1
|
Wang J, Ye W, Zou J, Yang P, Jin M, Zheng Z, Zhou C, Qiu W, Lu J, Li C, Guo S, Xu Y, Huang Z, Liu P, Liu Z. Targeting the smooth muscle cell Keap1-Nrf2-GSDMD-pyroptosis axis by cryptotanshinone prevents abdominal aortic aneurysm formation. Theranostics 2024; 14:6516-6542. [PMID: 39479449 PMCID: PMC11519792 DOI: 10.7150/thno.98400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Abdominal aortic aneurysm (AAA) is an inflammatory, fatal aortic disease that currently lacks any effective drugs. Cryptotanshinone (CTS) is a prominent and inexpensive bioactive substance derived from Salvia miltiorrhiza Bunge, a well-known medicinal herb for treating cardiovascular diseases through its potent anti-inflammatory properties. Nevertheless, the therapeutic effect of CTS on AAA formation remains unknown. Methods: To investigate the therapeutic effect of CTS in AAA, variety of experimental approaches were employed, majorly including AAA mouse model establishment, real-time polymerase chain reaction (PCR), RNA sequencing, western blot, co-immunoprecipitation, scanning/transmission electron microscopy (SEM/TEM), enzyme-linked immunosorbent assay (ELISA), seahorse analysis, immunohistochemistry, and confocal imaging. Results: In this study, we demonstrated that CTS suppressed the formation of AAA in apolipoprotein E knock-out (ApoE-/-) mice infused with Ang II. A combination of network pharmacology and whole transcriptome sequencing analysis indicated that activation of the Keap1-Nrf2 pathway and regulation of programmed cell death in vascular smooth muscle cells (VSMCs) are closely linked to the anti-AAA effect of CTS. Mechanistically, CTS promoted the transcription of Nrf2 target genes, particularly Hmox-1, which prevented the activation of NLRP3 and GSDMD-initiated pyroptosis in VSMCs, thereby mitigating VSMC inflammation and maintaining the VSMC contractile phenotype. Subsequently, by utilizing molecular docking, together with the cellular thermal shift assay (CETSA) and isothermal titration calorimetry (ITC), a particular binding site was established between CTS and Keap1 at Arg415. To confirm the binding site, site-directed mutagenesis was performed, which intriguingly showed that the Arg415 mutation eliminated the binding between CTS and the Keap1-Nrf2 protein and abrogated the antioxidant and anti-pyroptosis effects of CTS. Furthermore, VSMC-specific Nrf2 knockdown in mice dramatically reversed the protective action of CTS in AAA and the inhibitory effect of CTS on VSMC pyroptosis. Conclusion: Naturally derived CTS exhibits promising efficacy as a treatment drug for AAA through its targeting of the Keap1-Nrf2-GSDMD-pyroptosis axis in VSMCs.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/pathology
- Kelch-Like ECH-Associated Protein 1/metabolism
- Phenanthrenes/pharmacology
- Mice
- NF-E2-Related Factor 2/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Pyroptosis/drug effects
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Signal Transduction/drug effects
- Mice, Knockout
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
Collapse
Affiliation(s)
- Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chunhong Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Wanlu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Shuai Guo
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiming Xu
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511443, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
2
|
Xu K, Saaoud F, Shao Y, Lu Y, Yang Q, Jiang X, Wang H, Yang X. A new paradigm in intracellular immunology: Mitochondria emerging as leading immune organelles. Redox Biol 2024; 76:103331. [PMID: 39216270 PMCID: PMC11402145 DOI: 10.1016/j.redox.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondria, traditionally recognized as cellular 'powerhouses' due to their pivotal role in energy production, have emerged as multifunctional organelles at the intersection of bioenergetics, metabolic signaling, and immunity. However, the understanding of their exact contributions to immunity and inflammation is still developing. This review first introduces the innovative concept of intracellular immunity, emphasizing how mitochondria serve as critical immune signaling hubs. They are instrumental in recognizing and responding to pathogen and danger signals, and in modulating immune responses. We also propose mitochondria as the leading immune organelles, drawing parallels with the broader immune system in their functions of antigen presentation, immune regulation, and immune response. Our comprehensive review explores mitochondrial immune signaling pathways, their therapeutic potential in managing inflammation and chronic diseases, and discusses cutting-edge methodologies for mitochondrial research. Targeting a broad readership of both experts in mitochondrial functions and newcomers to the field, this review sets forth new directions that could transform our understanding of intracellular immunity and the integrated immune functions of intracellular organelles.
Collapse
Affiliation(s)
- Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | | | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Xu X, Zhu Y, Niu Y, Chen Y, Fan S, Lu D, Xu R, Fan X. PANoptosis is a prominent cell death feature in thoracic aortic aneurysm or dissection. Exp Cell Res 2024; 442:114247. [PMID: 39276965 DOI: 10.1016/j.yexcr.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a devastating macrovascular disease, and its pathogenic mechanisms have not been well clarified. This study aimed to investigate the role of PANoptosis, which is newly defined programmed cell death (PCD) and characterized by pyroptosis, apoptosis, and necroptosis, in the pathogenesis of TAAD. We found that the expression of initiator factor Z-DNA binding protein 1 (ZBP1) and PANoptosis-related genes were upregulated in the β-aminopropionitrile (BAPN) + Angiotensin II (Ang II)-induced TAAD mice. Ang II stimuli enhanced the expression of ZBP1, promoted the generation of bioactive GSDMD (Gasdermin D) fragments, the cleavage of Caspase 3, and increased the phosphorylation of mixed lineage kinase domain-like pseudokinase (MLKL) in human aortic vascular smooth muscle cells (HASMCs), indicating the activation of hallmarks for PANoptosis. Moreover, ZBP1-mediated PANoptosis occurs in the aortic tissues of TAAD patients. These results highlight the significant role of PANoptosis in TAAD pathogenesis, suggesting ZBP1 and other PANoptosis-related genes as potential therapeutic targets for this condition.
Collapse
MESH Headings
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Animals
- Humans
- Aortic Dissection/pathology
- Aortic Dissection/metabolism
- Aortic Dissection/genetics
- Mice
- Mice, Inbred C57BL
- Male
- Necroptosis/genetics
- Angiotensin II/pharmacology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis
- Cell Death/genetics
- Disease Models, Animal
- Aminopropionitrile/pharmacology
Collapse
Affiliation(s)
- Xu Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuting Niu
- Department of Geriatric Dentistry, National Medical Products Administration Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yufei Chen
- Department of Cardiology, Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyang Fan
- Department of Cardiology, Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Dingkun Lu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruixia Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Xiaohan Fan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Ma L, Chen K, Li J, Xie L, Zhang Z, Zarif M, Chai T, Wu Q, Chen L, Qiu Z. Identification of potential therapeutic targets from bioinformatics analysis of necroptosis and immune infiltration in acute myocardial infarction. J Cardiothorac Surg 2024; 19:524. [PMID: 39261934 PMCID: PMC11389343 DOI: 10.1186/s13019-024-03038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Acute myocardial infarction (AMI) is a serious, deadly disease with a high incidence. However, it remains unclear how necroptosis affects the pathophysiology of AMI. Using bioinformatic analyses, this study investigated necroptosis in AMI. METHODS We obtained the GSE66360 dataset related to AMI by the GEO database. Venn diagrams were used to identify necroptosis-related differential genes (NRDEGs). The genes with differential expression in AMI were analyzed using gene set enrichment analysis, and a PPI network was established. A transcription factor prediction and enrichment analysis were conducted for the NRDEGs, and the relationships between AMI, NRDEGs, and immune cells were determined. Finally, in the additional dataset, NRDEG expression levels, immune infiltration, and ROC curve analysis were confirmed, and gene expression levels were further verified experimentally. RESULTS GSEA revealed that necroptosis pathways were significantly enriched in AMI. We identified 10 NRDEGs, including TNF, TLR4, FTH1 and so on. Enrichment analysis indicated that the NOD-like receptor and NF-kappa B signaling pathways were significantly enriched. Four NRDEGs, FTH1, IFNGR1, STAT3, and TLR4, were identified; however, additional datasets and further experimental validation are required to confirm their roles. In addition, we determined that a high abundance of macrophages and neutrophils prompted AMI development. CONCLUSIONS In this study, four potential genes that affect the development of AMI through necroptosis (FTH1, IFNGR1, STAT3, and TLR4) were identified. In addition, we found that a high abundance of macrophages and neutrophils affected AMI. This helps determine the pathological mechanism of necroptosis and immune cells that influence AMI and provides a novel strategy for targeted therapy.
