1
|
Zhang XY, Zhao XM, Shi XY, Mei YJ, Ren XJ, Zhao XH. Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose. Biotechnol Lett 2024; 46:925-943. [PMID: 39340754 DOI: 10.1007/s10529-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Xylitol, as an important food additive and fine chemical, has a wide range of applications, including food, medicine, chemical, and feed. This review paper focuses on the research progress of xylitol biosynthesis, from overcoming the limitations of traditional chemical hydrogenation and xylose bioconversion, to the full biosynthesis of xylitol production using green and non-polluting glucose as substrate. In the review, the molecular strategies of wild strains to increase xylitol yield, as well as the optimization strategies and metabolic reconfiguration during xylitol biosynthesis are discussed. Subsequently, on the basis of existing studies, the paper further discusses the current status of research and future perspectives of xylitol production using glucose as a single substrate. The evolution of raw materials from xylose-based five-carbon sugars to glucose is not only cost-saving, but also safe and environmentally friendly, which brings new opportunities for the green industrial chain of xylitol.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China
| | - Xi-Min Zhao
- Zibo Occupational Disease Prevention and Control Hospital/Zibo Sixth People's Hospital, Shandong, China
| | - Xin-Yu Shi
- Zibo Product Quality Testing Research Institute, Shandong, China
| | - Ying-Jie Mei
- Zibo Institute for Food and Drug Control, Shandong, China
| | - Xiao-Jie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| | - Xin-He Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| |
Collapse
|
2
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Zhu J, Zhang K, He Y, Zhang Q, Ran Y, Tan Z, Cui L, Feng Y. Metabolic engineering of Saccharomyces cerevisiae for chelerythrine biosynthesis. Microb Cell Fact 2024; 23:183. [PMID: 38902758 PMCID: PMC11191272 DOI: 10.1186/s12934-024-02448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Chelerythrine is an important alkaloid used in agriculture and medicine. However, its structural complexity and low abundance in nature hampers either bulk chemical synthesis or extraction from plants. Here, we reconstructed and optimized the complete biosynthesis pathway for chelerythrine from (S)-reticuline in Saccharomyces cerevisiae using genetic reprogramming. RESULTS The first-generation strain Z4 capable of producing chelerythrine was obtained via heterologous expression of seven plant-derived enzymes (McoBBE, TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, and PsCPR) in S. cerevisiae W303-1 A. When this strain was cultured in the synthetic complete (SC) medium supplemented with 100 µM of (S)-reticuline for 10 days, it produced up to 0.34 µg/L chelerythrine. Furthermore, efficient metabolic engineering was performed by integrating multiple-copy rate-limiting genes (TfSMT, AmTDC, EcTNMT, PsMSH, EcP6H, PsCPR, INO2, and AtATR1), tailoring the heme and NADPH engineering, and engineering product trafficking by heterologous expression of MtABCG10 to enhance the metabolic flux of chelerythrine biosynthesis, leading to a nearly 900-fold increase in chelerythrine production. Combined with the cultivation process, chelerythrine was obtained at a titer of 12.61 mg per liter in a 0.5 L bioreactor, which is over 37,000-fold higher than that of the first-generation recombinant strain. CONCLUSIONS This is the first heterologous reconstruction of the plant-derived pathway to produce chelerythrine in a yeast cell factory. Applying a combinatorial engineering strategy has significantly improved the chelerythrine yield in yeast and is a promising approach for synthesizing functional products using a microbial cell factory. This achievement underscores the potential of metabolic engineering and synthetic biology in revolutionizing natural product biosynthesis.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Kai Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yuanzhi He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yanpeng Ran
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Zaigao Tan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
4
|
Singh AK, Deeba F, Kumar M, Kumari S, Wani SA, Paul T, Gaur NA. Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery. Microb Cell Fact 2023; 22:201. [PMID: 37803395 PMCID: PMC10557352 DOI: 10.1186/s12934-023-02190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Xylitol has a wide range of applications in the pharmaceuticals, cosmetic, food and beverage industry. Microbial xylitol production reduces the risk of contamination and is considered as environment friendly and sustainable compared to the chemical method. In this study, random mutagenesis and genetic engineering approaches were employed to develop Candida tropicalis strains with reduced xylitol dehydrogenase (XDH) activity to eliminate co-substrate requirement for corn cob-based xylitol-ethanol biorefinery. RESULTS The results suggest that when pure xylose (10% w/v) was fermented in bioreactor, the Ethyl methane sulfonate (EMS) mutated strain (C. tropicalis K2M) showed 9.2% and XYL2 heterozygous (XYL2/xyl2Δ::FRT) strain (C. tropicalis K21D) showed 16% improvement in xylitol production compared to parental strain (C. tropicalis K2). Furthermore, 1.5-fold improvement (88.62 g/L to 132 g/L) in xylitol production was achieved by C. tropicalis K21D after Response Surface Methodology (RSM) and one factor at a time (OFAT) applied for media component optimization. Finally, corncob hydrolysate was tested for xylitol production in biorefinery mode, which leads to the production of 32.6 g/L xylitol from hemicellulosic fraction, 32.0 g/L ethanol from cellulosic fraction and 13.0 g/L animal feed. CONCLUSIONS This work, for the first time, illustrates the potential of C. tropicalis K21D as a microbial cell factory for efficient production of xylitol and ethanol via an integrated biorefinery framework by utilising lignocellulosic biomass with minimum waste generation.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Farha Deeba
