1
|
Jasieniecka-Gazarkiewicz K, Połońska A, Gong Y, Banaś A. Acyl-CoA: lysophosphatidylcholine acyltransferase from diatom P. Tricornutum efficiently remodels phosphatidylcholine containing polyunsaturated fatty acids. Sci Rep 2024; 14:30970. [PMID: 39730635 DOI: 10.1038/s41598-024-82124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
This study presents characterisation of diatom's PtLPCAT1 (acyl-CoA: lysophosphatidylcholine acyltransferase) activity in phospholipid remodelling. In this research microsomal fractions of yeast Δale1 mutant overexpressing PtLPCAT1 were used as a source of the tested enzyme. In the assays evaluating remodelling of different phospholipids by PtLPCAT1 not modified microsomal fractions of the tested yeast were used. The enzyme most intensively remodelled fatty acid composition of microsomal phosphatidylcholine (PC), however, it was also able to remodel phosphatidylethanolamine (PE) and phosphatidic acid (PA). To study the ability of the tested enzyme to remodel PC molecules containing fatty acids from the VLC-PUFA biosynthetic pathway the tested microsomes were enriched biochemically with: sn-1-18:1-sn-2-18:3(n-3)-PC, sn-1-18:1-sn-2-18:3(n-6)-PC, sn-1-18:1-sn-2-18:4(n-3)-PC, sn-1-18:1-sn-2-20:4(n-3)-PC and sn-1-18:1-sn-2-20:5(n-3)-PC. Further on it was shown that PtLPCAT1 was able to remodel PC of such modified microsomes with higher intensity than PC of unmodified microsomes. The remodelling efficiency of PtLPCAT1 was affected also by fatty acid donors; the process was most efficient when acyl-CoAs with unsaturated fatty acids were in the assays. In comparative studies the properties of Arabidopsis AtLPCAT1 and yeast ALE1 were tested. Effect of the temperature and pH values on the remodelling activity of PtLPCAT1 was also examined.
Collapse
Affiliation(s)
| | - Ada Połońska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, 80-307, Poland
| | - Yangmin Gong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, 80-307, Poland
| |
Collapse
|
2
|
El-Sheekh MM, Galal HR, Mousa ASH, Farghl AAM. Improving the biodiesel production in the marine diatom Thalassiosira pseudonana cultivated in nutrient deficiency and sewage water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63764-63776. [PMID: 39503935 DOI: 10.1007/s11356-024-35409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The use of microalgae as a feedstock in biofuel production is highly encouraging. The marine diatom in this study, Thalassiosira pseudonana, was used as a test organism to evaluate the impact of nitrogen or phosphorus limitation and sewage water on improving biodiesel production. The growth rate is more affected in cultures without phosphorus by 41.8% lower than in control and the highest dry weight estimated in control. The cellular dry weight significantly increased in cultures treated with mix1 and mix2 wastewater compared to the control cultures. Chlorophyll a content decreased in the absence of nitrogen and phosphorous and in sewage water cultures. Lipid content in algal cultures without nitrogen or phosphorus and in sewage water accumulated nearly twice as much lipid content in synthetic medium. T. pseudonana showed high FAME contents; the two most abundant fatty acids, stearic acid (C18:0) and palmitoleic acid (C16:1), in the algal extracts revealed that T. pseudonana was predominantly composed of these fatty acids. T. pseudonana grown in nitrogen or phosphorus-deficient conditions exhibited an extreme percentage of saturated fatty acids (SFAs) by 87.38% and 85.47%, respectively, of the total fatty acids (TFAs). More importantly, the low polyunsaturated fatty acid content in oils indicates a high cetane number, low iodine value, and low corrosion for biodiesel quality indicators. Producing biodiesel that closely meets worldwide biodiesel requirements (ASTM D6751 and EN 14214) is the goal of this work, which shows that growing T. pseudonana under nutrient limitations leads to algal metabolism in that direction.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hamdy R Galal
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Amal Sh H Mousa
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Abla A M Farghl
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
Suhaimi N, Kumakubo R, Yoshino T, Maeda Y, Murata S, Tanaka T. Expansion of omega-3 polyunsaturated fatty acid metabolism of the oleaginous diatom Fistulifera solaris by genetic engineering. J Biosci Bioeng 2024; 138:105-110. [PMID: 38825559 DOI: 10.1016/j.jbiosc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3) are widely used as additives in fish feed in the aquaculture sector. To date, the supply of omega-3 PUFAs have heavily depended upon fish oil production. As the need for omega-3 PUFAs supply for the growing population increases, a more sustainable approach is required to keep up with the demand. The oleaginous diatom Fistulifera solaris is known to synthesize EPA with the highest level among autotrophically cultured microalgae, however, this species does not accumulate significant amounts of DHA, which, in some cases, is required in aquaculture rather than EPA. This is likely due to the lack of expression of essential enzymes namely Δ5 elongase (Δ5ELO) and Δ4 desaturase. In this study, we identified endogenous Δ5ELO genes in F. solaris and introduced recombinant expression cassettes harboring Δ5ELO into F. solaris through bacterial conjugation. As a result, it managed to induce the synthesis of docosapentaenoic acid (DPA; C22:5n-3), a direct precursor of DHA. This study paves the way for expanding our understanding of the omega-3 PUFAs pathway using endogenous genes in the oleaginous diatom.
Collapse
Affiliation(s)
- Noraiza Suhaimi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Ryota Kumakubo
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
4
|
Mariam I, Bettiga M, Rova U, Christakopoulos P, Matsakas L, Patel A. Ameliorating microalgal OMEGA production using omics platforms. TRENDS IN PLANT SCIENCE 2024; 29:799-813. [PMID: 38350829 DOI: 10.1016/j.tplants.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.