Collapse
Affiliation(s)
- Likang Ma
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Keyuan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Jiakang Li
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Linfeng Xie
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Zhaofeng Zhang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Mohammad Zarif
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Tianci Chai
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Qingsong Wu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China.
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Javed MJ, Howard RM, Li H, Carrasco L, Dirain MLS, Su G, Cai G, Upchurch GR, Jiang Z. Gasdermin D deficiency attenuates development of ascending aortic dissections in a novel mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609270. [PMID: 39229014 PMCID: PMC11370574 DOI: 10.1101/2024.08.22.609270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Thoracic aortic dissection (TAD) is a silent killer. Approximately two-thirds of the cases occur in the ascending aorta (i.e. type A dissection) and majority of them are unrelated to genetic mutations. However, animal models of spontaneous type A dissection are not widely available. In the present study, a novel mouse TAD model was created. Further, the role of gasdermin D (GSDMD) in TAD development was evaluated. Methods TADs were created by treating ascending aorta of adult mice (C57BL/6J) with active elastase (40.0 U/ml) and β-aminopropionitrile (Act E+BAPN). The temporal progress of the TAD pathology was rigorously characterized by histological evaluation and scanning electron microscopy, while potential mechanisms explored with bulk RNA sequencing of specimens collected at multiple timepoints. With this novel TAD model, further experiments were performed with Gsdmd -/- mice to evaluate its impact on TAD formation. Results The ascending aorta challenged with Act E+BAPN developed pathology characterized by an early onset of intimomedial tears (complete penetration) and intramural hematoma, followed by progressive medial loss and aortic dilation. Ingenuity Pathway Analysis and functional annotation of differentially expressed genes suggested that a unique inflammatory micro-environment, rather than general inflammation, promoted the onset of TADs by specifically recruiting neutrophils to the aortic wall, while the pathology at the advanced stage was driven by T-cell mediated immune injury. Gsdmd -/- attenuated medial loss, adventitial fibrosis, and dilation of TADs. This protective effect was associated with a reduced number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) positive cells and T-cells in TADs. Conclusions A novel mouse TAD model was created in the ascending aorta. It produces a unique microenvironment to activate different immune cell subsets, promoting onset and subsequent remodeling of TADs. Consistently, Gsdmd -/- attenuates TAD development, with modulation of cell death and T-cell response likely acting as the underlying mechanism.
Collapse
|
7
|
Martin-Blazquez A, Martin-Lorenzo M, Santiago-Hernandez A, Heredero A, Donado A, Lopez JA, Anfaiha-Sanchez M, Ruiz-Jimenez R, Esteban V, Vazquez J, Aldamiz-Echevarria G, Alvarez-Llamas G. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients. J Proteome Res 2024; 23:3012-3024. [PMID: 38594816 PMCID: PMC11301675 DOI: 10.1021/acs.jproteome.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.
Collapse
Affiliation(s)
- Ariadna Martin-Blazquez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Marta Martin-Lorenzo
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | | | - Angeles Heredero
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Alicia Donado
- Cardiac
Surgery Service, Fundación Jiménez
Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Juan A Lopez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miriam Anfaiha-Sanchez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Rocio Ruiz-Jimenez
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
| | - Vanesa Esteban
- Department
of Allergy and Immunology, IIS-Fundación
Jiménez Díaz, Fundación Jiménez Díaz
Hospital-UAM, 28040 Madrid, Spain
- Faculty
of Medicine and Biomedicine, Alfonso X El
Sabio University, 28691 Madrid, Spain
| | - Jesus Vazquez
- Laboratory
of Cardiovascular Proteomics, Centro Nacional
de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER
de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | | - Gloria Alvarez-Llamas
- Immunology
Department, IIS-Fundación Jiménez
Díaz, Fundación Jiménez Díaz Hospital-UAM, 28040 Madrid, Spain
- RICORS2040, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Department
of Biochemistry and Molecular Biology, Complutense
University, 28040 Madrid, Spain
| |
Collapse
|
8
|
Zhao K, Zeng Z, He Y, Zhao R, Niu J, Sun H, Li S, Dong J, Jing Z, Zhou J. Recent advances in targeted therapy for inflammatory vascular diseases. J Control Release 2024; 372:730-750. [PMID: 38945301 DOI: 10.1016/j.jconrel.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Vascular diseases constitute a significant contributor to worldwide mortality rates, placing a substantial strain on healthcare systems and socio-economic aspects. They are closely associated with inflammatory responses, as sustained inflammation could impact endothelial function, the release of inflammatory mediators, and platelet activation, thus accelerating the progression of vascular diseases. Consequently, directing therapeutic efforts towards mitigating inflammation represents a crucial approach in the management of vascular diseases. Traditional anti-inflammatory medications may have extensive effects on multiple tissues and organs when absorbed through the bloodstream. Conversely, treatments targeting inflammatory vascular diseases, such as monoclonal antibodies, drug-eluting stents, and nano-drugs, can achieve more precise effects, including precise intervention, minimal non-specific effects, and prolonged efficacy. In addition, personalized therapy is an important development trend in targeted therapy for inflammatory vascular diseases. Leveraging advanced simulation algorithms and clinical trial data, treatment strategies are gradually being personalized based on patients' genetic, biomarker, and clinical profiles. It is expected that the application of precision medicine in the field of vascular diseases will have a broader future. In conclusion, targeting therapies offer enhanced safety and efficacy compared to conventional medications; investigating novel targeting therapies and promoting clinical transformation may be a promising direction in improving the prognosis of patients with inflammatory vascular diseases. This article reviews the pathogenesis of inflammatory vascular diseases and presents a comprehensive overview of the potential for targeted therapies in managing this condition.
Collapse
Affiliation(s)
- Kaiwen Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Zan Zeng
- Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuzhen He
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Rong Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jinzhu Niu
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Huiying Sun
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Shuangshuang Li
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Dong
- Department of Vascular Surgery, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zaiping Jing
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China; Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China.
