1
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
2
|
Hesselson AB, Vaidya G, Kolodziej A. Genetic cardiomyopathy and significant systolic heart failure treated with cardiac contractility modulation therapy. Heart Rhythm O2 2024; 5:592-596. [PMID: 39263608 PMCID: PMC11385398 DOI: 10.1016/j.hroo.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Affiliation(s)
- Aaron B Hesselson
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky
| | - Gaurang Vaidya
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky
| | - Andrew Kolodziej
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Chaulin AM. Cardiospecific Troponins as Laboratory Biomarkers of Myocardial Cell Injury in Hypertension: A Mini-Review. Curr Med Chem 2024; 31:1235-1250. [PMID: 36825699 DOI: 10.2174/0929867330666230220100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
To date, it is well known that a significant number of diseases of cardiovascular genesis (coronary heart disease, myocardial infarction, cardiomyopathy, Takotsubo syndrome, heart failure, etc.) and extra-cardiac genesis (renal failure, chronic obstructive pulmonary disease, sepsis, diabetes mellitus, etc.) cause injury to contractile cells of the heart muscle (myocardial cells). The most sensitive and specific criteria for proving myocardial cell injury are cardiospecific troponins (CSTns) - CSTnI and CSTnT. According to the current clinical recommendations of the European, American, and Russian Cardiological Communities, CSTnI and CSTnT are the main biomarkers for early diagnosis of myocardial infarction. Hypertension is one of the most dangerous and common risk factors for the development of cardiovascular pathologies and is associated with a high risk of dangerous cardiovascular complications. Therefore, there is an urgent need to search for new biomarkers for the timely assessment of the prognosis of patients with hypertension. This mini-review aims to substantiate the possibilities of using the cardiomarkers (CSTnI and CSTnT) to assess the prognosis of patients suffering from hypertension and to discuss potential mechanisms that cause injury to myocardial cells and increase serum levels of CSTnI and CSTnT. This is a narrative mini-review, which was prepared using the following databases: Pubmed/Medline, PubMed Central, Embase, Scopus, and Web of Science. The following keywords were used in the literature search: "myocardial cells", "injury", "damage", and "hypertension" in combination with the terms "mechanisms of injury" "predictive significance", "cardiac troponins", or "cardiospecific troponins".
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| |
Collapse
|
4
|
Regulation of cardiac function by cAMP nanodomains. Biosci Rep 2023; 43:232544. [PMID: 36749130 PMCID: PMC9970827 DOI: 10.1042/bsr20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a diffusible intracellular second messenger that plays a key role in the regulation of cardiac function. In response to the release of catecholamines from sympathetic terminals, cAMP modulates heart rate and the strength of contraction and ease of relaxation of each heartbeat. At the same time, cAMP is involved in the response to a multitude of other hormones and neurotransmitters. A sophisticated network of regulatory mechanisms controls the temporal and spatial propagation of cAMP, resulting in the generation of signaling nanodomains that enable the second messenger to match each extracellular stimulus with the appropriate cellular response. Multiple proteins contribute to this spatiotemporal regulation, including the cAMP-hydrolyzing phosphodiesterases (PDEs). By breaking down cAMP to a different extent at different locations, these enzymes generate subcellular cAMP gradients. As a result, only a subset of the downstream effectors is activated and a specific response is executed. Dysregulation of cAMP compartmentalization has been observed in cardiovascular diseases, highlighting the importance of appropriate control of local cAMP signaling. Current research is unveiling the molecular organization underpinning cAMP compartmentalization, providing original insight into the physiology of cardiac myocytes and the alteration associated with disease, with the potential to uncover novel therapeutic targets. Here, we present an overview of the mechanisms that are currently understood to be involved in generating cAMP nanodomains and we highlight the questions that remain to be answered.
Collapse
|
5
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
6
|
Chaulin AM. Hypertension as One of the Main Non-Myocardial Infarction-Related Causes of Increased Cardiospecific Troponins: From Mechanisms to Significance in Current Medical Practice. J Clin Med Res 2022; 14:448-457. [PMID: 36578369 PMCID: PMC9765318 DOI: 10.14740/jocmr4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
It is well known that many pathological conditions of both cardiovascular diseases (CVDs) (coronary heart disease, myocardial infarction, arrhythmias, myocarditis, cardiomyopathy, etc.) and non-cardiac (sepsis, anemia, kidney diseases, diabetes mellitus, etc.) origin in the course of their development cause injury to contractile cardiac muscle cells - myocardial cells (MCs). One of the most sensitive and specific criteria for detecting MC injury are cardiospecific troponins (CTs), which are regulatory protein molecules that are released into the blood serum from MC upon their death or injury. Current methods for determining CTs are called high-sensitive ones, and their main advantage is a very low minimum detectable concentration (limit of detection) (average 1 - 10 ng/L or less), which allows early detection of minor MC injury at the earliest stages of CVDs, and therefore they can change the understanding of disease development mechanisms and open up new diagnostic possibilities. One of the most common and dangerous early diseases of the cardiovascular system is hypertension (HT). The novelty of this article lies in the discussion of a new diagnostic direction - predicting the risk of developing CVDs and their dangerous complications in patients with HT by determining the concentration of CTs. In addition, pathophysiological mechanisms underlying MC injury and the release of CTs into the bloodstream and the elimination of CTs into the urine are proposed. This information will contribute to additional fundamental and clinical research to verify the new diagnostic possibility of using CTs in clinical practice (for the management of patients with HT).
