, it was found that Ang II-induced hypertrophy was attenuated. These results suggest that oridonin is proved to be a potential protective drug against GSDMD-mediated inflammation and myocardial remodeling.
Collapse
|
8
|
Manoochehri H, Gheitasi R, Pourjafar M, Yazdi A, Sheykhhasan M, Amini R. Investigating the relationship between the severity of coronary artery disease and expression level of TRAF3IP2. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Yoshida T, Das NA, Carpenter AJ, Izadpanah R, Kumar SA, Gautam S, Bender SB, Siebenlist U, Chandrasekar B. Minocycline reverses IL-17A/TRAF3IP2-mediated p38 MAPK/NF-κB/iNOS/NO-dependent cardiomyocyte contractile depression and death. Cell Signal 2020; 73:109690. [PMID: 32553549 DOI: 10.1016/j.cellsig.2020.109690] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Minocycline, an FDA-approved second-generation semisynthetic tetracycline, exerts antioxidant, anti-apoptotic and anti-inflammatory effects, independent of its antimicrobial properties. Interleukin (IL)-17A is an immune and inflammatory mediator, and its sustained induction is associated with various cardiovascular diseases. Here we investigated (i) whether IL-17A induces cardiomyocyte contractile depression and death, (ii) whether minocycline reverses IL-17A's negative inotropic effects and (iii) investigated the underlying molecular mechanisms. Indeed, treatment with recombinant mouse IL-17A impaired adult cardiomyocyte contractility as evidenced by a 34% inhibition in maximal velocity of shortening and relengthening after 4 h (P < .01). Contractile depression followed iNOS induction at 2 h (2.13-fold, P < .01) and NO generation at 3 h (3.71-fold, P <.01). Further mechanistic investigations revealed that IL-17A-dependent induction of iNOS occurred via TRAF3IP2, TRAF6, TAK1, NF-κB, and p38MAPK signaling. 1400 W, a highly specific iNOS inhibitor, suppressed IL-17A-induced NO generation and contractile depression, where as the NO donors SNAP and PAPA-NONOate both suppressed cardiomyocyte contractility. IL-17A also stimulated cardiomyocyte IL-1β and TNF-α secretion, however, their neutralization failed to modulate IL-17A-mediated contractile depression or viability. Further increases of IL-17A concentration and the duration of exposure enhanced IL-1β and TNF-α secreted levels, buthad no impact on adult cardiomyocyte viability. However, when combined with pathophysiological concentrations of IL-1β or TNF-α, IL-17A promoted adult cardiomyocyte death. Importantly, minocycline blunted IL-17A-mediated deleterious effects, indicating its therapeutic potential in inflammatory cardiac diseases.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nitin A Das
- Cardiothoracic Surgery, UT Health, San Antonio, TX 78229, USA
| | | | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Senthil A Kumar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sandeep Gautam
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Medicine/Cardiovascular Medicine, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Ye S, Luo W, Khan ZA, Wu G, Xuan L, Shan P, Lin K, Chen T, Wang J, Hu X, Wang S, Huang W, Liang G. Celastrol Attenuates Angiotensin II-Induced Cardiac Remodeling by Targeting STAT3. Circ Res 2020; 126:1007-1023. [PMID: 32098592 DOI: 10.1161/circresaha.119.315861] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Excessive Ang II (angiotensin II) levels lead to a profibrotic and hypertrophic milieu that produces deleterious remodeling and dysfunction in hypertension-associated heart failure. Agents that disrupt Ang II-induced cardiac dysfunction may have clinical utility in the treatment of hypertension-associated heart failure. OBJECTIVE We have examined the potential effect of celastrol-a bioactive compound derived from the Celastraceae family-on Ang II-induced cardiac dysfunction. METHODS AND RESULTS In rat primary cardiomyocytes and H9C2 (rat cardiomyocyte-like H9C2) cells, celastrol attenuates Ang II-induced cellular hypertrophy and fibrotic responses. Proteome microarrays, surface plasmon resonance, competitive binding assays, and molecular simulation were used to identify the molecular target of celastrol. Our data showed that celastrol directly binds to and inhibits STAT (signal transducer and activator of transcription)-3 phosphorylation and nuclear translocation. Functional tests demonstrated that the protection of celastrol is afforded through targeting STAT3. Overexpression of STAT3 dampens the effect of celastrol by partially rescuing STAT3 activity. Finally, we investigated the in vivo effect of celastrol treatment in mice challenged with Ang II and in the transverse aortic constriction model. We show that celastrol administration protected heart function in Ang II-challenged and transverse aortic constriction-challenged mice by inhibiting cardiac fibrosis and hypertrophy. CONCLUSIONS Our studies show that celastrol inhibits Ang II-induced cardiac dysfunction by inhibiting STAT3 activity.
Collapse
Affiliation(s)
- Shiju Ye
- From the Department of Cardiology in the First Affiliated Hospital (S.Y., G.W., P.S., K.L., T.C., W.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Zia A Khan
- Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Gaojun Wu
- From the Department of Cardiology in the First Affiliated Hospital (S.Y., G.W., P.S., K.L., T.C., W.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Lina Xuan
- Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Heilongjiang, China (L.X., S.W.)
| | - Peiren Shan
- From the Department of Cardiology in the First Affiliated Hospital (S.Y., G.W., P.S., K.L., T.C., W.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Ke Lin
- From the Department of Cardiology in the First Affiliated Hospital (S.Y., G.W., P.S., K.L., T.C., W.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Taiwei Chen
- Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Xiang Hu
- Department of Endocrinology in the First Affiliated Hospital (X.H.), Wenzhou Medical University, Zhejiang, China
| | - Shengjie Wang
- Department of Pharmacology at College of Pharmacy (the Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Heilongjiang, China (L.X., S.W.)
| | - Weijian Huang
- From the Department of Cardiology in the First Affiliated Hospital (S.Y., G.W., P.S., K.L., T.C., W.H., G.L.), Wenzhou Medical University, Zhejiang, China
| | - Guang Liang
- From the Department of Cardiology in the First Affiliated Hospital (S.Y., G.W., P.S., K.L., T.C., W.H., G.L.), Wenzhou Medical University, Zhejiang, China.,Chemical Biology Research Center in School of Pharmaceutical Sciences (S.Y., W.L., Z.A.K., K.L., T.C., J.W., G.L.), Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
11
|
Das NA, Carpenter AJ, Belenchia A, Aroor AR, Noda M, Siebenlist U, Chandrasekar B, DeMarco VG. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal 2019; 68:109506. [PMID: 31862399 DOI: 10.1016/j.cellsig.2019.109506] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Proximal tubular epithelial cells (PTEC) in the S1 segment of the kidney abundantly express sodium-glucose co-transporters (SGLT) that play a critical role in whole body glucose homeostasis. We recently reported suppression of RECK (Reversion Inducing Cysteine Rich Protein with Kazal Motifs), a membrane anchored endogenous MMP inhibitor and anti-fibrotic mediator, in the kidneys of db/db mice, a model of diabetic kidney disease (DKD), as well as in high glucose (HG) treated human kidney proximal tubule cells (HK-2). We further demonstrated that empagliflozin (EMPA), an SGLT2 inhibitor, reversed these effects. Little is known regarding the mechanisms underlying RECK suppression under hyperglycemic conditions, and its rescue by EMPA. Consistent with our previous studies, HG (25 mM) suppressed RECK expression in HK-2 cells. Further mechanistic investigations revealed that HG induced superoxide and hydrogen peroxide generation, oxidative stress-dependent TRAF3IP2 upregulation, NF-κB and p38 MAPK activation, inflammatory cytokine expression (IL-1β, IL-6, TNF-α, and MCP-1), miR-21 induction, MMP2 activation, and RECK suppression. Moreover, RECK gain-of-function inhibited HG-induced MMP2 activation and HK-2 cell migration. Similar to HG, advanced glycation end products (AGE) induced TRAF3IP2 and suppressed RECK, effects that were inhibited by EMPA. Importantly, EMPA treatment ameliorated all of these deleterious effects, and inhibited epithelial-to-mesenchymal transition (EMT) and HK-2 cell migration. Collectively, these findings indicate that hyperglycemia and associated AGE suppress RECK expression via oxidative stress/TRAF3IP2/NF-κB and p38 MAPK/miR-21 induction. Furthermore, these results suggest that interventions aimed at restoring RECK or inhibiting SGLT2 have the potential to treat kidney inflammatory response/fibrosis and nephropathy under chronic hyperglycemic conditions, such as DKD.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Anthony Belenchia
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| | - Annayya R Aroor
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.
