1
|
Findley TO, Palei AC, Cho KS, Zhao Z, Shi C, Mahajan G, Corno AF, Salazar J, McCullough L. Sex differences in metabolic adaptation in infants with cyanotic congenital heart disease. Pediatr Res 2024; 96:1201-1209. [PMID: 38839995 PMCID: PMC11524789 DOI: 10.1038/s41390-024-03291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Female infants with congenital heart disease (CHD) face significantly higher postoperative mortality rates after adjusting for cardiac complexity. Sex differences in metabolic adaptation to cardiac stressors may be an early contributor to cardiac dysfunction. In adult diseases, hypoxic/ischemic cardiomyocytes undergo a cardioprotective metabolic shift from oxidative phosphorylation to glycolysis which appears to be regulated in a sexually dimorphic manner. We hypothesize sex differences in cardiac metabolism are present in cyanotic CHD and detectable as early as the infant period. METHODS RNA sequencing was performed on blood samples (cyanotic CHD cases, n = 11; controls, n = 11) and analyzed using gene set enrichment analysis (GSEA). Global plasma metabolite profiling (UPLC-MS/MS) was performed using a larger representative cohort (cyanotic CHD, n = 27; non-cyanotic CHD, n = 11; unaffected controls, n = 12). RESULTS Hallmark gene sets in glycolysis, fatty acid metabolism, and oxidative phosphorylation were significantly enriched in cyanotic CHD females compared to male counterparts, which was consistent with metabolomic differences between sexes. Minimal sex differences in metabolic pathways were observed in normoxic patients (both controls and non-cyanotic CHD cases). CONCLUSION These observations suggest underlying differences in metabolic adaptation to chronic hypoxia between males and females with cyanotic CHD. IMPACT Children with cyanotic CHD exhibit sex differences in utilization of glycolysis vs. fatty acid oxidation pathways to meet the high-energy demands of the heart in the neonatal period. Transcriptomic and metabolomic results suggest that under hypoxic conditions, males and females undergo metabolic shifts that are sexually dimorphic. These sex differences were not observed in neonates in normoxic conditions (i.e., non-cyanotic CHD and unaffected controls). The involved metabolic pathways are similar to those observed in advanced heart failure, suggesting metabolic adaptations beginning in the neonatal period may contribute to sex differences in infant survival.
Collapse
Affiliation(s)
- Tina O Findley
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA.
| | - Ana Carolina Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kyung Serk Cho
- Center for Precision Health, School of Biomedical Informatics at the University of Texas Health Science Center Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics at the University of Texas Health Science Center Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caleb Shi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Gouri Mahajan
- Department of Pharmacology and Toxicology/Biobank, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Jorge Salazar
- Children's Heart Institute, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Louise McCullough
- Department of Neurology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
3
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Rubio-Tomás T, Soler-Botija C, Martínez-Estrada O, Villena JA. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models. Biochem Pharmacol 2024; 224:116185. [PMID: 38561091 DOI: 10.1016/j.bcp.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Cardiac ATP production is tightly regulated in order to satisfy the evolving energetic requirements imposed by different cues during health and pathological conditions. In order to sustain high ATP production rates, cardiac cells are endowed with a vast mitochondrial network that is essentially acquired during the perinatal period. Nevertheless, adult cardiac cells also adapt their mitochondrial mass and oxidative function to changes in energy demand and substrate availability by fine-tuning the pathways and mitochondrial machinery involved in energy production. The reliance of cardiac cells on mitochondrial metabolism makes them particularly sensitive to alterations in proper mitochondrial function, so that deficiency in energy production underlies or precipitates the development of heart diseases. Mitochondrial biogenesis is a complex process fundamentally controlled at the transcriptional level by a network of transcription factors and co-regulators, sometimes with partially redundant functions, that ensure adequate energy supply to the working heart. Novel uncovered regulators, such as RIP140, PERM1, MED1 or BRD4 have been recently shown to modulate or facilitate the transcriptional activity of the PGC-1s/ERRs/PPARs regulatory axis, allowing cardiomyocytes to adapt to a variety of physiological or pathological situations requiring different energy provision. In this review, we summarize the current knowledge on the mechanisms that regulate cardiac mitochondrial biogenesis, highlighting the recent discoveries of new transcriptional regulators and describing the experimental models that have provided solid evidence of the relevant contribution of these factors to cardiac function in health and disease.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR-70013, Crete, Greece
| | - Carolina Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBER on Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Beutner G, Burris JR, Collins MP, Kulkarni CA, Nadtochiy SM, de Mesy Bentley KL, Cohen ED, Brookes PS, Porter GA. Coordinated metabolic responses to cyclophilin D deletion in the developing heart. iScience 2024; 27:109157. [PMID: 38414851 PMCID: PMC10897919 DOI: 10.1016/j.isci.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 02/03/2024] [Indexed: 02/29/2024] Open
Abstract
In the embryonic heart, the activation of the mitochondrial electron transport chain (ETC) coincides with the closure of the cyclophilin D (CypD) regulated mitochondrial permeability transition pore (mPTP). However, it remains to be established whether the absence of CypD has a regulatory effect on mitochondria during cardiac development. Using a variety of assays to analyze cardiac tissue from wildtype and CypD knockout mice from embryonic day (E)9.5 to adult, we found that mitochondrial structure, function, and metabolism show distinct transitions. Deletion of CypD altered the timing of these transitions as the mPTP was closed at all ages, leading to coupled ETC activity in the early embryo, decreased citrate synthase activity, and an altered metabolome particularly after birth. Our results suggest that manipulating CypD activity may control myocyte proliferation and differentiation and could be a tool to increase ATP production and cardiac function in immature hearts.
Collapse
Affiliation(s)
- Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan Ryan Burris
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael P. Collins
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chaitanya A. Kulkarni
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Karen L. de Mesy Bentley
- Department of Pathology & Laboratory Medicine and the Electron Microscope Resource, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ethan D. Cohen
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul S. Brookes
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - George A. Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Departments of Medicine (Aab Cardiovascular Research Institute) and Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J, Su H. Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development. Cells 2024; 13:235. [PMID: 38334627 PMCID: PMC10854628 DOI: 10.3390/cells13030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes.
Collapse
Affiliation(s)
- Josue Zambrano-Carrasco
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Takaya H, Comtois-Bona M, Spasojevic A, Cortes D, Variola F, Liang W, Ruel M, Suuronen EJ, Alarcon EI. BEaTS-β: an open-source electromechanical bioreactor for simulating human cardiac disease conditions. Front Bioeng Biotechnol 2023; 11:1253602. [PMID: 37781536 PMCID: PMC10540188 DOI: 10.3389/fbioe.2023.1253602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Heart disease remains the leading cause of worldwide mortality. Although the last decades have broadened our understanding of the biology behind the pathologies of heart disease, ex vivo systems capable of mimicking disease progression and abnormal heart function using human cells remain elusive. In this contribution, an open-access electromechanical system (BEaTS-β) capable of mimicking the environment of cardiac disease is reported. BEaTS-β was designed using computer-aided modeling to combine tunable electrical stimulation and mechanical deformation of cells cultured on a flexible elastomer. To recapitulate the clinical scenario of a heart attack more closely, in designing BEaTS-β we considered a device capable to operate under hypoxic conditions. We tested human induced pluripotent stem cell-derived cardiomyocytes, fibroblasts, and coronary artery endothelial cells in our simulated myocardial infarction environment. Our results indicate that, under simulated myocardium infarction, there was a decrease in maturation of cardiomyocytes, and reduced survival of fibroblasts and coronary artery endothelial cells. The open access nature of BEaTS-β will allow for other investigators to use this platform to investigate cardiac cell biology or drug therapeutic efficacy in vitro under conditions that simulate arrhythmia and/or myocardial infarction.