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonam Kumari
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Shahid Ali Wani
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tanushree Paul
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naseem A Gaur
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
6
|
Ren L, Liu Y, Xia Y, Huang Y, Liu Y, Wang Y, Li P, Chang K, Xu D, Li F, Zhang B. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system. BIORESOURCE TECHNOLOGY 2022; 365:128179. [PMID: 36283669 DOI: 10.1016/j.biortech.2022.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Glycerol is an ideal co-substrate for xylitol production with Kluyveromyces marxianus. This study demonstrated that K. marxianus catabolizes glycerol through the Gut1-Gut2 pathway instead of the previously speculated NADPH-dependent Gcy1-Dak1 pathway using the transient clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system. Additionally, Utr1p was demonstrated to mediate NADPH generation through NADH phosphorylation. YZB392, which was constructed by integrating Utr1 into the Ypr1 site in the strain overexpressing NcXyl1 and CiGxf1 and harboring disrupted Xyl2, exhibited enhanced glycerol utilization for xylitol production (from 2.50- to 3.30- g/L after consuming 1 g/L glycerol). Fed-batch fermentation at 42 °C with YZB392 yielded 322.07 g/L xylitol, which is the highest known xylitol titer obtained via biological method. Feeding crude glycerol, xylose mother liquor, and corn steep liquor powder into a bioreactor resulted in the production of 235.69 g/L xylitol. This study developed a platform for xylitol production from industrial by-products.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yi Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Youming Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Pengfei Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Kechao Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
7
|
Zhang Y, Xu Z, Lu M, Ding B, Chen S, Wen Z, Yu Y, Zhou L, Jin M. Rapid evolution and mechanism elucidation for efficient cellobiose-utilizing Saccharomyces cerevisiae through Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution. BIORESOURCE TECHNOLOGY 2022; 356:127268. [PMID: 35533888 DOI: 10.1016/j.biortech.2022.127268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Lack of cellobiose utilization capability for many microorganisms results in carbon source waste in lignocellulosic biorefinery. In this study, genes for cellobiose transport and hydrolysis were introduced to Saccharomyces cerevisiae synV, a semi-synthetic yeast with an inducible SCRaMbLE (Synthetic Chromosome Rearrangement and Modification by LoxPsym-mediated Evolution) system incorporated into its chromosome V, endowing cellobiose utilization capability to this strain. Thereafter, two evolved strains with 98.1% and 79.2% improvement, respectively, in cellobiose utilization rate were obtained through induced SCRaMbLE. Further studies suggested that the enhanced cellobiose utilization capability directly correlated with copy number increases of introduced genes and some chromosome structural variations. In particular, it was experimentally demonstrated for the first time that deletion of redox stress related gene MXR1 and ATP conversion related gene ADK2 contributed to enhanced cellobiose conversion. Thereafter, the effectiveness of MXR1 and ADK2 deletions was demonstrated in artificial hydrolysate and rice straw hydrolysate, respectively.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yang Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Linlin Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
8
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
9
|
Meng J, Chroumpi T, Mäkelä MR, de Vries RP. Xylitol production from plant biomass by Aspergillus niger through metabolic engineering. BIORESOURCE TECHNOLOGY 2022; 344:126199. [PMID: 34710597 DOI: 10.1016/j.biortech.2021.126199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/12/2023]
Abstract
Xylitol is widely used in the food and pharmaceutical industries as a valuable commodity product. Biotechnological production of xylitol from lignocellulosic biomass by microorganisms is a promising alternative option to chemical synthesis or bioconversion from D-xylose. In this study, four metabolic mutants of Aspergillus niger were constructed and evaluated for xylitol accumulation from D-xylose and lignocellulosic biomass. All mutants had strongly increased xylitol production from pure D-xylose, beechwood xylan, wheat bran and cotton seed hulls compared to the reference strain, but not from several other feed stocks. The triple mutant ΔladAΔxdhAΔsdhA showed the best performance in xylitol production from wheat bran and cotton seed hulls. This study demonstrated the large potential of A. niger for xylitol production directly from lignocellulosic biomass by metabolic engineering.