| | - Makoto Noda
- Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Division of Cardiology, Department of Medicine, University of Missouri Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Sáez ME, González-Pérez A, Hernández-Olasagarre B, Beà A, Moreno-Grau S, de Rojas I, Monté-Rubio G, Orellana A, Valero S, Comella JX, Sanchís D, Ruiz A. Genome Wide Meta-Analysis identifies common genetic signatures shared by heart function and Alzheimer's disease. Sci Rep 2019; 9:16665. [PMID: 31723151 PMCID: PMC6853976 DOI: 10.1038/s41598-019-52724-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Echocardiography has become an indispensable tool for the study of heart performance, improving the monitoring of individuals with cardiac diseases. Diverse genetic factors associated with echocardiographic measures have been previously reported. The impact of several apoptotic genes in heart development identified in experimental models prompted us to assess their potential association with human cardiac function. This study aimed at investigating the possible association of variants of apoptotic genes with echocardiographic traits and to identify new genetic markers associated with cardiac function. Genome wide data from different studies were obtained from public repositories. After quality control and imputation, a meta-analysis of individual association study results was performed. Our results confirmed the role of caspases and other apoptosis related genes with cardiac phenotypes. Moreover, enrichment analysis showed an over-representation of genes, including some apoptotic regulators, associated with Alzheimer's disease. We further explored this unexpected observation which was confirmed by genetic correlation analyses. Our findings show the association of apoptotic gene variants with echocardiographic indicators of heart function and reveal a novel potential genetic link between echocardiographic measures in healthy populations and cognitive decline later on in life. These findings may have important implications for preventative strategies combating Alzheimer's disease.
Collapse
Affiliation(s)
- M E Sáez
- Andalusian Bioinformatics Research Centre (CAEBi), Seville, Spain
| | - A González-Pérez
- Andalusian Bioinformatics Research Centre (CAEBi), Seville, Spain
| | - B Hernández-Olasagarre
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - A Beà
- Universitat de Lleida - IRBLleida, Lleida, Spain
| | - S Moreno-Grau
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - I de Rojas
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - G Monté-Rubio
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - A Orellana
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - S Valero
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - J X Comella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
- Institut de Recerca Hospital Universitari de la Vall d'Hebron (VHIR), Barcelona, Spain
| | - D Sanchís
- Universitat de Lleida - IRBLleida, Lleida, Spain.
| | - A Ruiz
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.
| |
Collapse
|
13
|
Oxidative Stress in Cell Death and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9030563. [PMID: 31781356 PMCID: PMC6875219 DOI: 10.1155/2019/9030563] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
ROS functions as a second messenger and modulates multiple signaling pathways under the physiological conditions. However, excessive intracellular ROS causes damage to the molecular components of the cell, which promotes the pathogenesis of various human diseases. Cardiovascular diseases are serious threats to human health with extremely high rates of morbidity and mortality. Dysregulation of cell death promotes the pathogenesis of cardiovascular diseases and is the clinical target during the disease treatment. Numerous studies show that ROS production is closely linked to the cell death process and promotes the occurrence and development of the cardiovascular diseases. In this review, we summarize the regulation of intracellular ROS, the roles of ROS played in the development of cardiovascular diseases, and the programmed cell death induced by intracellular ROS. We also focus on anti-ROS system and the potential application of anti-ROS strategy in the treatment of cardiovascular diseases.
Collapse
|
14
|
Mummidi S, Das NA, Carpenter AJ, Yoshida T, Yariswamy M, Mostany R, Izadpanah R, Higashi Y, Sukhanov S, Noda M, Siebenlist U, Rector RS, Chandrasekar B. RECK suppresses interleukin-17/TRAF3IP2-mediated MMP-13 activation and human aortic smooth muscle cell migration and proliferation. J Cell Physiol 2019; 234:22242-22259. [PMID: 31074012 DOI: 10.1002/jcp.28792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases.
Collapse
Affiliation(s)
- Srinivas Mummidi
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas
| | - Nitin A Das
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Andrea J Carpenter
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Tadashi Yoshida
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Manjunath Yariswamy
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Reza Izadpanah
- Department of Medicine/Cardiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Yusuke Higashi
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Sergiy Sukhanov
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Randy S Rector
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Medicine/Gastroenterology and Hepatology/Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Bysani Chandrasekar
- Department of Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Higashi Y, Mummidi S, Sukhanov S, Yoshida T, Noda M, Delafontaine P, Chandrasekar B. Minocycline inhibits PDGF-BB-induced human aortic smooth muscle cell proliferation and migration by reversing miR-221- and -222-mediated RECK suppression. Cell Signal 2019; 57:10-20. [PMID: 30716386 DOI: 10.1016/j.cellsig.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Minocycline, a tetracycline antibiotic, is known to exert vasculoprotective effects independent of its anti-bacterial properties; however the underlying molecular mechanisms are not completely understood. Reversion Inducing Cysteine Rich Protein with Kazal Motifs (RECK) is a cell surface expressed, membrane anchored protein, and its overexpression inhibits cancer cell migration. We hypothesized that minocycline inhibits platelet-derived growth factor (PDGF)-induced human aortic smooth muscle cell (SMC) proliferation and migration via RECK upregulation. Our data show that the BB homodimer of recombinant PDGF (PDGF-BB) induced SMC migration and proliferation, effects significantly blunted by pre-treatment with minocycline. Further investigations revealed that PDGF-BB induced PI3K-dependent AKT activation, ERK activation, reactive oxygen species generation, Nuclear Factor-κB and Activator Protein-1 activation, microRNA (miR)-221 and miR-222 induction, RECK suppression, and matrix metalloproteinase (MMP2 and 9) activation, effects that were reversed by minocycline. Notably, minocycline induced RECK expression dose-dependently within the therapeutic dose of 1-100 μM, and silencing RECK partially reversed the inhibitory effects of minocycline on PDGF-BB-induced MMP activation, and SMC proliferation and migration. Further, targeting MMP2 and MMP9 blunted PDGF-BB-induced SMC migration. Together, these results demonstrate that minocycline inhibits PDGF-BB-induced SMC proliferation and migration by restoring RECK, an MMP inhibitor. These results indicate that the induction of RECK is one of the mechanisms by which minocycline exerts vasculoprotective effects.