Collapse
Affiliation(s)
- Hiroki Takaya
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Maxime Comtois-Bona
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biomedical Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Ana Spasojevic
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Cortes
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biomedical Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Wenbin Liang
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
9
|
Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: postnatal maturation of the human cardiomyocyte. J Physiol 2023; 601:2593-2619. [PMID: 37031380 PMCID: PMC10775138 DOI: 10.1113/jp283792] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.
Collapse
Affiliation(s)
- Shatha Salameh
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Vanessa Ogueri
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
11
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Metabolism-based cardiomyocytes production for regenerative therapy. J Mol Cell Cardiol 2023; 176:11-20. [PMID: 36681267 DOI: 10.1016/j.yjmcc.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Human pluripotent stem cells (hPSCs) are currently used in clinical applications such as cardiac regenerative therapy, studying disease models, and drug screening for heart failure. Transplantation of hPSC-derived cardiomyocytes (hPSC-CMs) can be used as an alternative therapy for heart transplantation. In contrast to differentiated somatic cells, hPSCs possess unique metabolic programs to maintain pluripotency, and understanding their metabolic features can contribute to the development of technologies that can be useful for their clinical applications. The production of hPSC-CMs requires stepwise specification during embryonic development and metabolic regulation is crucial for proper embryonic development. These metabolic features have been applied to hPSC-CM production methods, such as mesoderm induction, specifications for cardiac progenitors, and their maturation. This review describes the metabolic programs in hPSCs and the metabolic regulation in hPSC-CM production for cardiac regenerative therapy.
Collapse
|
13
|
Zou J, Wang W, Lu Y, Ayala J, Dong K, Zhou H, Wang J, Chen W, Weintraub NL, Zhou J, Li J, Su H. Neddylation is required for perinatal cardiac development through stimulation of metabolic maturation. Cell Rep 2023; 42:112018. [PMID: 36662623 PMCID: PMC10029150 DOI: 10.1016/j.celrep.2023.112018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Cardiac maturation is crucial for postnatal cardiac development and is increasingly known to be regulated by a series of transcription factors. However, post-translational mechanisms regulating this process remain unclear. Here we report the indispensable role of neddylation in cardiac maturation. Mosaic deletion of NAE1, an essential enzyme for neddylation, in neonatal hearts results in the rapid development of cardiomyopathy and heart failure. NAE1 deficiency disrupts transverse tubule formation, inhibits physiological hypertrophy, and represses fetal-to-adult isoform switching, thus culminating in cardiomyocyte immaturation. Mechanistically, we find that neddylation is needed for the perinatal metabolic transition from glycolytic to oxidative metabolism in cardiomyocytes. Further, we show that HIF1α is a putative neddylation target and that inhibition of neddylation accumulates HIF1α and impairs fatty acid utilization and bioenergetics in cardiomyocytes. Together, our data show neddylation is required for cardiomyocyte maturation through promoting oxidative metabolism in the developing heart.
Collapse
Affiliation(s)
- Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yi Lu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Juan Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongyi Zhou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jinxi Wang
- Department of Medicine, University of Iowa, 200 Hawkins Drive, CBRB 2270B, Iowa City, IA 52242, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiliang Zhou
- Department of Medicine, University of Iowa, 200 Hawkins Drive, CBRB 2270B, Iowa City, IA 52242, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
14
|
Spelat R, Ferro F, Contessotto P, Aljaabary A, Martin-Saldaña S, Jin C, Karlsson NG, Grealy M, Hilscher MM, Magni F, Chinello C, Kilcoyne M, Pandit A. Metabolic reprogramming and membrane glycan remodeling as potential drivers of zebrafish heart regeneration. Commun Biol 2022; 5:1365. [PMID: 36509839 PMCID: PMC9744865 DOI: 10.1038/s42003-022-04328-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The ability of the zebrafish heart to regenerate following injury makes it a valuable model to deduce why this capability in mammals is limited to early neonatal stages. Although metabolic reprogramming and glycosylation remodeling have emerged as key aspects in many biological processes, how they may trigger a cardiac regenerative response in zebrafish is still a crucial question. Here, by using an up-to-date panel of transcriptomic, proteomic and glycomic approaches, we identify a metabolic switch from mitochondrial oxidative phosphorylation to glycolysis associated with membrane glycosylation remodeling during heart regeneration. Importantly, we establish the N- and O-linked glycan structural repertoire of the regenerating zebrafish heart, and link alterations in both sialylation and high mannose structures across the phases of regeneration. Our results show that metabolic reprogramming and glycan structural remodeling are potential drivers of tissue regeneration after cardiac injury, providing the biological rationale to develop novel therapeutics to elicit heart regeneration in mammals.
Collapse
Affiliation(s)
- Renza Spelat
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,grid.5970.b0000 0004 1762 9868Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Federico Ferro
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,grid.5133.40000 0001 1941 4308Department of Medical Surgery and Health Science, University of Trieste, Trieste, Italy
| | - Paolo Contessotto
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Amal Aljaabary
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Chunsheng Jin
- grid.8761.80000 0000 9919 9582Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G. Karlsson
- grid.8761.80000 0000 9919 9582Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maura Grealy
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Markus M. Hilscher
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Fulvio Magni
- grid.7563.70000 0001 2174 1754Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Clizia Chinello
- grid.7563.70000 0001 2174 1754Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Michelle Kilcoyne
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland ,Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
15
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
16
|
Peters MC, Maas RGC, van Adrichem I, Doevendans PAM, Mercola M, Šarić T, Buikema JW, van Mil A, Chamuleau SAJ, Sluijter JPG, Hnatiuk AP, Neef K. Metabolic Maturation Increases Susceptibility to Hypoxia-induced Damage in Human iPSC-derived Cardiomyocytes. Stem Cells Transl Med 2022; 11:1040-1051. [PMID: 36018047 PMCID: PMC9585948 DOI: 10.1093/stcltm/szac061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
The development of new cardioprotective approaches using in vivo models of ischemic heart disease remains challenging as differences in cardiac physiology, phenotype, and disease progression between humans and animals influence model validity and prognostic value. Furthermore, economical and ethical considerations have to be taken into account, especially when using large animal models with relevance for conducting preclinical studies. The development of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has opened new opportunities for in vitro studies on cardioprotective compounds. However, the immature cellular phenotype of iPSC-CMs remains a roadblock for disease modeling. Here, we show that metabolic maturation renders the susceptibility of iPSC-CMs to hypoxia further toward a clinically representative phenotype. iPSC-CMs cultured in a conventional medium did not show significant cell death after exposure to hypoxia. In contrast, metabolically matured (MM) iPSC-CMs showed inhibited mitochondrial respiration after exposure to hypoxia and increased cell death upon increased durations of hypoxia. Furthermore, we confirmed the applicability of MM iPSC-CMs for in vitro studies of hypoxic damage by validating the known cardioprotective effect of necroptosis inhibitor necrostatin-1. Our results provide important steps to improving and developing valid and predictive human in vitro models of ischemic heart disease.