Collapse
Affiliation(s)
- Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
10
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
11
|
Yuan X, Mao Y, Tu S, Lin J, Shen H, Yang L, Wu M. Increasing NADPH Availability for Xylitol Production via Pentose-Phosphate-Pathway Gene Overexpression and Embden-Meyerhof-Parnas-Pathway Gene Deletion in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9625-9631. [PMID: 34382797 DOI: 10.1021/acs.jafc.1c03283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cofactor availability is often a rate-limiting factor in the bioconversion of xylose to xylitol. The overexpression of pentose phosphate pathway genes and the deletion of Embden-Meyerhof-Parnas pathway genes can modulate the glucose metabolic flux and increase the intracellular NADPH supply, enabling Escherichia coli cells to produce xylitol from corncob hydrolysates. The effects of zwf and/or gnd overexpression and pfkA, pfkB, and/or pgi deletion on the intracellular redox environment and xylitol production were examined. The NADPH-enhanced strain 2bpgi produced 162 g/L xylitol from corncob hydrolysates after a 76 h fed-batch fermentation in a 15 L bioreactor, which was 13.3% greater than the 143 g/L xylitol produced by the IS5-d control strain. Additionally, the xylitol productivity and xylitol yield per glucose for 2bpgi were 2.13 g/L/h and 2.50 g/g, respectively. Thus, the genetic modifications in 2bpgi significantly enhanced NADPH regeneration, making 2bpgi a potentially useful strain for the industrial-scale production of xylitol from detoxified corncob hydrolysates.
Collapse
Affiliation(s)
- Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Yudi Mao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shuai Tu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
| |
Collapse
|
12
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
13
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 2020; 20:5986616. [PMID: 33201998 DOI: 10.1093/femsyr/foaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023] Open
Abstract
Engineered Saccharomyces cerevisiae can reduce xylose to xylitol. However, in S.cerevisiae, there are several endogenous enzymes including xylitol dehydrogenase encoded by XYL2, sorbitol dehydrogenases encoded by SOR1/SOR2 and xylulokinase encoded by XKS1 may lead to the assimilation of xylitol. In this study, to increase xylitol accumulation, these genes were separately deleted through CRISPR/Cas9 system. Their effects on xylitol yield of an industrial S. cerevisiae CK17 overexpressing Candida tropicalis XYL1 (encoding xylose reductase) were investigated. Deletion of SOR1/SOR2 or XKS1 increased the xylitol yield in both batch and fed-batch fermentation with different concentrations of glucose and xylose. The analysis of the transcription level of key genes in the mutants during fed-batch fermentation suggests that SOR1/SOR2 are more crucially responsible for xylitol oxidation than XYL2 under the genetic background of S.cerevisiae CK17. The deletion of XKS1 gene could also weaken SOR1/SOR2 expression, thereby increasing the xylitol accumulation. The XKS1-deleted strain CK17ΔXKS1 produced 46.17 g/L of xylitol and reached a xylitol yield of 0.92 g/g during simultaneous saccharification and fermentation (SSF) of pretreated corn stover slurry. Therefore, the deletion of XKS1 gene provides a promising strategy to meet the industrial demands for xylitol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ya-Jing Wu
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
15
|
Sun L, Jin YS. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae. Biotechnol J 2020; 16:e2000142. [PMID: 33135317 DOI: 10.1002/biot.202000142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/15/2020] [Indexed: 11/09/2022]
Abstract
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.
Collapse
Affiliation(s)
- Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
16
|
Enhanced 2′-Fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate. Metab Eng 2020; 62:322-329. [DOI: 10.1016/j.ymben.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/24/2022]
|
17
|
Yukawa T, Bamba T, Guirimand G, Matsuda M, Hasunuma T, Kondo A. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance. Biotechnol Bioeng 2020; 118:175-185. [PMID: 32902873 DOI: 10.1002/bit.27560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
Collapse
Affiliation(s)
- Takahiro Yukawa
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takahiro Bamba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Gregory Guirimand
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, Tours, France.,LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans, France
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan.,Biomass Engineering Program, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Fan ES, Lu KW, Wen RC, Shen CR. Photosynthetic Reduction of Xylose to Xylitol Using Cyanobacteria. Biotechnol J 2020; 15:e1900354. [PMID: 32388928 DOI: 10.1002/biot.201900354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Photosynthetic generation of reducing power makes cyanobacteria an attractive host for biochemical reduction compared to cell-free and heterotrophic systems, which require burning of additional resources for the supply of reducing equivalent. Here, using xylitol synthesis as an example, efficient uptake and reduction of xylose photoautotrophically in Synechococcus elongatus PCC7942 are demonstrated upon introduction of an effective xylose transporter from Escherichia coli (Ec-XylE) and the NADPH-dependent xylose reductase from Candida boidinii (Cb-XR). Simultaneous activation of xylose uptake and matching of cofactor specificity enabled an average xylitol yield of 0.9 g g-1 xylose and a maximum productivity of about 0.15 g L-1 day-1 OD-1 with increased level of xylose supply. While long-term cellular maintenance still appears challenging, high-density conversion of xylose to xylitol using concentrated resting cell further pushes the titer of xylitol formation to 33 g L-1 in six days with 85% of maximum theoretical yield. While the results show that the unknown dissipation of xylose can be minimized when coupled to a strong reaction outlet, it remains to be the major hurdle hampering the yield despite the reported inability of cyanobacteria to metabolize xylose.