Collapse
Affiliation(s)
- Yusuke Higashi
- Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Srinivas Mummidi
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA; Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sergiy Sukhanov
- Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Tadashi Yoshida
- Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Patrice Delafontaine
- Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Bysani Chandrasekar
- Medicine/Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
17
|
Luo Z, Pan J, Ding Y, Zhang YS, Zeng Y. The function and clinical relevance of lncRNA UBE2CP3-001 in human gliomas. Arch Med Sci 2018; 14:1308-1320. [PMID: 30393485 PMCID: PMC6209712 DOI: 10.5114/aoms.2018.79004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/23/2016] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Gliomas are the most frequent primary tumors in the human brain. Recent studies have identified a class of long noncoding RNAs, named lncRNAs, which were reported to participate in regulating the development of various diseases, including gliomas. In our previous studies, we found that lncRNA UBE2CP3-001 was overexpressed in gliomas but not in normal tissue. However, the molecular functions of UBE2CP3-001 in glioma are largely unknown. MATERIAL AND METHODS The presence of UBE2CP3-001 in U87 cells, glioma tissues and normal brain tissues was detected by real-time RT-PCR. The ability of U87 cells to migrate was analyzed using a cellular wound healing assay after downregulation of UBE2CP3-001. The survival rate of U87 cells after UBE2CP3-001 knockdown was also analyzed using the CCK8 assay. In vivo tumor weights from xenograft tumors transfected with UBE2CP3-001 shRNA were further analyzed using in vivo animal experiments. The expression levels of MMP-9 and TRAF3IP2 were determined by Western blot. RESULTS Our data showed that UBE2CP3-001 was overexpressed in most glioma tissues (p < 0.01). Downregulation of UBE2CP3-001 could inhibit cell migration (p < 0.01) and invasiveness (p < 0.01) of U87 cells. Downregulation of UBE2CP3-001 in U87 cells also suppressed the cell proliferation (p < 0.01) and promoted apoptosis (p < 0.01). Furthermore, in vivo studies confirmed that knockdown of UBE2CP3-001 could retard the growth of U87 xenograft tumors (p < 0.01). Western blot analysis showed that knockdown of UBE2CP3-001 could effectively inhibit the expression of MMP-9 (p < 0.01) and TRAF3IP2 (p < 0.01) in U87 glioma cells. CONCLUSIONS These data suggest an important role of UBE2CP3-001 in glioma and indicate its potential application in anti-glioma therapy.
Collapse
Affiliation(s)
- Zhengxiang Luo
- Department of Neurosurgery, Nanjing Brian Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junchen Pan
- Department of Neurosurgery, Nanjing Benq Hospital, Nanjing, Jiangsu, China
| | - Yi Ding
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Song Zhang
- Department of Neurosurgery, Nanjing Brian Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanjun Zeng
- Biomechanics and Medical Information Institute, Beijing University of Technology, Beijing, China
| |
Collapse
|
18
|
Das NA, Carpenter AJ, Yoshida T, Kumar SA, Gautam S, Mostany R, Izadpanah R, Kumar A, Mummidi S, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 2018; 121:107-123. [PMID: 29981796 DOI: 10.1016/j.yjmcc.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tadashi Yoshida
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Senthil A Kumar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sandeep Gautam
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
| | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, LA, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Srinivas Mummidi
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Brown SM, Smith CE, Meuth AI, Khan M, Aroor AR, Cleeton HM, Meininger GA, Sowers JR, DeMarco VG, Chandrasekar B, Nistala R, Bender SB. Dipeptidyl Peptidase-4 Inhibition With Saxagliptin Ameliorates Angiotensin II-Induced Cardiac Diastolic Dysfunction in Male Mice. Endocrinology 2017; 158:3592-3604. [PMID: 28977602 PMCID: PMC5659692 DOI: 10.1210/en.2017-00416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Activation of the renin-angiotensin-aldosterone system is common in hypertension and obesity and contributes to cardiac diastolic dysfunction, a condition for which no treatment currently exists. In light of recent reports that antihyperglycemia incretin enhancing dipeptidyl peptidase (DPP)-4 inhibitors exert cardioprotective effects, we examined the hypothesis that DPP-4 inhibition with saxagliptin (Saxa) attenuates angiotensin II (Ang II)-induced cardiac diastolic dysfunction. Male C57BL/6J mice were infused with either Ang II (500 ng/kg/min) or vehicle for 3 weeks receiving either Saxa (10 mg/kg/d) or placebo during the final 2 weeks. Echocardiography revealed Ang II-induced diastolic dysfunction, evidenced by impaired septal wall motion and prolonged isovolumic relaxation, coincident with aortic stiffening. Ang II induced cardiac hypertrophy, coronary periarterial fibrosis, TRAF3-interacting protein 2 (TRAF3IP2)-dependent proinflammatory signaling [p-p65, p-c-Jun, interleukin (IL)-17, IL-18] associated with increased cardiac macrophage, but not T cell, gene expression. Flow cytometry revealed Ang II-induced increases of cardiac CD45+F4/80+CD11b+ and CD45+F4/80+CD11c+ macrophages and CD45+CD4+ lymphocytes. Treatment with Saxa reduced plasma DPP-4 activity and abrogated Ang II-induced cardiac diastolic dysfunction independent of aortic stiffening or blood pressure. Furthermore, Saxa attenuated Ang II-induced periarterial fibrosis and cardiac inflammation, but not hypertrophy or cardiac macrophage infiltration. Analysis of Saxa-induced changes in cardiac leukocytes revealed Saxa-dependent reduction of the Ang II-mediated increase of cardiac CD11c messenger RNA and increased cardiac CD8 gene expression and memory CD45+CD8+CD44+ lymphocytes. In summary, these results demonstrate that DPP-4 inhibition with Saxa prevents Ang II-induced cardiac diastolic dysfunction, fibrosis, and inflammation associated with unique shifts in CD11c-expressing leukocytes and CD8+ lymphocytes.
Collapse
Affiliation(s)
- Scott M. Brown
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Cassandra E. Smith
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Alex I. Meuth
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Maloree Khan
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Annayya R. Aroor
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Hannah M. Cleeton
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - James R. Sowers
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Vincent G. DeMarco
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Endocrinology, Diabetes, and Metabolism, University of Missouri School of Medicine, Columbia, Missouri 65212
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Bysani Chandrasekar
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Ravi Nistala
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Division of Nephrology, University of Missouri School of Medicine, Columbia, Missouri 65212
| | - Shawn B. Bender
- Research, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
20
|
Aroor AR, Habibi J, Kandikattu HK, Garro-Kacher M, Barron B, Chen D, Hayden MR, Whaley-Connell A, Bender SB, Klein T, Padilla J, Sowers JR, Chandrasekar B, DeMarco VG. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol 2017; 16:61. [PMID: 28476142 PMCID: PMC5420102 DOI: 10.1186/s12933-017-0544-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022] Open
Abstract
Background Diastolic dysfunction (DD), a hallmark of obesity and primary defect in heart failure with preserved ejection fraction, is a predictor of future cardiovascular events. We previously reported that linagliptin, a dipeptidyl peptidase-4 inhibitor, improved DD in Zucker Obese rats, a genetic model of obesity and hypertension. Here we investigated the cardioprotective effects of linagliptin on development of DD in western diet (WD)-fed mice, a clinically relevant model of overnutrition and activation of the renin-angiotensin-aldosterone system. Methods Female C56Bl/6 J mice were fed an obesogenic WD high in fat and simple sugars, and supplemented or not with linagliptin for 16 weeks. Results WD induced oxidative stress, inflammation, upregulation of Angiotensin II type 1 receptor and mineralocorticoid receptor (MR) expression, interstitial fibrosis, ultrastructural abnormalities and DD. Linagliptin inhibited cardiac DPP-4 activity and prevented molecular impairments and associated functional and structural abnormalities. Further, WD upregulated the expression of TRAF3IP2, a cytoplasmic adapter molecule and a regulator of multiple inflammatory mediators. Linagliptin inhibited its expression, activation of its downstream signaling intermediates NF-κB, AP-1 and p38-MAPK, and induction of multiple inflammatory mediators and growth factors that are known to contribute to development and progression of hypertrophy, fibrosis and contractile dysfunction. Linagliptin also inhibited WD-induced collagens I and III expression. Supporting these in vivo observations, linagliptin inhibited aldosterone-mediated MR-dependent oxidative stress, upregulation of TRAF3IP2, proinflammatory cytokine, and growth factor expression, and collagen induction in cultured primary cardiac fibroblasts. More importantly, linagliptin inhibited aldosterone-induced fibroblast activation and migration. Conclusions Together, these in vivo and in vitro results suggest that inhibition of DPP-4 activity by linagliptin reverses WD-induced DD, possibly by targeting TRAF3IP2 expression and its downstream inflammatory signaling.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Hemanth Kumar Kandikattu
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Mona Garro-Kacher
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Brady Barron
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Dongqing Chen
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Melvin R Hayden
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam Whaley-Connell
- Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | | | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Bysani Chandrasekar
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA. .,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA. .,Department of Medicine, Division of Endocrinology, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
21
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
22
|
Yariswamy M, Yoshida T, Valente AJ, Kandikattu HK, Sakamuri SSVP, Siddesha JM, Sukhanov S, Saifudeen Z, Ma L, Siebenlist U, Gardner JD, Chandrasekar B. Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction. J Biol Chem 2016; 291:19425-36. [PMID: 27466370 PMCID: PMC5016681 DOI: 10.1074/jbc.m116.724138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/25/2016] [Indexed: 01/19/2023] Open
Abstract
TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg). Echocardiography, magnetic resonance imaging, and pressure-volume conductance catheterization revealed impaired cardiac function in 2-month-old male transgenic (Tg) mice as evidenced by decreased ejection fraction, stroke volume, cardiac output, and peak ejection rate. Moreover, the male Tg mice spontaneously developed myocardial hypertrophy (increased heart/body weight ratio, cardiomyocyte cross-sectional area, GATA4 induction, and fetal gene re-expression). Furthermore, TRAF3IP2 overexpression resulted in the activation of IKK/NF-κB, JNK/AP-1, c/EBPβ, and p38 MAPK and induction of proinflammatory cytokines, chemokines, and extracellular matrix proteins in the heart. Although myocardial hypertrophy decreased with age, cardiac fibrosis (increased number of myofibroblasts and enhanced expression and deposition of fibrillar collagens) increased progressively. Despite these adverse changes, TRAF3IP2 overexpression did not result in cell death at any time period. Interestingly, despite increased mRNA expression, TRAF3IP2 protein levels and activation of its downstream signaling intermediates remained unchanged in the hearts of female Tg mice. The female Tg mice also failed to develop myocardial hypertrophy. In summary, these results demonstrate that overexpression of TRAF3IP2 in male mice is sufficient to induce myocardial hypertrophy, cardiac fibrosis, and contractile dysfunction.