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| |
Collapse
|
7
|
Chaulin AM. Metabolic Pathway of Cardiospecific Troponins: From Fundamental Aspects to Diagnostic Role (Comprehensive Review). Front Mol Biosci 2022; 9:841277. [PMID: 35517866 PMCID: PMC9062030 DOI: 10.3389/fmolb.2022.841277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Many molecules of the human body perform key regulatory functions and are widely used as targets for the development of therapeutic drugs or as specific diagnostic markers. These molecules undergo a significant metabolic pathway, during which they are influenced by a number of factors (biological characteristics, hormones, enzymes, etc.) that can affect molecular metabolism and, as a consequence, the serum concentration or activity of these molecules. Among the most important molecules in the field of cardiology are the molecules of cardiospecific troponins (Tns), which regulate the processes of myocardial contraction/relaxation and are used as markers for the early diagnosis of ischemic necrosis of cardiomyocytes (CMC) in myocardial infarction (MI). The diagnostic value and diagnostic capabilities of cardiospecific Tns have changed significantly after the advent of new (highly sensitive (HS)) detection methods. Thus, early diagnostic algorithms of MI were approved for clinical practice, thanks to which the possibility of rapid diagnosis and determination of optimal tactics for managing patients with MI was opened. Relatively recently, promising directions have also been opened for the use of cardiospecific Tns as prognostic markers both at the early stages of the development of cardiovascular diseases (CVD) (arterial hypertension (AH), heart failure (HF), coronary heart disease (CHD), etc.), and in non-ischemic extra-cardiac pathologies that can negatively affect CMC (for example, sepsis, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), etc.). Recent studies have also shown that cardiospecific Tns are present not only in blood serum, but also in other biological fluids (urine, oral fluid, pericardial fluid, amniotic fluid). Thus, cardiospecific Tns have additional diagnostic capabilities. However, the fundamental aspects of the metabolic pathway of cardiospecific Tns are definitively unknown, in particular, specific mechanisms of release of Tns from CMC in non-ischemic extra-cardiac pathologies, mechanisms of circulation and elimination of Tns from the human body, mechanisms of transport of Tns to other biological fluids and factors that may affect these processes have not been established. In this comprehensive manuscript, all stages of the metabolic pathway are consistently and in detail considered, starting from release from CMC and ending with excretion (removal) from the human body. In addition, the possible diagnostic role of individual stages and mechanisms, influencing factors is analyzed and directions for further research in this area are noted.
Collapse
Affiliation(s)
- Aleksey M. Chaulin
- Department of Cardiology and Cardiovascular Surgery, Department of Clinical Chemistry, Samara State Medical University, Samara, Russia
- Samara Regional Clinical Cardiological Dispensary, Samara, Russia
| |
Collapse
|
8
|
The Importance of Cardiac Troponin Metabolism in the Laboratory Diagnosis of Myocardial Infarction (Comprehensive Review). BIOMED RESEARCH INTERNATIONAL 2022; 2022:6454467. [PMID: 35402607 PMCID: PMC8986381 DOI: 10.1155/2022/6454467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
The study of the metabolism of endogenous molecules is not only of great fundamental significance but also of high practical importance, since many molecules serve as drug targets and/or biomarkers for laboratory diagnostics of diseases. Thus, cardiac troponin molecules have long been used as the main biomarkers for confirmation of diagnosis of myocardial infarction, and with the introduction of high-sensitivity test methods, many of our ideas about metabolism of these cardiac markers have changed significantly. In clinical practice, there are opening new promising diagnostic capabilities of cardiac troponins, the understanding and justification of which are closely connected with the fundamental principles of the metabolism of these molecules. Our current knowledge about the metabolism of cardiac troponins is insufficient and extremely disconnected from various literary sources. Thus, many researchers do not sufficiently understand the potential importance of cardiac troponin metabolism in the laboratory diagnosis of myocardial infarction. The purpose of this comprehensive review is to systematize information about the metabolism of cardiac troponins and during the discussion to focus on the potential impact of cTns metabolism on the laboratory diagnosis of myocardial infarction. The format of this comprehensive review includes a sequential consideration and analysis of the stages of the metabolic pathway, starting from possible release mechanisms and ending with elimination mechanisms. This will allow doctors and researchers to understand the significant importance of cTns metabolism and its impact on the laboratory diagnosis of myocardial infarction.
Collapse
|
9
|
Guo S, Tan Y, Huang Z, Li Y, Liu W, Fan X, Zhang J, Stalin A, Fu C, Wu Z, Wang P, Zhou W, Liu X, Wu C, Jia S, Zhang J, Duan X, Wu J. Revealing Calcium Signaling Pathway as Novel Mechanism of Danhong Injection for Treating Acute Myocardial Infarction by Systems Pharmacology and Experiment Validation. Front Pharmacol 2022; 13:839936. [PMID: 35281886 PMCID: PMC8905633 DOI: 10.3389/fphar.2022.839936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Danhong injection (DHI) is a traditional Chinese medicine preparation commonly used in the clinical treatment of acute myocardial infarction (AMI). In this study, the active components of DHI and its mechanism in the treatment of AMI were investigated. Methods: The chemical components of DHI were detected by the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS), and the targets and pathways of DHI in the treatment of AMI were analyzed by systems pharmacology, which was verified by molecular docking and animal experiments. Results: A total of 12 active components of DHI were obtained, and 158 common targets of component and disease were identified by systems pharmacology. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that DHI is closely related to the calcium signaling pathway in the treatment of AMI. Molecular docking showed that the key target protein has good binding affinity to related compounds. The experimental results showed that compared with the model group, LVAWs, EF, and FS significantly (p < 0.05) increased in the DHI group. The percentage of myocardial infarction significantly (p < 0.01) decreased, both in the ventricular and total cardiac regions, and the pathological damage of myocardial tissue also decreased. In addition, the expression of the protein CaMK II decreased (p < 0.01) and the expression of SERCA significantly increased (p < 0.01). Conclusion: This study revealed that ferulic acid, caffeic acid and rosmarinic acid could inhibit AMI by regulating PLB, CaMK II, SERCA, etc. And mechanistically, calcium signaling pathway was critically involved. Combination of systems pharmacology prediction with experimental validation may provide a scientific basis for in-depth clinical investigation of the material basis of DHI.
Collapse
Affiliation(s)
- Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yikui Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyu Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,China-Japan Friendship Hospital, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxia Duan
- Beijing Zest Bridge Medical Technology Inc., Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Chaulin AM. Biology of Cardiac Troponins: Emphasis on Metabolism. BIOLOGY 2022; 11:429. [PMID: 35336802 PMCID: PMC8945489 DOI: 10.3390/biology11030429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Understanding of the biology of endo- and exogenous molecules, in particular their metabolism, is not only of great theoretical importance, but also of high practical significance, since many molecules serve as drug targets or markers for the laboratory diagnostics of many human diseases. Thus, cardiac troponin (cTns) molecules have long been used as key markers for the confirmation of diagnosis of myocardial infarction (MI), and with the introduction of contemporary (high sensitivity) test methods, many of our concepts related to the biology of these cardiac markers have changed significantly. In current clinical practice, there are opening new promising diagnostic capabilities of cTns, the understanding and justification of which is closely connected with the theoretical principles of the metabolism of these molecules. However, today, the biology and metabolism of cTns have not been properly investigated; in particular, we do not know the precise mechanisms of release of these molecules from the myocardial cells (MCs) of healthy people and the mechanisms of circulation, and the elimination of cTns from the bloodstream. The main purpose of this manuscript is to systematize information about the biology of cTns, with an emphasis on the metabolism of cTns. The format of this paper, starting with the release of cTns in the blood and concluding with the metabolism/filtration of troponins, provides a comprehensive yet logically easy way for the readers to approach our current knowledge in the framework of understanding the basic mechanisms by which cTns are produced and processed. Conclusions. Based on the analysis of the current literature, the important role of biology and all stages of metabolism (release, circulation, removal) of cTns in laboratory diagnostics should be noted. It is necessary to continue studying the biology and metabolism of cTns, because this will improve the differential diagnosis of MI and i a new application of cTns immunoassays in current clinical practice.