Collapse
Affiliation(s)
- Eric S Fan
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| | - Ken W Lu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| | - Rex C Wen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, ROC 30013, Taiwan
| |
Collapse
|
19
|
Kim DH, Liu JJ, Lee JW, Pelton JG, Yun EJ, Yu S, Jin YS, Kim KH. Biological upgrading of 3,6-anhydro-L-galactose from agarose to a new platform chemical. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2020; 22:1776-1785. [PMID: 33790689 PMCID: PMC8009285 DOI: 10.1039/c9gc04265b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, the utilization of renewable biomass instead of fossil fuels for producing fuels and chemicals is receiving much attention due to the global climate change. Among renewable biomass, marine algae are gaining importance as third generation biomass feedstocks owing to their advantages over lignocellulose. Particularly, red macroalgae have higher carbohydrate contents and simpler carbohydrate compositions than other marine algae. In red macroalgal carbphydrates, 3,6-anhydro-L-galactose (AHG) is the main sugar composing agarose along with D-galactose. However, AHG is not a common sugar and is chemically unstable. Thus, not only AHG but also red macroalgal biomass itself cannot be efficiently converted or utilized. Here, we biologically upgraded AHG to a new platform chemical, its sugar alcohol form, 3,6-anhydro-l-galactitol (AHGol), an anhydrohexitol. To accomplish this, we devised an integrated process encompassing a chemical hydrolysis process for producing agarobiose (AB) from agarose and a biological process for converting AB to AHGol using metabolically engineered Saccharomyces cerevisiae to efficiently produce AHGol from agarose with high titers and yields. AHGol was also converted to an intermediate chemical for plastics, isosorbide. To our knowledge, this is the first demonstration of upgrading a red macroalgal biomass component to a platform chemical via a new biological route, by using an engineered microorganism.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL 61801, USA
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
- Corresponding authors: Kyoung Heon Kim () and Yong-Su Jin ()
| |
Collapse
|
20
|
Pachapur VL, Kaur Brar S, Le Bihan Y. Integrated wood biorefinery: Improvements and tailor-made two-step strategies on hydrolysis techniques. BIORESOURCE TECHNOLOGY 2020; 299:122632. [PMID: 31889603 DOI: 10.1016/j.biortech.2019.122632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
This study categorized different pretreatment methods into mild (below 120 °C), normal (120-200 °C) and extreme conditions (above 200 °C) for selective approach with efficient wood hydrolysis for direct market applications. The model two-step strategy of selective normal-hydrolysis: steam explosion (170 °C for 30 min) with concentrating normal-hydrolysis: organosolv at (160 °C for 20 min) on hard/softwood will delivery individual fractions of hemicellulose, lignin, and cellulose with recovery rate above 95%. The first step releases C5 sugars with a recovery rate of 80% followed by the second step for C6 sugars with 95% rate and direct use of reduced sugars into C5 and C6 value-added products. The categorized conditions will ease the selection of the pretreatment method for the wood type and model strategy will increase the hydrolysis rate with greater simplicity and validity. The integrated wood biorefinery with two-step treatment is an in-house and closed-loop with endless industrial applications.
Collapse
Affiliation(s)
- Vinayak Laxman Pachapur
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Centre de recherche industrielle du Québec (CRIQ), Québec, QC, Canada.
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Yann Le Bihan
- Centre de recherche industrielle du Québec (CRIQ), Québec, QC, Canada
| |
Collapse
|
21
|
Reshamwala SMS, Lali AM. Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae. Biotechnol Prog 2020; 36:e2972. [PMID: 31990139 DOI: 10.1002/btpr.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/29/2019] [Accepted: 01/22/2020] [Indexed: 01/28/2023]
Abstract
Xylitol is a five-carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H-dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH-dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH-preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH-generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.