Collapse
Affiliation(s)
- Manjunath Yariswamy
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201
| | | | - Anthony J Valente
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | | | | | | | - Zubaida Saifudeen
- Department of Pediatric Nephrology Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Lixin Ma
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, Department of Radiology, University of Missouri, Columbia, Missouri 65211
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Bysani Chandrasekar
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201,
| |
Collapse
|
23
|
Mummidi S, Das NA, Carpenter AJ, Kandikattu H, Krenz M, Siebenlist U, Valente AJ, Chandrasekar B. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. J Mol Cell Cardiol 2016; 98:95-102. [PMID: 27423273 DOI: 10.1016/j.yjmcc.2016.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Abstract
The overall goals of this study were to investigate whether metformin exerts anti-fibrotic effects in aldosterone (Aldo)+salt-treated wild type mouse hearts, and determine the underlying molecular mechanisms in isolated adult cardiac fibroblasts (CF). In vitro, Aldo induced CF activation, migration, and proliferation, and these effects were inhibited by metformin. Further, Aldo induced PPM1A (Protein Phosphatase Magnesium Dependent 1A) activation and inhibited AMPK phosphorylation. At a pharmacologically relevant concentration, metformin restored AMPK activation, and inhibited Aldo-induced Nox4/H2O2-dependent TRAF3IP2 induction, pro-inflammatory cytokine expression, and CF migration and proliferation. Further, metformin potentiated the inhibitory effects of spironolactone, a mineralocorticoid receptor antagonist, on Aldo-induced collagen expression, and CF migration and proliferation. These results were recapitulated in vivo, where metformin reversed Aldo+salt-induced oxidative stress, suppression of AMPK activation, TRAF3IP2 induction, pro-inflammatory cytokine expression, and cardiac fibrosis, without significantly modulating systolic blood pressure. These in vitro and in vivo data indicate that metformin has the potential to reduce adverse cardiac remodeling in hypertensive heart disease.
Collapse
Affiliation(s)
- Srinivas Mummidi
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Nitin A Das
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrea J Carpenter
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | - Maike Krenz
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Anthony J Valente
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA.
| |
Collapse
|
24
|
Sakamuri SSVP, Valente AJ, Siddesha JM, Delafontaine P, Siebenlist U, Gardner JD, Bysani C. TRAF3IP2 mediates aldosterone/salt-induced cardiac hypertrophy and fibrosis. Mol Cell Endocrinol 2016; 429:84-92. [PMID: 27040306 PMCID: PMC4861697 DOI: 10.1016/j.mce.2016.03.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 01/27/2023]
Abstract
Aberrant activation of the renin-angiotensin-aldosterone system (RAAS) contributes to adverse cardiac remodeling and eventual failure. Here we investigated whether TRAF3 Interacting Protein 2 (TRAF3IP2), a redox-sensitive cytoplasmic adaptor molecule and an upstream regulator of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), mediates aldosterone-induced cardiac hypertrophy and fibrosis. Wild type (WT) and TRAF3IP2-null mice were infused with aldosterone (0.2 mg/kg/day) for 4 weeks along with 1%NaCl in drinking water. Aldosterone/salt, but not salt alone, upregulated TRAF3IP2 expression in WT mouse hearts. Further, aldosterone elevated blood pressure to a similar extent in both WT and TRAF3IP2-null groups. However, TRAF3IP2 gene deletion attenuated aldosterone/salt-induced (i) p65 and c-Jun activation, (ii) extracellular matrix (collagen Iα1 and collagen IIIα1), matrix metalloproteinase (MMP2), lysyl oxidase (LOX), inflammatory cytokine (IL-6 and IL-18), chemokine (CXCL1 and CXCL2), and adhesion molecule (ICAM1) mRNA expression in hearts, (iii) IL-6, IL-18, and MMP2 protein levels, (iv) systemic IL-6 and IL-18 levels, and (iv) cardiac hypertrophy and fibrosis. These results indicate that TRAF3IP2 is a critical signaling intermediate in aldosterone/salt-induced myocardial hypertrophy and fibrosis, and thus a potential therapeutic target in hypertensive heart disease.
Collapse
Affiliation(s)
- Siva S V P Sakamuri
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anthony J Valente
- Medicine, University of Texas Health Science Center, San Antonio, TX 78229, United States
| | - Jalahalli M Siddesha
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, United States
| | - Jason D Gardner
- Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Chandrasekar Bysani
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, United States.
| |
Collapse
|
25
|
Histone deacetyltransferase inhibitors Trichostatin A and Mocetinostat differentially regulate MMP9, IL-18 and RECK expression, and attenuate Angiotensin II-induced cardiac fibroblast migration and proliferation. Hypertens Res 2016; 39:709-716. [PMID: 27278287 DOI: 10.1038/hr.2016.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/08/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023]
Abstract
Histone acetylation/deacetylation plays a key role in the epigenetic regulation of multiple pro-fibrotic genes. Here we investigated the effects of histone deacetyltransferase (HDAC) inhibition on angiotensin (Ang)-II-induced pro-fibrotic changes in adult mouse cardiac fibroblasts (CF). CF express class I HDACs 1 and 2, and Ang-II induces their activation. Notably, silencing HDAC1 or HDAC2 attenuated Ang-II induced CF proliferation and migration. Under basal conditions, HDAC1 dimerizes with HDAC2 in CF and Ang-II reversed this interaction. Treatment with Trichostatin A (TSA), a broad-spectrum HDAC inhibitor, restored their physical association, and attenuated Ang-II-induced MMP9 expression, IL-18 induction, and extracellular matrix (collagen I, collagen III and fibronectin) production. Further, TSA inhibited Ang-II-induced MMP9 and Il18 transcription by blocking NF-κB and AP-1 binding to their respective promoter regions. By inhibiting Sp1 binding to RECK promoter, TSA reversed Ang-II-induced RECK suppression, collagen and fibronectin expression, and CF migration and proliferation. The class I-specific HDAC inhibitor Mocetinostat (MGCD) recapitulated TSA effects on Ang-II-treated CF. Together, these results demonstrate that targeting HDACs attenuates the pro-inflammatory and pro-fibrotic effects of Ang-II on CF.
