1
|
Weiler JR, Jürgensen N, Cornejo Infante M, Knoll MT, Gescher J. Strain and model development for auto- and heterotrophic 2,3-butanediol production using Cupriavidus necator H16. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:108. [PMID: 39080797 PMCID: PMC11290209 DOI: 10.1186/s13068-024-02549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
The production of platform chemicals from renewable energy sources is a crucial step towards a post-fossil economy. This study reports on the production of acetoin and 2,3-butanediol heterotrophically with fructose as substrate and autotrophically from CO2 as carbon source, H2 as electron donor and O2 as electron acceptor with Cupriavidus necator. In a previous study, the strain was developed for the production of acetoin with high carbon efficiency. Acetoin can serve as a precursor for the synthesis of 2,3-butanediol by the integration of a butanediol dehydrogenase. In this study, different plasmid backbones and butanediol dehydrogenases were evaluated regarding efficiency for CO2-based 2,3-butanediol production. The developed strain utilizes the pBBR1 plasmid bearing a 2,3-butanediol dehydrogenase from Enterobacter cloacae and is characterized by 2,3-butanediol as the main product and a heterotrophic total product yield of 88.11%, an autotrophic volumetric productivity of 39.45 mg L-1 h-1, a total product carbon yield of 81.6%, an H2 efficiency of 33.46%, and a specific productivity of 0.016 g product per gram of biomass per hour. In addition, a mathematical model was developed to simulate the processes under these conditions. With this model, it was possible to calculate productivities and substrate usage at distinct time points of the production processes and calculate productivities and substrate usage with high resolution which will be useful in future applications.
Collapse
Affiliation(s)
- Janek R Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Nikolai Jürgensen
- Institute of Technical Microbiology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Monica Cornejo Infante
- Institute of Technical Microbiology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Melanie T Knoll
- Institute of Technical Microbiology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, 21073, Hamburg, Germany.
| |
Collapse
|
2
|
Cheng J, Zhang C, Zhang K, Li J, Hou Y, Xin J, Sun Y, Xu C, Xu W. Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives. ACS OMEGA 2023; 8:42062-42071. [PMID: 38024730 PMCID: PMC10653055 DOI: 10.1021/acsomega.3c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Most chemicals are manufactured by traditional chemical processes but at the expense of toxic catalyst use, high energy consumption, and waste generation. Biotransformation is a green, sustainable, and cost-effective process. As cyanobacteria can use light as the energy source to power the synthesis of NADPH and ATP, using cyanobacteria as the chassis organisms to design and develop light-driven biotransformation platforms for chemical synthesis has been gaining attention, since it can provide a theoretical and practical basis for the sustainable and green production of chemicals. Meanwhile, metabolic engineering and genome editing techniques have tremendous prospects for further engineering and optimizing chassis cells to achieve efficient light-driven systems for synthesizing various chemicals. Here, we display the potential of cyanobacteria as a promising light-driven biotransformation platform for the efficient synthesis of green chemicals and current achievements of light-driven biotransformation processes in wild-type or genetically modified cyanobacteria. Meanwhile, future perspectives of one-pot enzymatic cascade biotransformation from biobased materials in cyanobacteria have been proposed, which could provide additional research insights for green biotransformation and accelerate the advancement of biomanufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chaobo Zhang
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Kaidian Zhang
- State
Key Laboratory of Marine Resource Utilization in the South China Sea,
School of Marine Biology and Aquaculture, Hainan University, Haikou, Hainan 570100, China
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiashun Li
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuyong Hou
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotech-nology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Jiachao Xin
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yang Sun
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chengshuai Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
3
|