Collapse
Affiliation(s)
- Marijn C Peters
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Iris van Adrichem
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Pieter A M Doevendans
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan W Buikema
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Amsterdam UMC Heart Center, Amsterdam, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Anna P Hnatiuk
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, USA
| | - Klaus Neef
- Department of Cardiology, Laboratory of Experimental Cardiology, Regenerative Medicine Centre Utrecht, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
18
|
Mendelsohn DH, Schnabel K, Mamilos A, Sossalla S, Pabel S, Duerr GD, Keller K, Schmitt VH, Barsch F, Walter N, Wong RMY, El Khassawna T, Niedermair T, Alt V, Rupp M, Brochhausen C. Structural Analysis of Mitochondrial Dynamics-From Cardiomyocytes to Osteoblasts: A Critical Review. Int J Mol Sci 2022; 23:4571. [PMID: 35562962 PMCID: PMC9101187 DOI: 10.3390/ijms23094571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondria play a crucial role in cell physiology and pathophysiology. In this context, mitochondrial dynamics and, subsequently, mitochondrial ultrastructure have increasingly become hot topics in modern research, with a focus on mitochondrial fission and fusion. Thus, the dynamics of mitochondria in several diseases have been intensively investigated, especially with a view to developing new promising treatment options. However, the majority of recent studies are performed in highly energy-dependent tissues, such as cardiac, hepatic, and neuronal tissues. In contrast, publications on mitochondrial dynamics from the orthopedic or trauma fields are quite rare, even if there are common cellular mechanisms in cardiovascular and bone tissue, especially regarding bone infection. The present report summarizes the spectrum of mitochondrial alterations in the cardiovascular system and compares it to the state of knowledge in the musculoskeletal system. The present paper summarizes recent knowledge regarding mitochondrial dynamics and gives a short, but not exhaustive, overview of its regulation via fission and fusion. Furthermore, the article highlights hypoxia and its accompanying increased mitochondrial fission as a possible link between cardiac ischemia and inflammatory diseases of the bone, such as osteomyelitis. This opens new innovative perspectives not only for the understanding of cellular pathomechanisms in osteomyelitis but also for potential new treatment options.
Collapse
Affiliation(s)
- Daniel H. Mendelsohn
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Katja Schnabel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (S.P.)
| | - Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; (S.S.); (S.P.)
| | - Georg Daniel Duerr
- Department of Cardiovascular Surgery, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany;
| | - Karsten Keller
- Department of Cardiology, Cardiology I, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany; (K.K.); (V.H.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, Cardiology I, University Medical Center Mainz (Johannes Gutenberg-University Mainz), 55131 Mainz, Germany; (K.K.); (V.H.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Institute for Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China;
| | - Thaqif El Khassawna
- Department of Experimental Trauma Surgery, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, 93053 Regensburg, Germany; (N.W.); (V.A.); (M.R.)
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (D.H.M.); (K.S.); (A.M.); (T.N.)
- Central Biobank Regensburg, University Regensburg, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Hulikova A, Park KC, Loonat AA, Gunadasa-Rohling M, Curtis MK, Chung YJ, Wilson A, Carr CA, Trafford AW, Fournier M, Moshnikova A, Andreev OA, Reshetnyak YK, Riley PR, Smart N, Milne TA, Crump NT, Swietach P. Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Res Cardiol 2022; 117:17. [PMID: 35357563 PMCID: PMC8971196 DOI: 10.1007/s00395-022-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/31/2023]
Abstract
Cardiac contractile strength is recognised as being highly pH-sensitive, but less is known about the influence of pH on cardiac gene expression, which may become relevant in response to changes in myocardial metabolism or vascularization during development or disease. We sought evidence for pH-responsive cardiac genes, and a physiological context for this form of transcriptional regulation. pHLIP, a peptide-based reporter of acidity, revealed a non-uniform pH landscape in early-postnatal myocardium, dissipating in later life. pH-responsive differentially expressed genes (pH-DEGs) were identified by transcriptomics of neonatal cardiomyocytes cultured over a range of pH. Enrichment analysis indicated "striated muscle contraction" as a pH-responsive biological process. Label-free proteomics verified fifty-four pH-responsive gene-products, including contractile elements and the adaptor protein CRIP2. Using transcriptional assays, acidity was found to reduce p300/CBP acetylase activity and, its a functional readout, inhibit myocardin, a co-activator of cardiac gene expression. In cultured myocytes, acid-inhibition of p300/CBP reduced H3K27 acetylation, as demonstrated by chromatin immunoprecipitation. H3K27ac levels were more strongly reduced at promoters of acid-downregulated DEGs, implicating an epigenetic mechanism of pH-sensitive gene expression. By tandem cytoplasmic/nuclear pH imaging, the cardiac nucleus was found to exercise a degree of control over its pH through Na+/H+ exchangers at the nuclear envelope. Thus, we describe how extracellular pH signals gain access to the nucleus and regulate the expression of a subset of cardiac genes, notably those coding for contractile proteins and CRIP2. Acting as a proxy of a well-perfused myocardium, alkaline conditions are permissive for expressing genes related to the contractile apparatus.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Abigail Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Marjorie Fournier
- Department of Biochemistry, Advanced Proteomics Facility, University of Oxford, Oxford, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI, 02881, USA
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
20
|
Starr VJ, Dzialowski EM. Developing chicken cardiac muscle mitochondria are resistant to variations in incubation oxygen levels. Curr Res Physiol 2022; 5:151-157. [PMID: 35345510 PMCID: PMC8956876 DOI: 10.1016/j.crphys.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Chronic exposure to hypoxia during vertebrate development can produce abnormal cardiovascular morphology and function. The aim of this study was to examine cardiac mitochondria function in an avian model, the chicken, in response to embryonic development under hypoxic (15% O2), normoxic (21% O2), or hyperoxic (40% O2) incubation conditions. Methods Chicken embryos were incubated in hypoxia, normoxia, or hyperoxia beginning on day 5 of incubation through hatching. Cardiac mitochondria oxygen flux and reactive oxygen species production were measured in permeabilized cardiac fibers from externally pipped and 1-day post hatchlings. Results Altering oxygen during development had a large effect on body and heart masses of externally pipped embryos and 1-day old hatchlings. Hypoxic animals had smaller body masses and absolute heart masses, but proportionally similar sized hearts compared to normoxic animals during external pipping. Hyperoxic animals were larger with larger hearts than normoxic animals during external pipping. Mitochondrial oxygen flux in permeabilized cardiac muscle fibers revealed limited effects of developing under altered oxygen conditions, with only oxygen flux through cytochrome oxidase being lower in hypoxic hearts compared with hyperoxic hearts. Oxygen flux in leak and oxidative phosphorylation states were not affected by developmental oxygen levels. Mitochondrial reactive oxygen species production under leak and oxidative phosphorylation states studied did not differ between any developmental oxygen treatment. Conclusions These results suggest that cardiac mitochondria function of the developing chicken is not altered by developing in ovo under different oxygen levels. Chicken heart mass is influenced by oxygen availability during development. Cardiac mitochondria respiration was unchanged by developing under hypoxic or hyperoxic oxygen stress. Cardiac mitochondria ROS production was not altered by developmental oxygen stress.
