1
|
Wang YW, Chu T, Wang XL, Fan YQ, Cao L, Chen YH, Zhu YW, Liu HX, Ji XY, Wu DD. The role of cystathionine β-synthase in cancer. Cell Signal 2024; 124:111406. [PMID: 39270916 DOI: 10.1016/j.cellsig.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Cystathionine β-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.
Collapse
Affiliation(s)
- Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Hong-Xia Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chen T, Bai D, Gong C, Cao Y, Yan X, Peng R. Hydrogen sulfide mitigates mitochondrial dysfunction and cellular senescence in diabetic patients: Potential therapeutic applications. Biochem Pharmacol 2024; 230:116556. [PMID: 39332692 DOI: 10.1016/j.bcp.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Diabetes induces a pro-aging state characterized by an increased abundance of senescent cells in various tissues, heightened chronic inflammation, reduced substance and energy metabolism, and a significant increase in intracellular reactive oxygen species (ROS) levels. This condition leads to mitochondrial dysfunction, including elevated oxidative stress, the accumulation of mitochondrial DNA (mtDNA) damage, mitophagy defects, dysregulation of mitochondrial dynamics, and abnormal energy metabolism. These dysfunctions result in intracellular calcium ion (Ca2+) homeostasis disorders, telomere shortening, immune cell damage, and exacerbated inflammation, accelerating the aging of diabetic cells or tissues. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, plays a crucial role in maintaining mitochondrial function and mitigating the aging process in diabetic cells. This article systematically explores the specific mechanisms by which H2S regulates diabetes-induced mitochondrial dysfunction to delay cellular senescence, offering a promising new strategy for improving diabetes and its complications.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dacheng Bai
- Guangdong Institute of Mitochondrial Biomedicine, Room 501, Coolpad Building, No.2 Mengxi Road, High-tech Industrial Park, Nanshan District, Shenzhen, Guangdong Province 518000, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
5
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
6
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
7
|
Zhang B, Li Y, Liu N, Liu B. AP39, a novel mitochondria-targeted hydrogen sulfide donor ameliorates doxorubicin-induced cardiotoxicity by regulating the AMPK/UCP2 pathway. PLoS One 2024; 19:e0300261. [PMID: 38568919 PMCID: PMC10990198 DOI: 10.1371/journal.pone.0300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.
Collapse
Affiliation(s)
- Bin Zhang
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Yangxue Li
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Ning Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| |
Collapse
|
8
|
Mansouri E, Shafiei Seifabadi Z, Azarbarz N, Zare Moaiedi M. Effects of sodium hydrosulfide (NaHS) on cisplatin-induced hepatic and cardiac toxicity. Drug Chem Toxicol 2024; 47:227-234. [PMID: 37553904 DOI: 10.1080/01480545.2023.2242008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
In recent years, the cardiotoxicity and hepatotoxicity induced by chemotherapeutic drugs such as cisplatin (CP) have become significant issues. The current research looks into the effects of sodium hydrosulfide (NaHS) on CP-induced hepatotoxicity and cardiotoxicity in rats. A total of 32 male Sprague Dawley rats were separated into four different groups: (1) control group, received only normal saline; (2) NaHS group, was intraperitoneally injected with NaHS (200 µg/kg/d, dissolved in saline) for 15 days; (3) CP group, was intraperitoneally injected only one dose of CP (5 mg/kg) and (4) CP plus NaHS group, received CP along with NaHS. Blood and tissues samples were harvested for biochemical, histopathological, and immunohistochemical investigations. To determine the data's statistical significance, a one-way analysis of variance was used. CP injection significantly increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), Creatine phospho kinase (CK-MB), cholesterol, low-density lipoprotein (LDL), triglyceride (TG), and lipid peroxidation levels, while high-density lipoprotein (HDL), albumin, glutathione peroxidase, superoxide dismutase, and catalase (CAT) levels were significantly reduced with pathological alterations in liver and heart tissues. Co-treatment NaHS with CP ameliorates the biochemical and histological parameters. Also, Treatment solely with CP resulted in increased tissue expression of interleukin-1β (IL-1β) in liver and heart but co-treatment NaHS with CP reduced the expression of this inflammatory factor. We conclude that NaHS operates in the liver and heart as an anti-inflammatory and powerful free radicals' scavenger to inhibit the toxic effects of CP, both at the biochemical and histopathological levels.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Shafiei Seifabadi
- Department of Anatomical Sciences, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Azarbarz
- Department of Anatomical Sciences, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maasoumeh Zare Moaiedi
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Karunakaran U, Elumalai S, Chung SM, Maedler K, Won KC, Moon JS. Mitochondrial aldehyde dehydrogenase-2 coordinates the hydrogen sulfide - AMPK axis to attenuate high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system. Redox Biol 2024; 69:102994. [PMID: 38128451 PMCID: PMC10776427 DOI: 10.1016/j.redox.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Progression of β-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in β-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in β-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves β-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves β-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved β-cell function and survival under high-glucose conditions via the glutathione redox balance.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea.