Collapse
|
26
|
Sakamuri SSVP, Higashi Y, Sukhanov S, Siddesha JM, Delafontaine P, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis 2016; 252:153-160. [PMID: 27237075 DOI: 10.1016/j.atherosclerosis.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. METHODS TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2(-/-) and ApoE(-/-) mice. ApoE(-/-) mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell (SMC) content by histomorphometry, and aortic gene expression by RT-qPCR. RESULTS The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE(-/-) mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and SMC contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice expressed markedly reduced levels of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). CONCLUSIONS TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases.
Collapse
Affiliation(s)
| | - Yusuke Higashi
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Sergiy Sukhanov
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Jalahalli M Siddesha
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, NIAID/NIH, Bethesda, MD, 20892, United States
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States; HS Truman Memorial Veterans Hospital, 800 Hospital Drive, Columbia, MO, 75201, United States.
| |
Collapse
|
27
|
Somanna NK, Yariswamy M, Garagliano JM, Siebenlist U, Mummidi S, Valente AJ, Chandrasekar B. Aldosterone-induced cardiomyocyte growth, and fibroblast migration and proliferation are mediated by TRAF3IP2. Cell Signal 2015; 27:1928-38. [PMID: 26148936 DOI: 10.1016/j.cellsig.2015.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 01/19/2023]
Abstract
Sustained activation of the Renin-Angiotensin-Aldosterone System (RAAS) contributes to the pathogenesis of heart failure. Aldosterone (Aldo) is known to induce both myocardial hypertrophy and fibrosis through oxidative stress and proinflammatory pathways. Here we have investigated whether Aldo-mediated cardiomycocyte hypertrophy is dependent on TRAF3IP2, an upstream regulator of IKK and JNK. We also investigated whether the pro-mitogenic and pro-migratory effects of Aldo on cardiac fibroblasts are also mediated by TRAF3IP2. Aldo induced both superoxide and hydrogen peroxide in isolated adult mouse cardiomyocytes (CM), and upregulated TRAF3IP2 expression in part via the mineralocorticoid receptor and oxidative stress. Silencing TRAF3IP2 blunted Aldo-induced IKKβ, p65, JNK, and c-Jun activation, IL-18, IL-6 and CT-1 upregulation, and cardiomyocyte hypertrophy. In isolated adult mouse cardiac fibroblasts (CF), Aldo stimulated TRAF3IP2-dependent IL-18 and IL-6 production, CTGF, collagen I and III expression, MMP2 activation, and proliferation and migration. These in vitro results suggest that TRAF3IP2 may play a causal role in Aldo-induced adverse cardiac remodeling in vivo, and identify TRAF3IP2 as a potential therapeutic target in hypertensive heart disease.
Collapse
Affiliation(s)
- Naveen K Somanna
- Department of Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manjunath Yariswamy
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA
| | - Joseph M Garagliano
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ulrich Siebenlist
- University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Srinivas Mummidi
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Anthony J Valente
- Laboratory of Molecular Immunology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
28
|
He Z, Zhang X, Chen C, Wen Z, Hoopes SL, Zeldin DC, Wang DW. Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II. Cardiovasc Res 2015; 105:304-17. [PMID: 25618409 DOI: 10.1093/cvr/cvv018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Cardiac remodelling is one of the key pathological changes that occur with cardiovascular disease. Previous studies have demonstrated the beneficial effects of CYP2J2 expression on cardiac injury. In the present study, we investigated the effects of cardiomyocyte-specific CYP2J2 expression and EET treatment on angiotensin II-induced cardiac remodelling and sought to determine the underlying molecular mechanisms involved in this process. METHODS AND RESULTS Eight-week-old mice with cardiomyocyte-specific CYP2J2 expression (αMHC-CYP2J2-Tr) and wild-type (WT) control mice were treated with Ang-II. Ang-II treatment of WT mice induced changes in heart morphology, cardiac hypertrophy and dysfunction, as well as collagen accumulation; however, cardiomyocyte-specific expression of CYP2J2 attenuated these effects. The cardioprotective effects observed in α-MHC-CYP2J2-Tr mice were associated with peroxisome proliferator-activated receptor (PPAR)-γ activation, reduced oxidative stress, reduced NF-κB p65 nuclear translocation, and inhibition of TGF-β1/smad pathway. The effects seen with cardiomyocyte-specific expression of CYP2J2 were partially blocked by treatment with PPAR-γ antagonist GW9662. In in vitro studies, 11,12-EET(1 μmol/L) treatment attenuated cardiomyocyte hypertrophy and remodelling-related protein (collagen I, TGF-β1, TIMP1) expression by inhibiting the oxidative stress-mediated NF-κB pathway via PPAR-γ activation. Furthermore, conditioned media from neonatal cardiomyocytes treated with 11,12-EET inhibited activation of cardiac fibroblasts and TGF-β1/smad pathway. CONCLUSION Cardiomyocyte-specific expression of CYP2J2 or treatment with EETs protects against cardiac remodelling by attenuating oxidative stress-mediated NF-κBp65 nuclear translocation via PPAR-γ activation.
Collapse
Affiliation(s)
- Zuowen He
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| | - Xu Zhang
- Department of Physiology, Tianjin Medical University, Tianjin, P. R. China
| | - Chen Chen
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| | - Zheng Wen
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| | - Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Dao Wen Wang
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| |
Collapse
|
29
|
Locatelli J, de Assis LVM, Isoldi MC. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 2014; 19:207-25. [PMID: 23436107 DOI: 10.1007/s10741-013-9373-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation-contraction process in the heart among those are sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban, calsequestrin, sodium-calcium exchanger, L-type calcium's channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Collapse
Affiliation(s)
- Jamille Locatelli
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Prêto, Brazil
| | | | | |
Collapse
|
30
|
Yoshida T, Friehs I, Mummidi S, del Nido PJ, Addulnour-Nakhoul S, Delafontaine P, Valente AJ, Chandrasekar B. Pressure overload induces IL-18 and IL-18R expression, but markedly suppresses IL-18BP expression in a rabbit model. IL-18 potentiates TNF-α-induced cardiomyocyte death. J Mol Cell Cardiol 2014; 75:141-51. [PMID: 25108227 PMCID: PMC4157969 DOI: 10.1016/j.yjmcc.2014.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Recurrent or sustained inflammation plays a causal role in the development and progression of left ventricular hypertrophy (LVH) and its transition to failure. Interleukin (IL)-18 is a potent pro-hypertrophic inflammatory cytokine. We report that induction of pressure overload in the rabbit, by constriction of the descending thoracic aorta induces compensatory hypertrophy at 4weeks (mass/volume ratio: 1.7±0.11) and ventricular dilatation indicative of heart failure at 6weeks (mass/volume ratio: 0.7±0.04). In concordance with this, fractional shortening was preserved at 4weeks, but markedly attenuated at 6weeks. We cloned rabbit IL-18, IL-18Rα, IL-18Rβ, and IL-18 binding protein (IL-18BP) cDNA, and show that pressure overload, while enhancing IL-18 and IL-18R expression in hypertrophied and failing hearts, markedly attenuated the level of expression of the endogenous IL-18 antagonist IL-18BP. Cyclical mechanical stretch (10% cyclic equibiaxial stretch, 1Hz) induced hypertrophy of primary rabbit cardiomyocytes in vitro and enhanced ANP, IL-18, and IL-18Rα expression. Further, treatment with rhIL-18 induced its own expression and that of IL-18Rα via AP-1 activation, and induced cardiomyocyte hypertrophy in part via PI3K/Akt/GATA4 signaling. In contrast, IL-18 potentiated TNF-α-induced cardiomyocyte death, and by itself induced cardiac endothelial cell death. These results demonstrate that pressure overload is associated with enhanced IL-18 and its receptor expression in hypertrophied and failingrabbit hearts. Since IL-18BP expression is markedly inhibited, our results indicate a positive amplification in IL-18 proinflammatory signaling during pressure overload, and suggest IL-18 as a potential therapeutic target in pathological hypertrophy and cardiac failure.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ingeborg Friehs
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Srinivas Mummidi
- South Texas Veterans Health Care System and Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Pedro J del Nido
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Solange Addulnour-Nakhoul
- Department of Medicine-Gastroenterology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Anthony J Valente
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA; Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA.
