1
|
Granzier HL, Labeit S. Discovery of Titin and Its Role in Heart Function and Disease. Circ Res 2025; 136:135-157. [PMID: 39745989 DOI: 10.1161/circresaha.124.323051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing. Its I-band segment, which includes the N2B element and the PEVK (proline, glutamate, valine, and lysine-rich regions), serves as a viscoelastic spring, adjusting sarcomere length and force in response to cardiac stretch. The review details how alternative splicing of titin pre-mRNA produces different isoforms that greatly impact passive tension and cardiac function, under physiological and pathological conditions. Key posttranslational modifications, especially phosphorylation, play crucial roles in adjusting titin's stiffness, allowing for rapid adaptation to changing hemodynamic demands. Abnormal titin modifications and dysregulation of isoforms are linked to cardiac diseases such as heart failure with preserved ejection fraction, where increased stiffness impairs diastolic function. In addition, the review discusses the importance of the A-band region of titin in setting thick filament length and enhancing Ca²+ sensitivity, contributing to the Frank-Starling Mechanism of the heart. TTN truncating variants are frequently associated with dilated cardiomyopathy, and the review outlines potential disease mechanisms, including haploinsufficiency, sarcomere disarray, and altered thick filament regulation. Variants in TTN have also been linked to conditions such as peripartum cardiomyopathy and chemotherapy-induced cardiomyopathy. Therapeutic avenues are explored, including targeting splicing factors such as RBM20 (RNA binding motif protein 20) to adjust isoform ratios or using engineered heart tissues to study disease mechanisms. Advances in genetic engineering, including CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), offer promise for modifying TTN to treat titin-related cardiomyopathies. This comprehensive review highlights titin's structural, mechanical, and signaling roles in heart function and the impact of TTN mutations on cardiac diseases.
Collapse
Affiliation(s)
- Henk L Granzier
- Department of Cellular and Molecular Medicine, Molecular Cardiovascular Research Program, The University of Arizona, Tucson (H.L.G.)
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.)
| |
Collapse
|
2
|
Seveno M, Loubens MN, Berry L, Graindorge A, Lebrun M, Lavazec C, Lamarque MH. The malaria parasite PP1 phosphatase controls the initiation of the egress pathway of asexual blood-stages by regulating the rounding-up of the vacuole. PLoS Pathog 2025; 21:e1012455. [PMID: 39808636 PMCID: PMC11731718 DOI: 10.1371/journal.ppat.1012455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane. These events are coordinated by two intracellular second messengers, cGMP and calcium ions (Ca2+), that control the activation of their dedicated kinases, PKG and CDPKs respectively, and thus the secretion of parasitic factors that assist membranes rupture. We had previously identified the serine-threonine phosphatase PP1 as an essential enzyme required for the rupture of the surrounding vacuole. Here, we address its precise positioning and function within the egress signaling pathway by combining chemical genetics and live-microscopy. Fluorescent reporters of the parasitophorous vacuole morphology were expressed in the conditional PfPP1-iKO line which allowed to monitor the kinetics of natural and induced egress, as well as the rescue capacity of known egress inducers. Our results underscore a dual function for PP1 in the egress cascade. First, we provide further evidence that PP1 controls the homeostasis of the second messenger cGMP by modulating the basal activity of guanylyl cyclase alpha and consequently the PKG-dependent downstream Ca2+ signaling. Second, we demonstrate that PP1 also regulates the rounding-up of the parasitophorous vacuole, as this step is almost completely abolished in PfPP1-null schizonts. Strikingly, our data show that rounding-up is the step triggered by egress inducers, and support its reliance on Ca2+, as the calcium ionophore A23187 bypasses the egress defect of PfPP1-null schizonts, restores proper egress kinetics and promotes the initiation of the rounding-up step. Therefore, this study places the phosphatase PP1 upstream of the cGMP-PKG signaling pathway, and sheds new light on the regulation of rounding-up, the first step in P. falciparum blood stage egress cascade.
Collapse
Affiliation(s)
- Marie Seveno
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Manon N. Loubens
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Laurence Berry
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Arnault Graindorge
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Maryse Lebrun
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| | - Catherine Lavazec
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Institut Cochin, Paris, France
| | - Mauld H. Lamarque
- LPHI, UMR 5294 CNRS/UM–UA15 Inserm, Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
5
|
Strom J, Bull M, Gohlke J, Saripalli C, Methawasin M, Gotthardt M, Granzier H. Titin's cardiac-specific N2B element is critical to mechanotransduction during volume overload of the heart. J Mol Cell Cardiol 2024; 191:40-49. [PMID: 38604403 PMCID: PMC11229416 DOI: 10.1016/j.yjmcc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal β-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.
Collapse
Affiliation(s)
- Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Mathew Bull
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Chandra Saripalli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
6
|
Mira Hernandez J, Shen EY, Ko CY, Hourani Z, Spencer ER, Smoliarchuk D, Bossuyt J, Granzier H, Bers DM, Hegyi B. Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic HFpEF model. Cardiovasc Res 2024:cvae070. [PMID: 38666446 DOI: 10.1093/cvr/cvae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 06/06/2024] Open
Abstract
AIM Sex-differences in heart failure with preserved ejection fraction (HFpEF) are important, but key mechanisms involved are incompletely understood. While animal models can inform about sex-dependent cellular and molecular changes, many previous preclinical HFpEF models have failed to recapitulate sex-dependent characteristics of human HFpEF. We tested for sex-differences in HFpEF using a two-hit mouse model (leptin receptor-deficient db/db mice plus aldosterone infusion for 4 weeks; db/db+Aldo). METHODS AND RESULTS We performed echocardiography, electrophysiology, intracellular Ca2+ imaging, and protein analysis. Female HFpEF mice exhibited more severe diastolic dysfunction in line with increased titin N2B isoform expression and PEVK element phosphorylation, and reduced troponin-I phosphorylation. Female HFpEF mice had lower BNP levels than males despite similar comorbidity burden (obesity, diabetes) and cardiac hypertrophy in both sexes. Male HFpEF mice were more susceptible to cardiac alternans. Male HFpEF cardiomyocytes (versus female) exhibited higher diastolic [Ca2+], slower Ca2+ transient decay, reduced L-type Ca2+ current, more pronounced enhancement of the late Na+ current, and increased short-term variability of action potential duration (APD). However, male and female HFpEF myocytes showed similar downregulation of inward rectifier and transient outward K+ currents, APD prolongation, and frequency of delayed afterdepolarizations. Inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed all pathological APD changes in HFpEF in both sexes, and empagliflozin pretreatment mimicked these effects of CaMKII inhibition. Vericiguat had only slight benefits, and these effects were larger in HFpEF females. CONCLUSION We conclude that the db/db+Aldo preclinical HFpEF murine model recapitulates key sex-specific mechanisms in HFpEF and provides mechanistic insights into impaired excitation-contraction coupling and sex-dependent differential arrhythmia susceptibility in HFpEF with potential therapeutic implications. In male HFpEF myocytes, altered Ca2+ handling and electrophysiology aligned with diastolic dysfunction and arrhythmias, while worse diastolic dysfunction in females may depend more on altered myofilaments properties.