Collapse
Affiliation(s)
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.,Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
22
|
Guirimand GGY, Bamba T, Matsuda M, Inokuma K, Morita K, Kitada Y, Kobayashi Y, Yukawa T, Sasaki K, Ogino C, Hasunuma T, Kondo A. Combined Cell Surface Display of β‐
d
‐Glucosidase (BGL), Maltose Transporter (MAL11), and Overexpression of Cytosolic Xylose Reductase (XR) in
Saccharomyces cerevisiae
Enhance Cellobiose/Xylose Coutilization for Xylitol Bioproduction from Lignocellulosic Biomass. Biotechnol J 2019; 14:e1800704. [DOI: 10.1002/biot.201800704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Gregory G. Y. Guirimand
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Engineering Biology Research CenterKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Takahiro Bamba
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Engineering Biology Research CenterKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Research Facility Center for Science and TechnologyKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Yuki Kitada
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Yuma Kobayashi
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Takahiro Yukawa
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Engineering Biology Research CenterKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Chiaki Ogino
- Engineering Biology Research CenterKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Engineering Biology Research CenterKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and InnovationKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Engineering Biology Research CenterKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University 1‐1 Rokkodai 657‐8501 Nada Kobe Japan
- Biomass Engineering ProgramRIKEN 1‐7‐22 Suehiro‐cho 230‐0045 Tsurumi‐ku, Yokohama Kanagawa Japan
| |
Collapse
|
23
|
Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MDG. Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 2019; 39:924-943. [DOI: 10.1080/07388551.2019.1640658] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Priscila Vaz de Arruda
- Department of Bioprocess Engineering and Biotechnology-COEBB/TD, Universidade Tecnológica Federal do Paraná, Toledo, Brazil
| | - Luciane Sene
- Center for Exact and Technological Sciences, Universidade Estadual do Oeste de Paraná (UNIOESTE), Cascavel, Brazil
| | - Silvio Silvério da Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo, Lorena, Brazil
| | - Anuj Kumar Chandel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo, Lorena, Brazil
| | | |
Collapse
|
24
|
Rice T, Zannini E, K Arendt E, Coffey A. A review of polyols - biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 2019; 60:2034-2051. [PMID: 31210053 DOI: 10.1080/10408398.2019.1625859] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food research is constantly searching for new ways to replace sugar. This is due to the negative connotations of sugar consumption on health which has driven consumer demand for healthier products and is reflected on a national level by the taxation of sugary beverages. Sugar alcohols, a class of polyols, are present in varying levels in many fruits and vegetables and are also added to foods as low calorific sweeteners. The most commonly used polyols in food include sorbitol, mannitol, xylitol, erythritol, maltitol, lactitol and isomalt. Of these, microorganisms can produce sorbitol, mannitol, xylitol and erythritol either naturally or through genetic engineering. Production of polyols by microbes has been the focus of a lot of research for its potential as an alternative to current industrial scale production by chemical synthesis but can also be used for in situ production of natural sweeteners in fermented products using microbes approved for use in foods. This review on the generation of these natural sweetening compounds by microorganisms examines the current understanding and methods of microbial production of polyols that are applicable in the food industry. The review also considers the health benefits and effects of polyol usage and discusses regulations which are applicable to polyol use.
Collapse
Affiliation(s)
- Tom Rice
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
25
|
Park JB, Kim JS, Kweon DH, Kweon DH, Seo JH, Ha SJ. Overexpression of Endogenous Xylose Reductase Enhanced Xylitol Productivity at 40 °C by Thermotolerant Yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 2019; 189:459-470. [DOI: 10.1007/s12010-019-03019-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
26
|
Gómez Millán G, Hellsten S, Llorca J, Luque R, Sixta H, Balu AM. Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem 2019. [DOI: 10.1002/cctc.201801843] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gerardo Gómez Millán
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
- Department of Chemical Engineering, Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Eduard Maristany 10–14 08019 Barcelona Spain
| | - Sanna Hellsten
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
| | - Jordi Llorca
- Department of Chemical Engineering, Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Eduard Maristany 10–14 08019 Barcelona Spain
| | - Rafael Luque
- Departamento de Química OrgánicaUniversidad de Cordoba Campus Rabanales Edificio Marie Curie (C-3), Ctra Nnal IV−A, km 396 Cordoba Spain
- Peoples Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya str. 117198 Moscow Russia
| | - Herbert Sixta
- Department of Bioproducts and Biosystems School of Chemical EngineeringAalto University Vuorimiehentie 1 02150 Espoo Finland
| | - Alina M. Balu
- Departamento de Química OrgánicaUniversidad de Cordoba Campus Rabanales Edificio Marie Curie (C-3), Ctra Nnal IV−A, km 396 Cordoba Spain
| |
Collapse
|
27
|
Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv 2018; 37:271-283. [PMID: 30553928 DOI: 10.1016/j.biotechadv.2018.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022]
Abstract
Numerous metabolic engineering strategies have allowed yeasts to efficiently assimilate xylose, the second most abundant sugar component of lignocellulosic biomass. During the investigation of xylose utilization by yeasts, a global rewiring of metabolic networks upon xylose cultivation has been captured, as opposed to a pattern of glucose repression. A clear understanding of the xylose-induced metabolic reprogramming in yeast would shed light on the optimization of yeast-based bioprocesses to produce biofuels and chemicals using xylose. In this review, we delved into the characteristics of yeast xylose metabolism, and potential benefits of using xylose as a carbon source to produce various biochemicals with examples. Transcriptomic and metabolomic patterns of xylose-grown yeast cells were distinct from those on glucose-a conventional sugar of industrial biotechnology-and the gap might lead to opportunities to produce biochemicals efficiently. Indeed, limited glycolytic metabolic fluxes during xylose utilization could result in enhanced production of metabolites whose biosynthetic pathways compete for precursors with ethanol fermentation. Also, alleviation of glucose repression on cytosolic acetyl coenzyme A (acetyl-CoA) synthesis, and respiratory energy metabolism during xylose utilization enhanced production of acetyl-CoA derivatives. Consideration of singular properties of xylose metabolism, such as redox cofactor imbalance between xylose reductase and xylitol dehydrogenase, is necessary to maximize these positive xylose effects. This review argues the importance and benefits of xylose utilization as not only a way of expanding a substrate range, but also an effective environmental perturbation for the efficient production of advanced biofuels and chemicals in yeasts.