Cheng J, Zhang K, Hou Y. The current situations and limitations of genetic engineering in cyanobacteria: a mini review. Mol Biol Rep 2023; 50:5481-5487. [PMID: 37119415 DOI: 10.1007/s11033-023-08456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Cyanobacteria are an ancient group of photoautotrophic prokaryotes, and play an essential role in the global carbon cycle. They are also model organisms for studying photosynthesis and circadian regulation, and metabolic engineering and synthetic biology strategies grants light-driven biotechnological applications to cyanobacteria, especially for engineering cyanobacteria cells to achieve an efficient light-driven system for synthesizing any product of interest from renewable feedstocks. However, lower yield limits the potential of industrial application of cyanobacterial synthetic biology, and some key limitations must be overcome to realize the full biotechnological potential of these versatile microorganisms. Although genetic engineering toolkits for cyanobacteria have made some progress, the tools available still lag behind conventional heterotrophic microorganism. Consequently, this study describes the current situations and limitations of genetic engineering in cyanobacteria, and further improvements are proposed to improve the output of targeted products. We believe that cyanobacteria-mediated light-driven platforms towards efficient synthesis of green chemicals could unlock a bright future by developing the tools for strain manipulation and novel chassis organisms with excellent performance for biotechnological applications, which could also accelerate the advancement of bio-manufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570100, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Yuyong Hou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
4
|
Development of shuttle vectors for rapid prototyping of engineered Synechococcus sp. PCC7002. Appl Microbiol Biotechnol 2022; 106:8169-8181. [PMID: 36401644 DOI: 10.1007/s00253-022-12289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/18/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are of particular interest for chemical production as they can assimilate CO2 and use solar energy to power chemical synthesis. However, unlike the model microorganism of Escherichia coli, the availability of genetic toolboxes for rapid proof-of-concept studies in cyanobacteria is generally lacking. In this study, we first characterized a set of promoters to efficiently drive gene expressions in the marine cyanobacterium Synechococcus sp. PCC7002. We identified that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002. Next, a set of shuttle vectors was constructed based on the endogenous pAQ1 plasmid to facilitate the rapid pathway assembly. Moreover, we used the shuttle vectors to modularly optimize the amorpha-4,11-diene synthesis in PCC7002. By modularly optimizing the metabolic pathway, we managed to redistribute the central metabolism toward the amorpha-4,11-diene production in PCC7002 with enhanced product titer. Taken together, the plasmid toolbox developed in this study will greatly accelerate the generation of genetically engineered PCC7002. KEY POINTS: • Promoter characterization revealed that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002 • A set of shuttle vectors with different antibiotic selection markers was constructed based on endogenous pAQ1 plasmid • By modularly optimizing the metabolic pathway, amorpha-4,11-diene production in PCC7002 was improved.
Collapse
|
5
|
Li H, Pham NN, Shen CR, Chang CW, Tu Y, Chang YH, Tu J, Nguyen MTT, Hu YC. Combinatorial CRISPR Interference Library for Enhancing 2,3-BDO Production and Elucidating Key Genes in Cyanobacteria. Front Bioeng Biotechnol 2022; 10:913820. [PMID: 35800335 PMCID: PMC9253771 DOI: 10.3389/fbioe.2022.913820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria can convert CO2 to chemicals such as 2,3-butanediol (2,3-BDO), rendering them promising for renewable production and carbon neutralization, but their applications are limited by low titers. To enhance cyanobacterial 2,3-BDO production, we developed a combinatorial CRISPR interference (CRISPRi) library strategy. We integrated the 2,3-BDO pathway genes and a CRISPRi library into the cyanobacterium PCC7942 using the orthogonal CRISPR system to overexpress pathway genes and attenuate genes that inhibit 2,3-BDO formation. The combinatorial CRISPRi library strategy allowed us to inhibit fbp, pdh, ppc, and sps (which catalyzes the synthesis of fructose-6-phosphate, acetyl-coenzyme A, oxaloacetate, and sucrose, respectively) at different levels, thereby allowing for rapid screening of a strain that enhances 2,3-BDO production by almost 2-fold to 1583.8 mg/L. Coupled with a statistical model, we elucidated that differentially inhibiting all the four genes enhances 2,3-BDO synthesis to varying degrees. fbp and pdh suppression exerted more profound effects on 2,3-BDO production than ppc and sps suppression, and these four genes can be repressed simultaneously without mutual interference. The CRISPRi library approach paves a new avenue to combinatorial metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Hung Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Claire R. Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mai Thanh Thi Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Yu-Chen Hu, , orcid.org/0000-0002-9997-4467