| |
Collapse
|
9
|
Yin Z, Zhang J, Zhao M, Liu J, Xu Y, Peng S, Pan W, Wei C, Zheng Z, Liu S, Qin JJ, Wan J, Wang M. EDIL3/Del-1 prevents aortic dissection through enhancing internalization and degradation of apoptotic vascular smooth muscle cells. Autophagy 2024:1-21. [PMID: 38873925 DOI: 10.1080/15548627.2024.2367191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/08/2024] [Indexed: 06/15/2024] Open
Abstract
Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in β-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/β3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.Abbreviations: BAPN: β-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-β-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
10
|
Wang Q, Lv H, Ainiwan M, Yesitayi G, Abudesimu A, Siti D, Aizitiaili A, Ma X. Untargeted metabolomics identifies indole-3-propionic acid to relieve Ang II-induced endothelial dysfunction in aortic dissection. Mol Cell Biochem 2024; 479:1767-1786. [PMID: 38485805 DOI: 10.1007/s11010-024-04961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 07/18/2024]
Abstract
Indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan, has been proven to fulfill an essential function in cardiovascular disease (CVD) and nerve regeneration disease. However, the role of IPA in aortic dissection (AD) has not been revealed. We aimed to investigate the role of IPA in the pathogenesis of AD and the underlying mechanisms of IPA in endothelial dysfunction. Untargeted metabolomics has been employed to screen the plasma metabolic profile of AD patients in comparison with healthy individuals. Network pharmacology provides insights into the potential molecular mechanisms underlying IPA. 3-aminopropionitrile fumarate (BAPN) and angiotensin II (Ang II) were administered to induce AD in mice, while human umbilical vein endothelial cells (HUVECs) were employed for in vitro validation of the signaling pathways predicted by network pharmacology. A total of 224 potentially differential plasma metabolites were identified in the AD patients, with 110 up-regulated metabolites and 114 down-regulated metabolites. IPA was the most significantly decreased metabolite involved in tryptophan metabolism. Bcl2, caspase3, and AKT1 were predicted as the target genes of IPA by network pharmacology and molecular docking. IPA suppressed Ang II-induced apoptosis, intracellular ROS generation, inflammation, and endothelial tight junction (TJ) loss. Animal experiments demonstrated that administration of IPA alleviated the occurrence and severity of AD in mice. Taken together, we identified a previously unexplored association between tryptophan metabolite IPA and AD, providing a novel perspective on the underlying mechanism through which IPA mitigates endothelial dysfunction to protect against AD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Hui Lv
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Asiya Abudesimu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Dilixiati Siti
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
11
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
12
|
Gu J, Guo C, Ruan J, Li K, Zhou Y, Gong X, Shi H. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024; 29:586-604. [PMID: 38324163 DOI: 10.1007/s10495-023-01927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jiacheng Ruan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
14
|
Ji H, Han Y, Danyang Jie, Yue Li, Hailan Yang, Sun H, You C, Xiao A, Liu Y. Decoding the biology and clinical implication of neutrophils in intracranial aneurysm. Ann Clin Transl Neurol 2024; 11:958-972. [PMID: 38317016 PMCID: PMC11021671 DOI: 10.1002/acn3.52014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Abundant neutrophils have been identified in both ruptured and unruptured intracranial aneurysm (IA) domes, with their function and clinical implication being poorly characterized. MATERIALS AND METHODS We employed single-cell RNA sequencing (scRNA-Seq) datasets of both human and murine model, and external bulk mRNA sequencing datasets to thoroughly explore the features and functional heterogeneous of neutrophils infiltrating the IA dome. RESULTS We found that both unruptured and ruptured IA dome contain a substantial population of neutrophils, characterized by FCGR3B, G0S2, CSF3R, and CXCR2. These cells exhibited heterogeneity in terms of function and differentiation. Despite similar transcriptional activation, neutrophils in IA dome expressed a repertoire of gene programs that mimicked transcriptomic alterations observed from bone marrow to peripheral blood, showing self-similarity. In addition, the recruitment of neutrophils in unruptured IA was primarily mediated by monocytes/macrophages, and once ruptured, both neutrophils, and a specific subset of inflammatory smooth muscle cells (SMCs) were involved in the process. The receiver operator characteristic curve (ROC) analysis indicated that distinct neutrophil subclusters were associated with IA formation and rupture, respectively. By reviewing current studies, we found that neutrophils play a detrimental role to IA wall integrity through secreting specific ligands, ferroptosis driven by ALOX5AP and PTGS2, and the formation of neutrophil extracellular traps (NETs) mediated by PADI4. INTERPRETATION This study delineated the biology and potential clinical implications of neutrophils in IA dome and provided a reliable basis for future researches.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Yujing Han
- Plevic Floor Disorders Centre, West China Tianfu HospitalSichuan UniversityNo. 3966, Tianfu AvenueChengduSichuanChina
| | - Danyang Jie
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Yue Li
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Hailan Yang
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Haogeng Sun
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Chao You
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Anqi Xiao
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| | - Yi Liu
- Department of Neurosurgery, West China HospitalSichuan UniversityNo. 37 Guoxue LaneChengduSichuanChina
| |
Collapse
|
15
|
Gao S, Zhang K, Zhou C, Song J, Gu Y, Cao F, Wang J, Xie E, Yu C, Qiu J. HSPB6 Deficiency Promotes the Development of Aortic Dissection and Rupture. J Transl Med 2024; 104:100326. [PMID: 38237739 DOI: 10.1016/j.labinv.2024.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
To better understand the pathogenesis of acute type A aortic dissection, high-sensitivity liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS)-based proteomics and phosphoproteomics approaches were used to identify differential proteins. Heat shock protein family B (small) member 6 (HSPB6) in aortic dissection was significantly reduced in human and mouse aortic dissection samples by real-time PCR, western blotting, and immunohistochemical staining techniques. Using an HSPB6-knockout mouse, we investigated the potential role of HSPB6 in β-aminopropionitrile monofumarate-induced aortic dissection. We found increased mortality and increased probability of ascending aortic dissection after HSPB6 knockout compared with wild-type mice. Mechanistically, our data suggest that HSPB6 deletion promoted vascular smooth muscle cell apoptosis. More importantly, HSPB6 deletion attenuated cofilin activity, leading to excessive smooth muscle cell stiffness and eventually resulting in the development of aortic dissection and rupture. Our data suggest that excessive stiffness of vascular smooth muscle cells caused by HSPB6 deficiency is a new pathogenetic mechanism leading to aortic dissection.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Zhou
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Song
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Yuanrui Gu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Cao
- Department of Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Ji Wang
- Department of Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Enzehua Xie
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Cuntao Yu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Juntao Qiu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Wang Y, Panicker IS, Anesi J, Sargisson O, Atchison B, Habenicht AJR. Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm. Int J Mol Sci 2024; 25:901. [PMID: 38255976 PMCID: PMC10815651 DOI: 10.3390/ijms25020901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thoracic aortic aneurysm (TAA) has a prevalence of 0.16-0.34% and an incidence of 7.6 per 100,000 person-years, accounting for 1-2% of all deaths in Western countries. Currently, no effective pharmacological therapies have been identified to slow TAA development and prevent TAA rupture. Large TAAs are treated with open surgical repair and less invasive thoracic endovascular aortic repair, both of which have high perioperative mortality risk. Therefore, there is an urgent medical need to identify the cellular and molecular mechanisms underlying TAA development and rupture to develop new therapies. In this review, we summarize animal TAA models including recent developments in porcine and zebrafish models: porcine models can assess new therapeutic devices or intervention strategies in a large mammal and zebrafish models can employ large-scale small-molecule suppressor screening in microwells. The second part of the review covers current views of TAA pathogenesis, derived from recent studies using these animal models, with a focus on the roles of the transforming growth factor-beta (TGFβ) pathway and the vascular smooth muscle cell (VSMC)-elastin-contractile unit. The last part discusses TAA treatment options as they emerge from recent preclinical studies.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Owen Sargisson
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Benjamin Atchison
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia; (I.S.P.)