Collapse
Affiliation(s)
- Aleksey M Chaulin
- Department of Histology and Embryology, Samara State Medical University, 89 Chapaevskaya Street, Samara Region, 443099 Samara, Russia
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, 89 Chapaevskaya Street, Samara Region, 443099 Samara, Russia
| |
Collapse
|
11
|
Chaulin A. Metabolic Pathway of Cardiac Troponins and Its Diagnostic Value. Vasc Health Risk Manag 2022; Volume 18:153-180. [DOI: 10.2147/vhrm.s335851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
12
|
Potz BA, Sabe AA, Sabe SA, Lawandy IJ, Abid MR, Clements RT, Sellke FW. Calpain inhibition decreases myocardial fibrosis in chronically ischemic hypercholesterolemic swine. J Thorac Cardiovasc Surg 2022; 163:e11-e27. [PMID: 32359903 PMCID: PMC7529741 DOI: 10.1016/j.jtcvs.2019.11.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank W. Sellke
- Dr. Frank W. Sellke, 2 Dudley Street, MOC 360, Division of Cardiothoracic Surgery, Providence, RI 02905, Phone: (401) 444-2732, Fax: (401) 444-2380,
| |
Collapse
|
13
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
14
|
Muller GK, Song J, Jani V, Wu Y, Liu T, Jeffreys WPD, O’Rourke B, Anderson ME, Kass DA. PDE1 Inhibition Modulates Ca v1.2 Channel to Stimulate Cardiomyocyte Contraction. Circ Res 2021; 129:872-886. [PMID: 34521216 PMCID: PMC8553000 DOI: 10.1161/circresaha.121.319828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Grace K Muller
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joy Song
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vivek Jani
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuejin Wu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ting Liu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William PD Jeffreys
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian O’Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark E Anderson
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
15
|
Greenman AC, Diffee GM, Power AS, Wilkins GT, Gold OMS, Erickson JR, Baldi JC. Increased myofilament calcium sensitivity is associated with decreased cardiac troponin I phosphorylation in the diabetic rat heart. Exp Physiol 2021; 106:2235-2247. [PMID: 34605091 DOI: 10.1113/ep089730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? In Zucker Diabetic Fatty rats, does cardiomyocyte myofilament function change through the time course of diabetes and what are the mechanisms behind alterations in calcium sensitivity? What is the main finding and its importance? Zucker Diabetic Fatty rats had increased myofilament calcium sensitivity and reduced phosphorylation at cardiac troponin I without differential O-GlcNAcylation. ABSTRACT The diabetic heart has impaired systolic and diastolic function independent of other comorbidities. The availability of calcium is altered, but does not fully explain the cardiac dysfunction seen in the diabetic heart. Thus, we explored if myofilament calcium regulation of contraction is altered while also categorizing the levels of phosphorylation and O-GlcNAcylation in the myofilaments. Calcium sensitivity (pCa50 ) was measured in Zucker Diabetic Fatty (ZDF) rat hearts at the initial stage of diabetes (12 weeks old) and after 8 weeks of uncontrolled hyperglycaemia (20 weeks old) and in non-diabetic (nDM) littermates. Skinned cardiomyocytes were connected to a capacitance-gauge transducer and a torque motor to measure force as a function of pCa (-log[Ca2+ ]). Fluorescent gel stain (ProQ Diamond) was used to measure total protein phosphorylation. Specific phospho-sites on cardiac troponin I (cTnI) and total cTnI O-GlcNAcylation were quantified using immunoblot. pCa50 was greater in both 12- and 20-week-old diabetic (DM) rats compared to nDM littermates (P = 0.0001). Total cTnI and cTnI serine 23/24 phosphorylation were lower in DM rats (P = 0.003 and P = 0.01, respectively), but cTnI O-GlcNAc protein expression was not different. pCa50 is greater in DM rats and corresponds with an overall reduction in cTnI phosphorylation. These findings indicate that myofilament calcium sensitivity is increased and cTnI phosphorylation is reduced in ZDF DM rats and suggests an important role for cTnI phosphorylation in the DM heart.
Collapse
Affiliation(s)
- Angela C Greenman
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia S Power
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Gerard T Wilkins
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Olivia M S Gold
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - James C Baldi
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
de Boer D, Streng AS, van Doorn WPTM, Vroemen WHM, Bekers O, Wodzig WKWH, Mingels AMA. Cardiac Troponin T: The Impact of Posttranslational Modifications on Analytical Immunoreactivity in Blood up to the Excretion in Urine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:41-59. [PMID: 33959905 DOI: 10.1007/978-3-030-63908-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac troponin T (cTnT) is a sensitive and specific biomarker for detecting cardiac muscle injury. Its concentration in blood can be significantly elevated outside the normal reference range under several pathophysiological conditions. The classical analytical method in routine clinical analysis to detect cTnT in serum or plasma is a single commercial immunoassay, which is designed to quantify the intact cTnT molecule. The targeted epitopes are located in the central region of the cTnT molecule. However, in blood cTnT exists in different biomolecular complexes and proteoforms: bound (to cardiac troponin subunits or to immunoglobulins) or unbound (as intact protein or as proteolytic proteoforms). While proteolysis is a principal posttranslational modification (PTM), other confirmed PTMs of the proteoforms include N-terminal initiator methionine removal, N-acetylation, O-phosphorylation, O-(N-acetyl)-glucosaminylation, N(ɛ)-(carboxymethyl)lysine modification and citrullination. The immunoassay probably detects several of those cTnT biomolecular complexes and proteoforms, as long as they have the centrally targeted epitopes in common. While analytical cTnT immunoreactivity has been studied predominantly in blood, it can also be detected in urine, although it is unclear in which proteoform cTnT immunoreactivity is present in urine. This review presents an overview of the current knowledge on the pathophysiological lifecycle of cTnT. It provides insight into the impact of PTMs, not only on the analytical immunoreactivity, but also on the excretion of cTnT in urine as one of the waste routes in that lifecycle. Accordingly, and after isolating the proteoforms from urine of patients suffering from proteinuria and acute myocardial infarction, the structures of some possible cTnT proteoforms are reconstructed using mass spectrometry and presented.