| |
Collapse
|
6
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
7
|
Kobayashi S, Atsumi S, Ikebukuro K, Sode K, Asano R. Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria. Microb Cell Fact 2022; 21:7. [PMID: 34991586 PMCID: PMC8740407 DOI: 10.1186/s12934-021-01732-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/25/2021] [Indexed: 11/21/2022] Open
Abstract
Background Cyanobacteria are engineered via heterologous biosynthetic pathways to produce value-added chemicals via photosynthesis. Various chemicals have been successfully produced in engineered cyanobacteria. Chemical inducer-dependent promoters are used to induce the expression of target biosynthetic pathway genes. A chemical inducer is not ideal for large-scale reactions owing to its high cost; therefore, it is important to develop scaling-up methods to avoid their use. In this study, we designed a green light-inducible alcohol production system using the CcaS/CcaR green light gene expression system in the cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803). Results To establish the green light-inducible production of isobutanol and 3-methyl-1-butanol (3MB) in PCC 6803, keto-acid decarboxylase (kdc) and alcohol dehydrogenase (adh) were expressed under the control of the CcaS/CcaR system. Increases in the transcription level were induced by irradiation with red and green light without severe effects on host cell growth. We found that the production of isobutanol and 3MB from carbon dioxide (CO2) was induced under red and green light illumination and was substantially repressed under red light illumination alone. Finally, production titers of isobutanol and 3MB reached 238 mg L−1 and 75 mg L−1, respectively, in 5 days under red and green light illumination, and these values are comparable to those reported in previous studies using chemical inducers. Conclusion A green light-induced alcohol production system was successfully integrated into cyanobacteria to produce value-added chemicals without using expensive chemical inducers. The green light-regulated production of isobutanol and 3MB from CO2 is eco-friendly and cost-effective. This study demonstrates that light regulation is a potential tool for producing chemicals and increases the feasibility of cyanobacterial bioprocesses. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01732-x.
Collapse
Affiliation(s)
- Shunichi Kobayashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Shota Atsumi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
8
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Taylor GM, Hitchcock A, Heap JT. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res 2021; 49:e123. [PMID: 34554258 PMCID: PMC8643660 DOI: 10.1093/nar/gkab791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
10
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Sun H, Yang J, Song H. Engineering mycobacteria artificial promoters and ribosomal binding sites for enhanced sterol production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Butanediol production from glycerol and glucose by Serratia marcescens isolated from tropical peat soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Naseri G, Koffas MAG. Application of combinatorial optimization strategies in synthetic biology. Nat Commun 2020; 11:2446. [PMID: 32415065 PMCID: PMC7229011 DOI: 10.1038/s41467-020-16175-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
In the first wave of synthetic biology, genetic elements, combined into simple circuits, are used to control individual cellular functions. In the second wave of synthetic biology, the simple circuits, combined into complex circuits, form systems-level functions. However, efforts to construct complex circuits are often impeded by our limited knowledge of the optimal combination of individual circuits. For example, a fundamental question in most metabolic engineering projects is the optimal level of enzymes for maximizing the output. To address this point, combinatorial optimization approaches have been established, allowing automatic optimization without prior knowledge of the best combination of expression levels of individual genes. This review focuses on current combinatorial optimization methods and emerging technologies facilitating their applications.
Collapse
Affiliation(s)
- Gita Naseri
- Institut für Chemie, Humboldt Universität zu Berlin, 12489, Berlin, Germany.