| |
Collapse
|
31
|
IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc Natl Acad Sci U S A 2014; 111:E3422-31. [PMID: 25092341 DOI: 10.1073/pnas.1400513111] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation and by an influx of inflammatory cells. The mechanisms underlying psoriasis in humans and in mouse models are poorly understood, although evidence strongly points to crucial contributions of IL-17 cytokines, which signal via the obligatory adaptor CIKS/Act1. Here we identify critical roles of CIKS/Act1-mediated signaling in imiquimod-induced psoriatic inflammation, a mouse model that shares features with the human disease. We found that IL-17 cytokines/CIKS-mediated signaling into keratinocytes is essential for neutrophilic microabscess formation and contributes to hyperproliferation and markedly attenuated differentiation of keratinocytes, at least in part via direct effects. In contrast, IL-17 cytokines/CIKS-mediated signaling into nonkeratinocytes, particularly into dermal fibroblasts, promotes cellular infiltration and, importantly, leads to enhanced the accumulation of IL-17-producing γδT cells in skin, comprising a positive feed-forward mechanism. Thus, CIKS-mediated signaling is central in the development of both dermal and epidermal hallmarks of psoriasis, inducing distinct pathologies via target cell-specific effects. CIKS-mediated signaling represents a potential therapeutic target in psoriasis.
Collapse
|
32
|
Norris AW, Bahr TM, Scholz TD, Peterson ES, Volk KA, Segar JL. Angiotensin II-induced cardiovascular load regulates cardiac remodeling and related gene expression in late-gestation fetal sheep. Pediatr Res 2014; 75:689-696. [PMID: 24614802 PMCID: PMC4251591 DOI: 10.1038/pr.2014.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin II (ANG II) stimulates fetal heart growth, although little is known regarding changes in cardiomyocyte endowment or the molecular pathways mediating the response. We measured cardiomyocyte proliferation and morphology in ANG II-treated fetal sheep and assessed transcriptional pathway responses in ANG II and losartan (an ANG II type 1 receptor antagonist) treated fetuses. METHODS In twin-gestation pregnant sheep, one fetus received ANG II (50 μg/kg/min i.v.) or losartan (20 mg/kg/d i.v.) for 7 d; noninstrumented twins served as controls. RESULTS ANG II produced increases in heart mass, cardiomyocyte area (left ventricle (LV) and right ventricle mononucleated and LV binucleated cells), and the percentage of Ki-67-positive mononucleated cells in the LV (all P < 0.05). ANG II and losartan produced generally opposing changes in gene expression, affecting an estimated 55% of the represented transcriptome. The most prominent significantly affected biological pathways included those involved in cytoskeletal remodeling and cell cycle activity. CONCLUSION ANG II produces an increase in fetal cardiac mass via cardiomyocyte hypertrophy and likely hyperplasia, involving transcriptional responses in cytoskeletal remodeling and cell cycle pathways.
Collapse
Affiliation(s)
- Andrew W. Norris
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy M. Bahr
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Thomas D. Scholz
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Emily S. Peterson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ken A. Volk
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jeffrey L. Segar
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Corresponding Author: Jeffrey L. Segar, MD Professor, Department of Pediatrics University of Iowa Carver College of Medicine University of Iowa Children's Hospital 200 Hawkins Drive, Iowa City, IA 52242 319.356.7244 (phone) 319.356.4685 (facsimile)
| |
Collapse
|
33
|
Siddesha JM, Valente AJ, Sakamuri SSVP, Gardner JD, Delafontaine P, Noda M, Chandrasekar B. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK. J Cell Physiol 2014; 229:845-55. [PMID: 24265116 DOI: 10.1002/jcp.24511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/18/2013] [Indexed: 01/01/2023]
Abstract
The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms.
Collapse
Affiliation(s)
- Jalahalli M Siddesha
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | | | | | | | | |
Collapse
|
34
|
Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med 2014; 70:117-28. [PMID: 24561578 PMCID: PMC4006317 DOI: 10.1016/j.freeradbiomed.2014.02.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 02/02/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) induces endothelial cell death through the activation of NF-κB and AP-1 pathways. TRAF3IP2 is a redox-sensitive cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we show that oxLDL-induced death in human primary coronary artery endothelial cells (ECs) was markedly attenuated by the knockdown of TRAF3IP2 or the lectin-like oxLDL receptor 1 (LOX-1). Further, oxLDL induced Nox2/superoxide-dependent TRAF3IP2 expression, IKK/p65 and JNK/c-Jun activation, and LOX-1 upregulation, suggesting a reinforcing mechanism. Similarly, the lysolipids present in oxLDL (16:0-LPC and 18:0-LPC) and minimally modified LDL also upregulated TRAF3IP2 expression. Notably, whereas native HDL3 reversed oxLDL-induced TRAF3IP2 expression and cell death, 15-lipoxygenase-modified HDL3 potentiated its proapoptotic effects. The activators of the AMPK/Akt pathway, adiponectin, AICAR, and metformin, attenuated superoxide generation, TRAF3IP2 expression, and oxLDL/TRAF3IP2-mediated EC death. Further, both HDL3 and adiponectin reversed oxLDL/TRAF3IP2-dependent monocyte adhesion to endothelial cells in vitro. Importantly, TRAF3IP2 gene deletion and the AMPK activators reversed oxLDL-induced impaired vasorelaxation ex vivo. These results indicate that oxLDL-induced endothelial cell death and dysfunction are mediated via TRAF3IP2 and that native HDL3 and the AMPK activators inhibit this response. Targeting TRAF3IP2 could potentially inhibit progression of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Anthony J Valente
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Anand M Irimpen
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
35
|
Gu S, Zhang W, Chen J, Ma R, Xiao X, Ma X, Yao Z, Chen Y. EPC-derived microvesicles protect cardiomyocytes from Ang II-induced hypertrophy and apoptosis. PLoS One 2014; 9:e85396. [PMID: 24392165 PMCID: PMC3879348 DOI: 10.1371/journal.pone.0085396] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/04/2013] [Indexed: 01/19/2023] Open
Abstract
Cell-released microvesicles (MVs) represent a novel way of cell-to-cell communication. Previous evidence indicates that endothelial progenitor cells (EPCs)-derived MVs can modulate endothelial cell survival and proliferation. In this study, we evaluated whether EPC-MVs protect cardiomyocytes (CMs) against angiotensin II (Ang II)-induced hypertrophy and apoptosis. The H9c2 CMs were exposed to Ang II in the presence or absence of EPC-MVs. Cell viability, apoptosis, surface area and β-myosin heavy chain (β-MHC) expression were analyzed. Meanwhile, reactive oxygen species (ROS), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS), and their phosphorylated proteins (p-Akt, p-eNOS) were measured. Phosphatidylinositol-3-kinase (PI3K) and NOS inhibitors were used for pathway verification. The role of MV-carried RNAs in mediating these effects was also explored. Results showed 1) EPC-MVs were able to protect CMs against Ang II-induced changes in cell viability, apoptosis, surface area, β-MHC expression and ROS over-production; 2) The effects were accompanied with the up-regulation of Akt/p-Akt and its downstream eNOS/p-eNOS, and were abolished by PI3K inhibition or partially blocked by NOS inhibition; 3) Depletion of RNAs from EPC-MVs partially or totally eliminated the effects of EPC-MVs. Our data indicate that EPC-MVs protect CMs from hypertrophy and apoptosis through activating the PI3K/Akt/eNOS pathway via the RNAs carried by EPC-MVs.