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), 80336 Munich, Germany;
| |
Collapse
|
18
|
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin J, He P, Xie J. Ferroptosis in cardiovascular disease. Biomed Pharmacother 2024; 170:116057. [PMID: 38159373 DOI: 10.1016/j.biopha.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
In the 21st century, cardiovascular disease (CVD) has become one of the leading causes of death worldwide. The prevention and treatment of CVD remain pressing scientific issues. Several recent studies have suggested that ferroptosis may play a key role in CVD. Most studies conducted thus far on ferroptosis and CVD have supported the link. Ferroptosis mediated by different signaling and metabolic pathways can lead to ischemic heart disease, myocarditis, heart failure, ischemia-reperfusion injury, and cardiomyopathy. Still, the specific mechanism of ferroptosis in CVD, the particular organ areas affected, and the stage of disease involved need to be further studied. Therefore, understanding the mechanisms regulating ferroptosis in CVD may improve disease management. Throughout this review, we summarized the mechanism of ferroptosis and its effect on the pathogenesis of CVD. We also predicted and discussed future research directions, aiming to provide new ideas and strategies for preventing and treating CVD.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyong Xie
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Siyuan Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rumao Zhong
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peichun He
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
19
|
Zhang Y, Qu H, Li C, Li L, He L. The S-Nitrosylation of Septin2 (SNO-Septin2) axis: A novel potential therapeutic target for treating aneurysms and dissection. Drug Discov Ther 2024; 18:207-209. [PMID: 38987209 DOI: 10.5582/ddt.2024.01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Aortic aneurysm and aortic dissection (AAD) are severe life-threatening cardiovascular disorders for which no approved pharmaceutical therapies are currently available. Protein S-nitrosylation (SNO) is a typical redox-dependent posttranslational modification whose role in AAD has yet to be described. Recently, Zhang et al. revealed for the first time that SNO modification of macrophage cytoskeletal protein septin2 promotes vascular inflammation and extracellular matrix degradation in aortic aneurysm. Mechanically, the TIAM1-RAC1(T lymphoma invasion and metastasis-inducing protein 1-Ras-related C3 botulinum toxin substrate 1) axis participates in the progression of AAD induced with S-nitrosylated septin2. More importantly, developing R-ketorolac and NSC23766 compounds that specifically target the TIAM1-RAC1 pathway may be new a potential strategy for alleviating AAD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Hongtao Qu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Chuanhua Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Lu He
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
20
|
Miao H, Li X, Liang Y, Tang H, Song Z, Nie S. Expression of secreted frizzled-related proteins in acute aortic dissection patients and the effects on prognosis. Front Cardiovasc Med 2023; 10:1139122. [PMID: 38188253 PMCID: PMC10766824 DOI: 10.3389/fcvm.2023.1139122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/28/2023] [Indexed: 01/09/2024] Open
Abstract
Background Secreted frizzled-related proteins (SFRPs) were reported to be involved in cardiovascular diseases. This study aimed to observe plasma SFRP levels in acute aortic dissection (AD) patients and the effects of SFRP expression on AD prognosis. Methods Plasma levels of SFRP1, SFRP2, SFRP3, SFRP4, and SFRP5 were measured in AD patients and non-AD (NAD) patients. The end-point events information of AD patients, including all-cause death and various clinical complications due to aortic dissection, was collected during a 36-month follow-up. Results The SFRP1, SFRP2, SFRP3, and SFRP4 levels were increased in AD patients compared with those in NAD patients, while the SFRP5 concentrations were decreased. No differences in any of the SFRP levels were observed between the type A group and the type B group. The AD patients with end-point events exhibited higher SFRP1, SFRP2, SFRP3, and SFRP4 concentrations but lower SFRP5 levels than the patients without end-point events. In addition, the AD patients were divided into a high group and a low group based on the median SFRP levels, and Kaplan-Meier analysis revealed that the AD patients with high SFRP1, SFRP2, SFRP4, or SFRP5 levels had a better prognosis than those with low levels. However, the AD patients with high SFRP3 levels exhibited the opposite trends. The binary logistic regression analysis found that SFRP1, SFRP2, SFRP4, and SFRP5 were all negatively correlated with the occurrence of end-point events, while SFRP3 was positively correlated with its occurrence. Conclusions SFRP levels are all changed in acute AD, which may affect the prognosis of AD patients. SFRPs may be a target to improve the prognosis of AD.
Collapse
Affiliation(s)
- Huangtai Miao
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoying Li
- Department of Health Care for Cadres, Beijing Jishuitan Hospital, Beijing, China
| | - Ying Liang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hao Tang
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zihao Song
- School of Basic Medicine Sciences, Capital Medical University, Beijing, China
| | - Shaoping Nie
- Center for Cononary Artery Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Liao F, Wang L, Wu Z, Luo G, Qian Y, He X, Ding S, Pu J. Disulfiram protects against abdominal aortic aneurysm by ameliorating vascular smooth muscle cells pyroptosis. Cardiovasc Drugs Ther 2023; 37:1-14. [PMID: 35723784 DOI: 10.1007/s10557-022-07352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Recent studies demonstrated that pyroptosis is involved in abdominal aortic aneurysm (AAA) progression, suggesting a potential target for AAA treatment. This study aimed to identify if disulfiram could inhibit angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs) damage, thereby exerting protective effects on AAA. METHODS The AAA mouse model was established by continuous subcutaneous Ang II infusion for 28 days. Then aortic tissue of the mice was isolated and subjected to RNA sequencing, qRT-PCR, Western blotting, and immunofluorescence staining. To explore the therapeutic effect of disulfiram, mice were orally administered disulfiram (50 mg/kg/day) or vehicle for 28 days accompanied with Ang II infusion. Pathological changes in aortic tissues were measured using microultrasound imaging analysis and histopathological analysis. In addition, inflammatory response, pyroptosis, and oxidative stress damage were examined in mouse aortic vascular smooth muscle (MOVAS) cells stimulated with Ang II in vitro. RESULTS The RNA sequencing and bioinformatic analysis results suggested that pyroptosis- and inflammation-related genes were significantly upregulated in AAA, consistent with the results of qRT-PCR and Western blotting. Most importantly, the therapeutic effect of disulfiram on AAA was identified in our study. First, disulfiram administration significantly attenuated Ang II-induced inflammation, pyroptosis, and oxidative stress in VSMCs, which is associated with the inhibition of the NF-κB-NLRP3 pathway. Second, in-vivo studies revealed that disulfiram treatment reduced AAA formation and significantly ameliorated collagen deposition and elastin degradation in the aortic wall. CONCLUSION Our findings suggest that disulfiram has a novel protective effect against AAA by inhibiting Ang II-induced VSMCs pyroptosis.