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Seung Min Chung
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kyu Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Tao BB, Zhu Q, Zhu YC. Mechanisms Underlying the Hydrogen Sulfide Actions: Target Molecules and Downstream Signaling Pathways. Antioxid Redox Signal 2024; 40:86-109. [PMID: 37548532 DOI: 10.1089/ars.2023.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: As a new important gas signaling molecule like nitric oxide (NO) and carbon dioxide (CO), hydrogen sulfide (H2S), which can be produced by endogenous H2S-producing enzymes through l-cysteine metabolism in mammalian cells, has attracted wide attention for long. H2S has been proved to play an important regulatory role in numerous physiological and pathophysiological processes. However, the deep mechanisms of those different functions of H2S still remain uncertain. A better understanding of the mechanisms can help us develop novel therapeutic strategies. Recent Advances: H2S can play a regulating role through various mechanisms, such as regulating epigenetic modification, protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. In addition to discussing the molecular mechanisms of H2S from the above perspectives, this article will review the regulation of H2S on common signaling pathways in the cells, including the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), Janus kinase (JAK)/signal transducer, and activator of transcription (STAT) signaling pathway. Critical Issues: Although there are many studies on the mechanism of H2S, little is known about its direct target molecules. This article will also review the existing reports about them. Furthermore, the interaction between direct target molecules of H2S and the downstream signaling pathways involved also needs to be clarified. Future Directions: An in-depth discussion of the mechanism of H2S and the direct target molecules will help us achieving a deeper understanding of the physiological and pathophysiological processes regulated by H2S, and lay a foundation for developing new clinical therapeutic drugs in the future. Innovation: This review focuses on the regulation of H2S on signaling pathways and the direct target molecules of H2S. We also provide details on the underlying mechanisms of H2S functions from the following aspects: epigenetic modification, regulation of protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. Further study of the mechanisms underlying H2S will help us better understand the physiological and pathophysiological processes it regulates, and help develop new clinical therapeutic drugs in the future. Antioxid. Redox Signal. 40, 86-109.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Qi Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
11
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
12
|
Aithabathula RV, Pervaiz N, Kathuria I, Swanson M, Singh UP, Kumar S, Park F, Singla B. Hydrogen sulfide donor activates AKT-eNOS signaling and promotes lymphatic vessel formation. PLoS One 2023; 18:e0292663. [PMID: 37883422 PMCID: PMC10602273 DOI: 10.1371/journal.pone.0292663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The lymphatic network is pivotal for various physiological functions in the human body. Accumulated evidence supports the role of therapeutic lymphangiogenesis in the treatment of several pathologies. Endogenous gasotransmitter, hydrogen sulfide (H2S) has been extensively studied for its potential as a pro-angiogenic factor and vascular function modulator. However, the role of H2S in governing lymphatic vessel formation, and underlying molecular mechanisms are understudied. The present study was designed to investigate the effects of H2S donor sodium hydrogen sulfide (NaHS) on lymphatic vascularization and pro-angiogenic signaling pathways using both in vitro and in vivo approaches. In vitro dose-response experiments showed increased proliferation and tube formation by NaHS-treated human lymphatic endothelial cells (LECs) compared with control cells. Immunoblotting performed with LEC lysates prepared after time-course NaHS treatment demonstrated increased activation of ERK1/2, AKT and eNOS after 20 min of NaHS stimulation. Further, NaHS treatment induced nitric oxide production, reduced reactive oxygen species generation, and promoted cell cycle in LECs. Additional cell cycle analysis showed that NaHS treatment abrogates oxidized LDL-induced cell cycle arrest in LECs. The results of in vivo Matrigel plug assay revealed increased lymphatic vessel density in Matrigel plugs containing NaHS compared with control plugs, however, no significant differences in angiogenesis and immune cell infiltration were observed. Collectively, these findings suggest that H2S donor NaHS promotes lymphatic vessel formation both in vitro and in vivo and may be utilized to promote reparative lymphangiogenesis to alleviate lymphatic dysfunction-related disorders.
Collapse
Affiliation(s)
- Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Mallory Swanson
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
13
|
Testai L, Montanaro R, Flori L, Pagnotta E, Vellecco V, Gorica E, Ugolini L, Righetti L, Brancaleone V, Bucci M, Piragine E, Martelli A, Di Cesare Mannelli L, Ghelardini C, Calderone V. Persulfidation of mitoKv7.4 channels contributes to the cardioprotective effects of the H 2S-donor Erucin against ischemia/reperfusion injury. Biochem Pharmacol 2023; 215:115728. [PMID: 37524208 DOI: 10.1016/j.bcp.2023.115728] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gasotransmitter deeply involved in cardiovascular homeostasis and implicated in the myocardial protection against ischemia/reperfusion. The post-translational persulfidation of cysteine residues has been identified as the mechanism through which H2S regulates a plethora of biological targets. Erucin (ERU) is an isothiocyanate produced upon hydrolysis of the glucosinolate glucoerucin, presents in edible plants of Brassicaceae family, such as Eruca sativa Mill., and it has emerged as a slow and long-lasting H2S-donor. AIM In this study the cardioprotective profile of ERU has been investigated and the action mechanism explored, focusing on the possible role of the recently identified mitochondrial Kv7.4 (mitoKv7.4) potassium channels. RESULTS Interestingly, ERU showed to release H2S and concentration-dependently protected H9c2 cells against H2O2-induced oxidative damage. Moreover, in in vivo model of myocardial infarct ERU showed protective effects, reducing the extension of ischemic area, the levels of troponin I and increasing the amount of total AnxA1, as well as co-related inflammatory outcomes. Conversely, the pre-treatment with XE991, a blocker of Kv7.4 channels, abolished them. In isolated cardiac mitochondria ERU exhibited the typical profile of a mitochondrial potassium channels opener, in particular, this isothiocyanate produced a mild depolarization of mitochondrial membrane potential, a reduction of calcium accumulation into the matrix and finally a flow of potassium ions. Finally, mitoKv7.4 channels were persulfidated in ERU-treated mitochondria. CONCLUSIONS ERU modulates the cardiac mitoKv7.4 channels and this mechanism may be relevant for cardioprotective effects.
Collapse
Affiliation(s)
- L Testai
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy.
| | - R Montanaro
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - L Flori
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - E Pagnotta
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Vellecco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Gorica
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - L Ugolini
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - L Righetti
- CREA-Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128 Bologna, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - M Bucci
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - E Piragine
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy
| | - A Martelli
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - L Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - C Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - V Calderone
- Department of Pharmacy, University of Pisa, 56120-Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Huang D, Jing G, Zhu S. Regulation of Mitochondrial Respiration by Hydrogen Sulfide. Antioxidants (Basel) 2023; 12:1644. [PMID: 37627639 PMCID: PMC10451548 DOI: 10.3390/antiox12081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S), the third gasotransmitter, has positive roles in animals and plants. Mitochondria are the source and the target of H2S and the regulatory hub in metabolism, stress, and disease. Mitochondrial bioenergetics is a vital process that produces ATP and provides energy to support the physiological and biochemical processes. H2S regulates mitochondrial bioenergetic functions and mitochondrial oxidative phosphorylation. The article summarizes the recent knowledge of the chemical and biological characteristics, the mitochondrial biosynthesis of H2S, and the regulatory effects of H2S on the tricarboxylic acid cycle and the mitochondrial respiratory chain complexes. The roles of H2S on the tricarboxylic acid cycle and mitochondrial respiratory complexes in mammals have been widely studied. The biological function of H2S is now a hot topic in plants. Mitochondria are also vital organelles regulating plant processes. The regulation of H2S in plant mitochondrial functions is gaining more and more attention. This paper mainly summarizes the current knowledge on the regulatory effects of H2S on the tricarboxylic acid cycle (TCA) and the mitochondrial respiratory chain. A study of the roles of H2S in mitochondrial respiration in plants to elucidate the botanical function of H2S in plants would be highly desirable.