Collapse
|
28
|
Baptista SL, Cunha JT, Romaní A, Domingues L. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. BIORESOURCE TECHNOLOGY 2018; 267:481-491. [PMID: 30041142 DOI: 10.1016/j.biortech.2018.07.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-detoxified corn cob hydrolysates. Furthermore, a successful integrated strategy was developed for the production of xylitol from whole slurry corn cob in a presaccharification and simultaneous saccharification and fermentation process (15% solid loading and 36 FPU) reaching xylitol yield of 0.93 g/g and a productivity of 0.54 g/L·h. This novel approach results in an intensified valorization of lignocellulosic biomass for xylitol production in a fully integrated process and represents an advance towards a circular economy.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
29
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
30
|
Lane S, Dong J, Jin YS. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 260:380-394. [PMID: 29655899 DOI: 10.1016/j.biortech.2018.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 05/26/2023]
Abstract
The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products.
Collapse
Affiliation(s)
- Stephan Lane
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jia Dong
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
31
|
Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:175-215. [PMID: 27913828 DOI: 10.1007/10_2016_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.
Collapse
Affiliation(s)
- Timothy L Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - In Iok Kong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Guo-Chang Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H + symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 2017; 107:7-14. [DOI: 10.1016/j.enzmictec.2017.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 11/17/2022]
|
33
|
Ghaffar A, Yameen M, Aslam N, Jalal F, Noreen R, Munir B, Mahmood Z, Saleem S, Rafiq N, Falak S, Tahir IM, Noman M, Farooq MU, Qasim S, Latif F. Acidic and enzymatic saccharification of waste agricultural biomass for biotechnological production of xylitol. Chem Cent J 2017; 11:97. [PMID: 29086883 PMCID: PMC5624859 DOI: 10.1186/s13065-017-0331-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
Background The plant biomass and agro-industrial wastes show great potential for their use as attractive low cost substrates in biotechnological processes. Wheat straw and corn cob as hemicellulosic substrates were acid hydrolyzed and enzymatically saccharified for high xylose production. The hydrolysate was concentrated and fermented by using Saccharomyces cerevisiae and Kluyveromyces for production of xylitol. Results Acid hydrolysis of wheat straw and corn cob in combination with enzymatic hydrolysis showed great potential for production of free sugars from these substrates. Kluyveromyces produced maximum xylitol from acid treated wheat straw residues with enzymatic saccharification. The percentage xylitol yield was 89.807 g/L and volumetric productivity of 0.019 g/L/h. Kluyveromyces also produced maximum xylitol from corn cob acid hydrolyzed liquor with xylitol yield 87.716 g/L and volumetric productivity 0.018 g/L/h. Conclusion Plant and agro-industrial biomass can be used as a carbohydrate source for the production of xylitol and ethanol after microbial fermentation. This study revealed that wheat straw acid and enzyme hydrolyzed residue proved to be best raw material for production of xylitol with S. cerevisiae. The xylitol produced can be utilized in pharmaceuticals after purification on industrial scale as pharmaceutical purposes.