Collapse
Affiliation(s)
- Fei Liao
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Blood Transfusion, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhinan Wu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guqing Luo
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxuan Qian
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie He
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Ding
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Chen C, Gao L, Ge H, Huang W, Zhao R, Gu R, Li Z, Wang X. A neural network model was constructed by screening the potential biomarkers of aortic dissection based on genes associated with pyroptosis. Aging (Albany NY) 2023; 15:12388-12399. [PMID: 37938149 PMCID: PMC10683593 DOI: 10.18632/aging.205187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Aortic dissection (AD) is one of the crucial and common cardiovascular diseases, and pyroptosis is a novel cell delivery mechanism that is probably involved in the pathogenesis of various cardiovascular diseases. However, no study has investigated the role of pyroptosis in AD. METHODS We obtained two AD datasets, GSE153434 and GSE190635, from the Gene Expression Omnibus database. The differential expression of AD-related genes was determined by differential analysis, and their enrichment analysis was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Additionally, a protein-protein interaction network was established. Next, potential biomarkers were screened by Lasso regression analysis, and a neural network model was constructed. Finally, the potential biomarkers were validated by constructing a mouse model of AD. RESULTS A total of 1033 differentially expressed related genes were distinguished and these genes were mainly associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase signaling pathways. The Lasso regression results showed five potential biomarkers, namely platelet endothelial cell adhesion molecule-1 (PECAM1), caspase 4 (CASP4), mixed lineage kinase domain-like pseudokinase (MLKL), APAF1-interacting protein (APIP), and histone deacetylase 6 (HDAC6) and successfully constructed a neural network model to predict AD occurrence. The results showed that CASP4 and MLKL were highly expressed, whereas PECAM1 and HDAC6 were lowly expressed in AD samples, and no statistically significant difference was observed in APIP expression in AD samples. CONCLUSION Pyroptosis plays a crucial role in AD occurrence and development. Moreover, the five potential biomarkers identified in the present study can act as targets for the early diagnosis of AD in patients.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Vascular Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Lulu Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Hongwei Ge
- Department of Vascular Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Weibin Huang
- Department of Vascular Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Wang
- Department of Vascular Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| |
Collapse
|
24
|
Zhou D, Zhu Y, Jiang P, Zhang T, Zhuang J, Li T, Qi L, Wang Y. Identifying pyroptosis- and inflammation-related genes in intracranial aneurysms based on bioinformatics analysis. Biol Res 2023; 56:50. [PMID: 37752552 PMCID: PMC10523789 DOI: 10.1186/s40659-023-00464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Intracranial aneurysm (IA) is the most common cerebrovascular disease, and subarachnoid hemorrhage caused by its rupture can seriously impede nerve function. Pyroptosis is an inflammatory mode of cell death whose underlying mechanisms involving the occurrence and rupture of IAs remain unclear. In this study, using bioinformatics analysis, we identified the potential pyroptosis-related genes (PRGs) and performed their inflammatory response mechanisms in IAs. METHODS The mRNA expression matrix of the IA tissue was obtained from the Gene Expression Omnibus database, and 51 PRGs were obtained from previous articles collected from PubMed. The differentially expressed PRGs (DEPRGs) were performed using R software. Subsequently, we performed enrichment analysis, constructed a protein-protein interaction network, performed weighted gene coexpression network analysis (WGCNA) and external validation using another dataset, and identified a correlation between hub genes and immune cell infiltration. Finally, the expression and tissue distribution of these hub genes in IA tissues were detected using Western blotting and immunohistochemical (IHC) staining. RESULTS In total, 12 DEPRGs associated with IA were identified in our analysis, which included 11 up-regulated and one down-regulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the DEPRGs were mostly enriched in the NOD-like receptor signaling pathway, interleukin-1 beta production, and the inflammasome complex. Three hub genes, NLRP3, IL1B and IL18, were identified using Cytoscape software and the WGCNA correlation module, and external validation revealed statistically significant differences between the expression of these hub genes in the ruptured and unruptured aneurysm groups (p < 0.05). Furthermore, all AUC values were > 0.75. Immune cell infiltration analysis suggested that the hub genes are related to CD8 T cell, macrophages and mast cells. Finally, IHC staining revealed that the protein levels of these hub genes were higher in ruptured and unruptured IA tissues than in normal tissues (p < 0.05). CONCLUSION The results of bioinformatics analysis showed that pyroptosis is closely related to the formation and rupture of IA, and identified three potential hub genes involved in the pyroptosis and infiltration ofcells. Our findings may improve the understanding of the mechanisms underlying pyroptosis in IA.
Collapse
Affiliation(s)
- Donglin Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China
| | - Yimin Zhu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Jiang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Tongfu Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China
- Department of Neurosurgery, Yangxin County People's Hospital, Binzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China
| | - Tao Li
- Department of Neurosurgery, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Linzeng Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
25
|
Wang Y, Wu J. Ferroptosis: a new strategy for cardiovascular disease. Front Cardiovasc Med 2023; 10:1241282. [PMID: 37731525 PMCID: PMC10507265 DOI: 10.3389/fcvm.2023.1241282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Cardiovascular disease (CVD) is currently one of the prevalent causes of human death. Iron is one of the essential trace elements in the human body and a vital component of living tissues. All organ systems require iron for various metabolic processes, including myocardial and skeletal muscle metabolism, erythropoiesis, mitochondrial function, and oxygen transport. Its deficiency or excess in the human body remains one of the nutritional problems worldwide. The total amount of iron in a normal human body is about 3-5 g. Iron deficiency may cause symptoms such as general fatigue, pica, and nerve deafness, while excessive iron plays a crucial role in the pathophysiological processes of the heart through ferroptosis triggered by the Fenton reaction. It differs from other cell death modes based on its dependence on the accumulation of lipid peroxides and REDOX imbalance, opening a new pathway underlying the pathogenesis and mechanism of CVDs. In this review, we describe the latest research progress on the mechanism of ferroptosis and report its crucial role and association with miRNA in various CVDs. Finally, we summarise the potential therapeutic value of ferroptosis-related drugs or ferroptosis inhibitors in CVDs.
Collapse
Affiliation(s)
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Xu T, Cui J, Xu R, Cao J, Guo MY. Microplastics induced inflammation and apoptosis via ferroptosis and the NF-κB pathway in carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106659. [PMID: 37586228 DOI: 10.1016/j.aquatox.2023.106659] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Microplastics (MPs), a new class of pollutant that threatens aquatic biodiversity, are becoming increasingly prevalent around the world. Fish growth may be severely inhibited by microplastics, resulting in severe mortality. Exposure to microplastics increases the likelihood of intestinal injuries, but the underlying mechanisms remain equivocal. The objective of this study was to investigate the potential toxic mechanisms underlying microplastic-induced intestinal injury in fish and to assist researchers in identifying novel therapeutic targets. In this study, a model of carp exposed to microplastics was established successfully. Histological observation showed that exposure to polyethylene microplastics caused damage to the intestinal mucosal surface and a significant increase in goblet cells, which aggregated on the surface of the mucosa. The mucosal layer was observed to fall off. Lymphocytes in the intestinal wall proliferated and aggregated. TUNEL staining showed that apoptosis occurred in the group exposed to microplastics. The qPCR results showed that the expression of Ferroptosis apoptotic factors COX-2 and ACSL4 was upregulated, while the expression of TFRC, FIH1, SLC7A11, and GPX4 was downregulated. The NF-κB pathway (p-p65, IκBα), inflammatory cytokines (TNF-α, IL-8, IL-6) and apoptosis genes (Bax, Caspase3) were upregulated. Semi-quantitative detection of related proteins by Western blotting was consistent with the gene expression results. In addition, the ELISA assay showed that lipid peroxidation and inflammatory cytokines (TNF-α, IL-1β, IL-6) were increased in the microplastic exposed group. To conclude, lipid peroxidation induced by microplastics activates the NF-κB pathway and causes ferroptosis, ultimately resulting in intestinal damage and cellular apoptosis.