Collapse
Affiliation(s)
- Shenhong Gu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Gerontology, the Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Wei Zhang
- Department of Cardiology, the People’s Hospital of Sanya, Sanya, China
| | - Ji Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ruilian Ma
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Cardiology, the People’s Hospital of Sanya, Sanya, China
| | - Xiang Xiao
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
| | - Xiaotang Ma
- Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhen Yao
- Department of Cardiology, the People’s Hospital of Sanya, Sanya, China
- * E-mail: (YC); (ZY)
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Ohio, United States of America
- Department of Neurology, the Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
- * E-mail: (YC); (ZY)
| |
Collapse
|
36
|
Siddesha JM, Valente AJ, Sakamuri SS, Yoshida T, Gardner JD, Somanna N, Takahashi C, Noda M, Chandrasekar B. Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK. J Mol Cell Cardiol 2013; 65:9-18. [PMID: 24095877 PMCID: PMC3896127 DOI: 10.1016/j.yjmcc.2013.09.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
Abstract
Sustained induction and activation of matrixins (matrix metalloproteinases or MMPs), and the destruction and deposition of extracellular matrix (ECM), are the hallmarks of cardiac fibrosis. The reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a unique membrane-anchored endogenous MMP regulator. We hypothesized that elevated angiotensin II (Ang II), which is associated with fibrosis in the heart, differentially regulates MMPs and RECK both in vivo and in vitro. Continuous infusion of Ang II into male C57Bl/6 mice for 2weeks resulted in cardiac fibrosis, with increased expressions of MMPs 2, 7, 9 and 14, and of collagens Ia1 and IIIa1. The expression of RECK, however, was markedly suppressed. These effects were inhibited by co-treatment with the Ang II type 1 receptor (AT1) antagonist losartan. In vitro, Ang II suppressed RECK expression in adult mouse cardiac fibroblasts (CF) via AT1/Nox4-dependent ERK/Sp1 activation, but induced MMPs 2, 14 and 9 via NF-κB, AP-1 and/or Sp1 activation. Further, while forced expression of RECK inhibits, its knockdown potentiates Ang II-induced CF migration. Notably, RECK overexpression reduced Ang II-induced MMPs 2, 9 and 14 activation, but enhanced collagens Ia1 and IIIa1 expression and soluble collagen release. These results demonstrate for the first time that Ang II suppresses RECK, but induces MMPs both in vivo and in vitro, and RECK overexpression blunts Ang II-induced MMP activation and CF migration in vitro. Strategies that upregulate RECK expression in vivo have the potential to attenuate sustained MMP expression, and blunt fibrosis and adverse remodeling in hypertensive heart diseases.
Collapse
Affiliation(s)
- Jalahalli M. Siddesha
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112
| | - Anthony J. Valente
- Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | | | - Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112
| | - Jason D. Gardner
- Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Naveen Somanna
- Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Chiaki Takahashi
- Oncology and Molecular Biology, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Noda
- Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Bysani Chandrasekar
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
37
|
Valente AJ, Sakamuri SSVP, Siddesha JM, Yoshida T, Gardner JD, Prabhu R, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates interleukin-18-induced cardiac fibroblast migration and differentiation. Cell Signal 2013; 25:2176-84. [PMID: 23872479 DOI: 10.1016/j.cellsig.2013.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/14/2013] [Accepted: 07/12/2013] [Indexed: 01/26/2023]
Abstract
TRAF3IP2 is a cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we demonstrate for the first time that the proinflammatory cytokine interleukin (IL)-18 induces TRAF3IP2 expression in primary cardiac fibroblasts (CF) in a Nox4/hydrogen peroxide-dependent manner. Silencing TRAF3IP2 using a phosphorothioated, 2'-O-methyl modified, cholesterol-tagged TRAF3IP2 siRNA duplex markedly attenuated IL-18-induced NF-κB and AP-1 activation and CF migration. Using co-IP/IB and co-localization experiments, we show that Nox4 physically associates with IL-18 receptor proteins, and IL-18 enhances their binding. Further, IL-18 promotes fibroblast to myofibroblast transition, as evidenced by enhanced α-smooth muscle actin expression, types 1 and 3 collagen induction, and soluble collagen secretion, via TRAF3IP2. These results indicate that TRAF3IP2 is a critical intermediate in IL-18-induced CF migration and differentiation in vitro. TRAF3IP2 could serve as a potential therapeutic target in cardiac fibrosis and adverse remodeling in vivo.
Collapse
Affiliation(s)
- Anthony J Valente
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
YU LIANGZHU, SHE TONGHUI, LI MINCAI, SHI CHUNRONG, HAN LU, CHENG MENGLIN. Tetramethylpyrazine inhibits angiotensin II-induced cardiomyocyte hypertrophy and tumor necrosis factor-α secretion through an NF-κB-dependent mechanism. Int J Mol Med 2013; 32:717-22. [DOI: 10.3892/ijmm.2013.1436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/13/2013] [Indexed: 11/05/2022] Open
|
39
|
Valente AJ, Yoshida T, Clark RA, Delafontaine P, Siebenlist U, Chandrasekar B. Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. Free Radic Biol Med 2013; 60:125-35. [PMID: 23453926 PMCID: PMC3714806 DOI: 10.1016/j.freeradbiomed.2013.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 12/18/2022]
Abstract
Advanced oxidation protein products (AOPPs) are formed during chronic oxidative stress as a result of reactions between plasma proteins and chlorinated oxidants. Their levels are elevated during various cardiovascular diseases. Because elevated AOPPs serve as independent risk factors for ischemic heart disease, and cardiomyocyte death is a hallmark of ischemic heart disease, we hypothesized that AOPPs will induce cardiomyocyte death. AOPP-modified mouse serum albumin (AOPP-MSA) induced significant death of neonatal mouse cardiomyocytes that was attenuated by knockdown of the receptor for advanced glycation end products, but not CD36. Notably, TRAF3-interacting protein 2 (TRAF3IP2; also known as CIKS or Act1) knockdown blunted AOPP-induced apoptosis. AOPP-MSA stimulated Nox2/Rac1-dependent superoxide generation, TRAF3IP2 expression, and TRAF3IP2-dependent JNK activation. The superoxide anion generating xanthine/xanthine oxidase system and hydrogen peroxide both induced TRAF3IP2 expression. Further, AOPP-MSA induced mitochondrial Bax translocation and release of cytochrome c into cytoplasm. Moreover, AOPP-MSA suppressed antiapoptotic Bcl-2 and Bcl-xL expression. These effects were reversed by TRAF3IP2 knockdown or forced expression of mutant JNK. Similar to its effects in neonatal cardiomyocytes, AOPP-MSA induced adult cardiomyocyte death in part via TRAF3IP2. These results demonstrate for the first time that AOPPs induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK activation in vitro and suggest that AOPPs may contribute to myocardial injury in vivo. Thus TRAF3IP2 may represent a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- Anthony J. Valente
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229
| | - Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112
| | - Robert A. Clark
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112
| | | | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161
| |
Collapse
|
40
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
41
|
Valente AJ, Yoshida T, Izadpanah R, Delafontaine P, Siebenlist U, Chandrasekar B. Interleukin-18 enhances IL-18R/Nox1 binding, and mediates TRAF3IP2-dependent smooth muscle cell migration. Inhibition by simvastatin. Cell Signal 2013; 25:1447-56. [PMID: 23541442 DOI: 10.1016/j.cellsig.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 01/28/2023]
Abstract
We investigated the role of TRAF3 interacting protein 2 (TRAF3IP2), a redox-sensitive adapter protein and an upstream regulator of IKK and JNK in interleukin (IL)-18 induced smooth muscle cell migration, and the mechanism of its inhibition by simvastatin. The pleiotropic cytokine IL-18 induced human coronary artery SMC migration through the induction of TRAF3IP2. IL-18 induced Nox1-dependent ROS generation, TRAF3IP2 expression, and IKK/NF-κB and JNK/AP-1 activation. IL-18 induced its own expression and that of its receptor subunit IL-18Rα. Using co-IP/IB and GST pull-down assays, we show for the first time that the subunits of the IL-18R heterodimer physically associate with Nox1 under basal conditions, and IL-18 appears to enhance their binding. Importantly, the HMG-coA reductase inhibitor simvastatin attenuated IL-18-induced TRAF3IP2 induction. These inhibitory effects were reversed by mevalonate and geranylgeranylpyrophosphate (GGPP), but not by farnesylpyrophosphate (FPP). Interestingly, simvastatin, GGPP, FPP, or Rac1 inhibition did not modulate ectopically expressed TRAF3IP2. These results demonstrate that the promigratory effects of IL-18 are mediated through TRAF3IP2 in a redox-sensitive manner, and this may involve IL-18R/Nox1 physical association. Further, Simvastatin inhibits inducible, but not ectopically-xpressed TRAF3IP2. Targeting TRAF3IP2 may blunt progression of hyperplastic vascular diseases in vivo.