Collapse
Affiliation(s)
- Juliana Mira Hernandez
- Department of Pharmacology, University of California, Davis, CA, USA
- Research Group Biogenesis, Faculty of Agricultural Sciences, Veterinary Medicine, University of Antioquia, Medellin-Colombia
| | - Erin Y Shen
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Christopher Y Ko
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Emily R Spencer
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Daria Smoliarchuk
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W. Titin: roles in cardiac function and diseases. Front Physiol 2024; 15:1385821. [PMID: 38660537 PMCID: PMC11040099 DOI: 10.3389/fphys.2024.1385821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The giant protein titin is an essential component of muscle sarcomeres. A single titin molecule spans half a sarcomere and mediates diverse functions along its length by virtue of its unique domains. The A-band of titin functions as a molecular blueprint that defines the length of the thick filaments, the I-band constitutes a molecular spring that determines cell-based passive stiffness, and various domains, including the Z-disk, I-band, and M-line, serve as scaffolds for stretch-sensing signaling pathways that mediate mechanotransduction. This review aims to discuss recent insights into titin's functional roles and their relationship to cardiac function. The role of titin in heart diseases, such as dilated cardiomyopathy and heart failure with preserved ejection fraction, as well as its potential as a therapeutic target, is also discussed.
Collapse
Affiliation(s)
- Dawson Stroik
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Farhan Raza
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Wei Guo
- Cellular and Molecular Pathology Program, Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Smith JE, Granzier H. In vivo gene editing of CAMKIID: out with the bad and in with the good. J Clin Invest 2024; 134:e176672. [PMID: 38165033 PMCID: PMC10760942 DOI: 10.1172/jci176672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
The ability to change an organism's DNA through gene editing is of great importance for the prevention and treatment of genetic and acquired diseases. Rapid progress has been made during the last decade due to the discovery and refinement of CRISPR/Cas9 as an accurate, fast, and reliable genome editing technique. In this issue of the JCI, Lebek et al. present the culmination from a line of work in the Olson laboratory focused on in vivo gene editing of CAMK2D. The paper presents a combined state-of-the-art gene therapy approach that demonstrates how gene therapy can yield cardioprotection in a mouse model and takes notable steps toward potential applicability in patients.
Collapse
|
9
|
Park E, Yang CR, Raghuram V, Chen L, Chou CL, Knepper MA. Using CRISPR-Cas9/phosphoproteomics to identify substrates of calcium/calmodulin-dependent kinase 2δ. J Biol Chem 2023; 299:105371. [PMID: 37865316 PMCID: PMC10783575 DOI: 10.1016/j.jbc.2023.105371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
11
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Gömöri K, Herwig M, Budde H, Hassoun R, Mostafi N, Zhazykbayeva S, Sieme M, Modi S, Szabados T, Pipis J, Farkas-Morvay N, Leprán I, Ágoston G, Baczkó I, Kovács Á, Mügge A, Ferdinandy P, Görbe A, Bencsik P, Hamdani N. Ca2+/calmodulin-dependent protein kinase II and protein kinase G oxidation contributes to impaired sarcomeric proteins in hypertrophy model. ESC Heart Fail 2022; 9:2585-2600. [PMID: 35584900 PMCID: PMC9288768 DOI: 10.1002/ehf2.13973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Volume overload (VO) induced hypertrophy is one of the hallmarks to the development of heart diseases. Understanding the compensatory mechanisms involved in this process might help preventing the disease progression. Methods and results Therefore, the present study used 2 months old Wistar rats, which underwent an aortocaval fistula to develop VO‐induced hypertrophy. The animals were subdivided into four different groups, two sham operated animals served as age‐matched controls and two groups with aortocaval fistula. Echocardiography was performed prior termination after 4‐ and 8‐month. Functional and molecular changes of several sarcomeric proteins and their signalling pathways involved in the regulation and modulation of cardiomyocyte function were investigated. Results The model was characterized with preserved ejection fraction in all groups and with elevated heart/body weight ratio, left/right ventricular and atrial weight at 4‐ and 8‐month, which indicates VO‐induced hypertrophy. In addition, 8‐months groups showed increased left ventricular internal diameter during diastole, RV internal diameter, stroke volume and velocity‐time index compared with their age‐matched controls. These changes were accompanied by increased Ca2+ sensitivity and titin‐based cardiomyocyte stiffness in 8‐month VO rats compared with other groups. The altered cardiomyocyte mechanics was associated with phosphorylation deficit of sarcomeric proteins cardiac troponin I, myosin binding protein C and titin, also accompanied with impaired signalling pathways involved in phosphorylation of these sarcomeric proteins in 8‐month VO rats compared with age‐matched control group. Impaired protein phosphorylation status and dysregulated signalling pathways were associated with significant alterations in the oxidative status of both kinases CaMKII and PKG explaining by this the elevated Ca2+ sensitivity and titin‐based cardiomyocyte stiffness and perhaps the development of hypertrophy. Conclusions Our findings showed VO‐induced cardiomyocyte dysfunction via deranged phosphorylation of myofilament proteins and signalling pathways due to increased oxidative state of CaMKII and PKG and this might contribute to the development of hypertrophy.