Collapse
Affiliation(s)
- Iqra Mariam
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences - LIFE, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Innovation Unit, Italbiotec Srl Società Benefit, Milan, Italy
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
5
|
Díaz-Navarrete P, Sáez-Arteaga A, Marileo L, Alors D, Correa-Galeote D, Dantagnan P. Enhancing Selenium Accumulation in Rhodotorula mucilaginosa Strain 6S Using a Proteomic Approach for Aquafeed Development. Biomolecules 2024; 14:629. [PMID: 38927033 PMCID: PMC11201420 DOI: 10.3390/biom14060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Alberto Sáez-Arteaga
- Centro de Investigación Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - David Alors
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18012 Granada, Spain;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
6
|
Bhattacharjya R, Tyagi R, Rastogi S, Ulmann L, Tiwari A. Response of varying combined nutrients on biomass and biochemical composition of marine diatoms Chaetoceros gracilis and Thalassiosira weissflogii. BIORESOURCE TECHNOLOGY 2024; 394:130274. [PMID: 38160848 DOI: 10.1016/j.biortech.2023.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Marine diatoms have high adaptability and are known to accumulate lipids under nutrient stress conditions. The present study involves determining the effect of varying macro and micronutrients on growth kinetics and metabolite production of oleaginous marine diatoms, Thalassiosira weissflogii and Chaetoceros gracilis. The results highlighted that C. gracilis and T. weissflogii showed maximum biomass yield of 0.86 ± 0.06 g/L and 0.76 ± 0.01 g/L in the 2f and f supplemented medium respectively. A 2.5-fold increase in cellular lipid content was recorded in the 2f culture setup of both strains ranging from 20 % to 26.7 % (w/w). The study also reveals that high eutrophic nutrient media (f, 2f and 4f) triggered biomass productivity as well as total protein and carbohydrate content in both strains. Thus, providing a reproducible insight of trophic flexibility of diatoms, concomitant with the increment in multiple commercially valuable products.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Subha Rastogi
- CSIR-National Botanical Research Institute, 436, Pratap Marg, Lucknow 226001, Uttar, India; CSIR-National Institute of Science Communication and Policy Research, New Delhi, India Pradesh, India
| | - Lionel Ulmann
- Laboratoire BiOSSE: Biologie des Organismes, Stress, Santé, Environnement, IUT Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
7
|
Guo L, Yang G. Pioneering DNA assembling techniques and their applications in eukaryotic microalgae. Biotechnol Adv 2024; 70:108301. [PMID: 38101551 DOI: 10.1016/j.biotechadv.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Assembling DNA fragments is a fundamental manipulation of cloning microalgal genes and carrying out microalgal synthetic biological studies. From the earliest DNA recombination to current trait and metabolic pathway engineering, we are always accompanied by homology-based DNA assembling. The improvement and modification of pioneering DNA assembling techniques and the combinational applications of the available assembling techniques have diversified and complicated the literature environment and aggravated our identification of the core and pioneering methodologies. Identifying the core assembling methodologies and using them appropriately and flourishing them even are important for researchers. A group of microalgae have been evolving as the models for both industrial applications and biological studies. DNA assembling requires researchers to know the methods available and their improvements and evolvements. In this review, we summarized the pioneering (core; leading) DNA assembling techniques developed previously, extended these techniques to their modifications, improvements and their combinations, and highlighted their applications in eukaryotic microalgae. We predicted that the gene(s) will be assembled into a functional cluster (e.g., those involving in a metabolic pathway, and stacked on normal microalgal chromosomes, their artificial episomes and looming artificial chromosomes. It should be particularly pointed out that the techniques mentioned in this review are classified according to the strategy used to assemble the final construct.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; MoE Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
9
|
Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL. Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering. ACS Synth Biol 2023; 12:3215-3228. [PMID: 37857380 PMCID: PMC10661051 DOI: 10.1021/acssynbio.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 10/21/2023]
Abstract
While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.
Collapse
Affiliation(s)
- Erin A. Garza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | - Josh L. Espinoza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Abbas N, Riaz S, Mazhar S, Essa R, Maryam M, Saleem Y, Syed Q, Perveen I, Bukhari B, Ashfaq S, Abidi SHI. Microbial production of docosahexaenoic acid (DHA): biosynthetic pathways, physical parameter optimization, and health benefits. Arch Microbiol 2023; 205:321. [PMID: 37642791 DOI: 10.1007/s00203-023-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Omega-3 fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA), are essential polyunsaturated fatty acids with diverse health benefits. The limited conversion of dietary DHA necessitates its consumption as food supplements. Omega-3 fatty acids possess anti-arrhythmic and anti-inflammatory capabilities, contributing to cardiovascular health. Additionally, DHA consumption is linked to improved vision, brain, and memory development. Furthermore, omega-3 fatty acids offer protection against various health conditions, such as celiac disease, Alzheimer's, hypertension, thrombosis, heart diseases, depression, diabetes, and certain cancers. Fish oil from pelagic cold-water fish remains the primary source of omega-3 fatty acids, but the global population burden creates a demand-supply gap. Thus, researchers have explored alternative sources, including microbial systems, for omega-3 production. Microbial sources, particularly oleaginous actinomycetes, microalgae like Nannochloropsis and among microbial systems, Thraustochytrids stand out as they can store up to 50% of their dry weight in lipids. The microbial production of omega-3 fatty acids is a potential solution to meet the global demand, as these microorganisms can utilize various carbon sources, including organic waste. The biosynthesis of omega-3 fatty acids involves both aerobic and anaerobic pathways, with bacterial polyketide and PKS-like PUFA synthase as essential enzymatic complexes. Optimization of physicochemical parameters, such as carbon and nitrogen sources, pH, temperature, and salinity, plays a crucial role in maximizing DHA production in microbial systems. Overall, microbial sources hold significant promise in meeting the global demand for omega-3 fatty acids, offering an efficient and sustainable solution for enhancing human health.
Collapse
Affiliation(s)
- Naaz Abbas
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Sana Riaz
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan.
| | - Sania Mazhar
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ramsha Essa
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Maria Maryam
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Yasar Saleem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ishrat Perveen
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Bakhtawar Bukhari
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Saira Ashfaq
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
11
|
Milito A, Aschern M, McQuillan JL, Yang JS. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3833-3850. [PMID: 37025006 DOI: 10.1093/jxb/erad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr 2023; 64:10564-10582. [PMID: 37357914 DOI: 10.1080/10408398.2023.2226720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Omega-3 fatty acids have gained attention due to numerous health benefits. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) are long chain omega-3 fatty acids produced from precursor ALA (α-linolenic acid) in humans but their rate of biosynthesis is low, therefore, these must be present in diet or should be taken as supplements. The commercial sources of omega-3 fatty acids are limited to vegetable oils and marine sources. The rising concern about vegan source, fish aquaculture conservation and heavy metal contamination in fish has led to the search for their alternative source. Microalgae have gained importance due to the production of high-value EPA and DHA and can thus serve as a sustainable and promising source of long chain omega-3 fatty acids. Although the bottleneck lies in the optimization for enhanced production that involves strategies viz. strain selection, optimization of cultivation conditions, media, metabolic and genetic engineering approaches; while co-cultivation, use of nanoparticles and strategic blending have emerged as innovative approaches that have made microalgae as potential candidates for EPA and DHA production. This review highlights the possible strategies for the enhancement of EPA and DHA production in microalgae. This will pave the way for their large-scale production for human health benefits.