Collapse
Affiliation(s)
- Douwe de Boer
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Alexander S Streng
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - William P T M van Doorn
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wim H M Vroemen
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Otto Bekers
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Will K W H Wodzig
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alma M A Mingels
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
17
|
Russell B, Solís C. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. J Muscle Res Cell Motil 2021; 42:367-380. [PMID: 33595762 DOI: 10.1007/s10974-021-09596-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
A transduced mechanical signal arriving at its destination in muscle alters sarcomeric structure and function. A major question addressed is how muscle mass and tension generation are optimized to match actual performance demands so that little energy is wasted. Three cases for improved energy efficiency are examined: the troponin complex for tuning force production, control of the myosin heads in a resting state, and the Z-disc proteins for sarcomere assembly. On arrival, the regulation of protein complexes is often controlled by post-translational modification (PTM), of which the most common are phosphorylation by kinases, deacetylation by histone deacetylases and ubiquitination by E3 ligases. Another branch of signals acts not through peptide covalent bonding but via ligand interactions (e.g. Ca2+ and phosphoinositide binding). The myosin head and the regulation of its binding to actin by the troponin complex is the best and earliest example of signal destinations that modify myofibrillar contractility. PTMs in the troponin complex regulate both the efficiency of the contractile function to match physiologic demand for work, and muscle mass via protein degradation. The regulation of sarcomere assembly by integration of incoming signaling pathways causing the same PTMs or ligand binding are discussed in response to mechanical loading and unloading by the Z-disc proteins CapZ, α-actinin, telethonin, titin N-termini, and others. Many human mutations that lead to cardiomyopathy and heart disease occur in the proteins discussed above, which often occur at their PTM or ligand binding sites.
Collapse
Affiliation(s)
- Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
18
|
Implications of the complex biology and micro-environment of cardiac sarcomeres in the use of high affinity troponin antibodies as serum biomarkers for cardiac disorders. J Mol Cell Cardiol 2020; 143:145-158. [PMID: 32442660 PMCID: PMC7235571 DOI: 10.1016/j.yjmcc.2020.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Cardiac troponin I (cTnI), the inhibitory-unit, and cardiac troponin T (cTnT), the tropomyosin-binding unit together with the Ca-binding unit (cTnC) of the hetero-trimeric troponin complex signal activation of the sarcomeres of the adult cardiac myocyte. The unique structure and heart myocyte restricted expression of cTnI and cTnT led to their worldwide use as biomarkers for acute myocardial infarction (AMI) beginning more than 30 years ago. Over these years, high sensitivity antibodies (hs-cTnI and hs-cTnT) have been developed. Together with careful determination of history, physical examination, and EKG, determination of serum levels using hs-cTnI and hs-cTnT permits risk stratification of patients presenting in the Emergency Department (ED) with chest pain. With the ability to determine serum levels of these troponins with high sensitivity came the question of whether such measurements may be of diagnostic and prognostic value in conditions beyond AMI. Moreover, the finding of elevated serum troponins in physiological states such as exercise and pathological states where cardiac myocytes may be affected requires understanding of how troponins may be released into the blood and whether such release may be benign. We consider these questions by relating membrane stability to the complex biology of troponin with emphasis on its sensitivity to the chemo-mechanical and micro-environment of the cardiac myocyte. We also consider the role determinations of serum troponins play in the precise phenotyping in personalized and precision medicine approaches to promote cardiac health. Serum levels of cardiac TnI and cardiac TnT permit stratification of patients with chest pain. Release of troponins into blood involves not only frank necrosis but also programmed necroptosis. Genome wide analysis of serum troponin levels in the general population may be prognostic about cardiovascular health. Significant levels of serum troponins with exhaustive exercise may not be benign. Troponin in serum can lead to important data related to personalized and precision medicine.
Collapse
|
19
|
Li X, Zheng S, Tan W, Chen H, Li X, Wu J, Luo T, Ren X, Pyle WG, Wang L, Backx PH, Huang R, Yang FH. Slit2 Protects Hearts Against Ischemia-Reperfusion Injury by Inhibiting Inflammatory Responses and Maintaining Myofilament Contractile Properties. Front Physiol 2020; 11:228. [PMID: 32292352 PMCID: PMC7135862 DOI: 10.3389/fphys.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The secreted glycoprotein Slit2, previously known as an axon guidance cue, has recently been found to protect tissues in pathological conditions; however, it is unknown whether Slit2 functions in cardiac ischemia-reperfusion (IR) injury. Methods Langendorff-perfused isolated hearts from Slit2-overexpressing (Slit2-Tg) mice and C57BL/6J mice (background strain) were subjected to 20 min of global ischemia followed by 40 min of reperfusion. We compared Slit2-Tg with C57BL/6J mice in terms of left ventricular function and infarct size of post-IR hearts along with tissue histological and biochemical assessments (mRNA and protein expression, phosphorylation status, and myofilament contractile properties). Results Slit2 played cardioprotective roles in maintaining contractile function and reducing infarct size in post-IR hearts. IR increased the expression of the Slit2 receptor Robo4 and the membrane receptor Slamf7, but these increases were suppressed by Slit2 overexpression post IR. This suppression was associated with inhibition of the nuclear translocation of NFκB p65 and reductions in IL-1β and IL-18 release into perfusates. Furthermore, Slit2 overexpression attenuated the increases in myofilament-associated PKCs and phosphorylation of cTnI at Ser43 in the post-IR myocardium. The myofilament calcium sensitivity and actomyosin MgATPase activity were preserved in the post-IR Slit2 myocardium. Conclusion Our work demonstrates that Slit2 inhibits inflammatory responses and maintains myofilament contractile properties, thus contributing, at least in part, to the prevention of structural and functional damage during IR.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuang Zheng
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,School of Basic Medicine, Vascular Biology Institute, Guangdong Pharmaceutical University, Guanghzou, China
| | - Weijiang Tan
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Hongqi Chen
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xuecong Ren
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - W Glen Pyle
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lijing Wang
- School of Basic Medicine, Vascular Biology Institute, Guangdong Pharmaceutical University, Guanghzou, China
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Division of Cardiology and the Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren Huang
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Feng Hua Yang
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Abstract
The cardiac troponin complex, composed of three regulatory proteins (cTnI, cTnT, TnC), functions as the critical regulator of cardiac muscle contraction and relaxation. Myofilament protein-protein interactions are regulated by post-translational modifications (PTMs) to the protein constituents of this complex. Dysregulation of troponin PTMs, particularly phosphorylation, results in altered cardiac contractility. Altered PTMs and isoforms have been increasingly recognized as the molecular mechanisms underlying heart diseases. Therefore, it is essential to comprehensively analyze cardiac troponin proteoforms that arise from PTMs, alternative splicing, and sequence variations. In this chapter, we described two detailed protocols for the enrichment and purification of endogenous cardiac troponin proteoforms from cardiac tissue. Subsequently, mass spectrometry (MS)-based top-down proteomics utilizing online liquid chromatography (LC)/quadrupole time-of-flight (Q-TOF) MS for separation, profiling, and quantification of the troponins was demonstrated. Characterization of troponin amino acid sequence and the localization of PTMs were shown using Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD). Furthermore, we described the use of MASH software, a comprehensive and free software package developed in our lab, for top-down proteomics data analysis. The methods we described can be applied for the analysis of troponin proteoforms in cardiac tissues, from animal models to human clinical samples, for heart disease.