Collapse
Affiliation(s)
- Kamilla Gömöri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nusratul Mostafi
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Saltanat Zhazykbayeva
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Suvasini Modi
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Judit Pipis
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | | | - István Leprán
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Gergely Ágoston
- Institute of Family Medicine, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany.,HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Radke MH, Badillo-Lisakowski V, Britto-Borges T, Kubli DA, Jüttner R, Parakkat P, Carballo JL, Hüttemeister J, Liss M, Hansen A, Dieterich C, Mullick AE, Gotthardt M. Therapeutic inhibition of RBM20 improves diastolic function in a murine heart failure model and human engineered heart tissue. Sci Transl Med 2021; 13:eabe8952. [PMID: 34851694 DOI: 10.1126/scitranslmed.abe8952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael H Radke
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Victor Badillo-Lisakowski
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | | | - René Jüttner
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Pragati Parakkat
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Jacobo Lopez Carballo
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Judith Hüttemeister
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Martin Liss
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | | | - Michael Gotthardt
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
14
|
Function and regulation of phosphatase 1 in healthy and diseased heart. Cell Signal 2021; 90:110203. [PMID: 34822978 DOI: 10.1016/j.cellsig.2021.110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.
Collapse
|
15
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Loescher CM, Hobbach AJ, Linke WA. Titin (TTN): from molecule to modifications, mechanics and medical significance. Cardiovasc Res 2021; 118:2903-2918. [PMID: 34662387 PMCID: PMC9648829 DOI: 10.1093/cvr/cvab328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.
Collapse
Affiliation(s)
- Christine M Loescher
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| | - Anastasia J Hobbach
- Department of Cardiology I, Coronary, Peripheral Vascular Disease and Heart Failure, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster, 48149 Germany
| |
Collapse
|
18
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
19
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
21
|
Radke MH, Polack C, Methawasin M, Fink C, Granzier HL, Gotthardt M. Deleting Full Length Titin Versus the Titin M-Band Region Leads to Differential Mechanosignaling and Cardiac Phenotypes. Circulation 2020; 139:1813-1827. [PMID: 30700140 DOI: 10.1161/circulationaha.118.037588] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect. METHODS To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype. RESULTS Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules. CONCLUSIONS Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.
Collapse
Affiliation(s)
- Michael H Radke
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).,DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.)
| | - Christopher Polack
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.)
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (M.M., H.G.). The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Claudia Fink
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.)
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson (M.M., H.G.). The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany (M.H.R., C.P., C.F., M.G.).,DZHK: German Centre for Cardiovascular Research, Partner Site, Berlin, Germany (M.H.R., M.G.)
| |
Collapse
|
22
|
Lassche S, Voermans NC, van der Pijl R, van den Berg M, Heerschap A, van Hees H, Kusters B, van der Maarel SM, Ottenheijm CAC, van Engelen BGM. Preserved single muscle fiber specific force in facioscapulohumeral muscular dystrophy. Neurology 2020; 94:e1157-e1170. [PMID: 31964688 DOI: 10.1212/wnl.0000000000008977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/20/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate single muscle fiber contractile performance in muscle biopsies from patients with facioscapulohumeral muscular dystrophy (FSHD), one of the most common hereditary muscle disorders. METHODS We collected 50 muscle biopsies (26 vastus lateralis, 24 tibialis anterior) from 14 patients with genetically confirmed FSHD and 12 healthy controls. Single muscle fibers (n = 547) were isolated for contractile measurements. Titin content and titin phosphorylation were examined in vastus lateralis muscle biopsies. RESULTS Single muscle fiber specific force was intact at saturating and physiologic calcium concentrations in all FSHD biopsies, with (FSHDFAT) and without (FSHDNORMAL) fatty infiltration, compared to healthy controls. Myofilament calcium sensitivity of force is increased in single muscle fibers obtained from FSHD muscle biopsies with increased fatty infiltration, but not in FSHD muscle biopsies without fatty infiltration (pCa50: 5.77-5.80 in healthy controls, 5.74-5.83 in FSHDNORMAL, and 5.86-5.90 in FSHDFAT single muscle fibers). Cross-bridge cycling kinetics at saturating calcium concentrations and myofilament cooperativity did not differ from healthy controls. Development of single muscle fiber passive tension was changed in all FSHD vastus lateralis and in FSHDFAT tibialis anterior, resulting in increased fiber stiffness. Titin content was increased in FSHD vastus lateralis biopsies; however, titin phosphorylation did not differ from healthy controls. CONCLUSION Muscle weakness in patients with FSHD is not caused by reduced specific force of individual muscle fibers, even in severely affected tissue with marked fatty infiltration of muscle tissue.
Collapse
Affiliation(s)
- Saskia Lassche
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands.
| | - Nicol C Voermans
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Robbert van der Pijl
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Marloes van den Berg
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Arend Heerschap
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Hieronymus van Hees
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Benno Kusters
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Silvère M van der Maarel
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Coen A C Ottenheijm
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Baziel G M van Engelen
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| |
Collapse
|
23
|
Salcan S, Bongardt S, Monteiro Barbosa D, Efimov IR, Rassaf T, Krüger M, Kötter S. Elastic titin properties and protein quality control in the aging heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118532. [PMID: 31421188 DOI: 10.1016/j.bbamcr.2019.118532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac protein-quality-control systems increases the risk of cytotoxic accumulation of defective proteins. Here, we studied the impact of cardiac aging on the sarcomeric protein titin by analyzing titin-based cardiomyocyte passive tension, titin modification and proteasomal titin turnover. We analyzed left ventricular samples from young (6 months) and old (20 months) wild-type mice and healthy human donor patients grouped according to age in young (17-50 years) and aged hearts (51-73 years). We found no age-dependent differences in titin isoform composition of mouse or human hearts. In aged hearts from mice and human we determined altered titin phosphorylation at serine residues S4010 and S4099 in the elastic N2B domain, but no significant changes in phosphorylation of S11878 and S12022 in the elastic PEVK region. Importantly, overall titin-based cardiomyocyte passive tension remained unchanged. In aged hearts, the calcium-activated protease calpain-1, which provides accessibility to ubiquitination by releasing titin from the sarcomere, showed decreased proteolytic activity. In addition, we observed a reduction in the proteasomal activities. Taken together, our data indicate that cardiac aging does not affect titin-based passive properties of the cardiomyocytes, but impairs protein-quality control, including titin, which may result in a diminished adaptive capacity of the aged myocardium.