Collapse
Affiliation(s)
| | | | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China; (D.H.); (G.J.)
| |
Collapse
|
15
|
Huang S, Chen X, Pan J, Zhang H, Ke J, Gao L, Yu Chang AC, Zhang J, Zhang H. Hydrogen sulfide alleviates heart failure with preserved ejection fraction in mice by targeting mitochondrial abnormalities via PGC-1α. Nitric Oxide 2023; 136-137:12-23. [PMID: 37182786 DOI: 10.1016/j.niox.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
AIM Increasing evidence has proposed that mitochondrial abnormalities may be an important factor contributing to the development of heart failure with preserved ejection fraction (HFpEF). Hydrogen sulfide (H2S) has been suggested to play a pivotal role in regulating mitochondrial function. Therefore, the present study was designed to explore the protective effect of H2S on mitochondrial dysfunction in a multifactorial mouse model of HFpEF. METHODS Wild type, 8-week-old, male C57BL/6J mice or cardiomyocyte specific-Cse (Cystathionine γ-lyase, a major H2S-producing enzyme) knockout mice (CSEcko) were given high-fat diet (HFD) and l-NAME (an inhibitor of constitutive nitric oxide synthases) or standardized chow. After 4 weeks, mice were randomly administered with NaHS (a conventional H2S donor), ZLN005 (a potent transcriptional activator of PGC-1α) or vehicle. After additional 4 weeks, echocardiogram and mitochondrial function were evaluated. Expression of PGC-1α, NRF1 and TFAM in cardiomyocytes was assayed by western blot. RESULTS Challenging with HFD and l-NAME in mice not only caused HFpEF but also inhibited the production of endogenous H2S in a time-dependent manner. Meanwhile the expression of PGC-1α and mitochondrial function in cardiomyocytes were impaired. Supplementation with NaHS not only upregulated the expression of PGC-1α, NRF1 and TFAM in cardiomyocytes but also restored mitochondrial function and ultrastructure, conferring an obvious improvement in cardiac diastolic function. In contrast, cardiac deletion of CSE gene aggravated the inhibition of PGC-1α-NRF1-TFAM pathway, mitochondrial abnormalities and diastolic dysfunction. The deleterious effect observed in CSEcko HFpEF mice was partially counteracted by pre-treatment with ZLN005 or supplementation with NaHS. CONCLUSION Our findings have demonstrated that H2S ameliorates left ventricular diastolic dysfunction by restoring mitochondrial abnormalities via upregulating PGC-1α and its downstream targets NRF1 and TFAM, suggesting the therapeutic potential of H2S supplementation in multifactorial HFpEF.
Collapse
Affiliation(s)
- Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Huili Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Sun W, Kou XH, Wu CE, Fan GJ, Li TT, Cheng X, Xu K, Suo A, Tao Z. Low-temperature plasma modification, structural characterization and anti-diabetic activity of an apricot pectic polysaccharide. Int J Biol Macromol 2023; 240:124301. [PMID: 37004936 DOI: 10.1016/j.ijbiomac.2023.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
To fully research the anti-diabetic activity of apricot polysaccharide, low temperature plasma (LTP) was used to modify apricot polysaccharide. The modified polysaccharide was isolated and purified using column chromatography. It was found that LTP modification can significantly improve the α-glucosidase glucosidase inhibition rate of apricot polysaccharides. The isolated fraction FAPP-2D with HG domain showed excellent anti-diabetic activity in insulin resistance model in L6 cell. We found that FAPP-2D increased the ADP/ATP ratio and inhibited PKA phosphorylation, activating the LKB1-AMPK pathway. Moreover, FAPP-2D activated AMPK-PGC1α pathway, which could stimulated mitochondrial production and regulate energy metabolism, promoting GLUT4 protein transport to achieve an anti-diabetic effect. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy data showed that the LTP modification could increase the CH bond content while decreasing the C-O-C/C-O bond content, indicating that LTP destroyed the C-O-C/C-O bond, which enhanced the anti-diabetes activity of the modified apricot pectin polysaccharide. Our findings could pave the way for the molecular exploitation of apricot polysaccharides and the application of low-temperature plasma.
Collapse
Affiliation(s)
- Wenjuan Sun
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Nanjing Institute of Product Quality Inspection (Nanjing Institute of Quality Development and Advanced Technology Application), Nanjing 210019, China
| | - Xiao-Hong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Gong-Jian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ting-Ting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xin Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaiqian Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Andi Suo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zheng Tao
- Yangzhou Inspection and Testing Center (National Quality Inspection and Testing Center for Toiletries), Yangzhou 225111, China
| |
Collapse
|
17
|
Liu MX, Yang J, Qin Y, Li ZD, Jin J, Zhang YB, Yang XJ. ESMOLOL PROTECTS AGAINST LPS-INDUCED CARDIAC INJURY VIA THE AMPK/mTOR/ULK1 PATHWAY IN RAT. Shock 2023; 59:469-476. [PMID: 36579896 DOI: 10.1097/shk.0000000000002071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Aim: The purpose of this study was to investigate the effect of esmolol (ES) on LPS-induced cardiac injury and the possible mechanism. Methods: Sepsis was induced by i.p. injection of LPS (10 mg/kg) in male Sprague-Dawley rats pretreated with ES, 3-methyladenine or rapamycin. The severity of myocardial damage was analyzed by hematoxylin-eosin staining, and myocardial damage scores were calculated. The concentration of cardiac troponin was measured by enzyme-linked immunosorbent assay. The expression of autophagy-related proteins (beclin-1, LC3-II, p-AMPK, p-ULK1, p-mTOR) in myocardial tissue was detected by Western blotting. Autophagosome formation and the ultrastructural damage of mitochondria were assessed using transmission electron microscopy. Results: LPS induced an increase in myocardial damage score in a time-dependent manner, accompanied with an increase in autophagy at 3 h and decrease in autophagy at 6, 12, and 24 h. Pretreatment of LPS-treated rats with ES or rapamycin reduced myocardial injury (release of cardiac troponin, myocardial damage score) and increased autophagy (LC3-II, beclin-1, p-AMPK, and p-ULK1 levels and autophagosome numbers) at 12 and 24 h. In contrast, 3-methyladenine showed no effect. Conclusion: Esmolol alleviates LPS-induced myocardial damage through activating the AMPK/mTOR/ULK1 signal pathway-regulated autophagy.