| | - Mattheos A G Koffas
- Center for Biotechnology, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
15
|
Kobayashi S, Nakajima M, Asano R, Ferreira EA, Abe K, Tamagnini P, Atsumi S, Sode K. Application of an engineered chromatic acclimation sensor for red-light-regulated gene expression in cyanobacteria. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Yaashikaa P, Senthil Kumar P, Varjani SJ, Saravanan A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Fathima AM, Laviña WA, Putri SP, Fukusaki E. Accumulation of sugars and nucleosides in response to high salt and butanol stress in 1-butanol producing Synechococcus elongatus. J Biosci Bioeng 2019; 129:177-183. [PMID: 31542348 DOI: 10.1016/j.jbiosc.2019.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
1-Butanol production using photosynthetic organisms such as cyanobacteria has garnered interest among researchers due to its high potential as a sustainable biofuel. Previously, the cyanobacterium Synechococcus elongatus PCC 7942 was engineered to produce 1-butanol through the introduction of a modified CoA-dependent pathway. S. elongatus strain DC11, a high producer of 1-butanol, was constructed based on metabolomics-assisted strain engineering. DC11 can reach a production titer of 418.7 mg/L in 6 days, cutting the production time in half compared to the previously constructed DC7. Regardless, the final 1-butanol titer of DC11 was still low compared to other microbial hosts. Sensitivity towards 1-butanol of the producing strain has been known as one of main hurdles for improving cyanobacterial production system. Thus, to improve cyanobacterial-based 1-butanol production in the future, we employed the metabolomics approach to study the intrinsic effect of improved 1-butanol productivity in DC11. This study focused on metabolite profiling of DC11 using LC/MS/MS. Results showed that there is an accumulation of disaccharide-P and sucrose/trehalose in DC11 compared to the DC7. These metabolites were previously reported to have a role in salt and alcohol stress response in cyanobacteria and therefore, DC11 was subjected to 0.2 M of NaCl and 1000 mg/L of 1-butanol for further investigation. DC11 with stress treatment showed a more prominent accumulation of sugars and nucleosides compared to control. The results obtained from this study may be beneficial for future strain improvement strategies in S. elongatus, particularly addressing the metabolic response of this strain upon 1-butanol stress.
Collapse
Affiliation(s)
- Artnice Mega Fathima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Walter Alvarez Laviña
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Banos 4031, Philippines
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Bartasun P, Prandi N, Storch M, Aknin Y, Bennett M, Palma A, Baldwin G, Sakuragi Y, Jones PR, Rowland J. The effect of modulating the quantity of enzymes in a model ethanol pathway on metabolic flux in Synechocystis sp. PCC 6803. PeerJ 2019; 7:e7529. [PMID: 31523505 PMCID: PMC6717505 DOI: 10.7717/peerj.7529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Synthetic metabolism allows new metabolic capabilities to be introduced into strains for biotechnology applications. Such engineered metabolic pathways are unlikely to function optimally as initially designed and native metabolism may not efficiently support the introduced pathway without further intervention. To develop our understanding of optimal metabolic engineering strategies, a two-enzyme ethanol pathway consisting of pyruvate decarboxylase and acetaldehyde reductase was introduced into Synechocystis sp. PCC 6803. We characteriseda new set of ribosome binding site sequences in Synechocystis sp. PCC 6803 providing a range of translation strengths for different genes under test. The effect of ribosome-bindingsite sequence, operon design and modifications to native metabolism on pathway flux was analysed by HPLC. The accumulation of all introduced proteins was also quantified using selected reaction monitoring mass spectrometry. Pathway productivity was more strongly dependent on the accumulation of pyruvate decarboxylase than acetaldehyde reductase. In fact, abolishment of reductase over-expression resulted in the greatest ethanol productivity, most likely because strains harbouringsingle-gene constructs accumulated more pyruvate decarboxylase than strains carrying any of the multi-gene constructs. Overall, several lessons were learned. Firstly, the expression level of the first gene in anyoperon influenced the expression level of subsequent genes, demonstrating that translational coupling can also occur in cyanobacteria. Longer operons resulted in lower protein abundance for proximally-encoded cistrons. And, implementation of metabolic engineering strategies that have previously been shown to enhance the growth or yield of pyruvate dependent products, through co-expression with pyruvate kinase and/or fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase, indicated that other factors had greater control over growth and metabolic flux under the tested conditions.