Collapse
Affiliation(s)
- Senem Salcan
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sabine Bongardt
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - David Monteiro Barbosa
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Igor R Efimov
- George Washington University, Department of Biomedical Engineering, Science and Engineering Hall, Washington DC-20052, USA
| | - Tienush Rassaf
- University Hospital Essen, Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, 45147 Essen, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Koser F, Loescher C, Linke WA. Posttranslational modifications of titin from cardiac muscle: how, where, and what for? FEBS J 2019; 286:2240-2260. [PMID: 30989819 PMCID: PMC6850032 DOI: 10.1111/febs.14854] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/27/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Titin is a giant elastic protein expressed in the contractile units of striated muscle cells, including the sarcomeres of cardiomyocytes. The last decade has seen enormous progress in our understanding of how titin molecular elasticity is modulated in a dynamic manner to help cardiac sarcomeres adjust to the varying hemodynamic demands on the heart. Crucial events mediating the rapid modulation of cardiac titin stiffness are post‐translational modifications (PTMs) of titin. In this review, we first recollect what is known from earlier and recent work on the molecular mechanisms of titin extensibility and force generation. The main goal then is to provide a comprehensive overview of current insight into the relationship between titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and phosphorylation of titin spring segments on titin stiffness. A synopsis is given of which type of oxidative titin modification can cause which effect on titin stiffness. A large part of the review then covers the mechanically relevant phosphorylation sites in titin, their location along the elastic segment, and the protein kinases and phosphatases known to target these sites. We also include a detailed coverage of the complex changes in phosphorylation at specific titin residues, which have been reported in both animal models of heart disease and in human heart failure, and their correlation with titin‐based stiffness alterations. Knowledge of the relationship between titin PTMs and titin elasticity can be exploited in the search for therapeutic approaches aimed at softening the pathologically stiffened myocardium in heart failure patients.
Collapse
|
25
|
Nie M, Tan X, Lu Y, Wu Z, Li J, Xu D, Zhang P, You F. Network of microRNA-transcriptional factor-mRNA in cold response of turbot Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:583-597. [PMID: 30790148 DOI: 10.1007/s10695-019-00611-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 01/21/2019] [Indexed: 05/19/2023]
Abstract
The aim of this study is to understand fish cold-tolerant mechanism. We analyzed the transcriptional reactions to the cold condition in turbot Scophthalmus maximus by using RNA-seq and microRNA (miRNA)-seq. Meio-gynogenetic diploid turbots were treated at 0 °C to distinguish the cold-tolerant (CT) and cold-sensitive (CS) groups. The results showed that there were quite different responses at both mRNA and miRNA levels, with more up-regulated mRNAs (1069 vs. 194) and less down-regulated miRNAs (4 vs. 1) in CT versus CS relative to the control group. The network of miRNA-transcription factor-mRNA, regulating turbot different response to cold stress, was constructed, which involved in cell cycle, component of cell membrane, signal transduction, and circadian rhythm pathways. The above information demonstrates mechanisms by which cold tolerance is increased in fish.
Collapse
Affiliation(s)
- Miaomiao Nie
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Xungang Tan
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Yunliang Lu
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Zhihao Wu
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan, 316100, Zhejiang Province, People's Republic of China
| | - Peijun Zhang
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Feng You
- CAS Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
26
|
Kellermayer D, Smith JE, Granzier H. Titin mutations and muscle disease. Pflugers Arch 2019; 471:673-682. [PMID: 30919088 DOI: 10.1007/s00424-019-02272-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
The introduction of next-generation sequencing technology has revealed that mutations in the gene that encodes titin (TTN) are linked to multiple skeletal and cardiac myopathies. The most prominent of these myopathies is dilated cardiomyopathy (DCM). Over 60 genes are linked to the etiology of DCM, but by far, the leading cause of DCM is mutations in TTN with truncating variants in TTN (TTNtvs) associated with familial DCM in ∼ 20% of the cases. Titin is a large (3-4 MDa) and abundant protein that forms the third myofilament type of striated muscle where it spans half the sarcomere, from the Z-disk to the M-line. The underlying mechanisms by which titin mutations induce disease are poorly understood and targeted therapies are not available. Here, we review what is known about TTN mutations in muscle disease, with a major focus on DCM. We highlight that exon skipping might provide a possible therapeutic avenue to address diseases that arise from TTNtvs.
Collapse
Affiliation(s)
- Dalma Kellermayer
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA.,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, MRB 325. 1656 E Mabel Street, Tucson, AZ, 85724-5217, USA. .,Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
27
|
Miranda-Silva D, Gonçalves-Rodrigues P, Almeida-Coelho J, Hamdani N, Lima T, Conceição G, Sousa-Mendes C, Cláudia-Moura, González A, Díez J, Linke WA, Leite-Moreira A, Falcão-Pires I. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Sci Rep 2019; 9:2956. [PMID: 30814653 PMCID: PMC6393473 DOI: 10.1038/s41598-019-39581-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 01/03/2023] Open
Abstract
Aortic Stenosis (AS) is the most frequent valvulopathy in the western world. Traditionally aortic valve replacement (AVR) has been recommended immediately after the onset of heart failure (HF) symptoms. However, recent evidence suggests that AVR outcome can be improved if performed earlier. After AVR, the process of left ventricle (LV) reverse remodelling (RR) is variable and frequently incomplete. In this study, we aimed at detecting mechanism underlying the process of LV RR regarding myocardial structural, functional and molecular changes before the onset of HF symptoms. Wistar-Han rats were subjected to 7-weeks of ascending aortic-banding followed by a 2-week period of debanding to resemble AS-induced LV remodelling and the early events of AVR-induced RR, respectively. This resulted in 3 groups: Sham (n = 10), Banding (Ba, n = 15) and Debanding (Deb, n = 10). Concentric hypertrophy and diastolic dysfunction (DD) were patent in the Ba group. Aortic-debanding induced RR, which promoted LV functional recovery, while cardiac structure did not normalise. Cardiac parameters of RV dysfunction, assessed by echocardiography and at the cardiomyocyte level prevailed altered after debanding. After debanding, these alterations were accompanied by persistent changes in pathways associated to myocardial hypertrophy, fibrosis and LV inflammation. Aortic banding induced pulmonary arterial wall thickness to increase and correlates negatively with effort intolerance and positively with E/e′ and left atrial area. We described dysregulated pathways in LV and RV remodelling and RR after AVR. Importantly we showed important RV-side effects of aortic constriction, highlighting the impact that LV-reverse remodelling has on both ventricles.