Collapse
Affiliation(s)
- Arti Kumari
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Pabbi
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Diamond A, Diaz-Garza AM, Li J, Slattery SS, Merindol N, Fantino E, Meddeb-Mouelhi F, Karas BJ, Barnabé S, Desgagné-Penix I. Instability of extrachromosomal DNA transformed into the diatom Phaeodactylum tricornutum. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Cruz de Carvalho R, Feijão E, Matos AR, Cabrita MT, Utkin AB, Novais SC, Lemos MFL, Caçador I, Marques JC, Reis-Santos P, Fonseca VF, Duarte B. Ecotoxicological Effects of the Anionic Surfactant Sodium Dodecyl Sulfate (SDS) in Two Marine Primary Producers: Phaeodactylum tricornutum and Ulva lactuca. TOXICS 2022; 10:toxics10120780. [PMID: 36548613 PMCID: PMC9785791 DOI: 10.3390/toxics10120780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Sodium Dodecyl Sulfate (SDS) is an anionic surfactant, extensively used in detergents, household and personal care products, as well as in industrial processes. The present study aimed to disclose the potential toxicological effects of SDS exposure under environmentally relevant concentrations (0, 0.1, 1, 3, and 10 mg L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems, and energy balance) of two marine autotrophs: the diatom Phaeodactylum tricornutum and the macroalgae Ulva lactuca. A growth rate (GR) reduction in P. tricornutum was observed with a classic dose-response effect towards the highest applied concentration, while a GR increase occurred in U. lactuca. Regarding photochemistry, the decrease in the fluorescence of the OJIP curves and laser-induced fluorescence allowed a better separation between SDS treatments in U. lactuca compared with P. tricornutum. Although all pigments significantly decreased in U. lactuca at the highest concentrations (except for antheraxanthin), no significant variations occurred in P. tricornutum. On the other hand, changes in fatty acid content were observed in P. tricornutum but not in U. lactuca. In terms of classical biomarker assessment, a dose-effect relationship of individual biomarkers versus SDS dose applied; U. lactuca displayed a higher number of biomarker candidates, including those in distinct metabolic pathways, increasing its usefulness for ecotoxicological applications. By evaluating the potential application of optical and biochemical traits, it was evident that the fatty acid profiles of the different exposure groups are excellent candidates in P. tricornutum, concomitant with the characteristics of this anionic surfactant. On the other hand, the results presented by laser-induced fluorescence and some parameters of PAM fluorometry in U. lactuca may be an advantage in the field, offering non-invasive, fast, easy-to-use, high-throughput screening techniques as excellent tools for ecotoxicology assessment.
Collapse
Affiliation(s)
- Ricardo Cruz de Carvalho
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence:
| | - Eduardo Feijão
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI–Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal
- Laboratório Associado TERRA, Edifício Prof. Azevedo Gomes, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Andrei B. Utkin
- INOV-INESC, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
- CeFEMA, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Sara C. Novais
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Isabel Caçador
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Carlos Marques
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Patrick Reis-Santos
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Vanessa F. Fonseca
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Bernardo Duarte
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
15
|
Heterologous expression of antimicrobial peptides S-thanatin and bovine lactoferricin in the marine diatom Phaeodactylum tricornutum enhances native antimicrobial activity against Gram-negative bacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Patel AK, Chauhan AS, Kumar P, Michaud P, Gupta VK, Chang JS, Chen CW, Dong CD, Singhania RR. Emerging prospects of microbial production of omega fatty acids: Recent updates. BIORESOURCE TECHNOLOGY 2022; 360:127534. [PMID: 35777644 DOI: 10.1016/j.biortech.2022.127534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Healthy foods containing omega-3/omega-6 polyunsaturated fatty acids (PUFAs) have been in great demand because of their unique dietary and health properties. Reduction in chronic inflammatory and autoimmune diseases has shown their therapeutic and health-promoting effects when consumed under recommended ratio 1:1-1:4, however imbalanced ratios (>1:4, high omega-6) enhance these risks. The importance of omega-6 is apparent however microbial production favors larger production of omega-3. Current research focus is prerequisite to designing omega-6 production strategies for better application prospects, for which thraustochytrids could be promising due to higher lipid productivity. This review provides recent updates on essential fatty acids production from potential microbes and their application, especially major insights on omega research, also discussed the novel possible strategies to promote omega-3 and omega-6 accumulation via engineering and omics approaches. It covers strategies to block the conversion of omega-6 into omega-3 by enzyme inhibition, nanoparticle-mediated regulation and/or metabolic flux regulation, etc.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Ajeet Singh Chauhan
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Prashant Kumar
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institute Pascal, 63000 Clermont-Ferrand, France
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| |
Collapse
|
17
|
Jia YL, Wang YZ, Nong FT, Ma W, Huang PW, Sun XM. Identification and characterization of fatty acid desaturases in Schizochytrium sp. HX-308. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Maeda Y, Tanaka T. Molecular Insights into Lipoxygenases in Diatoms Based on Structure Prediction: a Pioneering Study on Lipoxygenases Found in Pseudo-nitzschia arenysensis and Fragilariopsis cylindrus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:468-479. [PMID: 35397048 DOI: 10.1007/s10126-022-10120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Diatoms produce a variety of oxylipins which are oxygenated polyunsaturated fatty acids and are involved in chemical defense and intercellular communication, among other roles. Although the chemistry of diatom oxylipins has long been studied, the enzymes involved in their production, in particular lipoxygenase (LOX), which catalyzes the initial reaction of the synthesis, have not been discovered in diatom genomes. Recently, diatom LOXs were found in two species, Pseudo-nitzschia arenysensis (PaLOX) and Fragilariopsis cylindrus (FcLOX); however, the enzymology of these LOXs is largely unknown. In this review article, we discuss the potential functions of the diatom LOXs based on previously reported structures of LOXs derived from various organisms other than diatoms. Since the structures of PaLOX and FcLOX have not yet been solved, we discussed their functions, such as regio- and stereospecificities, on the basis of their structures predicted using a computational tool based on deep learning technology. Both diatom LOXs were predicted to conserve common core domains with relatively wide substrate-binding pockets. The stereo-determinant residues in PaLOX and FcLOX suggest S specificity. We assume that the highly conserved common core domain can be a clue to reveal unidentified lox genes from the accumulated diatom genome information with the aid of high-throughput structure prediction tools and structure-based alignment tools in the near future.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
19
|
Grama SB, Liu Z, Li J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Mar Drugs 2022; 20:285. [PMID: 35621936 PMCID: PMC9143385 DOI: 10.3390/md20050285] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, microalgal biotechnology has received increasing interests in producing valuable, sustainable and environmentally friendly bioproducts. The development of economically viable production processes entails resolving certain limitations of microalgal biotechnology, and fast evolving genetic engineering technologies have emerged as new tools to overcome these limitations. This review provides a synopsis of recent progress, current trends and emerging approaches of genetic engineering of microalgae for commercial applications, including production of pharmaceutical protein, lipid, carotenoids and biohydrogen, etc. Photochemistry improvement in microalgae and CO2 sequestration by microalgae via genetic engineering were also discussed since these subjects are closely entangled with commercial production of the above mentioned products. Although genetic engineering of microalgae is proved to be very effective in boosting performance of production in laboratory conditions, only limited success was achieved to be applicable to industry so far. With genetic engineering technologies advancing rapidly and intensive investigations going on, more bioproducts are expected to be produced by genetically modified microalgae and even much more to be prospected.