Collapse
Affiliation(s)
- Paulina Bartasun
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicole Prandi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Marko Storch
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Yarin Aknin
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mark Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Arianna Palma
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Geoff Baldwin
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - John Rowland
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Hirokawa Y, Kubo T, Soma Y, Saruta F, Hanai T. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942. Metab Eng 2019; 57:23-30. [PMID: 31377410 DOI: 10.1016/j.ymben.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Genetic manipulation in cyanobacteria enables the direct production of valuable chemicals from carbon dioxide. However, there are still very few reports of the production of highly effective photosynthetic chemicals. Several synthetic metabolic pathways (e.g., isopropanol, acetone, isoprene, and fatty acids) have been constructed by branching from acetyl-CoA and malonyl-CoA, which are key intermediates for photosynthetic chemical production downstream of pyruvate decarboxylation. Recent reports of the absolute determination of cellular metabolites in Synechococcus elongatus PCC 7942 have shown that its acetyl-CoA levels corresponded to about one hundredth of the pyruvate levels. In short, one of the reasons for lower photosynthetic chemical production from acetyl-CoA and malonyl-CoA was the smaller flux to acetyl-CoA. Pyruvate decarboxylation is a primary pathway for acetyl-CoA synthesis from pyruvate and is mainly catalyzed by the pyruvate dehydrogenase complex (PDHc). In this study, we tried to enhance the flux toward acetyl-CoA from pyruvate by overexpressing PDH genes and, thus, catalyzing the conversion of pyruvate to acetyl-CoA via NADH generation. The overexpression of PDH genes cloned from S. elongatus PCC 7942 significantly increased PDHc enzymatic activity and intracellular acetyl-CoA levels in the crude cell extract. Although growth defects were observed in overexpressing strains of PDH genes, the combinational overexpression of PDH genes with the synthetic metabolic pathway for acetate or isopropanol resulted in about 7-fold to 9-fold improvement in its production titer, respectively (9.9 mM, 594.5 mg/L acetate, 4.9 mM, 294.5 mg/L isopropanol). PDH genes overexpression would, therefore, be useful not only for the production of these model chemicals, but also for the production of other chemicals that require acetyl-CoA as a key precursor.
Collapse
Affiliation(s)
- Yasutaka Hirokawa
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, W5-729, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Kubo
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, W5-729, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuki Soma
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, W5-729, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fumiko Saruta
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, W5-729, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Taizo Hanai
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, W5-729, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
20
|
Sawa N, Tatsuke T, Ogawa A, Hirokawa Y, Osanai T, Hanai T. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement. J Biosci Bioeng 2019; 127:256-264. [DOI: 10.1016/j.jbiosc.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
21
|
Lin PC, Pakrasi HB. Engineering cyanobacteria for production of terpenoids. PLANTA 2019; 249:145-154. [PMID: 30465115 DOI: 10.1007/s00425-018-3047-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/14/2018] [Indexed: 05/08/2023]
Abstract
This review summarizes recent advances in cyanobacterial terpenoid production. The challenges and opportunities of improving terpenoid production by cyanobacteria are discussed. Terpenoids are a diverse group of natural products with a variety of commercial applications. With recent advances in synthetic biology and metabolic engineering, microbial terpenoid synthesis is being viewed as a feasible approach for industrial production. Among different microbial hosts, cyanobacteria have the potential of sustainable production of terpenoids using light and CO2. Terpene synthases and the precursor pathways have been expressed in cyanobacteria for enhanced production of various terpene hydrocarbons, including isoprene, limonene, β-phellandrene, and farnesene. However, the productivities need to be further improved for commercial production. Many barriers remain to be overcome in order to efficiently convert CO2 to terpenoids. In this review, we will summarize recent efforts on photosynthetic production of terpenoids and discuss the challenges and opportunities of engineering cyanobacteria for terpenoid bioproduction.