Collapse
Affiliation(s)
| | | | | | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University, Bochum, Germany
| | - Tânia Lima
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Glória Conceição
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | | | - Cláudia-Moura
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra and CIBERCV, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery and Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra and CIBERCV, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery and Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | - Inês Falcão-Pires
- Department of Surgery and Physiology, University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Haas J, Mester S, Lai A, Frese KS, Sedaghat-Hamedani F, Kayvanpour E, Rausch T, Nietsch R, Boeckel JN, Carstensen A, Völkers M, Dietrich C, Pils D, Amr A, Holzer DB, Martins Bordalo D, Oehler D, Weis T, Mereles D, Buss S, Riechert E, Wirsz E, Wuerstle M, Korbel JO, Keller A, Katus HA, Posch AE, Meder B. Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 2019; 10:107-120. [PMID: 29138229 PMCID: PMC5760848 DOI: 10.15252/emmm.201707838] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcriptome needs to be tightly regulated by mechanisms that include transcription factors, enhancers, and repressors as well as non‐coding RNAs. Besides this dynamic regulation, a large part of phenotypic variability of eukaryotes is expressed through changes in gene transcription caused by genetic variation. In this study, we evaluate genome‐wide structural genomic variants (SVs) and their association with gene expression in the human heart. We detected 3,898 individual SVs affecting all classes of gene transcripts (e.g., mRNA, miRNA, lncRNA) and regulatory genomic regions (e.g., enhancer or TFBS). In a cohort of patients (n = 50) with dilated cardiomyopathy (DCM), 80,635 non‐protein‐coding elements of the genome are deleted or duplicated by SVs, containing 3,758 long non‐coding RNAs and 1,756 protein‐coding transcripts. 65.3% of the SV‐eQTLs do not harbor a significant SNV‐eQTL, and for the regions with both classes of association, we find similar effect sizes. In case of deleted protein‐coding exons, we find downregulation of the associated transcripts, duplication events, however, do not show significant changes over all events. In summary, we are first to describe the genomic variability associated with SVs in heart failure due to DCM and dissect their impact on the transcriptome. Overall, SVs explain up to 7.5% of the variation of cardiac gene expression, underlining the importance to study human myocardial gene expression in the context of the individual genome. This has immediate implications for studies on basic mechanisms of cardiac maladaptation, biomarkers, and (gene) therapeutic studies alike.
Collapse
Affiliation(s)
- Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Stefan Mester
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Alan Lai
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Karen S Frese
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Elham Kayvanpour
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Tobias Rausch
- EMBL (European Molecular Biology Laboratory), Heidelberg, Germany
| | - Rouven Nietsch
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jes-Niels Boeckel
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Avisha Carstensen
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Carsten Dietrich
- Strategy and Innovation, Siemens Healthcare GmbH, Erlangen, Germany
| | - Dietmar Pils
- Siemens AG, Corporate Technology, Vienna, Austria.,Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
| | - Ali Amr
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Daniel B Holzer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Daniel Oehler
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Tanja Weis
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Derliz Mereles
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Sebastian Buss
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Eva Riechert
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Emil Wirsz
- Strategy and Innovation, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Jan O Korbel
- EMBL (European Molecular Biology Laboratory), Heidelberg, Germany
| | - Andreas Keller
- Department of Bioinformatics, University of Saarland, Saarbrücken, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| | - Andreas E Posch
- Strategy and Innovation, Siemens Healthcare GmbH, Erlangen, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany .,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany
| |
Collapse
|
29
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
30
|
Gritsyna YV, Ulanova AD, Salmov NN, Bobylev AG, Zhalimov VK, Vikhlyantsev IM. Differences in Titin and Nebulin Gene Expression in Skeletal Muscles of Rats Chronically Alcoholized by Different Methods. Mol Biol 2019. [DOI: 10.1134/s0026893319010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Freundt JK, Linke WA. Titin as a force-generating muscle protein under regulatory control. J Appl Physiol (1985) 2018; 126:1474-1482. [PMID: 30521425 DOI: 10.1152/japplphysiol.00865.2018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Titin has long been recognized as a mechanical protein in muscle cells that has a main function as a molecular spring in the contractile units, the sarcomeres. Recent work suggests that the titin spring contributes to muscle contraction in a more active manner than previously thought. In this review, we highlight this property, specifically the ability of the immunoglobulin-like (Ig) domains of titin to undergo unfolding-refolding transitions when isolated titin molecules or skeletal myofibrils are held at physiological force levels. Folding of titin Ig domains under force is a hitherto unappreciated, putative source of work production in muscle cells, which could work in synergy with the actomyosin system to maximize the energy delivered by a stretched, actively contracting muscle. This review also focuses on the mechanisms shown to modulate titin-based viscoelastic forces in skeletal muscle cells, including chaperone binding, titin oxidation, phosphorylation, Ca2+ binding, and interaction with actin filaments. Along the way, we discuss which of these modulatory mechanisms might contribute to the phenomenon of residual force enhancement relevant for eccentric muscle contractions. Finally, a brief perspective is added on the potential for the alterations in titin-based force to dynamically alter mechano-chemical signaling pathways in the muscle cell. We conclude that titin from skeletal muscle is a determinant of both passive and active tension and a bona fide mechanosensor, whose stiffness is tuned by various independent mechanisms.
Collapse
Affiliation(s)
- Johanna K Freundt
- Institute of Physiology II, University of Muenster , Muenster , Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster , Muenster , Germany
| |
Collapse
|
32
|
Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet 2018; 9:231. [PMID: 30050558 PMCID: PMC6052891 DOI: 10.3389/fgene.2018.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the LMNA gene, which encodes for the nuclear lamina proteins lamins A and C, are responsible for a diverse group of diseases known as laminopathies. One type of laminopathy is Dilated Cardiomyopathy (DCM), a heart muscle disease characterized by dilation of the left ventricle and impaired systolic function, often leading to heart failure and sudden cardiac death. LMNA is the second most commonly mutated gene in DCM. In addition to LMNA, mutations in more than 60 genes have been associated with DCM. The DCM-associated genes encode a variety of proteins including transcription factors, cytoskeletal, Ca2+-regulating, ion-channel, desmosomal, sarcomeric, and nuclear-membrane proteins. Another important category among DCM-causing genes emerged upon the identification of DCM-causing mutations in RNA binding motif protein 20 (RBM20), an alternative splicing factor that is chiefly expressed in the heart. In addition to RBM20, several essential splicing factors were validated, by employing mouse knock out models, to be embryonically lethal due to aberrant cardiogenesis. Furthermore, heart-specific deletion of some of these splicing factors was found to result in aberrant splicing of their targets and DCM development. In addition to splicing alterations, advances in next generation sequencing highlighted the association between splice-site mutations in several genes and DCM. This review summarizes LMNA mutations and splicing alterations in DCM and discusses how the interaction between LMNA and splicing regulators could possibly explain DCM disease mechanisms.