Collapse
Affiliation(s)
- Samir B. Grama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria;
| | - Zhiyuan Liu
- College of Marine Sciences, Hainan University, Haikou 570228, China;
| | - Jian Li
- College of Agricultural Sciences, Panzhihua University, Panzhihua 617000, China
| |
Collapse
|
20
|
Shah AM, Yang W, Mohamed H, Zhang Y, Song Y. Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids. Front Nutr 2022; 9:827837. [PMID: 35369055 PMCID: PMC8968027 DOI: 10.3389/fnut.2022.827837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Microbes have gained a lot of attention for their potential in producing polyunsaturated fatty acids (PUFAs). PUFAs are gaining scientific interest due to their important health-promoting effects on higher organisms including humans. The current sources of PUFAs (animal and plant) have associated limitations that have led to increased interest in microbial PUFAs as most reliable alternative source. The focus is on increasing the product value of existing oleaginous microbes or discovering new microbes by implementing new biotechnological strategies in order to compete with other sources. The multidisciplinary approaches, including metabolic engineering, high-throughput screening, tapping new microbial sources, genome-mining as well as co-culturing and elicitation for the production of PUFAs, have been considered and discussed in this review. The usage of agro-industrial wastes as alternative low-cost substrates in fermentation for high-value single-cell oil production has also been discussed. Multidisciplinary approaches combined with new technologies may help to uncover new microbial PUFA sources that may have nutraceutical and biotechnological importance.
Collapse
Affiliation(s)
- Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Wu Yang
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
21
|
Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin YS. Microalgal metabolic engineering strategies for the production of fuels and chemicals. BIORESOURCE TECHNOLOGY 2022; 345:126529. [PMID: 34896527 DOI: 10.1016/j.biortech.2021.126529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwangryul Baek
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine Anne Atkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
22
|
Hao X, Chen W, Amato A, Jouhet J, Maréchal E, Moog D, Hu H, Jin H, You L, Huang F, Moosburner M, Allen AE, Gong Y. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. THE NEW PHYTOLOGIST 2022; 233:1797-1812. [PMID: 34882804 DOI: 10.1111/nph.17911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Long-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1-ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl-CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.
Collapse
Affiliation(s)
- Xiahui Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps-University Marburg, Marburg, D-35032, Germany
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lingjie You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Mark Moosburner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
23
|
Wang Z, Mou J, Qin Z, He Y, Sun Z, Wang X, Lin CSK. An auxin-like supermolecule to simultaneously enhance growth and cumulative eicosapentaenoic acid production in Phaeodactylum tricornutum. BIORESOURCE TECHNOLOGY 2022; 345:126564. [PMID: 34915115 DOI: 10.1016/j.biortech.2021.126564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Phaeodactylum tricornutum, a model alga, is well known for its ability to accumulate intracellular omega-3 eicosapentaenoic acid (EPA). However, P.tricornutum cells need to have a higher EPA content if they are to be used for industrial applications. In this study, an auxin-like supermolecule (SM) was synthesised and used for the cultivation of P. tricornutum. Results show that the addition of 1 ppm of SM significantly increased the P. tricornutum cell density and boosted the P. tricornutum biomass. The experimental group treated with 5 ppm of SM, had an EPA content of 31.7%, which was a 2.09-fold increase over the EPA content in the untreated group. Overall, our results demonstrated that SM can significantly improve the microalgal growth and EPA accumulation in P. tricornutum, providing a feasible strategy to achieve efficient and cost-effective EPA production.
Collapse
Affiliation(s)
- Zhenyao Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China
| | - Zihao Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Zheng Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, PR China; Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China.
| |
Collapse
|
24
|
Jakhwal P, Kumar Biswas J, Tiwari A, Kwon EE, Bhatnagar A. Genetic and non-genetic tailoring of microalgae for the enhanced production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) - A review. BIORESOURCE TECHNOLOGY 2022; 344:126250. [PMID: 34728356 DOI: 10.1016/j.biortech.2021.126250] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The myriad health benefits associated with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) laid the path for their application in the functional foods and nutraceutical industries. Fish being primarily exploited for extraction of EPA and DHA are unsustainable sources; thus, oleaginous microalgae turn out to be an alternative sustainable source. This review paper aims to provide the recent developments in the context of enhancing EPA and DHA production by utilising non-genetic tailoring and genetic tailoring methods. We have also summarized the legislation, public perception, and possible risks associated with the usage of genetically modified microalgae focusing on EPA and DHA production.
Collapse
Affiliation(s)
- Parul Jakhwal
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| |
Collapse
|
25
|
Magoni C, Bertacchi S, Giustra CM, Guzzetti L, Cozza R, Ferrari M, Torelli A, Marieschi M, Porro D, Branduardi P, Labra M. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Santin A, Russo MT, Ferrante MI, Balzano S, Orefice I, Sardo A. Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture. Molecules 2021; 26:7697. [PMID: 34946780 PMCID: PMC8707597 DOI: 10.3390/molecules26247697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs' production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs' accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs' profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs' extraction and purification from microalgal biomass.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Monia Teresa Russo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Sergio Balzano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
- Department of Marine Microbiology and Biogeochemistry, Netherland Institute for Sea Research, Landsdiep 4, 1793 AB Texel, The Netherlands
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
27
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
28
|
Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies. Metab Eng 2021; 69:163-174. [PMID: 34864212 DOI: 10.1016/j.ymben.2021.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.