Collapse
Affiliation(s)
- Mao-Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi China
| | - Yan Qin
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zheng-da Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Jin
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan-Bing Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin-Jing Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Islam RK, Donnelly E, Donnarumma E, Hossain F, Gardner JD, Islam KN. H 2S Prodrug, SG-1002, Protects against Myocardial Oxidative Damage and Hypertrophy In Vitro via Induction of Cystathionine β-Synthase and Antioxidant Proteins. Biomedicines 2023; 11:biomedicines11020612. [PMID: 36831146 PMCID: PMC9953594 DOI: 10.3390/biomedicines11020612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Endogenously produced hydrogen sulfide (H2S) is critical for cardiovascular homeostasis. Therapeutic strategies aimed at increasing H2S levels have proven cardioprotective in models of acute myocardial infarction (MI) and heart failure (HF). The present study was undertaken to investigate the effects of a novel H2S prodrug, SG-1002, on stress induced hypertrophic signaling in murine HL-1 cardiac muscle cells. Treatment of HL-1 cells with SG-1002 under serum starvation without or with H2O2 increased the levels of H2S, H2S producing enzyme, and cystathionine β-synthase (CBS), as well as antioxidant protein levels, such as super oxide dismutase1 (SOD1) and catalase, and additionally decreased oxidative stress. SG-1002 also decreased the expression of hypertrophic/HF protein markers such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), galectin-3, TIMP1, collagen type III, and TGF-β1 in stressed HL-1 cells. Treatment with SG-1002 caused a significant induction of cell viability and a marked reduction of cellular cytotoxicity in HL-1 cells under serum starvation incubated without or with H2O2. Experimental results of this study suggest that SG-1002 attenuates myocardial cellular oxidative damage and/or hypertrophic signaling via increasing H2S levels or H2S producing enzymes, CBS, and antioxidant proteins.
Collapse
Affiliation(s)
- Rahib K. Islam
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Erinn Donnelly
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Erminia Donnarumma
- Mitochondrial Biology Group, Institute Pasteur, CNRS UMR 3691, 75015 Paris, France
| | - Fokhrul Hossain
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Jason D. Gardner
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Kazi N. Islam
- Agricultural Research Development Program, College of Engineering, Science, Technology and Agriculture, Central State University, 1400 Brush Row Road, Wilberforce, OH 45384, USA
- Correspondence: ; Tel.: +1-937-376-6635
| |
Collapse
|
19
|
Ma F, Zhu Y, Chang L, Gong J, Luo Y, Dai J, Lu H. Hydrogen sulfide protects against ischemic heart failure by inhibiting RIP1/RIP3/MLKL-mediated necroptosis. Physiol Res 2022. [DOI: 10.33549/physiolres.934905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to explore whether hydrogen sulfide (H2S) protects against ischemic heart failure (HF) by inhibiting the necroptosis pathway. Mice were randomized into Sham, myocardial infarction (MI), MI + propargylglycine (PAG) and MI + sodium hydrosulfide (NaHS) group, respectively. The MI model was induced by ligating the left anterior descending coronary artery. PAG was intraperitoneally administered at a dose of 50 mg/kg/day for 4 weeks, and NaHS at a dose of 4mg/kg/day for the same period. At 4 weeks after MI, the following were observed: A significant decrease in the cardiac function, as evidenced by a decline in ejection fraction (EF) and fractional shortening (FS); an increase in plasma myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTNI); an increase in myocardial collagen content in the heart tissues; and a decrease of H2S level in plasma and heart tissues. Furthermore, the expression levels of necroptosis-related markers such as receptor interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) were upregulated after MI. NaHS treatment increased H2S levels in plasma and heart tissues, preserving the cardiac function by increasing EF and FS, decreasing plasma CK-MB and cTNI and reducing collagen content. Additionally, NaHS treatment significantly downregulated the RIP1/RIP3/MLKL pathway. While, PAG treatment aggravated cardiac function by activated the RIP1/RIP3/MLKL pathway. Overall, the present study concluded that H2S protected against ischemic HF by inhibiting RIP1/RIP3/MLKL-mediated necroptosis which could be a potential target treatment for ischemic HF.
Collapse
Affiliation(s)
| | | | | | | | | | - J Dai
- Department of Clinical Diagnostics, Hebei Medical University, 361 Zhongshan Road, Shijiazhuang, Hebei, China.
| | - H Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China.
| |
Collapse
|
20
|
Combined exposure to di(2-ethylhexyl) phthalate and polystyrene microplastics induced renal autophagy through the ROS/AMPK/ULK1 pathway. Food Chem Toxicol 2022; 171:113521. [PMID: 36423728 DOI: 10.1016/j.fct.2022.113521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polystyrene microplastics (PS-MPs) are new environmental pollutants that attracted increased attention. At present, the effects and underlying mechanisms of action of combined exposure of DEHP and PS-MPs on the kidney have not been elucidated. To investigate the renal toxicity of DEHP and PS-MPs exposure, we established single and combined DEHP and PS-MPs exposure models in mice and HEK293 cells, respectively. Hematoxylin and eosin staining, transmission electron microscopy, monodansylcadaverine staining, immunofluorescence, real-time quantitative PCR, Western blot analysis and other methods were used to detect relevant indicators. The results showed that the expression levels of ROS/AMPK/ULK1 and Ppargc1α/Mfn2 signaling pathway-related genes were significantly increased in the DEHP and PS-MPs exposure models. The mRNA and protein expression levels of autophagy markers were also upregulated. In addition, we found that the expression levels of mRNAs and proteins in the combined exposure group were more significantly increased than those in the single exposure group. In conclusion, combined exposure to DEHP and PS-MPs caused oxidative stress and activated the AMPK/ULK1 pathway, thereby inducing renal autophagy. Our results enhance the field of nephrotoxicity studies of plasticizers and microplastics and provide new light on combined toxicity studies of DEHP and PS-MPs.
Collapse
|
21
|
Suzuki J, Shimizu Y, Hayashi T, Che Y, Pu Z, Tsuzuki K, Narita S, Shibata R, Ishii I, Calvert JW, Murohara T. Hydrogen Sulfide Attenuates Lymphedema Via the Induction of Lymphangiogenesis Through a PI3K/Akt‐Dependent Mechanism. J Am Heart Assoc 2022; 11:e026889. [DOI: 10.1161/jaha.122.026889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Accumulating evidence suggests that hydrogen sulfide ( H
2
S ), an endogenously produced gaseous molecule, plays a critical role in the regulation of cardiovascular homeostasis. However, little is known about its role in lymphangiogenesis. Thus, the current study aimed to investigate the involvement of H
2
S in lymphatic vessel growth and lymphedema resolution using a murine model and assess the underlying mechanisms.
Methods and Results
A murine model of tail lymphedema was created both in wild‐type mice and cystathionine γ‐lyase–knockout mice, to evaluate lymphedema up to 28 days after lymphatic ablation. Cystathionine γ‐lyase–knockout mice had greater tail diameters than wild‐type mice, and this phenomenon was associated with the inhibition of reparative lymphangiogenesis at the site of lymphatic ablation. In contrast, the administration of an H
2
S donor, diallyl trisulfide, ameliorated lymphedema by inducing the formation of a considerable number of lymphatic vessels at the injured sites in the tails. In vitro experiments using human lymphatic endothelial cells revealed that diallyl trisulfide promoted their proliferation and differentiation into tube‐like structures by enhancing Akt (protein kinase B) phosphorylation in a concentration‐dependent manner. The blockade of Akt activation negated the diallyl trisulfide–induced prolymphangiogenic responses in lymphatic endothelial cells. Furthermore, the effects of diallyl trisulfide treatment on lymphangiogenesis in the tail lymphedema model were also negated by the inhibition of phosphoinositide 3'‐kinase (P13K)/Akt signaling.