Collapse
Key Words
- AA, Antimycin A
- ADP, adenosine diphosphate
- COX, cytochrome oxidase
- Cardiac mitochondria
- Chicken
- EP, external pipping
- GMP, glutamate, malate, and pyruvate
- Hyperoxia
- Hypoxia
- IP, internal pipping
- LEAK, mitochondrial leak respiration
- OMY, oligomycin
- OXPHOS, mitochondrial oxidative phosphorylation
- ROS, reactive oxygen species
- ROT, rotenone
- Reactive oxygen species
- S, succinate
- TMPD, N,N,N’,N’-tetramethyl-p-phenylenediamine
- dph, days post hatching
Collapse
Affiliation(s)
- Vanessa J Starr
- Developmental Integrative Biology, Department of Biological Sciences, 1155 Union Circle #305220, University of North Texas, Denton, TX, 76203, USA
| | - Edward M Dzialowski
- Developmental Integrative Biology, Department of Biological Sciences, 1155 Union Circle #305220, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
21
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
22
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
23
|
The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Semin Cell Dev Biol 2022; 122:56-65. [PMID: 34074592 PMCID: PMC8725317 DOI: 10.1016/j.semcdb.2021.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The advent of induced pluripotent stem cells (iPSCs) and identification of transcription factors for cardiac reprogramming have raised hope to cure heart disease, the leading cause of death in the world. Our knowledge in heart development and molecular barriers of cardiac reprogramming is advancing, but many hurdles are yet to be overcome for clinical translation. Importantly, we lack a full understanding of molecular mechanisms governing cell fate conversion toward cardiomyocytes. In this review, we will discuss the role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Cardiomyocytes exhibit a unique metabolic feature distinct from PSCs and cardiac fibroblasts, and there are multiple overlapping molecular mechanisms underlying metabolic reprogramming during cardiomyogenesis. We will discuss key metabolic changes occurring during cardiomyocytes differentiation from PSCs and cardiac fibroblasts, and the potential role of metabolic reprogramming in the enhancement strategies for cardiomyogenesis. Only when such details are discovered will more effective strategies to enhance the de novo production of cardiomyocytes be possible.
Collapse
|
24
|
Lyu Y, Thai PN, Ren L, Timofeyev V, Jian Z, Park S, Ginsburg KS, Overton J, Bossuyt J, Bers DM, Yamoah EN, Chen-Izu Y, Chiamvimonvat N, Zhang XD. Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. iScience 2022; 25:103624. [PMID: 35005560 PMCID: PMC8718820 DOI: 10.1016/j.isci.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and β-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
25
|
Ravizzoni Dartora D, Flahault A, Pontes CNR, He Y, Deprez A, Cloutier A, Cagnone G, Gaub P, Altit G, Bigras JL, Joyal JS, Mai Luu T, Burelle Y, Nuyt AM. Cardiac Left Ventricle Mitochondrial Dysfunction After Neonatal Exposure to Hyperoxia: Relevance for Cardiomyopathy After Preterm Birth. Hypertension 2021; 79:575-587. [PMID: 34961326 PMCID: PMC8823906 DOI: 10.1161/hypertensionaha.121.17979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Individuals born preterm present left ventricle changes and increased risk of cardiac diseases and heart failure. The pathophysiology of heart disease after preterm birth is incompletely understood. Mitochondria dysfunction is a hallmark of cardiomyopathy resulting in heart failure. We hypothesized that neonatal hyperoxia in rats, a recognized model simulating preterm birth conditions and resulting in oxygen-induced cardiomyopathy, induce left ventricle mitochondrial changes in juvenile rats. We also hypothesized that humanin, a mitochondrial-derived peptide, would be reduced in young adults born preterm.
Collapse
Affiliation(s)
- Daniela Ravizzoni Dartora
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Adrien Flahault
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Carolina N R Pontes
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Universidade Federal de Goias, Brazil (C.N.R.P.)
| | - Ying He
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Alyson Deprez
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Anik Cloutier
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Gaël Cagnone
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Perrine Gaub
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Gabriel Altit
- Division of Neonatology, Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada (G.A.)
| | - Jean-Luc Bigras
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.).,Department of Physiology and Pharmacology, Faculty of Medicine, University of Montreal, Quebec, Canada. (G.C., P.G., J.-S.J.)
| | - Thuy Mai Luu
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada (Y.B.)
| | - Anne Monique Nuyt
- Department of Pediatrics, Sainte-Justine University Hospital (CHU Sainte-Justine) and Research Centre, Faculty of Medicine, University of Montreal, Quebec, Canada. (D.R.D., A.F., C.N.R.P., Y.H., A.D., A.C., G.C., P.G., J.-L.B., J.-S.J., T.M.L., A.M.N.)
| |
Collapse
|
26
|
Song H, Polster BM, Thompson LP. Chronic hypoxia alters cardiac mitochondrial complex protein expression and activity in fetal guinea pigs in a sex-selective manner. Am J Physiol Regul Integr Comp Physiol 2021; 321:R912-R924. [PMID: 34730023 PMCID: PMC8714812 DOI: 10.1152/ajpregu.00004.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
We hypothesize that intrauterine hypoxia (HPX) alters the mitochondrial phenotype in fetal hearts contributing to developmental programming. Pregnant guinea pigs were exposed to normoxia (NMX) or hypoxia (HPX, 10.5% O2), starting at early [25 days (25d), 39d duration] or late gestation (50d, 14d duration). Near-term (64d) male and female fetuses were delivered by hysterotomy from anesthetized sows, and body/organ weights were measured. Left ventricles of fetal hearts were excised and frozen for measurement of expression of complex (I-V) subunits, fusion (Mfn2/OPA1) and fission (DRP1/Fis1) proteins, and enzymatic rates of I and IV from isolated mitochondrial proteins. Chronic HPX decreased fetal body weight and increased relative placenta weight regardless of timing. Early-onset HPX increased I, III, and V subunit levels, increased complex I but decreased IV activities in males but not females (all P < 0.05). Late-onset HPX decreased (P < 0.05) I, III, and V levels in both sexes but increased I and decreased IV activities in males only. Both HPX conditions decreased cardiac mitochondrial DNA content in males only. Neither early- nor late-onset HPX had any effect on Mfn2 levels but increased OPA1 in both sexes. Both HPX treatments increased DRP1/Fis1 levels in males. In females, early-onset HPX increased DRP1 with no effect on Fis1, whereas late-onset HPX increased Fis1 with no effect on DRP1. We conclude that both early- and late-onset HPX disrupts the expression/activities of select complexes that could reduce respiratory efficiency and shifts dynamics toward fission in fetal hearts. Thus, intrauterine HPX disrupts the mitochondrial phenotype predominantly in male fetal hearts, potentially altering cardiac metabolism and predisposing the offspring to heart dysfunction.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Loren P Thompson
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
27
|
Santamans AM, Montalvo-Romeral V, Mora A, Lopez JA, González-Romero F, Jimenez-Blasco D, Rodríguez E, Pintor-Chocano A, Casanueva-Benítez C, Acín-Pérez R, Leiva-Vega L, Duran J, Guinovart JJ, Jiménez-Borreguero J, Enríquez JA, Villlalba-Orero M, Bolaños JP, Aspichueta P, Vázquez J, González-Terán B, Sabio G. p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biol 2021; 19:e3001447. [PMID: 34758018 PMCID: PMC8612745 DOI: 10.1371/journal.pbio.3001447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.