Collapse
|
29
|
Premaratne M, Liyanaarachchi VC, Nimarshana P, Ariyadasa TU, Malik A, Attalage RA. Co-production of fucoxanthin, docosahexaenoic acid (DHA) and bioethanol from the marine microalga Tisochrysis lutea. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Genetic engineering of microalgae for enhanced lipid production. Biotechnol Adv 2021; 52:107836. [PMID: 34534633 DOI: 10.1016/j.biotechadv.2021.107836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Microalgae have the potential to become microbial cell factories for lipid production. Their ability to convert sunlight and CO2 into valuable lipid compounds has attracted interest from cosmetic, biofuel, food and feed industries. In order to make microalgae-derived products cost-effective and commercially competitive, enhanced growth rates and lipid productivities are needed, which require optimization of cultivation systems and strain improvement. Advances in genetic tool development and omics technologies have increased our understanding of lipid metabolism, which has opened up possibilities for targeted metabolic engineering. In this review we provide a comprehensive overview on the developments made to genetically engineer microalgal strains over the last 30 years. We focus on the strategies that lead to an increased lipid content and altered fatty acid profile. These include the genetic engineering of the fatty acid synthesis pathway, Kennedy pathway, polyunsaturated fatty acid and triacylglycerol metabolisms and fatty acid catabolism. Moreover, genetic engineering of specific transcription factors, NADPH generation and central carbon metabolism, which lead to increase of lipid accumulation are also reviewed.
Collapse
|
31
|
Blasio M, Balzano S. Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Front Microbiol 2021; 12:718933. [PMID: 34659147 PMCID: PMC8511707 DOI: 10.3389/fmicb.2021.718933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.
Collapse
Affiliation(s)
- Martina Blasio
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Sergio Balzano
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg (Texel), Netherlands
| |
Collapse
|
32
|
Shi Y, Liu M, Pan Y, Hu H, Liu J. Δ6 Fatty Acid Elongase is Involved in Eicosapentaenoic Acid Biosynthesis Via the ω6 Pathway in the Marine Alga Nannochloropsis oceanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9837-9848. [PMID: 34414763 DOI: 10.1021/acs.jafc.1c04192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nannochloropsis oceanica represents a promising sunlight-driven alga for producing eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17), a value-added very long-chain polyunsaturated fatty acid (VLC-PUFA). Here, we unraveled the function and roles of a Δ6 fatty acid elongase (NoΔ6-FAE) in N. oceanica. Heterologous expression of NoΔ6-FAE in yeast confirmed its function in elongating C18 Δ6-PUFAs rather than others. Subcellular localization experiments suggested that NoΔ6-FAE resides in the chloroplast endoplasmic reticulum. NoΔ6-FAE knockdown attenuated C20:3Δ8,11,14, C20:4Δ5,8,11,14, and EPA yet enhanced C18:3Δ6,9,12, leading to overall decreases in total fatty acids, triacylglycerol, diacylglycerol, free fatty acids, and polar membrane lipids. In contrast, NoΔ6-FAE overexpression in N. oceanica caused nearly opposite phenotypes. Moreover, N. oceanica lacked detectable C18:3Δ9,12,15, C18:4Δ6,9,12,15, and C20:4Δ8,11,14,17 even under NoΔ6-FAE knockdown or overexpression. Our results reveal the involvement of NoΔ6-FAE in EPA biosynthesis via the ω6 pathway in N. oceanica and highlight the potential of manipulating NoΔ6-FAE for improved lipid production.
Collapse
Affiliation(s)
- Ying Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Połońska A, Jasieniecka-Gazarkiewicz K, You L, Hao X, Klińska S, Gong Y, Banaś A. Diatoms and Plants Acyl-CoA:lysophosphatidylcholine Acyltransferases (LPCATs) Exhibit Diverse Substrate Specificity and Biochemical Properties. Int J Mol Sci 2021; 22:ijms22169056. [PMID: 34445762 PMCID: PMC8396554 DOI: 10.3390/ijms22169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The search of the Phaeodactylum tricornutum genome database revealed the existence of six genes potentially encoding lysophospholipid acyltransferases. One of these genes, Phatr3_J20460, after introduction to yeast ale1 mutant disrupted in the LPCAT gene, produced a very active acyl-CoA:lysophosphatidylcholine (LPCAT) enzyme. Using in vitro assays applying different radioactive and non-radioactive substrates and microsomal fractions from such yeast, we have characterized the biochemical properties and substrate specificities of this PtLPCAT1. We have found that the substrate specificity of this enzyme indicates that it can completely supply phosphatidylcholine (PC) with all fatty acids connected with a biosynthetic pathway of very long-chain polyunsaturated fatty acids (VLC-PUFAs) used further for the desaturation process. Additionally, we have shown that biochemical properties of the PtLPCAT1 in comparison to plant LPCATs are in some cases similar (such as the dependency of its activity on pH value), differ moderately (such as in response to temperature changes), or express completely different properties (such as in reaction to calcium and magnesium ions or toward some acyl-CoA with 20C polyunsaturated fatty acids). Moreover, the obtained results suggest that cloned “Phatr3_J20460” gene can be useful in oilseeds plant engineering toward efficient production of VLC-PUFA as LPCAT it encodes can (contrary to plant LPCATs) introduce 20:4-CoA (n-3) to PC for further desaturation to 20:5 (EPA, eicosapentaenoic acid).
Collapse
Affiliation(s)
- Ada Połońska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
- Correspondence: (A.P.); (A.B.)
| | - Katarzyna Jasieniecka-Gazarkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
| | - Lingjie You
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (X.H.); (Y.G.)
| | - Xiahui Hao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (X.H.); (Y.G.)
| | - Sylwia Klińska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
| | - Yangmin Gong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.Y.); (X.H.); (Y.G.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, 80-307 Gdansk, Poland; (K.J.-G.); (S.K.)