Conclusions
H
2
S promotes reparative lymphatic vessel growth and ameliorates secondary lymphedema, at least in part, through the activation of the Akt pathway in lymphatic endothelial cells. As such, H
2
S donors could be used as therapeutics against refractory secondary lymphedema.
Collapse
Affiliation(s)
- Junya Suzuki
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Yuuki Shimizu
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Takumi Hayashi
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Yiyang Che
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Zhongyue Pu
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Kazuhito Tsuzuki
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Shingo Narita
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Isao Ishii
- Laboratory of Health Chemistry Showa Pharmaceutical University Machida Tokyo Japan
| | - John W. Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center Emory University School of Medicine Atlanta GA
| | - Toyoaki Murohara
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| |
Collapse
|
22
|
MA F, ZHU Y, CHANG L, GONG J, LUO Y, DAI J, LU H. Hydrogen sulfide protects against ischemic heart failure by inhibiting RIP1/RIP3/MLKL-mediated necroptosis. Physiol Res 2022; 71:771-781. [PMID: 36281723 PMCID: PMC9814983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to explore whether hydrogen sulfide (H2S) protects against ischemic heart failure (HF) by inhibiting the necroptosis pathway. Mice were randomized into Sham, myocardial infarction (MI), MI + propargylglycine (PAG) and MI + sodium hydrosulfide (NaHS) group, respectively. The MI model was induced by ligating the left anterior descending coronary artery. PAG was intraperitoneally administered at a dose of 50 mg/kg/day for 4 weeks, and NaHS at a dose of 4 mg/kg/day for the same period. At 4 weeks after MI, the following were observed: A significant decrease in the cardiac function, as evidenced by a decline in ejection fraction (EF) and fractional shortening (FS); an increase in plasma myocardial injury markers, such as creatine kinase-MB (CK-MB) and cardiac troponin I (cTNI); an increase in myocardial collagen content in the heart tissues; and a decrease of H2S level in plasma and heart tissues. Furthermore, the expression levels of necroptosis-related markers such as receptor interacting protein kinase 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL) were upregulated after MI. NaHS treatment increased H2S levels in plasma and heart tissues, preserving the cardiac function by increasing EF and FS, decreasing plasma CK-MB and cTNI and reducing collagen content. Additionally, NaHS treatment significantly downregulated the RIP1/RIP3/MLKL pathway. While, PAG treatment aggravated cardiac function by activated the RIP1/RIP3/MLKL pathway. Overall, the present study concluded that H2S protected against ischemic HF by inhibiting RIP1/RIP3/MLKL-mediated necroptosis which could be a potential target treatment for ischemic HF.
Collapse
Affiliation(s)
- Fenfen MA
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yahong ZHU
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | | | - Jingru GONG
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Ying LUO
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Jing DAI
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiping LU
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
24
|
Li Z, Xia H, Sharp TE, LaPenna KB, Elrod JW, Casin KM, Liu K, Calvert JW, Chau VQ, Salloum FN, Xu S, Xian M, Nagahara N, Goodchild TT, Lefer DJ. Mitochondrial H 2S Regulates BCAA Catabolism in Heart Failure. Circ Res 2022; 131:222-235. [PMID: 35701874 DOI: 10.1161/circresaha.121.319817] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.
Collapse
Affiliation(s)
- Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (Z.L., H.X., T.E.S., K.B.L., T.T.G., D.J.L.)
| | - Huijing Xia
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (Z.L., H.X., T.E.S., K.B.L., T.T.G., D.J.L.)
| | - Thomas E Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (Z.L., H.X., T.E.S., K.B.L., T.T.G., D.J.L.)
| | - Kyle B LaPenna
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (Z.L., H.X., T.E.S., K.B.L., T.T.G., D.J.L.)
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.W.E.)
| | - Kevin M Casin
- Cardiothoracic Research Laboratory, Department of Surgery, Emory University School of Medicine, Atlanta, GA (K.M.C., J.W.C.)
| | - Ken Liu
- Clinical Biomarkers Laboratory, Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA (K.L.)
| | - John W Calvert
- Cardiothoracic Research Laboratory, Department of Surgery, Emory University School of Medicine, Atlanta, GA (K.M.C., J.W.C.)
| | - Vinh Q Chau
- VCU Health Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond (V.Q.C., F.N.S.)
| | - Fadi N Salloum
- VCU Health Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond (V.Q.C., F.N.S.)
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI (S.X., M.X.)
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI (S.X., M.X.)
| | | | - Traci T Goodchild
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (Z.L., H.X., T.E.S., K.B.L., T.T.G., D.J.L.)
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans (Z.L., H.X., T.E.S., K.B.L., T.T.G., D.J.L.)
| |
Collapse
|
25
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
26
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
27
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the general population. Energy metabolism disturbance is one of the early abnormalities in CVDs, such as coronary heart disease, diabetic cardiomyopathy, and heart failure. To explore the role of myocardial energy homeostasis disturbance in CVDs, it is important to understand myocardial metabolism in the normal heart and their function in the complex pathophysiology of CVDs. In this article, we summarized lipid metabolism/lipotoxicity and glucose metabolism/insulin resistance in the heart, focused on the metabolic regulation during neonatal and ageing heart, proposed potential metabolic mechanisms for cardiac regeneration and degeneration. We provided an overview of emerging molecular network among cardiac proliferation, regeneration, and metabolic disturbance. These novel targets promise a new era for the treatment of CVDs.
Collapse
Affiliation(s)
- Lu-Yun WANG
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen CHEN
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
29
|
Wu D, Gu Y, Zhu D. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 24:875. [PMID: 34726247 DOI: 10.3892/mmr.2021.12515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic heart disease is one of the major causes of cardiovascular‑related mortality worldwide. Myocardial ischemia can be attenuated by reperfusion that restores the blood supply. However, injuries occur during blood flow restoration that induce cardiac dysfunction, which is known as myocardial ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), the third discovered endogenous gasotransmitter in mammals (after NO and CO), participates in various pathophysiological processes. Previous in vitro and in vivo research have revealed the protective role of H2S in the cardiovascular system that render it useful in the protection of the myocardium against MIRI. The cardioprotective effects of H2S in attenuating MIRI are summarized in the present review.