Collapse
Affiliation(s)
- Tianchao Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jie Cui
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Wang Q, Yesitayi G, Liu B, Siti D, Ainiwan M, Aizitiaili A, Ma X. Targeting metabolism in aortic aneurysm and dissection: from basic research to clinical applications. Int J Biol Sci 2023; 19:3869-3891. [PMID: 37564200 PMCID: PMC10411465 DOI: 10.7150/ijbs.85467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
Aortic aneurysm and dissection (AAD) are a group of insidious and lethal cardiovascular diseases that characterized by seriously threatening the life and health of people, but lack effective nonsurgical interventions. Alterations in metabolites are increasingly recognized as universal features of AAD because metabolic abnormalities have been identified not only in arterial tissue but also in blood and vascular cells from both patients and animal models with this disease. Over the past few decades, studies have further supported this notion by linking AAD to various types of metabolites such as those derived from gut microbiota or involved in TCA cycle or lipid metabolism. Many of these altered metabolites may contribute to the pathogenesis of AAD. This review aims to illustrate the close association between body metabolism and the occurrence and development of AAD, as well as summarize the significance of metabolites correlated with the pathological process of AAD. This provides valuable insight for developing new therapeutic agents for AAD. Therefore, we present a brief overview of metabolism in AAD biology, including signaling pathways involved in these processes and current clinical studies targeting AAD metabolisms. It is necessary to understand the metabolic mechanisms underlying AAD to provides significant knowledge for AAD diagnosis and new therapeutics for treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dilixiati Siti
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
28
|
Hofmann A, Khorzom Y, Klimova A, Wolk S, Busch A, Sabarstinski P, Müglich M, Egorov D, Kopaliani I, Poitz DM, Kapalla M, Hamann B, Frank F, Jänichen C, Brunssen C, Morawietz H, Reeps C. Associations of Tissue and Soluble LOX-1 with Human Abdominal Aortic Aneurysm. J Am Heart Assoc 2023:e027537. [PMID: 37421287 PMCID: PMC10382096 DOI: 10.1161/jaha.122.027537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Background Indication for prophylactic surgical abdominal aortic aneurysm (AAA) repair depends on the maximal aortic diameter. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for uptake of oxidized low-density lipoprotein cholesterol and is implicated in atherosclerosis. A soluble form of LOX-1 (sLOX-1) has been discussed as a novel biomarker in coronary artery disease and stroke. Herein, we assessed the regulation of aortic LOX-1 as well as the diagnostic and risk stratification potential of sLOX-1 in patients with AAA. Methods and Results Serum sLOX-1 was assessed in a case-control study in AAA (n=104) and peripheral artery disease (n=104). sLOX-1 was not statistically different between AAA and peripheral artery disease but was higher in AAA (β=1.28, P=0.04) after adjusting for age, atherosclerosis, type 2 diabetes, prescription of statins, β-blockers, ACE inhibitors, and therapeutic anticoagulation. sLOX-1 was not associated with the aortic diameter, AAA volume, or the thickness of the intraluminal thrombus. Aortic LOX-1 mRNA expression tended to be higher in AAA when compared with disease, and expression was positively associated with cleaved caspase-3, smooth muscle actin, collagen, and macrophage content. Conclusions In AAA, sLOX-1 was differently affected by age, cardiometabolic diseases, and corresponding medical therapies. Comparison with nonatherosclerotic disease would be beneficial to further elucidate the diagnostic potential of sLOX-1, although it was not useful for risk stratification. Aneurysmal LOX-1 mRNA expression was increased and positively associated with smooth muscle cells and collagen content, suggesting that LOX-1 is eventually not deleterious in human AAA and could counteract AAA rupture.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Yazan Khorzom
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Anna Klimova
- National Center for Tumor Diseases, Partner Site Dresden and Institute for Medical Informatics and Biometry, Faculty of Medicine Technische Universität Dresden Dresden Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Albert Busch
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Margarete Müglich
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Dmitry Egorov
- Department of Physiology, Medical Faculty Carl Gustav Carus Technische Universität Dresden Germany
| | - Irakli Kopaliani
- Department of Physiology, Medical Faculty Carl Gustav Carus Technische Universität Dresden Germany
| | - David M Poitz
- Institute of Clinical Chemistry and Laboratory Medicine Medical Faculty Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Christian Jänichen
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| |
Collapse
|
29
|
Fang Z, Wu G, Sheng J, Ye B, Huang Z, Xu J, Zhang J, Han J, Han B, Xu J. Gasdermin D affects aortic vascular smooth muscle cell pyroptosis and Ang II-induced vascular remodeling. Heliyon 2023; 9:e16619. [PMID: 37303505 PMCID: PMC10248119 DOI: 10.1016/j.heliyon.2023.e16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are primarily responsible for vasoconstriction and the regulation of blood pressure1. Pyroptosis, a particular form of regulated cell death, is involved in multiple vascular injuries, including hypertensive vascular dysfunction. This pyroptotic cell death is mediated by the pore-forming protein of Gasdermin D (GSDMD). This study was designed to examine the direct effect of GSDMD on smooth muscle cell pyroptosis and vascular remodeling. Findings revealed that GSDMD was activated in Angiotensin (Ang) II- treated aortas. We then showed that genetic deletion of Gsdmd reduced vascular remodeling and aorta pyroptosis induced by Ang II in vivo. Aberrant expression of GSDMD by recombinant AAV9 virus carrying Gsdmd cDNA aggravated the level of pyroptosis in aortas of Ang II mice. Gain- and loss-of- function analysis further confirmed that GSDMD regulated the pyroptosis of murine aortic vascular smooth muscle cells (MOVAS) in an in vitro model of tumor necrosis factor (TNF)-α treatment, which was achieved by transfecting expressing plasmid or siRNA, respectively. Overall, this study provided evidence supporting the active involvement of GSDMD in smooth muscle cell pyroptosis and Ang II-induced mice vascular injury. This finding lends credence to GSDMD as a potential therapeutic target for hypertensive vascular remodeling via inhibiting pyroptosis.
Collapse
Affiliation(s)
- Zimin Fang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Sheng
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouqing Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianjiang Xu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jianqin Zhang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jibo Han
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Bingjiang Han
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jiajun Xu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
30
|
Feng J, Hu Y, Peng P, Li J, Ge S. Potential biomarkers of aortic dissection based on expression network analysis. BMC Cardiovasc Disord 2023; 23:147. [PMID: 36959563 PMCID: PMC10035273 DOI: 10.1186/s12872-023-03173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Background Aortic dissection (AD) is a rare disease with severe morbidity and high mortality. Presently, the pathogenesis of aortic dissection is still not completely clear, and studying its pathogenesis will have important clinical significance. Methods We downloaded 28 samples from the Gene Expression Omnibus (GEO) database (Accession numbers: GSE147026 and GSE190635), including 14 aortic dissection samples and 14 healthy controls (HC) samples. The Limma package was used to screen differentially expressed genes. The StarBasev2.0 tool was used to predict the upstream molecular circRNA of the selected miRNAs, and Cytoscape software was used to process the obtained data. STRING database was used to analyze the interacting protein pairs of differentially expressed genes under medium filtration conditions. The R package "org.hs.eg.db" was used for functional enrichment analysis. Results Two hundred genes associated with aortic dissection were screened. Functional enrichment analysis was performed based on these 200 genes. At the same time, 2720 paired miRNAs were predicted based on these 200 genes, among which hsa-miR-650, hsa-miR-625-5p, hsa-miR-491-5p and hsa-miR-760 paired mRNAs were the most. Based on these four miRNAs, 7106 pairs of circRNAs were predicted to be paired with them. The genes most related to these four miRNAs were screened from 200 differentially expressed genes (CDH2, AKT1, WNT5A, ADRB2, GNAI1, GNAI2, HGF, MCAM, DKK2, ISL1). Conclusions The study demonstrates that miRNA-associated circRNA-mRNA networks are altered in AD, implying that miRNA may play a crucial role in regulating the onset and progression of AD. It may become a potential biomarker for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Junbo Feng
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230000 People’s Republic of China
| | - Yuntao Hu
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230000 People’s Republic of China
| | - Peng Peng
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230000 People’s Republic of China
| | - Juntao Li
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230000 People’s Republic of China
| | - Shenglin Ge
- grid.412679.f0000 0004 1771 3402Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230000 People’s Republic of China
| |
Collapse
|
31
|
Carrel T, Sundt TM, von Kodolitsch Y, Czerny M. Acute aortic dissection. Lancet 2023; 401:773-788. [PMID: 36640801 DOI: 10.1016/s0140-6736(22)01970-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/04/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023]
Abstract
Although substantial progress has been made in the prevention, diagnosis, and treatment of acute aortic dissection, it remains a complex cardiovascular event, with a high immediate mortality and substantial morbidity in individuals surviving the acute period. The past decade has allowed a leap forward in understanding the pathophysiology of this disease; the existing classifications have been challenged, and the scientific community moves towards a nomenclature that is likely to unify the current definitions according to morphology and function. The most important pathophysiological pathway, namely the location and extension of the initial intimal tear, which causes a disruption of the media layer of the aortic wall, together with the size of the affected aortic segments, determines whether the patient should undergo emergency surgery, an endovascular intervention, or receive optimal medical treatment. The scientific evidence for the management and follow-up of acute aortic dissection continues to evolve. This Seminar provides a clinically relevant overview of potential prevention, diagnosis, and management of acute aortic dissection, which is the most severe acute aortic syndrome.