Collapse
|
21
|
Hwang P, Mingels A, Kavsak PA. High-sensitivity cardiac troponin testing during and after ACS: Complexed or not? Clin Biochem 2019; 73:32-34. [PMID: 31361993 DOI: 10.1016/j.clinbiochem.2019.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Hwang
- Departments of Medicine and Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Alma Mingels
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter A Kavsak
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
22
|
deFilippi C, Seliger S, Latta F, Peters M, Christenson R, Dickfeld T, See VY. High-Sensitivity Cardiac Troponin Assays Potentially Differentiate Acute From Chronic Myocardial Injury. J Am Coll Cardiol 2019; 73:2904-2905. [DOI: 10.1016/j.jacc.2019.03.487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 11/30/2022]
|
23
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
24
|
Baldassarre MPA, Andersen A, Consoli A, Knop FK, Vilsbøll T. Cardiovascular biomarkers in clinical studies of type 2 diabetes. Diabetes Obes Metab 2018; 20:1350-1360. [PMID: 29419909 DOI: 10.1111/dom.13247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023]
Abstract
When planning cardiovascular (CV) studies in type 2 diabetes (T2D), selection of CV biomarkers is a complex issue. Because the pathophysiology of CV disease (CVD) in T2D is multifactorial, ideally, the selected CV biomarkers should cover all aspects of the known pathophysiology of the disease. This will allow the researcher to distinguish between effects on different aspects of the pathophysiology. To this end, we discuss a host of biomarkers grouped according to their role in the pathogenesis of CVD, namely: (1) cardiac damage biomarkers; (2) inflammatory biomarkers; and (3) novel biomarkers (oxidative stress and endothelial dysfunction biomarkers). Within each category we present the best currently validated biomarkers, with special focus on the population of interest (people with T2D). For each individual biomarker, we discuss the physiological role, validation in the general population and in people with T2D, analytical methodology, modifying factors, effects of glucose-lowering drugs, and interpretation. This approach will provide clinical researchers with the information necessary for planning, conducting and interpreting results from clinical trials. Furthermore, a systematic approach to selection of CV biomarkers in T2D research will improve the quality of future research.
Collapse
Affiliation(s)
- Maria P A Baldassarre
- Department of Medicine and Aging Sciences, G. d'Annunzio University, Chieti, Italy
- Aging and Translational Medicine Research Center, CeSI-Met, G. d'Annunzio' University, Chieti, Italy
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Andreas Andersen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, G. d'Annunzio University, Chieti, Italy
- Aging and Translational Medicine Research Center, CeSI-Met, G. d'Annunzio' University, Chieti, Italy
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Grimes KM, Barefield DY, Kumar M, McNamara JW, Weintraub ST, de Tombe PP, Sadayappan S, Buffenstein R. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflugers Arch 2017; 469:1603-1613. [PMID: 28780592 PMCID: PMC5856255 DOI: 10.1007/s00424-017-2046-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/27/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Rochelle Buffenstein
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Calico Life Sciences, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
26
|
Na I, Kong MJ, Straight S, Pinto JR, Uversky VN. Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem 2017; 397:731-51. [PMID: 27074551 DOI: 10.1515/hsz-2015-0303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/05/2016] [Indexed: 11/15/2022]
Abstract
Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart.
Collapse
|
27
|
van der Linden N, Klinkenberg LJJ, Bekers O, Loon LJCV, Dieijen-Visser MPV, Zeegers MP, Meex SJR. Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population: A meta-analysis. Medicine (Baltimore) 2016; 95:e5703. [PMID: 28033267 PMCID: PMC5207563 DOI: 10.1097/md.0000000000005703] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Interest in the use of cardiac troponin T (cTnT) and cardiac troponin I (cTnI) has expanded from diagnosis of acute myocardial infarction to risk assessment for morbidity and mortality. Although cTnT and cTnI were shown to have equivalent diagnostic performance in the setting of suspected acute myocardial infarction, potential prognostic differences are largely unexplored.The aim of this study is to quantify and compare the relationship between cTnT and cTnI, and cardiovascular and all-cause mortality in the general population.Medline, Embase, and the Cochrane Library (from inception through October 2016) were searched for prospective observational cohort studies reporting on the prognostic value of basal high-sensitive cTnT and/or cTnI levels on cardiovascular and all-cause mortality in the general population. Data on study characteristics, participants' characteristics, outcome parameters, and quality [according to the Effective Public Health Practice Project (EPHPP) "Quality Assessment Tool For Quantitative Studies] were retrieved. Hazard ratios per standard deviation increase in basal cardiac troponin level (HR per 1-SD; retrieved from the included articles or estimated) were pooled using a random-effects model.On a total of 2585 reviewed citations, 11 studies, with data on 65,019 participants, were included in the meta-analysis. Random effects pooling showed significant associations between basal cardiac troponin levels and HR for cardiovascular and all-cause mortality [HR per 1-SD 1.29 (95% confidence interval, 95% CI, 1.20-1.38) and HR per 1-SD 1.18 (95% CI, 1.11-1.26), respectively]. Stratified analyses showed higher HRs for cTnT than cTnI [cardiovascular mortality: cTnT HR per 1-SD 1.37 (95% CI, 1.23-1.52); and cTnI HR per 1-SD 1.21 (95% CI, 1.16-1.26); all-cause mortality: cTnT HR per 1-SD 1.31 (955 CI, 1.13-1.53); and cTnI HR per 1-SD 1.14 (95% CI, 1.06-1.22)]. These differences were significant (P < 0.01) in meta-regression analyses for cardiovascular mortality but did not reach statistical significance for all-cause mortality.Elevated, basal cTnT, and cTnI show robust associations with an increased risk of cardiovascular and all-cause mortality during follow-up in the general population.Systematic review registration number PROSPERO CRD42014006964.