Collapse
Affiliation(s)
- Dan Wu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yijing Gu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Deqiu Zhu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
30
|
Pantner Y, Polavarapu R, Chin LS, Li L, Shimizu Y, Calvert JW. DJ-1 attenuates the glycation of mitochondrial complex I and complex III in the post-ischemic heart. Sci Rep 2021; 11:19408. [PMID: 34593886 PMCID: PMC8484662 DOI: 10.1038/s41598-021-98722-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/09/2021] [Indexed: 02/02/2023] Open
Abstract
DJ-1 is a ubiquitously expressed protein that protects cells from stress through its conversion into an active protease. Recent work found that the active form of DJ-1 was induced in the ischemic heart as an endogenous mechanism to attenuate glycative stress-the non-enzymatic glycosylation of proteins. However, specific proteins protected from glycative stress by DJ-1 are not known. Given that mitochondrial electron transport proteins have a propensity for being targets of glycative stress, we investigated if DJ-1 regulates the glycation of Complex I and Complex III after myocardial ischemia-reperfusion (I/R) injury. Initial studies found that DJ-1 localized to the mitochondria and increased its interaction with Complex I and Complex III 3 days after the onset of myocardial I/R injury. Next, we investigated the role DJ-1 plays in modulating glycative stress in the mitochondria. Analysis revealed that compared to wild-type control mice, mitochondria from DJ-1 deficient (DJ-1 KO) hearts showed increased levels of glycative stress following I/R. Additionally, Complex I and Complex III glycation were found to be at higher levels in DJ-1 KO hearts. This corresponded with reduced complex activities, as well as reduced mitochondrial oxygen consumption ant ATP synthesis in the presence of pyruvate and malate. To further determine if DJ-1 influenced the glycation of the complexes, an adenoviral approach was used to over-express the active form of DJ-1(AAV9-DJ1ΔC). Under I/R conditions, the glycation of Complex I and Complex III were attenuated in hearts treated with AAV9-DJ1ΔC. This was accompanied by improvements in complex activities, oxygen consumption, and ATP production. Together, this data suggests that cardiac DJ-1 maintains Complex I and Complex III efficiency and mitochondrial function during the recovery from I/R injury. In elucidating a specific mechanism for DJ-1's role in the post-ischemic heart, these data break new ground for potential therapeutic strategies using DJ-1 as a target.
Collapse
Affiliation(s)
- Yvanna Pantner
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Rohini Polavarapu
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Lih-Shen Chin
- Department Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lian Li
- Department Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel) 2021; 10:antiox10060910. [PMID: 34205197 PMCID: PMC8229400 DOI: 10.3390/antiox10060910] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial mesenchymal transition (EndMT) has been described as a fundamental process during embryogenesis; however, it can occur also in adult age, underlying pathological events, including fibrosis. Indeed, during EndMT, the endothelial cells lose their specific markers, such as vascular endothelial cadherin (VE-cadherin), and acquire a mesenchymal phenotype, expressing specific products, such as α-smooth muscle actin (α-SMA) and type I collagen; moreover, the integrity of the endothelium is disrupted, and cells show a migratory, invasive and proliferative phenotype. Several stimuli can trigger this transition, but transforming growth factor (TGF-β1) is considered the most relevant. EndMT can proceed in a canonical smad-dependent or non-canonical smad-independent manner and ultimately regulate gene expression of pro-fibrotic machinery. These events lead to endothelial dysfunction and atherosclerosis at the vascular level as well as myocardial hypertrophy and fibrosis. Indeed, EndMT is the mechanism which promotes the progression of cardiovascular disorders following hypertension, diabetes, heart failure and also ageing. In this scenario, hydrogen sulfide (H2S) has been widely described for its preventive properties, but its role in EndMT is poorly investigated. This review is focused on the evaluation of the putative role of H2S in the EndMT process.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
32
|
LaPenna KB, Polhemus DJ, Doiron JE, Hidalgo HA, Li Z, Lefer DJ. Hydrogen Sulfide as a Potential Therapy for Heart Failure-Past, Present, and Future. Antioxidants (Basel) 2021; 10:485. [PMID: 33808673 PMCID: PMC8003444 DOI: 10.3390/antiox10030485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various components of metabolic syndrome, including obesity and glucose metabolism. This review will discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure with preserved ejection fraction (HFpEF).
Collapse
Affiliation(s)
- Kyle B. LaPenna
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jake E. Doiron
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hunter A. Hidalgo
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (K.B.L.); (D.J.P.); (J.E.D.); (H.A.H.); (Z.L.)
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
33
|
Casin KM, Calvert JW. Harnessing the Benefits of Endogenous Hydrogen Sulfide to Reduce Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10030383. [PMID: 33806545 PMCID: PMC8000539 DOI: 10.3390/antiox10030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/02/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the U.S. While various studies have shown the beneficial impact of exogenous hydrogen sulfide (H2S)-releasing drugs, few have demonstrated the influence of endogenous H2S production. Modulating the predominant enzymatic sources of H2S-cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase-is an emerging and promising research area. This review frames the discussion of harnessing endogenous H2S within the context of a non-ischemic form of cardiomyopathy, termed diabetic cardiomyopathy, and heart failure. Also, we examine the current literature around therapeutic interventions, such as intermittent fasting and exercise, that stimulate H2S production.
Collapse
|
34
|
Qinyu-Zeng, Shuhua-He, Fengzhi-Chen, Li-Wang, Liren-Zhong, Jialiang-Hui, Wei-Ding, Junhong-Fan, Haibo-Zhang, Anyang-Wei. Administration of H 2S improves erectile dysfunction by inhibiting phenotypic modulation of corpus cavernosum smooth muscle in bilateral cavernous nerve injury rats. Nitric Oxide 2021; 107:1-10. [PMID: 33246103 DOI: 10.1016/j.niox.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Phenotypic modulation of Corpus Cavernosum Smooth Muscle Cells (CCSMCs) is an important step in the development and progression of bilateral cavernous nerve injury induced erectile dysfunction (BCNI-ED). To investigate the effect of exogenous hydrogen sulfide (H2S) on the phenotypic modulation of CCSMCs in BCNI-ED rats, a total of 18 male Sprague-Dawley rats were equally divided into 3 groups, including sham-operated (Sham) group, BCNI group and BCNI treated with NaHS (BCNI + NaHS) group. The treated group received intraperitoneal injection of NaHS (100 μmol kg-1day-1) for 4 weeks starting day 1 postoperatively. Erectile function was measured by the ratio of intracavernous pressure (ICP)/mean arterial pressure (MAP), and relevant tissues were harvested for Immunohistochemistry, Hematoxylin and eosin (H&E), Masson's trichrome staining, H2S fluorescent probe WSP-1 and Western blot. The primary CCSMCs were isolated and pretreatment with NaHS before exposed to PDGF-BB (platelet-derived growth factor). Relative expression mRNA and protein of phenotypic biomarkers, RhoA, ROCK-1 and cell cycle proteins were detected. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST) and H2S levels in penile tissue was significantly decreased in the BCNI group compared with the Sham group. Compared with the BCNI group, administration of NaHS significantly increased the ratio of ICP/MAP, ratio of smooth muscle to collagen, expressions of a-SMA, calponin and decreased the expression of OPN, collagen-I, RhoA, ROCK1 in the penile tissue. PDGF-BB-treated CCSMCs exhibited higher expression of OPN, RhoA, ROCK1, and lower α-SMA, calponin, which were attenuated by NaHS pretreatment. NaHS suppressed RhoA/ROCK activity and decreased the expression of CDK2, Cyclin E1, while increased the expression of P27kip1 induced by PDGF-BB in CCSMCs. Taken together, this study indicated that exogenous H2S inhibited the phenotypic modulation of CCSMCs by suppressing RhoA/ROCK1 signaling and affecting its downstream factor, CDK2, Cyclin E1, P27kip1, thereby improved BCNI rat erectile function.