Collapse
Affiliation(s)
- Anthony J Valente
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, United States
| | | | | | | | | | | |
Collapse
|
42
|
Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 2013; 124:597-615. [PMID: 23379642 DOI: 10.1042/cs20120212] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis is a key feature of many diseases including retinopathies such as ROP (retinopathy of prematurity) and DR (diabetic retinopathy). There is considerable evidence that increased production of ROS (reactive oxygen species) in the retina participates in retinal angiogenesis, although the mechanisms by which this occurs are not fully understood. ROS is produced by a number of pathways, including the mitochondrial electron transport chain, cytochrome P450, xanthine oxidase and uncoupled nitric oxide synthase. The family of NADPH oxidase (Nox) enzymes are likely to be important given that their primary function is to produce ROS. Seven isoforms of Nox have been identified named Nox1-5, Duox (dual oxidase) 1 and Duox2. Nox1, Nox2 and Nox4 have been most extensively studied and are implicated in the development of conditions such as hypertension, cardiovascular disease and diabetic nephropathy. In recent years, evidence has accumulated to suggest that Nox1, Nox2 and Nox4 participate in pathological angiogenesis; however, there is no clear consensus about which Nox isoform is primarily responsible. In terms of retinopathy, there is growing evidence that Nox contribute to vascular injury. The RAAS (renin-angiotensin-aldosterone system), and particularly AngII (angiotensin II), is a key stimulator of Nox. It is known that a local RAAS exists in the retina and that blockade of AngII and aldosterone attenuate pathological angiogenesis in the retina. Whether the RAAS influences the production of ROS derived from Nox in retinopathy is yet to be fully determined. These topics will be reviewed with a particular emphasis on ROP and DR.
Collapse
|
43
|
Pisitkun P, Ha HL, Wang H, Claudio E, Tivy CC, Zhou H, Mayadas TN, Illei GG, Siebenlist U. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity 2012; 37:1104-15. [PMID: 23123062 DOI: 10.1016/j.immuni.2012.08.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/30/2012] [Accepted: 08/13/2012] [Indexed: 01/25/2023]
Abstract
Systemic lupus erythematosus is a potentially fatal autoimmune disease. Although interleukin-17 (IL-17) has been linked to human lupus and mouse models of this disease, it has not been addressed whether this cytokine plays a critical role in fatal lupus pathology. Here we have demonstrated that increased production of IL-17 cytokines and their signaling via the adaptor protein CIKS (a.k.a. Traf3ip2, Act1) critically contributed to lethal pathology in an FcgammaR2b-deficient mouse model of lupus. Mice lacking IL-17 and especially those lacking CIKS showed greatly improved survival and were largely protected from development of glomerulonephritis. Importantly in this model, potential effects of IL-17 cytokines on antibody production could be distinguished from critical local contributions in kidneys, including recruitment of neutrophils and monocytes. These findings provide the proof of principle that signaling by IL-17 family cytokines mediated via CIKS presents promising therapeutic targets for the treatment of systemic lupus erythematosus, especially in cases with kidney involvement.
Collapse
Affiliation(s)
- Prapaporn Pisitkun
- Immune Activation Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Venkatesan B, Valente AJ, Das NA, Carpenter AJ, Yoshida T, Delafontaine JL, Siebenlist U, Chandrasekar B. CIKS (Act1 or TRAF3IP2) mediates high glucose-induced endothelial dysfunction. Cell Signal 2012; 25:359-71. [PMID: 23085260 DOI: 10.1016/j.cellsig.2012.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/27/2012] [Accepted: 10/14/2012] [Indexed: 01/24/2023]
Abstract
Hyperglycemia-induced endothelial dysfunction is characterized by enhanced inflammatory cytokine and adhesion molecule expression, and endothelial-monocyte adhesion. The adapter molecule CIKS (connection to IKK and SAPK/JNK; also known as Act1 or TRAF3IP2) is an upstream regulator of NF-κB and AP-1, and plays a role in inflammation and injury. Here we show that high glucose (HG; 25mM vs. 5mM d-glucose)-induced endothelial-monocyte adhesion and inhibition of endothelial cell (EC) migration were both reversed by CIKS knockdown. In EC, HG induced CIKS mRNA and protein expression via DPI-inhibitable Nox4-dependent ROS generation. Further, HG induced CIKS transcription and enhanced CIKS promoter-dependent reporter gene activation via Nox4, ROS, AP-1 and C/EBP. Coimmunoprecipitation and immunoblotting revealed CIKS/IKKβ/JNK physical association under basal conditions that was enhanced by HG treatment. Importantly, CIKS knockdown inhibited HG-induced (i) IKKβ and JNK phosphorylation, (ii) p65 and c-Jun nuclear translocation, and (iii) NF-κB- and AP-1-dependent proinflammatory cytokine, chemokine, and adhesion molecule expression. Similar to HG, the deleterious metabolic products of chronic hyperglycemia, AGE-HSA, AOPPs-HSA and oxLDL, also induced CIKS-dependent endothelial dysfunction. Notably, aortas from streptozotocin-induced and the autoimmune type 1 diabetic NOD and Akita mice showed enhanced DPI-inhibitable ROS generation and CIKS expression. Since CIKS mediates high glucose-induced NF-κB and AP-1-dependent inflammatory signaling and endothelial dysfunction, targeting CIKS may delay progression of vascular diseases during diabetes mellitus and atherosclerosis.
Collapse
Affiliation(s)
- Balachandar Venkatesan
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ryzhakov G, Blazek K, Lai CCK, Udalova IA. IL-17 receptor adaptor protein Act1/CIKS plays an evolutionarily conserved role in antiviral signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:4852-8. [PMID: 23066157 DOI: 10.4049/jimmunol.1200428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-induced antiviral gene expression in mammalian cells requires activation of IFN regulatory factor 3 (IRF3). In this study, we show that the IL-17R adaptor protein Act1/CIKS is involved in this process. Small interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts specifically attenuates expression of IFN-β and IFN-stimulated antiviral genes induced by a synthetic viral mimic, polyinosinic-polycytidylic acid. Ectopic expression of Act1 potentiates the IRF3-driven expression of a synthetic reporter construct as well as the induction of antiviral genes. We demonstrate that this effect is dependent on the ability of Act1 to functionally and physically interact with IκB kinase ε (IKKε), a known IRF3 kinase, and IRF3: 1) Act1 binds IKKε and IRF3; 2) Act1-induced IRF3 activation can be blocked specifically by coexpression of a catalytically inactive mutant of IKKε; and 3) mutants of IRF3, either lacking the C terminus or mutated at the key phosphorylation sites, important for its activation by IKKε, do not support Act1-dependent IRF3 activation. We also show that a zebrafish Act1 protein is able to trigger antiviral gene expression in human cells, which suggests an evolutionarily conserved function of vertebrate Act1 in the host defense against viruses. On the whole, our study demonstrates that Act1 is a component of antiviral signaling.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | |
Collapse
|