Collapse
Affiliation(s)
- Thierry Carrel
- Department of Cardiac Surgery, University Hospital Zurich, Zurich, Switzerland.
| | - Thoralf M Sundt
- Division of Cardiac Surgery, Massachusetts' General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yskert von Kodolitsch
- Department of Vascular Medicine, German Aortic Center, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, University Heart Center Freiburg, Bad Krozingen, Germany; Faculty of Medicine, Albert Ludwig University Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
He YF, Hu XM, Khan MA, Yu BY, Sheng YC, Xiao XZ, Wan XX, Tan SP, Xiong K. HSF1 Alleviates Brain Injury by Inhibiting NLRP3-Induced Pyroptosis in a Sepsis Model. Mediators Inflamm 2023; 2023:2252255. [PMID: 36741074 PMCID: PMC9897924 DOI: 10.1155/2023/2252255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sepsis, which could cause a systemic inflammatory response, is a life-threatening disease with a high morbidity and mortality rate. There is evidence that brain injury may be related to severe systemic infection induced by sepsis. The brain injury caused by sepsis could increase the risk of mortality in septic patients, which seriously affects the septic patient's prognosis of survival. Although there remains a focus on sepsis research, clinical measures to prevent and treat brain injury in sepsis are not yet available, and the high mortality rate is still a big health burden. Therefore, it is necessary to investigate the new molecules or regulated pathways that can effectively inhibit the progress of sepsis. OBJECTIVE NLR family pyrin domain-containing 3 (NLRP3) increased in the procession of sepsis and functioned as the key regulator of pyroptosis. Heat shock factor 1 (HSF1) can protect organs from multiorgan dysfunction syndrome induced by lipopolysaccharides in mice, and NLRP3 could be inhibited by HSF1 in many organs. However, whether HSF1 regulated NLRP3 in sepsis-induced brain injury, as well as the detailed mechanism of HSF1 in brain injury, remains unknown in the sepsis model. In this research, we try to explore the relationship between HSF1 and NLRP3 in a sepsis model and try to reveal the mechanism of HSF1 inhibiting the process of brain injury. METHODS In this study, we used wild-type mice and hsf1 -/- mice for in vivo research and PC12 cells for in vitro research. Real-time PCR and Western blot were used to analyze the expression of HSF1, NLRP3, cytokines, and pyrolytic proteins. EthD-III staining was chosen to detect the pyroptosis of the hippocampus and PC12 cells. RESULTS The results showed that HSF1 is negatively related to pyroptosis. The pyroptosis in cells of brain tissue was significantly increased in the hsf1 -/- mouse model compared to hsf1 +/+ mice. In PC12 cells, hsf1 siRNA can upregulate pyroptosis while HSF1-transfected plasmid could inhibit the pyroptosis. HSF1 could negatively regulate the NLRP3 pathway in PC12 cells, while hsf1 siRNA enhanced the pyroptosis in PC12 cells, which could be reversed by nlrp3 siRNA. CONCLUSION These results imply that HSF1 could alleviate sepsis-induced brain injury by inhibiting pyroptosis through the NLRP3-dependent pathway in brain tissue and PC12 cells, suggesting HSF1 as a potential molecular target for treating brain injury in sepsis clinical studies.
Collapse
Affiliation(s)
- Yi-fu He
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi-min Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Md. Asaduzzaman Khan
- The Research Centre for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Bo-yao Yu
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi-cun Sheng
- Clinical Medicine Five-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xian-zhong Xiao
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Si-pin Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
33
|
Filiberto AC, Ladd Z, Leroy V, Su G, Elder CT, Pruitt EY, Hensley SE, Lu G, Hartman JB, Zarrinpar A, Sharma AK, Upchurch GR. Resolution of inflammation via RvD1/FPR2 signaling mitigates Nox2 activation and ferroptosis of macrophages in experimental abdominal aortic aneurysms. FASEB J 2022; 36:e22579. [PMID: 36183323 PMCID: PMC11137679 DOI: 10.1096/fj.202201114r] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/26/2023]
Abstract
Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. Resolvin D1 (RvD1) is derived from ω-3 polyunsaturated fatty acids and is involved in the resolution phase of chronic inflammatory diseases. The aim of this study was to decipher the protective role of RvD1 via formyl peptide receptor 2 (FPR2) receptor signaling in attenuating abdominal aortic aneurysms (AAA). The elastase-treatment model of AAA in C57BL/6 (WT) mice and human AAA tissue was used to confirm our hypotheses. Elastase-treated FPR2-/- mice had a significant increase in aortic diameter, proinflammatory cytokine production, immune cell infiltration (macrophages and neutrophils), elastic fiber disruption, and decrease in smooth muscle cell α-actin expression compared to elastase-treated WT mice. RvD1 treatment attenuated AAA formation, aortic inflammation, and vascular remodeling in WT mice, but not in FPR2-/- mice. Importantly, human AAA tissue demonstrated significantly decreased FPR2 mRNA expression compared to non-aneurysm human aortas. Mechanistically, RvD1/FPR2 signaling mitigated p47phox phosphorylation and prevented hallmarks of ferroptosis, such as lipid peroxidation and Nrf2 translocation, thereby attenuating HMGB1 secretion. Collectively, this study demonstrates RvD1-mediated immunomodulation of FPR2 signaling on macrophages to mitigate ferroptosis and HMGB1 release, leading to resolution of aortic inflammation and remodeling during AAA pathogenesis.
Collapse
Affiliation(s)
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Craig T Elder
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Eric Y Pruitt
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Sara E Hensley
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Joseph B Hartman
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Ali Zarrinpar
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
34
|
Wang J, Ye Z, Chen Y, Qiao X, Jin Y. MicroRNA-25-5p negatively regulates TXNIP expression and relieves inflammatory responses of brain induced by lipopolysaccharide. Sci Rep 2022; 12:17915. [PMID: 36289253 PMCID: PMC9605969 DOI: 10.1038/s41598-022-21169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023] Open
Abstract
Sepsis is one of the most common causes of death in patients suffering from severe infection or injury. Currently, a specific effective therapy remains to be established. In the present study, miR-25-5p, miR-105, miR-106b-5p, miR-154-3p, miR-20b-5p, miR-295-3p, miR-291-3p, miR-301b, miR-352, and miR-93-5p were predicted to target TXNIP mRNA from the databases of miRDB, Targetscan, and microT-CDS. The luciferase reporter assay confirmed that miR-25-5p negatively regulates TXNIP expression. The ELISA analyses and western blotting demonstrated that miR-25-5p downregulated the production of IL-1β, IL-6, IL-8, and TNF-α in lipopolysaccharide (LPS)-stimulated cells or rats, as well as the protein levels of TXNIP, NLRP3, and cleaved caspase-1. In addition, miR-25-5p increased the cell viability and decreased the apoptosis in LPS-stimulated CTX TNA2 cells and reduced the abnormal morphology of the brain in LPS-stimulated rats. Besides, miR-25-5p decreased the relative mean fluorescence intensity of DCF in LPS-stimulated CTX TNA2 cell, apoptosis, and protein levels of MnSOD and catalase in LPS-stimulated brains. These findings indicate that miR-25-5p downregulated LPS-induced inflammatory responses, reactive oxygen species production, and brain damage, suggesting that miR-25-5p is a candidate treatment for septic encephalopathy.