Collapse
Affiliation(s)
- Qinyu-Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuhua-He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fengzhi-Chen
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Li-Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liren-Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jialiang-Hui
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Ding
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Urology, The First Affiliated Hospital of Guiyang University of Chinese Medicine, Guiyang, China
| | - Junhong-Fan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haibo-Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Anyang-Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
36
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
37
|
Tao BB, Zhu YC. A Common Molecular Switch for H 2S to Regulate Multiple Protein Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:1-16. [PMID: 34302686 DOI: 10.1007/978-981-16-0991-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide, a small molecule, produced by endogenous enzymes, such as CTH, CBS, and MPST using L-cysteine as substrates, has been reported to have numerous protective effects. However, the key problem that the target of H2S and how it can affect the structure and activity of biological molecules is still unknown. Till now, there are two main theories of its working mechanism. One is that H2S can modify the free thiol in cysteine to produce the persulfide state of the thiol and the sulfhydration of cysteine can significantly change the structure and activity of target proteins. The other theory is that H2S, as an antioxidant molecule, can directly break the disulfide bond in target proteins, and the persulfide state of thiol can be an intermediate product during the reaction. Both phenomena exit for no doubt since they are both supported by large amounts of experiments. Here, we will summarize both theories and try to discuss which one is the more effective or direct mechanism for H2S and what is the relationship between them. Therefore, we will discover more protein targets of H2S with the mechanism and understand more about the effect of this small molecule.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
39
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
40
|
Meng T, Qin W, Liu B. SIRT1 Antagonizes Oxidative Stress in Diabetic Vascular Complication. Front Endocrinol (Lausanne) 2020; 11:568861. [PMID: 33304318 PMCID: PMC7701141 DOI: 10.3389/fendo.2020.568861] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic mellitus (DM) is a significant public health concern worldwide with an increased incidence of morbidity and mortality, which is particularly due to the diabetic vascular complications. Several pivotal underlying mechanisms are associated with vascular complications, including hyperglycemia, mitochondrial dysfunction, inflammation, and most importantly, oxidative stress. Oxidative stress triggers defective angiogenesis, activates pro-inflammatory pathways and causes long-lasting epigenetic changes to facilitate the development of vascular complications. Therefore, therapeutic interventions targeting oxidative stress are promising to manage diabetic vascular complications. Sirtuin1 (SIRT1), a class III histone deacetylase belonging to the sirtuin family, plays critical roles in regulating metabolism and ageing-related pathological conditions, such as vascular diseases. Growing evidence has indicated that SIRT1 acts as a sensing regulator in response to oxidative stress and attenuates vascular dysfunction via cooperating with adenosine-monophosphate-activated protein kinase (AMPK) to activate antioxidant signals through various downstream effectors, including peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α), forkhead transcription factors (FOXOs), and peroxisome proliferative-activated receptor α (PPARα). In addition, SIRT1 interacts with hydrogen sulfide (H2S), regulates NADPH oxidase, endothelial NO synthase, and mechanistic target of rapamycin (mTOR) to suppress oxidative stress. Furthermore, mRNA expression of sirt1 is affected by microRNAs in DM. In the current review, we summarize recent advances illustrating the importance of SIRT1 in antagonizing oxidative stress. We also discuss whether modulation of SIRT1 can serve as a therapeutic strategy to treat diabetic vascular complications.
Collapse
Affiliation(s)
- Teng Meng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Weifeng Qin
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Gorini F, Bustaffa E, Chatzianagnostou K, Bianchi F, Vassalle C. Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140818. [PMID: 32758850 DOI: 10.1016/j.scitotenv.2020.140818] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) represents one of the main pollutants originating from both geologic phenomena such as volcanoes, geysers, fumaroles and hot springs, and geothermal plants that produce heat and electricity. Many increasing data suggest that H2S retains a variety of biological properties, and modulates many pathways related to cardiovascular pathophysiology although its role as beneficial/adverse determinant on cardiovascular disease (CVD) is not clearly established. In this review, the current knowledge on the association between H2S exposure and risk of CVD in geothermal areas has been examined. The few epidemiological studies carried out in geothermal areas suggest, in some cases, a protective role of H2S towards CVD, while in others a positive association between exposure to H2S and increased incidence of CVD. Most of the studies have an ecological design that does not allow to produce evidence to support a causal relationship and also often lack for an adequate adjustment for individual CVD risk factors. The review has also considered the potential role of two other aspects not sufficiently explored in this relationship: the production of endogenous H2S that is a gasotransmitter producing beneficial effects on cardiovascular function at low concentration and the intake of H2S-releasing drugs for the treatment of patients affected by hypertension, inflammatory diseases, and CVD. Thus, a threshold effect of H2S and the shift of action as beneficial/adverse determinant given by the synergy of exogenous exposure and endogenous production cannot be excluded. In this complex scenario, an effort is warranted in the future to include a more comprehensive evaluation of risk for CVD in relation to H2S emissions, especially in geothermal areas.