- Correspondence: (A.P.); (A.B.)
| |
Collapse
|
34
|
Cheong KY, Firlar E, Ficaro L, Gorbunov MY, Kaelber JT, Falkowski PG. Saturation of thylakoid-associated fatty acids facilitates bioenergetic coupling in a marine diatom allowing for thermal acclimation. GLOBAL CHANGE BIOLOGY 2021; 27:3133-3144. [PMID: 33749034 DOI: 10.1111/gcb.15612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
In a rapidly warming world, we ask, "What limits the potential of marine diatoms to acclimate to elevated temperatures?," a group of ecologically successful unicellular eukaryotic photoautotrophs that evolved in a cooler ocean and are critical to marine food webs. To this end, we examined thermal tolerance mechanisms related to photosynthesis in the sequenced and transformable model diatom Phaeodactylum tricornutum. Data from transmission electron microscopy (TEM) and fatty acid methyl ester-gas chromatography mass spectrometry (FAME-GCMS) suggest that saturating thylakoid-associated fatty acids allowed rapid (on the order of hours) thermal tolerance up to 28.5°C. Beyond this critical temperature, thylakoid ultrastructure became severely perturbed. Biophysical analyses revealed that electrochemical leakage through the thylakoid membranes was extremely sensitive to elevated temperature (Q10 of 3.5). Data suggest that the loss of the proton motive force (pmf) occurred even when heat-labile photosystem II (PSII) was functioning, and saturation of thylakoid-associated fatty acids was active. Indeed, growth was inhibited when leakage of pmf through thylakoid membranes was insufficiently compensated by proton input from PSII. Our findings provide a mechanistic understanding of the importance of rapid saturation of thylakoid-associated fatty acids for ultrastructure maintenance and a generation of pmf at elevated temperatures. To the extent these experimental results apply, the ability of diatoms to generate a pmf may be a sensitive parameter for thermal sensitivity diagnosis in phytoplankton.
Collapse
Affiliation(s)
- Kuan Yu Cheong
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emre Firlar
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Lia Ficaro
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maxim Y Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers New Jersey Cryo-Electron Microscopy & Tomography Core Facility, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
35
|
Conde TA, Neves BF, Couto D, Melo T, Neves B, Costa M, Silva J, Domingues P, Domingues MR. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs 2021; 19:md19070357. [PMID: 34201621 PMCID: PMC8307217 DOI: 10.3390/md19070357] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.
Collapse
Affiliation(s)
- Tiago A. Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruna F. Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Margarida Costa
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.A.C.); (B.F.N.); (D.C.); (T.M.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
36
|
Smith R, Jouhet J, Gandini C, Nekrasov V, Marechal E, Napier JA, Sayanova O. Plastidial acyl carrier protein Δ9-desaturase modulates eicosapentaenoic acid biosynthesis and triacylglycerol accumulation in Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1247-1259. [PMID: 33725374 PMCID: PMC8360179 DOI: 10.1111/tpj.15231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The unicellular marine diatom Phaeodactylum tricornutum accumulates up to 35% eicosapentaenoic acid (EPA, 20:5n3) and has been used as a model organism to study long chain polyunsaturated fatty acids (LC-PUFA) biosynthesis due to an excellent annotated genome sequence and established transformation system. In P. tricornutum, the majority of EPA accumulates in polar lipids, particularly in galactolipids such as mono- and di-galactosyldiacylglycerol. LC-PUFA biosynthesis is considered to start from oleic acid (18:1n9). EPA can be synthesized via a series of desaturation and elongation steps occurring at the endoplasmic reticulum and newly synthesized EPA is then imported into the plastids for incorporation into galactolipids via an unknown route. The basis for the flux of EPA is fundamental to understanding LC-PUFA biosynthesis in diatoms. We used P. tricornutum to study acyl modifying activities, upstream of 18:1n9, on subsequent LC-PUFA biosynthesis. We identified the gene coding for the plastidial acyl carrier protein Δ9-desaturase, a key enzyme in fatty acid modification and analyzed the impact of overexpression and knock out of this gene on glycerolipid metabolism. This revealed a previously unknown role of this soluble desaturase in EPA synthesis and production of triacylglycerol. This study provides further insight into the distinctive nature of lipid metabolism in the marine diatom P. tricornutum and suggests additional approaches for tailoring oil composition in microalgae.
Collapse
Affiliation(s)
- Richard Smith
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
- Present address:
AlgenuityEden LaboratoryBroadmead RoadStewartbyMK43 9NDUK
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble AlpesCNRSIRAECEAIRIGGrenoble38000France
| | - Chiara Gandini
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
- Present address:
Open Bioeconomy LaboratoryDepartment of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Vladimir Nekrasov
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
| | - Eric Marechal
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble AlpesCNRSIRAECEAIRIGGrenoble38000France
| | | | - Olga Sayanova
- Department of Plant SciencesRothamsted ResearchHarpendenHertsAL5 2JQUK
| |
Collapse
|
37
|
Kashiyama Y, Ishizuka Y, Terauchi I, Matsuda T, Maeda Y, Yoshino T, Matsumoto M, Yabuki A, Bowler C, Tanaka T. Engineered chlorophyll catabolism conferring predator resistance for microalgal biomass production. Metab Eng 2021; 66:79-86. [PMID: 33862197 DOI: 10.1016/j.ymben.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/27/2020] [Accepted: 03/27/2021] [Indexed: 01/27/2023]
Abstract
Production of valuable compounds including biofuels and pharmaceutical precursors derived from microalgae has garnered significant interest. Stable production of algal biomass is essential to make the microalgal industry commercially feasible. However, one of the largest issues is severe biological contamination by predators grazing the algal biomass, resulting in the crash of outdoor cultures. In the present study, we propose a novel engineering strategy for microalgae to cope with predators. The overexpression of plant chlorophyllase (CLH) in a microalga resulted in the enhancement of resistance to the predator. This result supported our hypothesis that CLH promotes chlorophyll breakdown in the chloroplasts of the microalgae when they are digested by the predator, generating the phototoxic catabolite chlorophyllide that damages the predator. To the best of our knowledge, this is the first study to establish predator-resistant microalgae by enhancing the CLH activity.
Collapse
Affiliation(s)
- Yuichiro Kashiyama
- Department of Applied Science and Engineering, Graduate School of Engineering, Fukui University of Technology, 3-6-1, Gakuen, Fukui, Fukui, 910-8505, Japan
| | - Yuki Ishizuka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Issei Terauchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Toshiki Matsuda
- Department of Applied Science and Engineering, Graduate School of Engineering, Fukui University of Technology, 3-6-1, Gakuen, Fukui, Fukui, 910-8505, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mitsufumi Matsumoto
- Biotechnology Laboratory, Electric Power Development Co., Ltd, 1, Yanagisaki-machi, Wakamatsu-ku, Kitakyusyu, Fukuoka, 808-0111, Japan
| | - Akinori Yabuki
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
38
|
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 fatty acid which is an essential nutrient for both humans and animals. This review examines the global need for EPA, both in human nutrition and aquaculture. The potential shortfall in supply of this important nutrient as well as sustainability issues with wild-caught fish have generated increased interest into alternative sources of EPA. Various approaches are summarized, including heterotrophic production and the use of genetically modified microorganisms and plants. Studies on photoautotrophic production of EPA are extensively reviewed. Widely used species for large-scale production of EPA includes Phaeodactylum tricornutum and Nannochloropsis due to their robustness and relatively high growth rates and EPA content (typically 5% of dry biomass). Approaches for large-scale production have also been reviewed. Closed reactors like flat panels, tubular reactors and bubble columns may be the most suitable due to their high productivity. However, there is no agreement in the literature as to which design generates the lowest cost of production. The economics of the process has also been examined. The best estimates for large-scale (100 hectare) plants give EPA prices of the order 39-90 USD per kilogram. This is approximately ten times higher than the price of EPA derived from fish oil. Potential avenues for lowering the cost are highlighted, along with the need to better understand the advantages and disadvantages of different EPA production methods from a more holistic perspective.