Collapse
Affiliation(s)
- Noreen van der Linden
- Department of Clinical Chemistry, Cardiovascular Research Institute Maastricht (CARIM) Department of Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism Department of Complex Genetics, School of Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Westfall MV. Contribution of Post-translational Phosphorylation to Sarcomere-Linked Cardiomyopathy Phenotypes. Front Physiol 2016; 7:407. [PMID: 27683560 PMCID: PMC5021686 DOI: 10.3389/fphys.2016.00407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/30/2016] [Indexed: 01/24/2023] Open
Abstract
Secondary shifts develop in post-translational phosphorylation of sarcomeric proteins in multiple animal models of inherited cardiomyopathy. These signaling alterations together with the primary mutation are predicted to contribute to the overall cardiac phenotype. As a result, identification and integration of post-translational myofilament signaling responses are identified as priorities for gaining insights into sarcomeric cardiomyopathies. However, significant questions remain about the nature and contribution of post-translational phosphorylation to structural remodeling and cardiac dysfunction in animal models and human patients. This perspective essay discusses specific goals for filling critical gaps about post-translational signaling in response to these inherited mutations, especially within sarcomeric proteins. The discussion focuses primarily on pre-clinical analysis of animal models and defines challenges and future directions in this field.
Collapse
|
30
|
Michael JJ, Chandra M. Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α- and β-Myosin Heavy Chain Isoforms. J Am Heart Assoc 2016; 5:e002777. [PMID: 27001966 PMCID: PMC4943253 DOI: 10.1161/jaha.115.002777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis was based on two observations: (1) α‐ and β‐MHC differentially influence the functional effects of TnT; and (2) PKC isoforms capable of phosphorylating TnT are upregulated in failing human hearts. Methods and Results We generated 4 recombinant TnT variants: wild type; R206L; T204E; and R206L+T204E. Functional effects of the TnT variants were tested in cardiac muscle fibers (minimum 14 per group) from normal (α‐MHC) and propylthiouracil‐treated rats (β‐MHC) using steady‐state and dynamic contractile measurements. Notably, in α‐MHC fibers, Ca2+‐activated maximal tension was attenuated by R206L (≈32%), T204E (≈63%), and R206L+T204E (≈64%). In β‐MHC fibers, maximal tension was unaffected by R206L, but was attenuated by T204E (≈33%) and R206L+T204E (≈40%). Thus, β‐MHC differentially counteracted the attenuating effects of the TnT variants on tension. However, in β‐MHC fibers, R206L+T204E attenuated tension to a greater extent when compared to T204E alone. In β‐MHC fibers, R206L+T204E attenuated the magnitude of the length‐mediated recruitment of new cross‐bridges (≈28%), suggesting that the Frank‐Starling mechanism was impaired. Conclusions Our findings are the first (to our knowledge) to demonstrate that the functional effects of a DCM‐linked TnT mutation are not only modulated by MHC isoforms, but also by the pathology‐associated post‐translational modifications of TnT.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| |
Collapse
|
31
|
Gross SM, Lehman SL. Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins. Physiol Genomics 2016; 48:377-87. [PMID: 26993364 DOI: 10.1152/physiolgenomics.00112.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/11/2016] [Indexed: 01/14/2023] Open
Abstract
Protein phosphorylation plays an important role in regulating cardiac contractile function, but phosphorylation is not thought to play a regulatory role in skeletal muscle. To examine how myofilament phosphorylation arose in the human heart, we analyzed the amino acid sequences of 25 cardiac phosphorylation sites in animals ranging from fruit flies to humans. These analyses indicated that of the 25 human phosphorylation sites examined, 11 have been conserved across vertebrates and four have been sporadically present in vertebrates. Furthermore, all 11 of the cardiac sites found across vertebrates were present in skeletal muscle isoforms, along with three sites that were sporadically present. Based on the conservation of amino acid sequences between cardiac and skeletal contractile proteins, we tested for phosphorylation in mammalian skeletal muscle using several biochemical techniques and found evidence that multiple myofilament proteins were phosphorylated. Several of these phosphorylation sites were validated using mass spectrometry, including one site that is present in slow- and fast-twitch troponin I (TnI), but was lost in cardiac TnI. Thus, several myofilament phosphorylation sites present in the human heart likely arose in invertebrate muscle, have been evolutionarily conserved in skeletal muscle, and potentially have functional effects in both skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California; and Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - Steven L Lehman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California; and
| |
Collapse
|
32
|
Streng AS, de Boer D, Bouwman FG, Mariman EC, Scholten A, van Dieijen-Visser MP, Wodzig WK. Development of a targeted selected ion monitoring assay for the elucidation of protease induced structural changes in cardiac troponin T. J Proteomics 2016; 136:123-32. [DOI: 10.1016/j.jprot.2015.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/08/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
|
33
|
Wens SC, Schaaf GJ, Michels M, Kruijshaar ME, van Gestel TJ, in ‘t Groen S, Pijnenburg J, Dekkers DH, Demmers JA, Verdijk LB, Brusse E, van Schaik RH, van der Ploeg AT, van Doorn PA, Pijnappel WP. Elevated Plasma Cardiac Troponin T Levels Caused by Skeletal Muscle Damage in Pompe Disease. ACTA ACUST UNITED AC 2016; 9:6-13. [DOI: 10.1161/circgenetics.115.001322] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/14/2016] [Indexed: 01/19/2023]
Abstract
Background—
Elevated plasma cardiac troponin T (cTnT) levels in patients with neuromuscular disorders may erroneously lead to the diagnosis of acute myocardial infarction or myocardial injury.
Methods and Results—
In 122 patients with Pompe disease, the relationship between cTnT, cardiac troponin I, creatine kinase (CK), CK-myocardial band levels, and skeletal muscle damage was assessed. ECG and echocardiography were used to evaluate possible cardiac disease. Patients were divided into classic infantile, childhood-onset, and adult-onset patients. cTnT levels were elevated in 82% of patients (median 27 ng/L, normal values <14 ng/L). Cardiac troponin I levels were normal in all patients, whereas CK-myocardial band levels were increased in 59% of patients. cTnT levels correlated with CK levels in all 3 subgroups (
P
<0.001). None of the abnormal ECGs recorded in 21 patients were indicative of acute myocardial infarction, and there were no differences in cTnT levels between patients with and without (n=90) abnormalities on ECG (median 28 ng/L in both groups). The median left ventricular mass index measured with echocardiography was normal in all the 3 subgroups. cTnT mRNA expression in skeletal muscle was not detectable in controls but was strongly induced in patients with Pompe disease. cTnT protein was identified by mass spectrometry in patient-derived skeletal muscle tissue.