Collapse
Affiliation(s)
| | | | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco González-Romero
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Rebeca Acín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - María Villlalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
28
|
Singh V. Intracellular metabolic reprogramming mediated by micro-RNAs in differentiating and proliferating cells under non-diseased conditions. Mol Biol Rep 2021; 48:8123-8140. [PMID: 34643930 DOI: 10.1007/s11033-021-06769-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Intracellular metabolic reprogramming is a critical process the cells carry out to increase biomass, energy fulfillment and genome replication. Cells reprogram their demands from internal catabolic or anabolic activities in coordination with multiple genes and microRNAs which further control the critical processes of differentiation and proliferation. The microRNAs reprogram the metabolism involving mitochondria, the nucleus and the biochemical processes utilizing glucose, amino acids, lipids, and nucleic acids resulting in ATP production. The processes of glycolysis, tricarboxylic acid cycle, or oxidative phosphorylation are also mediated by micro-RNAs maintaining cells and organs in a non-diseased state. Several reports have shown practical applications of metabolic reprogramming for clinical utility to assess various diseases, mostly studying cancer and immune-related disorders. Cells under diseased conditions utilize glycolysis for abnormal growth or proliferation, respectively, affecting mitochondrial paucity and biogenesis. Similar metabolic processes also affect gene expressions and transcriptional regulation for carrying out biochemical reactions. Metabolic reprogramming is equally vital for regulating cell environment to maintain organs and tissues in non-diseased states. This review offers in depth insights and analysis of how miRNAs regulate metabolic reprogramming in four major types of cells undergoing differentiation and proliferation, i.e., immune cells, neuronal cells, skeletal satellite cells, and cardiomyocytes under a non-diseased state. Further, the work systematically summarizes and elaborates regulation of genetic switches by microRNAs through predominantly through cellular reprogramming and metabolic processes for the first time. The observations will lead to a better understanding of disease initiation during the differentiation and proliferation stages of cells, as well as fresh approaches to studying clinical onset of linked metabolic diseases targeting metabolic processes.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
29
|
GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021; 22:ijms22168889. [PMID: 34445593 PMCID: PMC8396208 DOI: 10.3390/ijms22168889] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.
Collapse
|
30
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
31
|
Yang J, Ding N, Zhao D, Yu Y, Shao C, Ni X, Zhao ZA, Li Z, Chen J, Ying Z, Yu M, Lei W, Hu S. Intermittent Starvation Promotes Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021; 9:687769. [PMID: 34395420 PMCID: PMC8362881 DOI: 10.3389/fcell.2021.687769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent an infinite cell source for cardiovascular disease modeling, drug screening and cell therapy. Despite extensive efforts, current approaches have failed to generate hPSC-CMs with fully adult-like phenotypes in vitro, and the immature properties of hPSC-CMs in structure, metabolism and electrophysiology have long been impeding their basic and clinical applications. The prenatal-to-postnatal transition, accompanied by severe nutrient starvation and autophagosome formation in the heart, is believed to be a critical window for cardiomyocyte maturation. In this study, we developed a new strategy, mimicking the in vivo starvation event by Earle's balanced salt solution (EBSS) treatment, to promote hPSC-CM maturation in vitro. We found that EBSS-induced starvation obviously activated autophagy and mitophagy in human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Intermittent starvation, via 2-h EBSS treatment per day for 10 days, significantly promoted the structural, metabolic and electrophysiological maturation of hESC-CMs. Structurally, the EBSS-treated hESC-CMs showed a larger cell size, more organized contractile cytoskeleton, higher ratio of multinucleation, and significantly increased expression of structure makers of cardiomyocytes. Metabolically, EBSS-induced starvation increased the mitochondrial content in hESC-CMs and promoted their capability of oxidative phosphorylation. Functionally, EBSS-induced starvation strengthened electrophysiological maturation, as indicated by the increased action potential duration at 90% and 50% repolarization and the calcium handling capacity. In conclusion, our data indicate that EBSS intermittent starvation is a simple and efficient approach to promote hESC-CM maturation in structure, metabolism and electrophysiology at an affordable time and cost.
Collapse
Affiliation(s)
- Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Nan Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Chunlai Shao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuan Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation & Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
33
|
Häkli M, Kreutzer J, Mäki AJ, Välimäki H, Lappi H, Huhtala H, Kallio P, Aalto-Setälä K, Pekkanen-Mattila M. Human induced pluripotent stem cell-based platform for modeling cardiac ischemia. Sci Rep 2021; 11:4153. [PMID: 33603154 PMCID: PMC7893031 DOI: 10.1038/s41598-021-83740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ischemic heart disease is a major cause of death worldwide, and the only available therapy to salvage the tissue is reperfusion, which can initially cause further damage. Many therapeutics that have been promising in animal models have failed in human trials. Thus, functional human based cardiac ischemia models are required. In this study, a human induced pluripotent stem cell derived-cardiomyocyte (hiPSC-CM)-based platform for modeling ischemia-reperfusion was developed utilizing a system enabling precise control over oxygen concentration and real-time monitoring of the oxygen dynamics as well as iPS-CM functionality. In addition, morphology and expression of hypoxia-related genes and proteins were evaluated as hiPSC-CM response to 8 or 24 h hypoxia and 24 h reoxygenation. During hypoxia, initial decrease in hiPSC-CM beating frequency was observed, after which the CMs adapted to the conditions and the beating frequency gradually increased already before reoxygenation. During reoxygenation, the beating frequency typically first surpassed the baseline before settling down to the values close the baseline. Furthermore, slowing on the field potential propagation throughout the hiPSC-CM sheet as well as increase in depolarization time and decrease in overall field potential duration were observed during hypoxia. These changes were reversed during reoxygenation. Disorganization of sarcomere structures was observed after hypoxia and reoxygenation, supported by decrease in the expression of sarcomeric proteins. Furthermore, increase in the expression of gene encoding glucose transporter 1 was observed. These findings indicate, that despite their immature phenotype, hiPSC-CMs can be utilized in modeling ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Martta Häkli
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Välimäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henna Lappi
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
34
|
Yarwood SJ. Special Issue on "New Advances in Cyclic AMP Signalling"-An Editorial Overview. Cells 2020; 9:cells9102274. [PMID: 33053803 PMCID: PMC7599692 DOI: 10.3390/cells9102274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotides 3′,5′-adenosine monophosphate (cyclic AMP) signalling system underlies the control of many biological events and disease processes in man. Cyclic AMP is synthesised by adenylate cyclase (AC) enzymes in order to activate effector proteins and it is then degraded by phosphodiesterase (PDE) enzymes. Research in recent years has identified a range of cell-type-specific cyclic AMP effector proteins, including protein kinase A (PKA), exchange factor directly activated by cyclic AMP (EPAC), cyclic AMP responsive ion channels (CICs), and the Popeye domain containing (POPDC) proteins, which participate in different signalling mechanisms. In addition, recent advances have revealed new mechanisms of action for cyclic AMP signalling, including new effectors and new levels of compartmentalization into nanodomains, involving AKAP proteins and targeted adenylate cyclase and phosphodiesterase enzymes. This Special Issue contains 21 papers that highlight advances in our current understanding of the biology of compartmentlised cyclic AMP signalling. This ranges from issues of pathogenesis and associated molecular pathways, functional assessment of novel nanodomains, to the development of novel tool molecules and new techniques for imaging cyclic AMP compartmentilisation. This editorial aims to summarise these papers within the wider context of cyclic AMP signalling.
Collapse
Affiliation(s)
- Stephen John Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
| |
Collapse
|
35
|
Jiang N, Zhao H, Han Y, Li L, Xiong S, Zeng L, Xiao Y, Wei L, Xiong X, Gao P, Yang M, Liu Y, Sun L. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics. Cell Prolif 2020; 53:e12909. [PMID: 32975326 PMCID: PMC7653251 DOI: 10.1111/cpr.12909] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives In diabetic nephropathy (DN), hypoxia‐inducible factor‐1α (HIF‐1α) activation in tubular cells plays an important protective role against kidney injury. The effects may occur via the target genes of HIF‐1α, such as haem oxygenase‐1 (HO‐1), but the exact mechanisms are incompletely understood. Materials and methods Mice with proximal tubule‐specific knockout of HIF‐1α (PT‐HIF‐1α−/− mice) were generated, and diabetes was induced in these mice by streptozotocin (STZ) injection. In addition, to mimic a hypoxic state, cobaltous chloride (CoCl2) was applied to HK‐2 cells. Results Our study first verified that conditional knockout of HIF‐1α worsened tubular injury in DN; additionally, aggravated kidney dysfunction, renal histopathological alterations, mitochondrial fragmentation, ROS accumulation and apoptosis were observed in diabetic PT‐HIF‐1α−/− mice. In vitro study showed that compared to control group, HK‐2 cells cultured under hypoxic ambiance displayed increased mitochondrial fragmentation, ROS production, mitochondrial membrane potential loss and apoptosis. These increases were reversed by overexpression of HIF‐1α or treatment with a HO‐1 agonist. Importantly, cotreatment with a HIF‐1α inhibitor and a HO‐1 agonist rescued the HK‐2 cells from the negative impacts of the HIF‐1α inhibitor. Conclusions These data revealed that HIF‐1α exerted a protective effect against tubular injury in DN, which could be mediated via modulation of mitochondrial dynamics through HO‐1 upregulation.