Collapse
Affiliation(s)
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
33
|
Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:89. [PMID: 29903013 PMCID: PMC6001139 DOI: 10.1186/s12933-018-0732-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.
Collapse
Affiliation(s)
- Lorna J Daniels
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Rachel S Wallace
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Olivia M Nicholson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Genevieve A Wilson
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Peter P Jones
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - J Chris Baldi
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Jeffrey R Erickson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
34
|
Research advances in kinase enzymes and inhibitors for cardiovascular disease treatment. Future Sci OA 2017; 3:FSO204. [PMID: 29134113 PMCID: PMC5674217 DOI: 10.4155/fsoa-2017-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
The targeting of protein kinases has great future potential for the design of new drugs against cardiovascular diseases (CVDs). Enormous efforts have been made toward achieving this aim. Unfortunately, kinase inhibitors designed to treat CVDs have suffered from numerous limitations such as poor selectivity, bad permeability and toxicity. So, where are we now in terms of discovering effective kinase targeting drugs to treat CVDs? Various drug design techniques have been approached for this purpose since the discovery of the inhibitory activity of Staurosporine against protein kinase C in 1986. This review aims to provide context for the status of several emerging classes of direct kinase modulators to treat CVDs and discuss challenges that are preventing scientists from finding new kinase drugs to treat heart disease.
Collapse
|
35
|
Slater RE, Strom JG, Granzier H. Effect of exercise on passive myocardial stiffness in mice with diastolic dysfunction. J Mol Cell Cardiol 2017; 108:24-33. [PMID: 28476659 DOI: 10.1016/j.yjmcc.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome, characterized by increased diastolic stiffness and a preserved ejection fraction, with no effective treatment options. Here we studied the therapeutic potential of exercise for improving diastolic function in a mouse model with HFpEF-like symptoms, the TtnΔIAjxn mouse model. TtnΔIAjxn mice have increased diastolic stiffness and reduced exercise tolerance, mimicking aspects of HFpEF observed in patients. We investigated the effect of free-wheel running exercise on diastolic function. Mechanical studies on cardiac muscle strips from the LV free wall revealed that both TtnΔIAjxn and wildtype (WT) exercised mice had a reduction in passive stiffness, relative to sedentary controls. In both genotypes, this reduction is due to an increase in the compliance of titin whereas ECM-based stiffness was unaffected. Phosphorylation of titin's PEVK and N2B spring elements were assayed with phospho-site specific antibodies. Exercised mice had decreased PEVK phosphorylation and increased N2B phosphorylation both of which are predicted to contribute to the increased compliance of titin. Since exercise lowers the heart rate we examined whether reduction in heart rate per se can improve passive stiffness by administering the heart-rate-lowering drug ivabradine. Ivabradine lowered heart rate in our study but it did not affect passive tension, in neither WT nor TtnΔIAjxn mice. We conclude that exercise is beneficial for decreasing passive stiffness and that it involves beneficial alterations in titin phosphorylation.
Collapse
Affiliation(s)
- Rebecca E Slater
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Joshua G Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
36
|
Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophys Rev 2017; 9:225-237. [PMID: 28510118 PMCID: PMC5498327 DOI: 10.1007/s12551-017-0263-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.
Collapse
|
37
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
38
|
Chen-Izu Y, Izu LT. Mechano-chemo-transduction in cardiac myocytes. J Physiol 2017; 595:3949-3958. [PMID: 28098356 DOI: 10.1113/jp273101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022] Open
Abstract
The heart has the ability to adjust to changing mechanical loads. The Frank-Starling law and the Anrep effect describe exquisite intrinsic mechanisms the heart has for autoregulating the force of contraction to maintain cardiac output under changes of preload and afterload. Although these mechanisms have been known for more than a century, their cellular and molecular underpinnings are still debated. How does the cardiac myocyte sense changes in preload or afterload? How does the myocyte adjust its response to compensate for such changes? In cardiac myocytes Ca2+ is a crucial regulator of contractile force and in this review we compare and contrast recent studies from different labs that address these two important questions. The 'dimensionality' of the mechanical milieu under which experiments are carried out provide important clues to the location of the mechanosensors and the kinds of mechanical forces they can sense and respond to. As a first approximation, sensors inside the myocyte appear to modulate reactive oxygen species while sensors on the cell surface appear to also modulate nitric oxide signalling; both signalling pathways affect Ca2+ handling. Undoubtedly, further studies will add layers to this simplified picture. Clarifying the intimate links from cellular mechanics to reactive oxygen species and nitric oxide signalling and to Ca2+ handling will deepen our understanding of the Frank-Starling law and the Anrep effect, and also provide a unified view on how arrhythmias may arise in seemingly disparate diseases that have in common altered myocyte mechanics.
Collapse
Affiliation(s)
- Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine/Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
39
|
Kötter S, Kazmierowska M, Andresen C, Bottermann K, Grandoch M, Gorressen S, Heinen A, Moll JM, Scheller J, Gödecke A, Fischer JW, Schmitt JP, Krüger M. Titin-Based Cardiac Myocyte Stiffening Contributes to Early Adaptive Ventricular Remodeling After Myocardial Infarction. Circ Res 2016; 119:1017-1029. [DOI: 10.1161/circresaha.116.309685] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023]
Abstract
Rationale:
Myocardial infarction (MI) increases the wall stress in the viable myocardium and initiates early adaptive remodeling in the left ventricle to maintain cardiac output. Later remodeling processes include fibrotic reorganization that eventually leads to cardiac failure. Understanding the mechanisms that support cardiac function in the early phase post MI and identifying the processes that initiate transition to maladaptive remodeling are of major clinical interest.
Objective:
To characterize MI-induced changes in titin-based cardiac myocyte stiffness and to elucidate the role of titin in ventricular remodeling of remote myocardium in the early phase after MI.