Conclusions—
Elevated plasma cTnT levels in patients with Pompe disease are associated with skeletal muscle damage, rather than acute myocardial injury. Increased cTnT levels in Pompe disease and likely other neuromuscular disorders should be interpreted with caution to avoid unnecessary cardiac interventions.
Collapse
Affiliation(s)
- Stephan C.A. Wens
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Gerben J. Schaaf
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Michelle Michels
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Michelle E. Kruijshaar
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Tom J.M. van Gestel
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Stijn in ‘t Groen
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Joon Pijnenburg
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Dick H.W. Dekkers
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Jeroen A.A. Demmers
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Lex B. Verdijk
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Esther Brusse
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Ron H.N. van Schaik
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Ans T. van der Ploeg
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - Pieter A. van Doorn
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| | - W.W.M. Pim Pijnappel
- From the Department of Neurology (S.C.A.W., E.B., P.A.v.D.), Center for Lysosomal and Metabolic Diseases (S.C.A.W., G.J.S., M.E.K., T.J.M.v.G., S.G., J.P., E.B., A.T.v.d.P., P.A.v.D., W.W.M.P.P.), Molecular Stem Cell Biology, Department of Clinical Genetics (G.J.S., T.J.M.v.G., S.G., J.P., W.W.M.P.P.), Department of Cardiology (M.M.), Department of Clinical Chemistry (R.H.N.v.S.), Erasmus MC University Medical Center, Rotterdam, The Netherlands; Division of Metabolic Diseases and Genetics,
| |
Collapse
|
34
|
Dubois-Deruy E, Belliard A, Mulder P, Bouvet M, Smet-Nocca C, Janel S, Lafont F, Beseme O, Amouyel P, Richard V, Pinet F. Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure. Cardiovasc Res 2015; 107:56-65. [PMID: 25916824 DOI: 10.1093/cvr/cvv136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/15/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Previous studies have reported that decreased serine 208 phosphorylation of troponin T (TnTpSer208) is associated with ischaemic heart failure (HF), but the molecular mechanisms and functional consequences of these changes are unknown. The aim of this study was to characterize the balance between serine phosphorylation and O-N-acetylglucosaminylation (O-GlcNAcylation) of TnT in HF, its mechanisms, and the consequences of modulating these post-translational modifications. METHODS AND RESULTS Decreased TnTpSer208 levels in the left ventricles of HF male Wistar rats were associated with reduced expression of PKCε but not of other cardiac PKC isoforms. In both isolated perfused rat hearts and cultured neonatal cardiomyocytes, the PKCε inhibitor εV1-2 decreased TnTpSer208 and simultaneously decreased cardiac contraction in isolated hearts and beating amplitude in neonatal cardiomyocytes (measured by atomic force microscopy). Down-regulating PKCε by silencing RNA (siRNA) also reduced TnTpSer208 in these cardiomyocytes, and PKCε-/- mice had lower TnTpSer208 levels than the wild-type. In parallel, HF increased TnT O-GlcNAcylation via both increased O-GlcNAc transferase and decreased O-GlcNAcase activity. Increasing O-GlcNAcylation (via O-GlcNAcase inhibition with Thiamet G) decreased TnTpSer208 in isolated hearts, while reducing O-GlcNAcylation (O-GlcNAc transferase siRNA) increased TnTpSer208 in neonatal cardiomyocytes. Mass spectrometry and NMR analysis identified O-GlcNAcylation of TnT on Ser190. CONCLUSION These data demonstrate interplay between Ser208 phosphorylation and Ser190 O-GlcNAcylation of TnT in ischaemic HF, linked to decreased activity of both PKCε and O-GlcNAcase and increased O-GlcNAc transferase activity. Modulation of these post-translational modifications of TnT may be a new therapeutic strategy in HF.
Collapse
Affiliation(s)
- Emilie Dubois-Deruy
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Aude Belliard
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Paul Mulder
- Inserm U1096, Rouen, France Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marion Bouvet
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Caroline Smet-Nocca
- University of Lille Nord de France, Lille, France CNRS UMR 8576, Villeneuve D'Ascq, France
| | | | - Frank Lafont
- Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France Bioimaging Center Lille Nord de France, Lille, France CNRS UMR 8204, INSERM U1019, Lille, France
| | - Olivia Beseme
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| | - Philippe Amouyel
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Vincent Richard
- Inserm U1096, Rouen, France Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Florence Pinet
- INSERM, U1167, 1 rue du Professeur Calmette, Lille, France Institut Pasteur de Lille, Lille, France University of Lille Nord de France, Lille, France
| |
Collapse
|
35
|
Phosphorylation of Ser283 enhances the stiffness of the tropomyosin head-to-tail overlap domain. Arch Biochem Biophys 2015; 571:10-5. [PMID: 25726728 DOI: 10.1016/j.abb.2015.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
The ends of coiled-coil tropomyosin molecules are joined together by nine to ten residue-long head-to-tail "overlapping domains". These short four-chained interconnections ensure formation of continuous tropomyosin cables that wrap around actin filaments. Molecular Dynamics simulations indicate that the curvature and bending flexibility at the overlap is 10-20% greater than over the rest of the molecule, which might affect head-to-tail filament assembly on F-actin. Since the penultimate residue of striated muscle tropomyosin, Ser283, is a natural target of phosphorylating enzymes, we have assessed here if phosphorylation adjusts the mechanical properties of the tropomyosin overlap domain. MD simulations show that phosphorylation straightens the overlap to match the curvature of the remainder of tropomyosin while stiffening it to equal or exceed the rigidity of canonical coiled-coil regions. Corresponding EM data on phosphomimetic tropomyosin S283D corroborate these findings. The phosphorylation-induced change in mechanical properties of tropomyosin likely results from electrostatic interactions between C-terminal phosphoSer283 and N-terminal Lys12 in the four-chain overlap bundle, while promoting stronger interactions among surrounding residues and thus facilitating tropomyosin cable assembly. The stiffening effect of D283-tropomyosin noted correlates with previously observed enhanced actin-tropomyosin activation of myosin S1-ATPase, suggesting a role for the tropomyosin phosphorylation in potentiating muscle contraction.