Collapse
Affiliation(s)
- Wenjia Gu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| | - John M Kavanagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| | - Dale D McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
39
|
Zhao T, Han X, Cao H. Effect of Temperature on Biological Macromolecules of Three Microalgae and Application of FT-IR for Evaluating Microalgal Lipid Characterization. ACS OMEGA 2020; 5:33262-33268. [PMID: 33403288 PMCID: PMC7774271 DOI: 10.1021/acsomega.0c04961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/02/2020] [Indexed: 05/31/2023]
Abstract
This study had shown the growth of Phaeodactylum tricornutum, Chlorella vulgaris, and Nannochloropsis sp. under different temperatures and their structure and relative content of polysaccharide, protein, and lipid. Lipid was more suitable to accumulate under the condition of low temperature; however, polysaccharide and protein were not; they had a similar change trend but different amounts. The correlation between the relative content of the lipid and the total lipid and fatty acid in a single microalga cell was also analyzed. The results showed that the relative content of the lipid detected by Fourier transform infrared (FTIR) spectroscopy and the total lipid and the unsaturated fatty acids (UFAs) obtained by a gravimetric method in a single microalga cell had a good linear relationship (R 2 ≈ 0.8) while the correlation of saturated fatty acids is poor (R 2 < 0.5). These studies had demonstrated that temperature was a key factor for phytoplankton that can influence their growth and biological macromolecule content. Moreover, FTIR spectroscopy was proved to be a meaningful technology for selecting the microalgae rich in total lipid and UFAs.
Collapse
Affiliation(s)
- Ting Zhao
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Ocean
University of China, Qingdao 266100, China
| | - Xiaotian Han
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center
for Ocean Mega-Science, Chinese Academy
of Sciences, Qingdao 266100, China
| | - Huidi Cao
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Ocean
University of China, Qingdao 266100, China
| |
Collapse
|
40
|
Liu B, Sun Y, Hang W, Wang X, Xue J, Ma R, Jia X, Li R. Characterization of a Novel Acyl-ACP Δ 9 Desaturase Gene Responsible for Palmitoleic Acid Accumulation in a Diatom Phaeodactylum tricornutum. Front Microbiol 2020; 11:584589. [PMID: 33391203 PMCID: PMC7772203 DOI: 10.3389/fmicb.2020.584589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitoleic acid (16:1Δ9) possesses a double bond at the seventh carbon atom from methyl end of the acyl chain and belongs to unusual ω-7 monounsaturated fatty acids with broad applications in food, pharmaceuticals, cosmetics, biofuel, and other industries. This high-value fatty acid accumulates up to >40% of total lipid in the marine diatom Phaeodactylum tricornutum. The present study was conducted to determine the key gene responsible for 16:1Δ9 biosynthesis in this unicellular alga. A new full-length cDNA and genomic DNA encoding acyl-ACP Δ9 desaturase (PtAAD) were isolated from P. tricornutum cells. Expression levels of PtAAD gene under normal and stress culture conditions were both positively correlated with 16:1Δ9 accumulation, implying its potential role for fatty acid determination. Functional complementation assay of a yeast mutant strain BY4839 evidenced that PtAAD could restore the synthesis of unsaturated fatty acid, especially generating high levels of 16:1Δ9. Further transient expression of PtAAD gene in Nicotiana benthamiana leaves was accompanied by the accumulation of 16:1Δ9, which was absent from control groups. Three-dimensional structure modeling studies showed that functional domain of PtAAD contained three variant amino acids (F160, A223, and L156), which may narrow the space shape of substrate-binding cavity to ensure the entry of 16:0-ACP. Consistent with this prediction, the mutated version of PtAAD gene (F160L, A223T, and L156M) in N. benthamiana systems failed to accumulate 16:1Δ9, but increased levels of 18:1Δ9. Taken together, PtAAD exhibits a strong enzymatic activity and substrate preference for 16:0-ACP, acting as the key player for high biosynthesis and accumulation of 16:1Δ9 in this alga. These findings provide new insights for better understanding the palmitoleic acid and oil biosynthetic mechanism in P. tricornutum, indicating that PtAAD gene may have practical applications for enriching palmitoleic acid and oil yield in other commercial oleaginous algae and crops.
Collapse
Affiliation(s)
- Baoling Liu
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China.,College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Yan Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaodan Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyun Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
41
|
Effect of Nitrogen Sources on Omega-3 Polyunsaturated Fatty Acid Biosynthesis and Gene Expression in Thraustochytriidae sp. Mar Drugs 2020; 18:md18120612. [PMID: 33271856 PMCID: PMC7760700 DOI: 10.3390/md18120612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1–50 mM) or urea (1–50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.
Collapse
|
42
|
Feijão E, Franzitta M, Cabrita MT, Caçador I, Duarte B, Gameiro C, Matos AR. Marine heat waves alter gene expression of key enzymes of membrane and storage lipids metabolism in Phaeodactylum tricornutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:357-368. [PMID: 33002714 DOI: 10.1016/j.plaphy.2020.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Across the globe, heat waves are getting more intense and frequent. Diatoms are a major group of microalgae at the base of the marine food webs and an important source of long chain polyunsaturated fatty acids that are transferred through the food web. The present study investigates the possible impacts of temperature increase on lipid classes and expression of genes encoding enzymes related to lipid metabolism in Phaeodactylum tricornutum. The heat wave exposure caused an increase in the relative amounts of plastidial lipids such as the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulphoquinovosyldiacylglycerol (SQDG) in parallel with a decrease in the neutral lipid fraction, which includes triacylglycerols. In agreement, gene expression analyses revealed an up-regulation of a gene encoding one MGDG synthase and down-regulation of a diacylglycerol acyltransferase (DGAT), a key enzyme in triacylglycerol synthesis. Our results show that heat waves not only negatively impact the abundance of unsaturated fatty acids such as eicosapentaenoic acid (20:5n-3, EPA) and hexadecatrienoic acid (16:3n-4) as observed by the decrease in their relative abundance in MGDG and neutral lipids, respectively, but also induce changes in the relative amounts of the diverse membrane lipids as well as the proportion of membrane/storage lipids. The expression study of key genes indicates that some of the aforementioned alterations are regulated at the transcription level whereas others appear to be post-transcriptional. The changes observed in plastidial lipids are related to negative impacts on the photosynthesis.