Collapse
Affiliation(s)
- Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Shan Xiong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lingfeng Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ling Wei
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Xiaofen Xiong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Peng Gao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
36
|
Abstract
The syndrome of critical illness is a complex physiological stressor that can be triggered by diverse pathologies. It is widely believed that organ dysfunction and death result from bioenergetic failure caused by inadequate cellular oxygen supply. Teleologically, life has evolved to survive in the face of stressors by undergoing a suite of adaptive changes. Adaptation not only comprises alterations in systemic physiology but also involves molecular reprogramming within cells. The concept of cellular adaptation in critically ill patients is a matter of contention in part because medical interventions mask underlying physiology, creating the artificial construct of "chronic critical illness," without which death would be imminent. Thus far, the intensive care armamentarium has not targeted cellular metabolism to preserve a temporary equilibrium but instead attempts to normalize global oxygen and substrate delivery. Here, we review adaptations to hypoxia that have been demonstrated in cellular models and in human conditions associated with hypoxia, including the hypobaric hypoxia of high altitude, the intrauterine low-oxygen environment, and adult myocardial hibernation. Common features include upregulation of glycolytic ATP production, enhancement of respiratory efficiency, downregulation of mitochondrial density, and suppression of energy-consuming processes. We argue that these innate cellular adaptations to hypoxia represent potential avenues for intervention that have thus far remained untapped by intensive care medicine.
Collapse
Affiliation(s)
- Helen T McKenna
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Royal Free Intensive Care Unit, Royal Free Hospital, London, United Kingdom
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Daniel S Martin
- Royal Free Intensive Care Unit, Royal Free Hospital, London, United Kingdom.,Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
37
|
Morita Y, Tohyama S. Metabolic Regulation of Cardiac Differentiation and Maturation in Pluripotent Stem Cells: A Lesson from Heart Development. JMA J 2020; 3:193-200. [PMID: 33150253 PMCID: PMC7590396 DOI: 10.31662/jmaj.2020-0036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Abstract
The heart, one of the more complex organs, is composed from a number of differentiated cells. In general, researchers consider that the cardiac cells are derived from the same origin as mesodermal cells, except neural crest cells. However, as the developmental stages proceed, cardiac mesodermal cells are differentiated into various types of cells via cardiac progenitors and demonstrate different programming in transcriptional network and epigenetic regulation in a spatiotemporal manner. In fact, the metabolic feature also changes dramatically during heart development and cardiac differentiation. Researchers reported that each type of cell exhibits different metabolic features that can be used to specifically identify them. Metabolism is a critical process for generating energy and biomass in all living cells and organisms and has been long regarded as a passenger, rather than an active driver, for intracellular status. However, recent studies revealed that metabolism influences self-renewal and cell fate specification via epigenetic changes directly or indirectly. Metabolism mirrors the physiological status of the cell and endogenous cellular activity; therefore, understanding the metabolic signature of each cell type serves as a guide for innovative methods of selecting and differentiating desired cell types. Stem cell biology and developmental biology hold great promise for cardiac regenerative therapy, for which, successful strategy depends on the precise translation of the philosophy of cardiac development in the early embryo to the cell production system. In this review, we focus on the metabolism during heart development and cardiac differentiation and discuss the next challenge to unlock the potential of cell biology for regenerative therapy based on metabolism.
Collapse
Affiliation(s)
- Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.,Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2020; 117:712-726. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the molecular mechanisms regulating cardiomyocyte (CM) proliferation and differentiation has increased exponentially in recent years. Such insights together with the availability of more efficient protocols for generation of CMs from induced pluripotent stem cells (iPSCs) have raised expectations for new therapeutic strategies to treat congenital and non-congenital heart diseases. However, the poor regenerative potential of the postnatal heart and the incomplete maturation of iPSC-derived CMs represent important bottlenecks for such therapies in future years. CMs undergo dramatic changes at the doorstep between prenatal and postnatal life, including terminal cell cycle withdrawal, change in metabolism, and further specialization of the cellular machinery required for high-performance contraction. Here, we review recent insights into pre- and early postnatal developmental processes that regulate CM maturation, laying specific focus on genetic and metabolic pathways that control transition of CMs from the embryonic and perinatal to the fully mature adult CM state. We recapitulate the intrinsic features of CM maturation and highlight the importance of external factors, such as energy substrate availability and endocrine regulation in shaping postnatal CM development. We also address recent approaches to enhance maturation of iPSC-derived CMs in vitro, and summarize new discoveries that might provide useful tools for translational research on repair of the injured human heart.
Collapse
Affiliation(s)
- Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Rhein-Main, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
39
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
40
|
Sánchez-Díaz M, Nicolás-Ávila JÁ, Cordero MD, Hidalgo A. Mitochondrial Adaptations in the Growing Heart. Trends Endocrinol Metab 2020; 31:308-319. [PMID: 32035734 DOI: 10.1016/j.tem.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
The heart pumps blood throughout the whole life of an organism, without rest periods during which to replenish energy or detoxify. Hence, cardiomyocytes, the working units of the heart, have mechanisms to ensure constitutive production of energy and detoxification to preserve fitness and function for decades. Even more challenging, the heart must adapt to the varying conditions of the organism from fetal life to adulthood, old age, and pathological stress. Mitochondria are at the nexus of these processes by producing not only energy but also metabolites and oxidative byproducts that can activate alarm signals and be toxic to the cell. We review basic concepts about cardiac mitochondria with a focus on their remarkable adaptations, including elimination, throughout the mammalian lifetime.
Collapse
Affiliation(s)
- María Sánchez-Díaz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | | | - Mario D Cordero
- Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR), 41009 Sevilla, Spain; Universidad Europea del Atlántico (UNEATLANTICO), and Fundación Universitaria Iberoamericana (FUNIBER), 39011 Santander, Spain.