Methods and Results:
Titin properties were analyzed in Langendorff-perfused mouse hearts after 20-minute ischemia/60-minute reperfusion (I/R), and mouse hearts that underwent ligature of the left anterior descending coronary artery for 3 or 10 days. Cardiac myocyte passive tension was significantly increased 1 hour after ischemia/reperfusion and 3 and 10 days after left anterior descending coronary artery ligature. The increased passive tension was caused by hypophosphorylation of the titin N2-B unique sequence and hyperphosphorylation of the PEVK (titin domain rich in proline, glutamate, valine, and lysine) region of titin. Blocking of interleukine-6 before left anterior descending coronary artery ligature restored titin-based myocyte tension after MI, suggesting that MI-induced titin stiffening is mediated by elevated levels of the cytokine interleukine-6. We further demonstrate that the early remodeling processes 3 days after MI involve accelerated titin turnover by the ubiquitin–proteasome system.
Conclusions:
We conclude that titin-based cardiac myocyte stiffening acutely after MI is partly mediated by interleukine-6 and is an important mechanism of remote myocardium to adapt to the increased mechanical demands after myocardial injury.
Collapse
Affiliation(s)
- Sebastian Kötter
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Malgorzata Kazmierowska
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Christian Andresen
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Katharina Bottermann
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Maria Grandoch
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Simone Gorressen
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Andre Heinen
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Jens M. Moll
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Jürgen Scheller
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Axel Gödecke
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Jens W. Fischer
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Joachim P. Schmitt
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Martina Krüger
- From the Department of Cardiovascular Physiology (S.K., M.K., C.A., K.B., A.H., A.G., M.K.), Department of Pharmacology and Clinical Pharmacology (M.G., S.G., J.W.F., J.P.S.), and Institute of Biochemistry and Molecular Biology II (J.M.M., J.S.), Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
40
|
Phosphorylating Titin's Cardiac N2B Element by ERK2 or CaMKIIδ Lowers the Single Molecule and Cardiac Muscle Force. Biophys J 2016; 109:2592-2601. [PMID: 26682816 DOI: 10.1016/j.bpj.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022] Open
Abstract
Titin is a large filamentous protein that is responsible for the passive force of the cardiac sarcomere. Titin's force is generated by its I-band region, which includes the cardiac-specific N2B element. The N2B element consists of three immunoglobulin domains, two small unique sequence insertions, and a large 575-residue unique sequence, the N2B-Us. Posttranslational modifications of the N2B element are thought to regulate passive force, but the underlying mechanisms are unknown. Increased passive-force levels characterize diastolic stiffening in heart-failure patients, and it is critical to understand the underlying molecular mechanisms and identify therapeutic targets. Here, we used single-molecule force spectroscopy to study the mechanical effects of the kinases calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) and extracellular signal-regulated kinase 2 (ERK2) on the single-molecule mechanics of the N2B element. Both CaMKIIδ and ERK2 were found to phosphorylate the N2B element, and single-molecule force spectroscopy revealed an increase in the persistence length (Lp) of the molecule, indicating that the bending rigidity of the molecule was increased. Experiments performed under oxidizing conditions and with a recombinant N2B element that had a simplified domain composition provided evidence that the Lp increase requires the N2B-Us of the N2B element. Mechanical experiments were also performed on skinned myocardium before and after phosphorylation. The results revealed a large (∼30%) passive force reduction caused by CaMKIIδ and a much smaller (∼6%) reduction caused by ERK2. These findings support the notion that the important kinases ERK2 and CaMKIIδ can alter the passive force of myocytes in the heart (although CaMKIIδ appears to be more potent) during physiological and pathophysiological states.
Collapse
|
41
|
Kovács Á, Fülöp GÁ, Kovács A, Csípő T, Bódi B, Priksz D, Juhász B, Beke L, Hendrik Z, Méhes G, Granzier HL, Édes I, Fagyas M, Papp Z, Barta J, Tóth A. Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats. Am J Physiol Heart Circ Physiol 2016; 310:H1671-82. [PMID: 27059079 DOI: 10.1152/ajpheart.00842.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 01/09/2023]
Abstract
Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titin's PEVK element, contributing to diastolic dysfunction.
Collapse
Affiliation(s)
- Árpád Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Á Fülöp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Csípő
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Henk L Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona; and
| | - István Édes
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Barta
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary;
| | - Attila Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
42
|
Franssen C, González Miqueo A. The role of titin and extracellular matrix remodelling in heart failure with preserved ejection fraction. Neth Heart J 2016; 24:259-67. [PMID: 26886920 PMCID: PMC4796057 DOI: 10.1007/s12471-016-0812-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterised by a high incidence of metabolic comorbidities that share the potential to induce both systemic and coronary microvascular inflammation and oxidative stress. These pathophysiological alterations contribute to increased passive stiffness of the myocardium and to diastolic dysfunction, both hallmarks of HFpEF. Passive myocardial stiffness depends mainly on two components: the extracellular matrix (ECM) and the cardiomyocytes. Quantitative and qualitative changes in collagen metabolism leading to myocardial fibrosis determine the ECM-based stiffness of the myocardium. Different noninvasive diagnostic tools to assess myocardial fibrosis are being developed, some of which have demonstrated to correlate with clinical status and prognosis. Cardiomyocytes mainly alter the passive stiffness through alterations in the giant myofilament titin, which serves as a spring. By modifying its phosphorylation state or by direct oxidative effects, titin determines cardiomyocyte-based passive stiffness. Probably the relative importance of cardiomyocyte-based changes is more important in the beginning of the disease, whereas ECM-based changes become more prominent in the more advanced stages. The present review focuses on these changes in ECM and cardiomyocytes in HFpEF and their potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- C Franssen
- ICaR-VU, VU University Medical Center, Van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands.