Collapse
Affiliation(s)
- Eduardo Feijão
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Marco Franzitta
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Carla Gameiro
- IPMA, Instituto Português do Mar e Atmosfera, Div-RP - Divisão de Modelação e Gestão de Recursos de Pesca, 1495-165, Algés, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
43
|
Cui J, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol 2020; 104:9947-9963. [PMID: 33094384 DOI: 10.1007/s00253-020-10958-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Δ6 fatty acid desaturases (FADS6) have different substrate specificities that impact the ratio of omega-6/omega-3 polyunsaturated fatty acids, which are involved in regulating multiple signalling pathways associated with various diseases. For decades, FADS6 with different substrate specificities have been characterized and the functions of these crucial enzymes have been investigated, while it remains enigmatic that the substrate specificities of FADS6 from various species have a huge difference. This review summarizes the substrate specificities of FADS6 in different species and reveals the underlying relationship. Further evaluation of biochemical properties has revealed that the FADS6 prefer linoleic acid that is more hydrophilic and stable. Domain-swapping and site-directed mutagenesis have been employed to delineate the regions and sites that affect the substrate specificities of FADS6. These analyses improve our understanding of the functions of FADS6 and offer information for the discovery of novel biological resources. KEY POINTS: • Outline of the excavation and identification of Δ6 fatty acid desaturases. • Overview of methods used to determine the pivotal resides of desaturases. • Application of substrate properties to generate specific fatty acids.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, 5, Winston-Salem, NC, 27127, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
44
|
Wang S, Lan C, Wang Z, Wan W, Zhang H, Cui Q, Song X. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid Aurantiochytrium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11253-11260. [PMID: 32829640 DOI: 10.1021/acs.jafc.0c04299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eicosapentaenoic acid (EPA) is an essential nutritional supplement for human health. The most prominent dietary source of EPA is fish oil, which is unsustainable because of the decline in fishery resources and serious environmental pollution. Alternatively, a heterologous polyketide synthase pathway for EPA biosynthesis was assembled in Thraustochytrid Aurantiochytrium. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the EPA biosynthetic gene cluster from Shewanella japonica in Aurantiochytrium. In the shake flask fermentation, the lipid and PUFA yields of the mutant were increased by 26.9 and 36.0%, respectively, and led to about 5-fold increase of the EPA yield. The final EPA titer reached 2.7 g/L in fed-batch fermentation. This study provides a novel metabolic engineering strategy to regulate the EPA ratio in microalgal oil for human nutritional supplementation.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| |
Collapse
|
45
|
Sahaka M, Amara S, Wattanakul J, Gedi MA, Aldai N, Parsiegla G, Lecomte J, Christeller JT, Gray D, Gontero B, Villeneuve P, Carrière F. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid. Food Funct 2020; 11:6710-6744. [PMID: 32687132 DOI: 10.1039/d0fo01040e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galactolipids, mainly monogalactosyl diglycerides and digalactosyl diglycerides are the main lipids found in the membranes of plants, algae and photosynthetic microorganisms like microalgae and cyanobacteria. As such, they are the main lipids present at the surface of earth. They may represent up to 80% of the fatty acid stocks, including a large proportion of polyunsaturated fatty acids mainly α-linolenic acid (ALA). Nevertheless, the interest in these lipids for nutrition and other applications remains overlooked, probably because they are dispersed in the biomass and are not as easy to extract as vegetable oils from oleaginous fruit and oil seeds. Another reason is that galactolipids only represent a small fraction of the acylglycerolipids present in modern human diet. In herbivores such as horses, fish and folivorous insects, galactolipids may however represent the main source of dietary fatty acids due to their dietary habits and digestion physiology. The development of galactolipase assays has led to the identification and characterization of the enzymes involved in the digestion of galactolipids in the gastrointestinal tract, as well as by microorganisms. Pancreatic lipase-related protein 2 (PLRP2) has been identified as an important factor of galactolipid digestion in humans, together with pancreatic carboxyl ester hydrolase (CEH). The levels of PLRP2 are particularly high in monogastric herbivores thus highlighting the peculiar role of PLRP2 in the digestion of plant lipids. Similarly, pancreatic lipase homologs are found to be expressed in the midgut of folivorous insects, in which a high galactolipase activity can be measured. In fish, however, CEH is the main galactolipase involved. This review discusses the origins and fatty acid composition of galactolipids and the physiological contribution of galactolipid digestion in various species. This overlooked aspect of lipid digestion ensures not only the intake of ALA from its main natural source, but also the main lipid source of energy for growth of some herbivorous species.
Collapse
Affiliation(s)
- Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | - Sawsan Amara
- Lipolytech, Zone Luminy Biotech, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Goetz Parsiegla
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - John T Christeller
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| | | | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, 31 Chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
46
|
Yang R, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 2020; 40:993-1009. [DOI: 10.1080/07388551.2020.1805402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Runqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
47
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
48
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
49
|
George J, Kahlke T, Abbriano RM, Kuzhiumparambil U, Ralph PJ, Fabris M. Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:513. [PMID: 32582656 PMCID: PMC7290003 DOI: 10.3389/fbioe.2020.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental “position-effects” such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.
Collapse
Affiliation(s)
- Jestin George
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | | | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Michele Fabris
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Vallesi A, Pucciarelli S, Buonanno F, Fontana A, Mangiagalli M. Bioactive molecules from protists: Perspectives in biotechnology. Eur J Protistol 2020; 75:125720. [PMID: 32569992 DOI: 10.1016/j.ejop.2020.125720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
For hundreds of years, mankind has benefited from the natural metabolic processes of microorganisms to obtain basic products such as fermented foods and alcoholic beverages. More recently, microorganisms have been exploited for the production of antibiotics, vitamins and enzymes to be used in medicine and chemical industries. Additionally, several modern drugs, including those for cancer therapy, are natural products or their derivatives. Protists are a still underexplored source of natural products potentially of interest for biotechnological and biomedical applications. This paper focuses on some examples of bioactive molecules from protists and associated bacteria and their possible use in biotechnology.
Collapse
Affiliation(s)
- Adriana Vallesi
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of E.C.H.T. Università degli Studi di Macerata, Macerata, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|