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität, Munich, Germany.
| |
Collapse
|
41
|
Abel F, Murke F, Gaida M, Garnier N, Ochsenfarth C, Theiss C, Thielmann M, Kleinbongard P, Giebel B, Peters J, Frey UH. Extracellular vesicles isolated from patients undergoing remote ischemic preconditioning decrease hypoxia-evoked apoptosis of cardiomyoblasts after isoflurane but not propofol exposure. PLoS One 2020; 15:e0228948. [PMID: 32059016 PMCID: PMC7021285 DOI: 10.1371/journal.pone.0228948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/26/2020] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) can evoke cardioprotection following ischemia/reperfusion and this may depend on the anesthetic used. We tested whether 1) extracellular vesicles (EVs) isolated from humans undergoing RIPC protect cardiomyoblasts against hypoxia-induced apoptosis and 2) this effect is altered by cardiomyoblast exposure to isoflurane or propofol. EVs were isolated before and 60 min after RIPC or Sham from ten patients undergoing coronary artery bypass graft surgery with isoflurane anesthesia and quantified by Nanoparticle Tracking Analysis. Following EV-treatment for 6 hours under exposure of isoflurane or propofol, rat H9c2 cardiomyoblasts were cultured for 18 hours in normoxic or hypoxic atmospheres. Apoptosis was detected by flow cytometry. Serum nanoparticle concentrations in patients had increased sixty minutes after RIPC compared to Sham (2.5x1011±4.9x1010 nanoparticles/ml; Sham: 1.2x1011±2.0x1010; p = 0.04). Hypoxia increased apoptosis of H9c2 cells (hypoxia: 8.4%±0.6; normoxia: 2.5%±0.1; p<0.0001). RIPC-EVs decreased H9c2 cell apoptosis compared to control (apoptotic ratio: 0.83; p = 0.0429) while Sham-EVs showed no protection (apoptotic ratio: 0.97). Prior isoflurane exposure in vitro even increased protection (RIPC-EVs/control, apoptotic ratio: 0.79; p = 0.0035; Sham-EVs/control, apoptotic ratio:1.04) while propofol (50μM) abrogated protection by RIPC-EVs (RIPC-EVs/control, Apoptotic ratio: 1.01; Sham-EVs/control, apoptotic ratio: 0.94; p = 0.602). Thus, EVs isolated from patients undergoing RIPC under isoflurane anesthesia protect H9c2 cardiomyoblasts against hypoxia-evoked apoptosis and this effect is abrogated by propofol. This supports a role of human RIPC-generated EVs in cardioprotection and underlines propofol as a possible confounder in RIPC-signaling mediated by EVs.
Collapse
Affiliation(s)
- Frederik Abel
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Florian Murke
- Institut für Transfusionsmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Morten Gaida
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Nicolas Garnier
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Crista Ochsenfarth
- Klinik für Anästhesiologie, Operative Intensivmedizin, Schmerz- und Palliativmedizin, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Theiss
- Institut für Anatomie, Abteilung für Cytologie, Ruhr-Universität-Bochum, Bochum, Germany
| | - Matthias Thielmann
- Klinik für Thorax- und Kardiovaskuläre Chirurgie, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Bernd Giebel
- Institut für Transfusionsmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Ulrich H. Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
- Klinik für Anästhesiologie, Operative Intensivmedizin, Schmerz- und Palliativmedizin, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
42
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
43
|
Thompson LP, Song H, Polster BM. Fetal Programming and Sexual Dimorphism of Mitochondrial Protein Expression and Activity of Hearts of Prenatally Hypoxic Guinea Pig Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7210249. [PMID: 31249648 PMCID: PMC6589217 DOI: 10.1155/2019/7210249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Chronic intrauterine hypoxia is a programming stimulus of cardiovascular dysfunction. While the fetal heart adapts to the reduced oxygenation, the offspring heart becomes vulnerable to subsequent metabolic challenges as an adult. Cardiac mitochondria are key organelles responsible for an efficient energy supply but are subject to damage under hypoxic conditions. We propose that intrauterine hypoxia alters mitochondrial function as an underlying programming mechanism of contractile dysfunction in the offspring. Indices of mitochondrial function such as mitochondrial DNA content, Complex (C) I-V expression, and CI/CIV enzyme activity were measured in hearts of male and female offspring at 90 days old exposed to prenatal hypoxia (10.5% O2) for 14 d prior to term (65 d). Both left ventricular tissue and cardiomyocytes exhibited decreased mitochondrial DNA content, expression of CIV, and CI/CIV activity in male hearts. In female cardiomyocytes, hypoxia had no effect on protein expression of CI-CV nor on CI/CIV activity. This study suggests that chronic intrauterine hypoxia alters the intrinsic properties of select respiratory complexes as a programming mechanism of cardiac dysfunction in the offspring. Sex differences in mitochondrial function may underlie the increased vulnerability of age-matched males compared to females in cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Loren P. Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Brian M. Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland, Baltimore, School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
44
|
Spermidine Prevents Heart Injury in Neonatal Rats Exposed to Intrauterine Hypoxia by Inhibiting Oxidative Stress and Mitochondrial Fragmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5406468. [PMID: 31217839 PMCID: PMC6537013 DOI: 10.1155/2019/5406468] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/14/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Intrauterine hypoxia (IUH) is a common intrauterine dysplasia that can cause programming of the offspring cardiovascular system. In this study, we hypothesized that placental treatment with spermidine (SPD) can prevent heart injury in neonatal offspring exposed to IUH. Pregnant rats were exposed to 21% O2 or 10% O2 (hypoxia) for 7 days prior to term or were exposed to hypoxia and intraperitoneally administered SPD or SPD+difluromethylornithine (DFMO) on gestational days 15-21. Seven-day-old offspring were then sacrificed to assess several parameters. Our results demonstrated that IUH led to decreased myocardial ornithine decarboxylase (ODC) and increased spermidine/spermine N1-acetyltransferase (SSAT) expression in the offspring. IUH also resulted in decreased offspring body weight, heart weight, cardiomyocyte proliferation, and antioxidant capacity and increased cardiomyocyte apoptosis and fibrosis. Furthermore, IUH caused mitochondrial structure abnormality, dysfunction, and decreased biogenesis and led to a fission/fusion imbalance in offspring hearts. In vitro, hypoxia induced mitochondrial ROS accumulation, decreased membrane potential, and increased fragmentation. Notably, all hypoxia-induced changes analyzed in this study were prevented by SPD. Thus, in utero SPD treatment is a potential strategy for preventing IUH-induced neonatal cardiac injury.
Collapse
|
45
|
Inhibition of Mitofusin-2 Promotes Cardiac Fibroblast Activation via the PERK/ATF4 Pathway and Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3649808. [PMID: 31178957 PMCID: PMC6501253 DOI: 10.1155/2019/3649808] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Mitofusin-2 (Mfn2) is a key outer mitochondrial membrane protein, which maintains normal mitochondrial dynamics and function. However, its role in cardiac fibroblast activation remains poorly understood. In the present study, a rat model of transverse aortic constriction (TAC) was established to observe the cardiac fibroblast activation in vivo. TGF-β1 treatment for 24 hours was used to induce cardiac fibroblast activation in vitro. As a result, the expression of Mfn2 decreased in the hypertrophic heart tissues and cardiac fibroblasts treated with TGF-β1. siMfn2 and adenovirus were applied to mediate Mfn2 gene silencing and overexpression in cardiac fibroblasts to elucidate the relationship between Mfn2 and cardiac fibroblast activation, as well as the possible underlying mechanisms. Knockdown of Mfn2 further promoted TGF-β1-induced cardiac fibroblast activation, while forced expression of Mfn2 attenuated this pathological reaction. The PERK/ATF4 pathway, one of the branches of endoplasmic reticulum (ER) stress, was identified to be involved in this process. Knockdown and overexpression of Mfn2 lead to aggravation or alleviation of the PERK/ATF4 pathway. Blocking this pathway by silencing ATF4 with siATF4 attenuated the pathological process. During the activation of cardiac fibroblasts, knockdown of Mfn2 also increased the production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-l-cysteine (NAC) could attenuate the effect caused by knockdown of Mfn2. Our data suggested that inhibition of Mfn2 could promote cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and increasing the generation of ROS.