Collapse
|
36
|
Jarolim P. High sensitivity cardiac troponin assays in the clinical laboratories. ACTA ACUST UNITED AC 2015; 53:635-52. [DOI: 10.1515/cclm-2014-0565] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
AbstractImmunoassays measuring cardiac troponins I or T have become firmly established as critical tools for diagnosing acute myocardial infarction. While most contemporary assays provide adequate diagnostic performance, the increased sensitivity and precision of the new, high sensitivity assays that have already been introduced into clinical practice, provide the potential to further shorten intervals between blood draws or the time needed to detect the first significant troponin elevation. In addition to the relatively modest benefits at the diagnostic end, the high sensitivity assays and the investigational ultrasensitive cardiac troponin assays offer improvements for predicting major adverse cardiovascular events, development of heart failure or transition to end-stage kidney disease. These novel high sensitivity assays can measure troponin concentrations in 50%–100% of healthy individuals and therefore allow for the distribution of troponin values within a healthy cohort to be measured, patient’s baseline troponin levels to be monitored, and clinicians to be alerted of deteriorating cardiorenal conditions. We envisage that the high sensitivity assays will become important tools for predicting each patient’s risk of future adverse events and for guiding and monitoring corresponding adjustments of preventative therapeutic interventions.
Collapse
|
37
|
Ramirez-Correa GA, Martinez-Ferrando MI, Zhang P, Murphy AM. Targeted proteomics of myofilament phosphorylation and other protein posttranslational modifications. Proteomics Clin Appl 2014; 8:543-53. [DOI: 10.1002/prca.201400034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Genaro A. Ramirez-Correa
- Department of Pediatrics/Division of Cardiology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | | | - Pingbo Zhang
- The Hopkins Bayview Proteomics Center; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology; Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
38
|
Schlecht W, Zhou Z, Li KL, Rieck D, Ouyang Y, Dong WJ. FRET study of the structural and kinetic effects of PKC phosphomimetic cardiac troponin T mutants on thin filament regulation. Arch Biochem Biophys 2014; 550-551:1-11. [PMID: 24708997 DOI: 10.1016/j.abb.2014.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/31/2023]
Abstract
FRET was used to investigate the structural and kinetic effects that PKC phosphorylations exert on Ca(2+) and myosin subfragment-1 dependent conformational transitions of the cardiac thin filament. PKC phosphorylations of cTnT were mimicked by glutamate substitution. Ca(2+) and S1-induced distance changes between the central linker of cTnC and the switch region of cTnI (cTnI-Sr) were monitored in reconstituted thin filaments using steady state and time resolved FRET, while kinetics of structural transitions were determined using stopped flow. Thin filament Ca(2+) sensitivity was found to be significantly blunted by the presence of the cTnT(T204E) mutant, whereas pseudo-phosphorylation at additional sites increased the Ca(2+)-sensitivity. The rate of Ca(2+)-dissociation induced structural changes was decreased in the C-terminal end of cTnI-Sr in the presence of pseudo-phosphorylations while remaining unchanged at the N-terminal end of this region. Additionally, the distance between cTnI-Sr and cTnC was decreased significantly for the triple and quadruple phosphomimetic mutants cTnT(T195E/S199E/T204E) and cTnT(T195E/S199E/T204E/T285E), which correlated with the Ca(2+)-sensitivity increase seen in these same mutants. We conclude that significant changes in thin filament Ca(2+)-sensitivity, structure and kinetics are brought about through PKC phosphorylation of cTnT. These changes can either decrease or increase Ca(2+)-sensitivity and likely play an important role in cardiac regulation.
Collapse
Affiliation(s)
- William Schlecht
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Zhiqun Zhou
- The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA
| | - King-Lun Li
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Daniel Rieck
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Yexin Ouyang
- The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA
| | - Wen-Ji Dong
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; The Department of Integrated Neuroscience and Physiology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
39
|
Streng AS, Jacobs LHJ, Schwenk RW, Cardinaels EPM, Meex SJR, Glatz JFC, Wodzig WKWH, van Dieijen-Visser MP. Cardiac troponin in ischemic cardiomyocytes: intracellular decrease before onset of cell death. Exp Mol Pathol 2014; 96:339-45. [PMID: 24607416 DOI: 10.1016/j.yexmp.2014.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
AIM Cardiac troponin I (cTnI) and T (cTnT) are the most important biomarkers in the diagnosis of acute myocardial infarction (AMI). Nevertheless, they can be elevated in the absence of AMI. It is unclear if such elevations represent irreversible cardiomyocyte-damage or leakage from viable cardiomyocytes. Our objective is to evaluate whether cTn is released from viable cardiomyocytes in response to ischemia and to identify differences in the release of cTn and its molecular forms. METHODS AND RESULTS HL-1 cardiomyocytes (mouse) were subjected to ischemia (modeled by anoxia with glucose deprivation). The total contents and molecular forms of cTn were determined in culture media and cell lysates. Cell viability was assessed from the release of lactate dehydrogenase (LDH). Before the release of LDH, the intracellular cTn content in ischemic cells decreased significantly compared to control (52% for cTnI; 23% for cTnT) and was not matched by a cTn increase in the medium. cTnI decreased more rapidly than cTnT, resulting in an intracellular cTnT/cTnI ratio of 25.5 after 24 h of ischemia. Western blots revealed changes in the relative amounts of fragmented cTnI and cTnT in ischemic cells. CONCLUSIONS HL-1 cardiomyocytes subjected to simulated ischemia released cTnI and cTnT only in combination with the release of LDH. We find no evidence of cTn release from viable cardiomyocytes, but did observe a significant decrease in cTn content, before the onset of cell death. Intracellular decrease of cTn in viable cardiomyocytes can have important consequences for the interpretation of cTn values in clinical practice.
Collapse
Affiliation(s)
- Alexander S Streng
- Department of Clinical Chemistry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Leo H J Jacobs
- Department of Clinical Chemistry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert W Schwenk
- Department of Molecular Genetics and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Eline P M Cardinaels
- Department of Clinical Chemistry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Steven J R Meex
- Department of Clinical Chemistry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan F C Glatz
- Department of Molecular Genetics and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Will K W H Wodzig
- Department of Clinical Chemistry, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | |
Collapse
|
40
|
Conrad MJ, Jarolim P. Cardiac Troponins and High-sensitivity Cardiac Troponin Assays. Clin Lab Med 2014; 34:59-73, vi. [DOI: 10.1016/j.cll.2013.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Yaniv Y. Cardiac troponin I phosphorylation and the force-length relationship. J Physiol 2013; 591:6135-6. [PMID: 24339151 DOI: 10.1113/jphysiol.2013.265090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
42
|
Katrukha IA, Gusev NB. Enigmas of cardiac troponin T phosphorylation. J Mol Cell Cardiol 2013; 65:156-8. [PMID: 24120912 DOI: 10.1016/j.yjmcc.2013.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Ivan A Katrukha
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991 Russian Federation
| | | |
Collapse
|