Collapse
Affiliation(s)
- Abdul Ghaffar
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Yameen
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nosheen Aslam
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Fatima Jalal
- Department of Zoology and Fisheries, Government College University, Faisalabad, 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Bushra Munir
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Zahed Mahmood
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Sadaf Saleem
- Department of Chemistry, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Naila Rafiq
- Department of Chemistry, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Sadia Falak
- School of Pharmacy, University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Noman
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Umar Farooq
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Samina Qasim
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Farooq Latif
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), 577, Faisalabad, Pakistan
| |
Collapse
|
34
|
Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. BIORESOURCE TECHNOLOGY 2017; 239:496-506. [PMID: 28535986 DOI: 10.1016/j.biortech.2017.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 05/28/2023]
Abstract
Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sathesh-Prabu Chandran
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, UC Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, KogleAllé, DK2970 Hørsholm, Denmark; Synthetic Biology Engineering Research Center (Synberc), Berkeley, CA 94720, USA
| |
Collapse
|
35
|
High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration. Sci Rep 2017; 7:8747. [PMID: 28821784 PMCID: PMC5562786 DOI: 10.1038/s41598-017-08647-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023] Open
Abstract
Xylanase is a widely-used additive in baking industry for enhancing dough and bread quality. Several xylanases used in baking industry were expressed in different systems, but their expression in antibiotic free vector system is highly essential and safe. In the present study, an alternative rDNA-mediated technology was developed to increase the copy number of target gene by integrating it into Saccharomyces cerevisiae genome. A xylanase-encoding gene xynHB from Bacillus sp. was cloned into pHBM367H and integrated into S. cerevisiae genome through rDNA-mediated recombination. Exogenous XynHB expressed by recombinant S. cerevisiae strain A13 exhibited higher degradation activity towards xylan than other transformants. The real-time PCR analysis on A13 genome revealed the presence of 13.64 copies of xynHB gene. Though no antibiotics have been used, the genetic stability and the xylanase activity of xynHB remained stable up to 1,011 generations of cultivation. S. cerevisiae strain A13 expressing xylanase reduced the required kneading time and increased the height and diameter of the dough size, which would be safe and effective in baking industry as no antibiotics-resistance risk. The new effective rDNA-mediated technology without using antibiotics here provides a way to clone other food related industrial enzymes for applications.
Collapse
|
36
|
Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiol Res 2017; 197:9-21. [DOI: 10.1016/j.micres.2016.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/09/2016] [Accepted: 12/30/2016] [Indexed: 11/19/2022]
|
37
|
Park JB, Kim JS, Jang SW, Kweon DH, Hong EK, Shin WC, Ha SJ. Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0363-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. BIORESOURCE TECHNOLOGY 2016; 216:227-37. [PMID: 27240239 DOI: 10.1016/j.biortech.2016.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob.
Collapse
Affiliation(s)
- Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Ruixiang Han
- Institutes of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Rui Ding
- Institutes of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA
| | - Lianhong Sun
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
39
|
Dhar KS, Wendisch VF, Nampoothiri KM. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol 2016; 230:63-71. [DOI: 10.1016/j.jbiotec.2016.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
|
40
|
|
41
|
Metabolic Engineering Strategies for Co-Utilization of Carbon Sources in Microbes. Bioengineering (Basel) 2016; 3:bioengineering3010010. [PMID: 28952572 PMCID: PMC5597168 DOI: 10.3390/bioengineering3010010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
Co-utilization of carbon sources in microbes is an important topic in metabolic engineering research. It is not only a way to reduce microbial production costs but also an attempt for either improving the yields of target products or decreasing the formation of byproducts. However, there are barriers in co-utilization of carbon sources in microbes, such as carbon catabolite repression. To overcome the barriers, different metabolic engineering strategies have been developed, such as inactivation of the phosphotransferase system and rewiring carbon assimilation pathways. This review summarizes the most recent developments of different strategies that support microbes to utilize two or more carbon sources simultaneously. The main content focuses on the co-utilization of glucose and pentoses, major sugars in lignocellulose.
Collapse
|
42
|
Park YC, Oh EJ, Jo JH, Jin YS, Seo JH. Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 2016; 37:105-113. [DOI: 10.1016/j.copbio.2015.11.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
|
43
|
Pratter SM, Eixelsberger T, Nidetzky B. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form. BIORESOURCE TECHNOLOGY 2015; 198:732-738. [PMID: 26452180 DOI: 10.1016/j.biortech.2015.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production.
Collapse
Affiliation(s)
- S M Pratter
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - T Eixelsberger
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - B Nidetzky
- Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
44
|
Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol 2015; 29:49-57. [DOI: 10.1016/j.cbpa.2015.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022]
|
45
|
Jo JH, Oh SY, Lee HS, Park YC, Seo JH. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol J 2015; 10:1935-43. [PMID: 26470683 DOI: 10.1002/biot.201500068] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/07/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022]
Abstract
Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production.
Collapse
Affiliation(s)
- Jung-Hyun Jo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sun-Young Oh
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Hyeun-Soo Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Republic of Korea.