Collapse
|
46
|
Lindgren IM, Drake RR, Chattergoon NN, Thornburg KL. Down-regulation of MEIS1 promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes. FASEB J 2019; 33:7417-7426. [PMID: 30884246 DOI: 10.1096/fj.201801330rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fetal cardiomyocytes shift from glycolysis to oxidative phosphorylation around the time of birth. Myeloid ecotropic viral integration site 1 (MEIS1) is a transcription factor that promotes glycolysis in hematopoietic stem cells. We reasoned that MEIS1 could have a similar role in the developing heart. We hypothesized that suppression of MEIS1 expression in fetal sheep cardiomyocytes leads to a metabolic switch as found at birth. Expression of MEIS1 was assayed in left ventricular cardiac tissue and primary cultures of cardiomyocytes from fetal (100- and 135-d gestation, term = 145 d), neonatal, and adult sheep. Cultured cells were treated with short interfering RNA (siRNA) to suppress MEIS1. Oxygen consumption rate was assessed with the Seahorse metabolic flux analyzer, and mitochondrial activity was assessed by staining cells with MitoTracker Orange. Cardiomyocyte respiratory capacity increased with advancing age concurrently with decreased expression of MEIS1. MEIS1 suppression with siRNA increased maximal oxygen consumption in fetal cells but not in postnatal cells. Mitochondrial activity was increased and expression of glycolytic genes decreased when MEIS1 expression was suppressed. Thus, we conclude that MEIS1 is a key regulator of cardiomyocyte metabolism and that the normal down-regulation of MEIS1 with age underlies a gradual switch to oxidative metabolism.-Lindgren, I. M., Drake, R. R., Chattergoon, N. N., Thornburg, K. L. Down-regulation of MEIS1 promotes the maturation of oxidative phosphorylation in perinatal cardiomyocytes.
Collapse
Affiliation(s)
- Isa M Lindgren
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rachel R Drake
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Natasha N Chattergoon
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
47
|
Tachibana S, Chen C, Zhang OR, Schurr SV, Hill C, Li R, Manso AM, Zhang J, Andreyev A, Murphy AN, Ross RS, Cho Y. Analyzing Oxygen Consumption Rate in Primary Cultured Mouse Neonatal Cardiomyocytes Using an Extracellular Flux Analyzer. J Vis Exp 2019. [PMID: 30829322 DOI: 10.3791/59052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondria and oxidative metabolism are critical for maintaining cardiac muscle function. Research has shown that mitochondrial dysfunction is an important contributing factor to impaired cardiac function found in heart failure. By contrast, restoring defective mitochondrial function may have beneficial effects to improve cardiac function in the failing heart. Therefore, studying the regulatory mechanisms and identifying novel regulators for mitochondrial function could provide insight which could be used to develop new therapeutic targets for treating heart disease. Here, cardiac myocyte mitochondrial respiration is analyzed using a unique cell culture system. First, a protocol has been optimized to rapidly isolate and culture high viability neonatal mouse cardiomyocytes. Then, a 96-well format extracellular flux analyzer is used to assess the oxygen consumption rate of these cardiomyocytes. For this protocol, we optimized seeding conditions and demonstrated that neonatal mouse cardiomyocytes oxygen consumption rate can be easily assessed in an extracellular flux analyzer. Finally, we note that our protocol can be applied to a larger culture size and other studies, such as intracellular signaling and contractile function analysis.
Collapse
Affiliation(s)
- Shizuko Tachibana
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Chao Chen
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Oliver R Zhang
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Sarah V Schurr
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Cameron Hill
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Ruixia Li
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Ana M Manso
- Division of Cardiology, Department of Medicine, University of California San Diego
| | - Jianlin Zhang
- Division of Cardiology, Department of Medicine, University of California San Diego
| | | | - Anne N Murphy
- Department of Pharmacology, University of California San Diego
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California San Diego; Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego
| | - Yoshitake Cho
- Division of Cardiology, Department of Medicine, University of California San Diego;
| |
Collapse
|
48
|
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2019; 598:2941-2956. [PMID: 30571853 DOI: 10.1113/jp276754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for both patient health and scientific investigation is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural, functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. There is thus a significant need to understand the biological processes underlying proper CM maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear that maturation proceeds through interconnected regulatory circuits that feed into one another to coordinate concomitant structural, functional and metabolic CM maturation. We highlight PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into the mechanisms of CM maturation. Further study will not only produce a better understanding of its key processes, but provide practical insights into developing a robust strategy to produce mature PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
49
|
Li HS, Zhou YN, Li L, Li SF, Long D, Chen XL, Zhang JB, Feng L, Li YP. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol 2019; 25:101109. [PMID: 30686776 PMCID: PMC6859547 DOI: 10.1016/j.redox.2019.101109] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates adaptive responses to oxidative stress by nuclear translocation and regulation of gene expression. Mitochondrial changes are critical for the adaptive response to oxidative stress. However, the transcriptional and non-transcriptional mechanisms by which HIF-1α regulates mitochondria in response to oxidative stress are poorly understood. Here, we examined the subcellular localization of HIF-1α in human cells and identified a small fraction of HIF-1α that translocated to the mitochondria after exposure to hypoxia or H2O2 treatment. Moreover, the livers of mice with CCl4-induced fibrosis showed a progressive increase in HIF-1α association with the mitochondria, indicating the clinical relevance of this finding. To probe the function of this HIF-1α population, we ectopically expressed a mitochondrial-targeted form of HIF-1α (mito-HIF-1α). Expression of mito-HIF-1α was sufficient to attenuate apoptosis induced by exposure to hypoxia or H2O2-induced oxidative stress. Moreover, mito-HIF-1α expression reduced the production of reactive oxygen species, the collapse of mitochondrial membrane potential, and the expression of mitochondrial DNA-encoded mRNA in response to hypoxia or H2O2 treatment independently of nuclear pathways. These data suggested that mitochondrial HIF-1α protects against oxidative stress induced-apoptosis independently of its well-known role as a transcription factor. HIF-1α is recruited to mitochondria in response to oxidative stress. Mitochondrial HIF-1α protects against oxidative stress induced apoptosis. HIF-1α in mitochondria reduces ROS levels and reverses mitochondrial damage. Mitochondrial HIF-1α reduces mtDNA encoded mRNA levels. Mitochondrial HIF-1α may involve in liver fibrosis.
Collapse
Affiliation(s)
- Hong-Sheng Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Ni Zhou
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sheng-Fu Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue-Lu Chen
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Bi Zhang
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - You-Ping Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, China; Chinese Cochrane Centre, Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
50
|
Tahrir FG, Langford D, Amini S, Mohseni Ahooyi T, Khalili K. Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. J Cell Physiol 2018; 234:8122-8133. [PMID: 30417391 DOI: 10.1002/jcp.27597] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria play an important role in maintaining cardiac homeostasis by supplying the major energy required for cardiac excitation-contraction coupling as well as controlling the key intracellular survival and death pathways. Healthy mitochondria generate ATP molecules through an aerobic process known as oxidative phosphorylation (OXPHOS). Mitochondrial injury during myocardial infarction (MI) impairs OXPHOS and results in the excessive production of reactive oxygen species (ROS), bioenergetic insufficiency, and contributes to the development of cardiovascular diseases. Therefore, mitochondrial biogenesis along with proper mitochondrial quality control machinery, which removes unhealthy mitochondria is pivotal for mitochondrial homeostasis and cardiac health. Upon damage to the mitochondrial network, mitochondrial quality control components are recruited to segregate the unhealthy mitochondria and target aberrant mitochondrial proteins for degradation and elimination. Impairment of mitochondrial quality control and accumulation of abnormal mitochondria have been reported in the pathogenesis of various cardiac disorders and heart failure. Here, we provide an overview of the recent studies describing various mechanistic pathways underlying mitochondrial homeostasis with the main focus on cardiac cells. In addition, this review demonstrates the potential effects of mitochondrial quality control dysregulation in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Farzaneh G Tahrir
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Dianne Langford
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|