Collapse
Affiliation(s)
- Jiabing Wang
- grid.440657.40000 0004 1762 5832Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Zhinan Ye
- grid.440657.40000 0004 1762 5832Department of Neurology, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Yuan Chen
- grid.440657.40000 0004 1762 5832Department of Neurosurgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Xinyu Qiao
- grid.440657.40000 0004 1762 5832Department of Neurology, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Yong Jin
- grid.440657.40000 0004 1762 5832Department of Neurosurgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| |
Collapse
|
35
|
Bioinformatics analysis reveals potential biomarkers associated with the occurrence of intracranial aneurysms. Sci Rep 2022; 12:13282. [PMID: 35918429 PMCID: PMC9345973 DOI: 10.1038/s41598-022-17510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
To better understand the molecular mechanisms of intracranial aneurysm (IA) pathogenesis, we used gene coexpression networks to identify hub genes and functional pathways associated with IA onset. Two Gene Expression Omnibus (GEO) datasets encompassing intracranial aneurysm tissue samples and cerebral artery control samples were included. To discover functional pathways and potential biomarkers, weighted gene coexpression network analysis was employed. Next, single-gene gene set enrichment analysis was employed to investigate the putative biological roles of the chosen genes. We also used receiver operating characteristic analysis to confirm the diagnostic results. Finally, we used a rat model to confirm the hub genes in the module of interest. The module of interest, which was designated the green module and included 115 hub genes, was the key module that was most strongly and negatively associated with IA formation. According to gene set variation analysis results, 15 immune-related pathways were significantly activated in the IA group, whereas 7 metabolic pathways were suppressed. In two GEO datasets, SLC2A12 could distinguish IAs from control samples. Twenty-nine hub genes in the green module might be biomarkers for the occurrence of cerebral aneurysms. SLC2A12 expression was significantly downregulated in both human and rat IA tissue. In the present study, we identified 115 hub genes related to the pathogenesis of IA onset and deduced their potential roles in various molecular pathways; this new information may contribute to the diagnosis and treatment of IAs. By external validation, the SLC2A12 gene may play an important role. The molecular function of SLC2A12 in the process of IA occurrence can be further studied in a rat model.
Collapse
|
36
|
Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Yang WY, Nguyen B, Wu S, Yu J, Wang H, Yang X. Editorial: Highlights for Cardiovascular Therapeutics in 2021 - Trained Immunity, Immunometabolism, Gender Differences of Cardiovascular Diseases, and Novel Targets of Cardiovascular Therapeutics. Front Cardiovasc Med 2022; 9:892288. [PMID: 35571184 PMCID: PMC9091719 DOI: 10.3389/fcvm.2022.892288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- William Y. Yang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Bonnie Nguyen
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jun Yu
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Cardiovascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
38
|
Role of Necroptosis and Immune Infiltration in Human Stanford Type A Aortic Dissection: Novel Insights from Bioinformatics Analyses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6184802. [PMID: 35480868 PMCID: PMC9036163 DOI: 10.1155/2022/6184802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022]
Abstract
Background Stanford type A aortic dissection (TAAD) is one of the most life-threatening cardiovascular emergencies with high mortality and morbidity, and necroptosis is a newly identified type of programmed cell death and contributes to the pathogenesis of various cardiovascular diseases. However, the role of necroptosis in TAAD has not been elucidated. This study was aimed at determining the role of necroptosis in TAAD using bioinformatics analyses. Methods The RNA sequencing dataset GSE153434 and the microarray dataset GSE52093 were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes of necroptosis (NRDEGs) were identified based on differentially expressed genes (DEGs) and necroptosis gene set. Gene set enrichment analysis (GSEA) was applied to evaluate the gene enrichment signaling pathway in TAAD. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks and identify the key functional modules of NRDEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of NRDEGs were also performed. Additionally, Spearman correlations were used to construct the necroptosis-related transcription factor-target genes regulatory network, immune infiltration patterns were analyzed using the ImmuCellAI algorithm, and the correlation between immune cell-type abundance and NRDEGs expression was investigated. The expression levels of NRDEGs and immune infiltration were additionally verified in the GSE52093 dataset. Results We found that the necroptosis pathway was considerably enriched and activated in TAAD samples. Overall, 25 NRDEGs were identified including MLKL, RIPK1, and FADD, and among them, 18 were verified in the validation set. Moreover, GO and KEGG enrichment analyses found that NRDEGs were primarily involved in the tumor necrosis factor signaling pathway, nucleotide-binding oligomerization domain-like receptor signaling pathway, and interleukin-17 signaling pathway. The imbalance of Th17/Treg cells was identified in the TAAD samples. Furthermore, correlation analysis indicated that expression of NRDEGs was positively associated with proinflammatory immune-cell infiltrations and negatively associated with anti-inflammatory or regulatory immune-cell infiltrations. Conclusions The present findings suggest that necroptosis phenomenon exists in TAAD and correlates with immune cell infiltration, which indicate necroptosis may promote the development of TAAD through activating immune infiltration and immune response. This study paves a new road to future investigation of the pathogenic mechanisms and therapeutic strategies for TAAD.
Collapse
|
39
|
Zhang X, Yang Z, Li X, Liu X, Wang X, Qiu T, Wang Y, Li T, Li Q. Bioinformatics Analysis Reveals Cell Cycle-Related Gene Upregulation in Ascending Aortic Tissues From Murine Models. Front Genet 2022; 13:823769. [PMID: 35356426 PMCID: PMC8959095 DOI: 10.3389/fgene.2022.823769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a high-risk aortic disease. Mouse models are usually used to explore the pathological progression of TAAD. In our studies, we performed bioinformatics analysis on a microarray dataset (GSE36778) and verified experiments to define the integrated hub genes of TAAD in three different mouse models. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analyses, and histological and quantitative reverse transcription-PCR (qRT-PCR) experiments were used in our study. First, differentially expressed genes (DEGs) were identified, and twelve common differentially expressed genes were found. Second, genes related to the cell cycle and inflammation were enriched by using GO and PPI. We focused on filtering and validating eighteen hub genes that were upregulated. Then, expression data from human ascending aortic tissues in the GSE153434 dataset were also used to verify our findings. These results indicated that cell cycle-related genes participate in the pathological mechanism of TAAD and provide new insight into the molecular mechanisms of TAAD.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xuxia Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China
| | - Xipeng Wang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China
| | - Tao Qiu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yueli Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tongxun Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qingle Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
40
|
Wang Y, Li J, Xu Y, Liao S, Song J, Xu Z, Wei W, Zhu S. Interleukin-22 Deficiency Reduces Angiotensin II-Induced Aortic Dissection and Abdominal Aortic Aneurysm in ApoE-/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7555492. [PMID: 35340206 PMCID: PMC8956387 DOI: 10.1155/2022/7555492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022]
Abstract
Background Our previous study showed that interleukin-22 (IL-22) levels were increased in patients with aortic dissection (AD). This study evaluated the effects of IL-22 on AD/abdominal aortic aneurysm (AAA) formation in angiotensin II (Ang II)-infused ApoE-/- mice. Methods ApoE-/- mice were treated with Ang II for 28 days, and IL-22 expression was examined. In addition, the effects of IL22 deficiency on AAA/AD formation induced by Ang II infusion in ApoE-/- mice were investigated. ApoE-/-IL-22-/- mice were transplanted with bone marrow cells isolated from ApoE-/- mice or ApoE-/-IL-22-/- mice, and AAA/AD formation was observed. Results IL-22 expression was increased in both the aortas and serum of ApoE-/- mice after Ang II infusion and was mainly derived from aortic CD4+ T lymphocytes (CD4+ TCs). IL-22 deficiency significantly reduced the AAA/AD formation as well as the maximal aortic diameter in Ang II-infused ApoE-/- mice. Decreased elastin fragmentation and reduced fibrosis were observed in the aortas of ApoE-/-IL-22-/- mice compared with ApoE-/- mice. The deletion of IL-22 also decreased aortic M1 macrophage differentiation, alleviated M1 macrophage-induced oxidative stress, and reduced aortic smooth muscle cell loss. Furthermore, M1 macrophage-induced oxidative stress was worsened and AAA/AD formation was promoted in ApoE-/-IL-22-/- mice that received transplanted bone marrow cells from ApoE-/- mice compared with those that were transplanted with bone marrow cells isolated from ApoE-/-IL-22-/- mice. Conclusions IL-22 deficiency inhibits AAA/AD formation by inhibiting M1 macrophage-induced oxidative stress. IL-22 potentially represents a promising new target for preventing the progression of AAA/AD.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Juanjuan Li
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yulin Xu
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shichong Liao
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Junlong Song
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiliang Xu
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wen Wei
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shan Zhu
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|