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Su B, Wu M, Zhang Z, Lin J, Yang L. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 2015. [DOI: 10.1016/j.ymben.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Zhang G, Lin Y, Qi X, Wang L, He P, Wang Q, Ma Y. Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production. Microb Cell Fact 2015; 14:112. [PMID: 26246027 PMCID: PMC4527335 DOI: 10.1186/s12934-015-0303-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/22/2015] [Indexed: 08/30/2023] Open
Abstract
Background Sugar alcohols have been widely applied in the fields of food and medicine owing to their unique properties. Compared to chemical production, microbial production of sugar alcohols has become attractive because of its environmentally friendly and sustainable characteristics. Our previous study identified the nonconventional yeast Pichia anomala TIB-x229 as a potential producer of sugar alcohols from glucose. To further improve strain performance, we combined genome shuffling with optimized high throughput screening methods for the directed improvement of nonconventional yeast and complex phenotypes. Results To accelerate strain improvement, a practical genome shuffling procedure was developed and successfully applied in the nonconventional yeast P. anomala to increase sugar alcohol production. Through two rounds of genome shuffling, an improved P. anomala isolate GS2-3 could produce 47.1 g/L total sugar alcohols from 100 g/L glucose, which was 32.3% higher than the original strain. In this process, a simple and accurate colorimetric assay was optimized and used for high throughput screening of sugar alcohol-producing strains. Moreover, a fluorescence-activated cell sorting method was developed to efficiently screen protoplast fusions for genome shuffling of nonconventional yeast. Conclusion An efficient genome shuffling procedure was developed and applied to enhance the sugar alcohol production of the nonconventional yeast P. anomala. Our results provide a general platform for strain improvement of polyol-producing microorganisms or nonconventional microorganisms in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0303-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuping Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Xianni Qi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Lixian Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Peng He
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
48
|
Lane S, Zhang S, Wei N, Rao C, Jin YS. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnol Bioeng 2015; 112:1012-22. [PMID: 25421388 DOI: 10.1002/bit.25499] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Abstract
Yarrowia lipolytica is a promising production host for a wide range of molecules, but limited sugar consumption abilities prevent utilization of an abundant source of renewable feedstocks. In this study we created a Y. lipolytica strain capable of utilizing cellobiose as a sole carbon source by using endogenous promoters to express the cellodextrin transporter cdt-1 and intracellular β-glucosidase gh1-1 from Neurospora crassa. The engineered strain was also capable of simultaneous co-consumption of glucose and cellobiose. Although cellobiose was consumed slower than glucose when engineered strains were cultured with excess nitrogen, culturing with limited nitrogen led to cellobiose consumption rates comparable to those of glucose. Under limited nitrogen conditions, the engineered strain produced citric acid as a major product and we observed greater citric acid yields from cellobiose (0.37 g/g) than glucose (0.28 g/g). Culturing with a sole carbon source of either glucose or cellobiose induced additional differences on cell physiology and metabolism and a link is suggested to evasion of glucose-sensing mechanisms through intracellular creation and consumption of glucose. We ultimately applied this cellobiose-utilization system to produce citric acid from bioconversion of crystalline cellulose through simultaneous saccharification and fermentation (SSF).
Collapse
Affiliation(s)
- Stephan Lane
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801; Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinios, 61801; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | | | | | | | | |
Collapse
|
49
|
Mohamad NL, Mustapa Kamal SM, Mokhtar MN. Xylitol Biological Production: A Review of Recent Studies. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.961077] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Tanaka T, Hirata Y, Nakano M, Kawabata H, Kondo A. Creation of cellobiose and xylooligosaccharides-coutilizing Escherichia coli displaying both β-glucosidase and β-xylosidase on its cell surface. ACS Synth Biol 2014; 3:446-53. [PMID: 24156762 DOI: 10.1021/sb400070q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated direct utilization of xylooligosaccharides using β-xylosidase-displaying Escherichia coli. After screening active β-xylosidases, BSU17580 from Bacillus subtilis or Tfu1616 from Thermobifida fusca YX, were successfully displayed on the E. coli cell surface using Blc or HdeD as anchor proteins, and these transformants directly assimilated xylooligosaccharides as a carbon source. The final OD 600 in minimal medium containing 2% xylooligosaccharides was 1.09 (after 12 h of cultivation) and 1.30 (after 40 h of cultivation). We then constructed an E. coli strain displaying both β-glucosidase and β-xylosidase. β-glucosidase- and β-xylosidase-displaying E. coli was successfully grown on a 1% cellobiose and 1% xylooligosaccharides mixture, and the OD 600 was 1.76 after 10 h of cultivation, which was higher and reached faster than that grown on a glucose/xylose mixture (1.20 after 30 h of cultivation).
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuuki Hirata
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hitomi Kawabata
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|