Collapse
Affiliation(s)
- Francesca Gorini
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy.
| | - Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | | | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Cristina Vassalle
- Gabriele Monasterio Foundation for the Medical and Public Health Research, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
42
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
43
|
Piragine E, Calderone V. Pharmacological modulation of the hydrogen sulfide (H 2 S) system by dietary H 2 S-donors: A novel promising strategy in the prevention and treatment of type 2 diabetes mellitus. Phytother Res 2020; 35:1817-1846. [PMID: 33118671 DOI: 10.1002/ptr.6923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) represents the most common age-related metabolic disorder, and its management is becoming both a health and economic issue worldwide. Moreover, chronic hyperglycemia represents one of the main risk factors for cardiovascular complications. In the last years, the emerging evidence about the role of the endogenous gasotransmitter hydrogen sulfide (H2 S) in the pathogenesis and progression of T2DM led to increasing interest in the pharmacological modulation of endogenous "H2 S-system". Indeed, H2 S directly contributes to the homeostatic maintenance of blood glucose levels; moreover, it improves impaired angiogenesis and endothelial dysfunction under hyperglycemic conditions. Moreover, H2 S promotes significant antioxidant, anti-inflammatory, and antiapoptotic effects, thus preventing hyperglycemia-induced vascular damage, diabetic nephropathy, and cardiomyopathy. Therefore, H2 S-releasing molecules represent a promising strategy in both clinical management of T2DM and prevention of macro- and micro-vascular complications associated to hyperglycemia. Recently, growing attention has been focused on dietary organosulfur compounds. Among them, garlic polysulfides and isothiocyanates deriving from Brassicaceae have been recognized as H2 S-donors of great pharmacological and nutraceutical interest. Therefore, a better understanding of the therapeutic potential of naturally occurring H2 S-donors may pave the way to a more rational use of these nutraceuticals in the modulation of H2 S homeostasis in T2DM.
Collapse
Affiliation(s)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
44
|
Paul BD, Snyder SH, Kashfi K. Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 2020; 38:101772. [PMID: 33137711 PMCID: PMC7606857 DOI: 10.1016/j.redox.2020.101772] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S) was once considered to have only toxic properties, until it was discovered to be an endogenous signaling molecule. The effects of H2S are dose dependent, with lower concentrations being beneficial and higher concentrations, cytotoxic. This scenario is especially true for the effects of H2S on mitochondrial function, where higher concentrations of the gasotransmitter inhibit the electron transport chain, and lower concentrations stimulate bioenergetics in multiple ways. Here we review the role of H2S in mitochondrial function and its effects on cellular physiology. Hydrogen sulfide (H2S) plays central roles in mitochondrial homeostasis. Both excess H2S and a paucity of H2S have deleterious effects. One of the modes by which H2S signals in mitochondria is by sulfhydrating target proteins. Administering H2S (where scarcity of H2S occurs) or inhibiting H2S production (in case of excess H2S) may be beneficial.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, USA.
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, USA; Department of Psychiatry and Behavioral Sciences, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, 10016, USA.
| |
Collapse
|
45
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
46
|
MZe786 Rescues Cardiac Mitochondrial Activity in High sFlt-1 and Low HO-1 Environment. Antioxidants (Basel) 2020; 9:antiox9070598. [PMID: 32660064 PMCID: PMC7402164 DOI: 10.3390/antiox9070598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Hypertensive disorder in pregnancy is a major cause of maternal and perinatal mortality worldwide. Women who have had preeclampsia are at three to four times higher risk in later life of developing high blood pressure and heart disease. Soluble Flt-1 (sFlt-1) is elevated in preeclampsia and may remain high postpartum in women with a history of preeclampsia. Heme oxygenase-1 (Hmox1/HO-1) exerts protective effects against oxidative stimuli and is compromised in the placenta of pregnant women with preeclampsia. We hypothesized that sFlt-1 inhibits cardiac mitochondrial activity in HO-1 deficient mice. HO-1 haplo-insufficient mice (Hmox1+/−) were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) or control virus (Ad-CMV). Subsequently, they were treated daily with either placebo or MZe786 for six days, when the heart tissue was harvested to assess cardiac mitochondrial activity. Here, we show that the loss of HO-1 disturbed cardiac mitochondrial respiration and reduced mitochondrial biogenesis. The overexpression of sFlt-1 resulted in the inhibition of the cardiac mitochondrial activity in Hmox1+/− mice. The present study demonstrates that the hydrogen sulfide (H2S) releasing molecule, MZe786, rescues mitochondrial activity by stimulating cardiac mitochondrial biogenesis and antioxidant defense in Hmox1−/− mice and in Hmox1+/− mice exposed to a high sFlt-1 environment.
Collapse
|
47
|
Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation. Clin Sci (Lond) 2020; 133:2045-2059. [PMID: 31654061 DOI: 10.1042/cs20190514] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. METHODS Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. RESULTS We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. CONCLUSION Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.
Collapse
|
48
|
Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H 2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020; 24:6510-6522. [PMID: 32383522 PMCID: PMC7299678 DOI: 10.1111/jcmm.15279] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022] Open
Abstract
Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, as in the case of ischaemic pre‐conditioning, so that preventing their increase might hamper self‐defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology 1, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
49
|
Shimizu Y, Nicholson CK, Polavarapu R, Pantner Y, Husain A, Naqvi N, Chin L, Li L, Calvert JW. Role of DJ-1 in Modulating Glycative Stress in Heart Failure. J Am Heart Assoc 2020; 9:e014691. [PMID: 32067589 PMCID: PMC7070196 DOI: 10.1161/jaha.119.014691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background DJ‐1 is a ubiquitously expressed protein typically associated with the development of early onset Parkinson disease. Recent data suggest that it also plays a role in the cellular response to stress. Here, we sought to determine the role DJ‐1 plays in the development of heart failure. Methods and Results Initial studies found that DJ‐1 deficient mice (DJ‐1 knockout; male; 8–10 weeks of age) exhibited more severe left ventricular cavity dilatation, cardiac dysfunction, hypertrophy, and fibrosis in the setting of ischemia‐reperfusion–induced heart failure when compared with wild‐type littermates. In contrast, the overexpression of the active form of DJ‐1 using a viral vector approach resulted in significant improvements in the severity of heart failure when compared with mice treated with a control virus. Subsequent studies aimed at evaluating the underlying protective mechanisms found that cardiac DJ‐1 reduces the accumulation of advanced glycation end products and activation of the receptor for advanced glycation end products—thus, reducing glycative stress. Conclusions These results indicate that DJ‐1 is an endogenous cytoprotective protein that protects against the development of ischemia‐reperfusion–induced heart failure by reducing glycative stress. Our findings also demonstrate the feasibility of using a gene therapy approach to deliver the active form of DJ‐1 to the heart as a therapeutic strategy to protect against the consequences of ischemic injury, which is a major cause of death in western populations.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Chad K. Nicholson
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Rohini Polavarapu
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Yvanna Pantner
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| | - Ahsan Husain
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Nawazish Naqvi
- Division of CardiologyDepartment of MedicineEmory University School of MedicineAtlantaGA
| | - Lih‐Shen Chin
- Department PharmacologyEmory University School of MedicineAtlantaGA
| | - Lian Li
- Department PharmacologyEmory University School of MedicineAtlantaGA
| | - John W. Calvert
- Division of Cardiothoracic SurgeryDepartment of SurgeryCarlyle Fraser Heart CenterEmory University School of MedicineAtlantaGA
| |
Collapse
|
50
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|