| | - A González Miqueo
- Center for Applied Medical Research, University of Navarra, Program of Cardiovascular Diseases, Pamplona, Spain
| |
Collapse
|
43
|
Gao Z, Sierra A, Zhu Z, Koganti SRK, Subbotina E, Maheshwari A, Anderson ME, Zingman LV, Hodgson-Zingman DM. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury. PLoS One 2016; 11:e0151337. [PMID: 26964104 PMCID: PMC4786327 DOI: 10.1371/journal.pone.0151337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of CaMKII-dependent downregulation of KATP channel expression as a mechanism for vulnerability to injury in failing hearts points to strategies targeting this interaction for potential preventives or treatments.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Sierra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyong Zhu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Siva Rama Krishna Koganti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ekaterina Subbotina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ankit Maheshwari
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark E. Anderson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Leonid V. Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Denice M. Hodgson-Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
44
|
Krüger M, Kötter S. Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechanosignaling and Skeletal Muscle Remodeling. Front Physiol 2016; 7:76. [PMID: 26973541 PMCID: PMC4771757 DOI: 10.3389/fphys.2016.00076] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 01/09/2023] Open
Abstract
Titin is a giant scaffold protein with multiple functions in striated muscle physiology. Due to the elastic I-band domains and the filament-like integration in the half-sarcomere titin is an important factor for sarcomere assembly and serves as an adaptable molecular spring that determines myofilament distensibility. Protein-interactions e.g., with muscle ankyrin repeat proteins or muscle LIM-protein link titin to hypertrophic signaling and via p62 and Muscle Ring Finger proteins to mechanisms that control protein quality control. This review summarizes our current knowledge on titin as a central node for exercise-induced mechanosignaling and remodeling and further highlights the pathophysiological implications.
Collapse
Affiliation(s)
- Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
45
|
Two Kinases to Soften the Heart. Biophys J 2016; 110:289-291. [DOI: 10.1016/j.bpj.2015.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022] Open
|
46
|
Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, Leite-Moreira AF, Musters R, Niessen HWM, Linke WA, Paulus WJ, Hamdani N. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC-HEART FAILURE 2015; 4:312-24. [PMID: 26682792 DOI: 10.1016/j.jchf.2015.10.007] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The present study investigated whether systemic, low-grade inflammation of metabolic risk contributed to diastolic left ventricular (LV) dysfunction and heart failure with preseved ejection fraction (HFpEF) through coronary microvascular endothelial activation, which alters paracrine signalling to cardiomyocytes and predisposes them to hypertrophy and high diastolic stiffness. BACKGROUND Metabolic risk is associated with diastolic LV dysfunction and HFpEF. METHODS We explored inflammatory endothelial activation and its effects on oxidative stress, nitric oxide (NO) bioavailability, and cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signalling in myocardial biopsies of HFpEF patients and validated our findings by comparing obese Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1)-HFpEF rats to ZSF1-Control (Ctrl) rats. RESULTS In myocardium of HFpEF patients and ZSF1-HFpEF rats, we observed the following: 1) E-selectin and intercellular adhesion molecule-1 expression levels were upregulated; 2) NADPH oxidase 2 expression was raised in macrophages and endothelial cells but not in cardiomyocytes; and 3) uncoupling of endothelial nitric oxide synthase, which was associated with reduced myocardial nitrite/nitrate concentration, cGMP content, and PKG activity. CONCLUSIONS HFpEF is associated with coronary microvascular endothelial activation and oxidative stress. These lead to a reduction of NO-dependent signalling from endothelial cells to cardiomyocytes, which can contribute to the high cardiomyocyte stiffness and hypertrophy observed in HFpEF.
Collapse
Affiliation(s)
- Constantijn Franssen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Sophia Chen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Andreas Unger
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - H Ibrahim Korkmaz
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands; Department of Pathology and Cardiac Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - René Musters
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Walter J Paulus
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.
| | - Nazha Hamdani
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands; Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Salmov NN, Gritsyna YV, Ulanova AD, Vikhlyantsev IM, Podlubnaya ZA. On the role of titin phosphorylation in the development of muscular atrophy. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915040193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
48
|
Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015; 308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022]
Abstract
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina;
| | - Rosana A Bassani
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ariel L Escobar
- Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
49
|
Weeland CJ, van den Hoogenhof MM, Beqqali A, Creemers EE. Insights into alternative splicing of sarcomeric genes in the heart. J Mol Cell Cardiol 2015; 81:107-13. [PMID: 25683494 DOI: 10.1016/j.yjmcc.2015.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial layer in gene expression, greatly expanding protein diversity and governing complex biological processes in the cardiomyocyte. At the core of cardiac contraction, the physical properties of the sarcomere are carefully orchestrated through alternative splicing to fit the varying demands on the heart. By the recent discovery of RBM20 and RBM24, two major heart and skeletal muscle-restricted splicing factors, it became evident that alternative splicing events in the heart occur in regulated networks rather than in isolated events. Analysis of knockout mice of these splice factors has shed light on the importance of these fundamental processes in the heart. In this review, we discuss recent advances in our understanding of the role and regulation of alternative splicing in the developing and diseased heart, specifically within the sarcomere. Through various examples (titin, myomesin, troponin T, tropomyosin and LDB3) we illustrate how alternative splicing regulates the functional properties of the sarcomere. Finally, we evaluate opportunities and obstacles to modulate alternative splicing in therapeutic approaches for cardiac disease.
Collapse
Affiliation(s)
- Cornelis J Weeland
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | | | - Abdelaziz Beqqali
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, Van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter MM. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 2015; 131:1247-59. [PMID: 25637629 DOI: 10.1161/circulationaha.114.013215] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. METHODS AND RESULTS Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (-) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(-)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(-)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. CONCLUSIONS Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.
Collapse
Affiliation(s)
- Michael R Zile
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.).
| | - Catalin F Baicu
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - John S Ikonomidis
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Robert E Stroud
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Paul J Nietert
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Amy D Bradshaw
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Rebecca Slater
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Bradley M Palmer
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Peter Van Buren
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Markus Meyer
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Margaret M Redfield
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - David A Bull
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Henk L Granzier
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| | - Martin M LeWinter
- From Division of Cardiology, Department of Medicine, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (M.R.Z., C.F.B., A.D.B.); Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, and RHJ Department of Veterans Affairs Medical Center, Charleston, SC (J.S.I., R.E.S.); Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC (P.J.N.); Department of Cellular and Molecular Medicine, University of Arizona, Tucson (R.S., H.L.G.); Cardiology Unit, Department of Medicine, University of Vermont, Burlington (B.M.P., P.V.B., M.M., M.M.L.W.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (B.M.P., P.V.B., M.M.L.W.); Division of Cardiology, Mayo Clinic, Rochester, MN (M.M.R.); and Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health Sciences Center, Salt Lake City (D.A.B.)
| |
Collapse
|