Collapse
Affiliation(s)
- Po-Cheng Lin
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Himadri B Pakrasi
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
- Department of Biology, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
22
|
Metabolic engineering tools in model cyanobacteria. Metab Eng 2018; 50:47-56. [DOI: 10.1016/j.ymben.2018.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/27/2022]
|
23
|
Yunus IS, Jones PR. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng 2018; 49:59-68. [DOI: 10.1016/j.ymben.2018.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022]
|
24
|
Synthetic Gene Regulation in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:317-355. [DOI: 10.1007/978-981-13-0854-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Zhang L, Cao C, Jiang R, Xu H, Xue F, Huang W, Ni H, Gao J. Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination. BIORESOURCE TECHNOLOGY 2018; 261:272-278. [PMID: 29673996 DOI: 10.1016/j.biortech.2018.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The present study describes the use of metabolic engineering to achieve the production of R,R-2,3-butanediol (R,R-2,3-BD) of ultra-high optical purity (>99.99%). To this end, the diacetyl reductase (DAR) gene (dud A) of Paenibacillus polymyxa ZJ-9 was knocked out via homologous recombination between the genome and the previously constructed targeting vector pRN5101-L'C in a process based on homologous single-crossover. PCR verification confirmed the successful isolation of the dud A gene disruption mutant P. polymyxa ZJ-9-△dud A. Moreover, fermentation results indicated that the optical purity of R,R-2,3-BD increased from about 98% to over 99.99%, with a titer of 21.62 g/L in Erlenmeyer flasks. The latter was further increased to 25.88 g/L by fed-batch fermentation in a 5-L bioreactor.
Collapse
Affiliation(s)
- Li Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Can Cao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Ruifan Jiang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Weiwei Huang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hao Ni
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
26
|
Sun T, Li S, Song X, Diao J, Chen L, Zhang W. Toolboxes for cyanobacteria: Recent advances and future direction. Biotechnol Adv 2018; 36:1293-1307. [DOI: 10.1016/j.biotechadv.2018.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/09/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
|
27
|
Sengupta A, Pakrasi HB, Wangikar PP. Recent advances in synthetic biology of cyanobacteria. Appl Microbiol Biotechnol 2018; 102:5457-5471. [PMID: 29744631 DOI: 10.1007/s00253-018-9046-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO2. Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO2, diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this "green" chassis.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University, St. Louis, MO, USA.,Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. .,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
28
|
Garcia-Ruiz E, HamediRad M, Zhao H. Pathway Design, Engineering, and Optimization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:77-116. [PMID: 27629378 DOI: 10.1007/10_2016_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.
Collapse
Affiliation(s)
- Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mohammad HamediRad
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
29
|
Photomixotrophic chemical production in cyanobacteria. Curr Opin Biotechnol 2018; 50:65-71. [DOI: 10.1016/j.copbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
30
|
Yang Z, Zhang Z. Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv 2018; 37:569-578. [PMID: 29608949 DOI: 10.1016/j.biotechadv.2018.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/17/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
As a significant platform chemical, 2, 3-butanediol (2, 3-BD) has found wide applications in industry. The success of microbial 2, 3-BD production was limited by the use of pathogenic microorganisms and low titer in engineered hosts. The utilization of cheaply available feedstock such as lignocellulose was another major challenge to achieve economic production of 2, 3-BD. To address those issues, engineering strategies including both genetic modifications and process optimization have been employed. In this review, we summarized the state-of-the-art progress in the biotechnological production of 2, 3-BD. Metabolic engineering and process engineering strategies were discussed.
Collapse
Affiliation(s)
- Zhiliang Yang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada.
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
31
|
Thiel K, Mulaku E, Dandapani H, Nagy C, Aro EM, Kallio P. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC 6803. Microb Cell Fact 2018; 17:34. [PMID: 29499707 PMCID: PMC5834881 DOI: 10.1186/s12934-018-0882-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/23/2018] [Indexed: 12/26/2022] Open
Abstract
Background Photosynthetic cyanobacteria have been studied as potential host organisms for direct solar-driven production of different carbon-based chemicals from CO2 and water, as part of the development of sustainable future biotechnological applications. The engineering approaches, however, are still limited by the lack of comprehensive information on most optimal expression strategies and validated species-specific genetic elements which are essential for increasing the intricacy, predictability and efficiency of the systems. This study focused on the systematic evaluation of the key translational control elements, ribosome binding sites (RBS), in the cyanobacterial host Synechocystis sp. PCC 6803, with the objective of expanding the palette of tools for more rigorous engineering approaches. Results An expression system was established for the comparison of 13 selected RBS sequences in Synechocystis, using several alternative reporter proteins (sYFP2, codon-optimized GFPmut3 and ethylene forming enzyme) as quantitative indicators of the relative translation efficiencies. The set-up was shown to yield highly reproducible expression patterns in independent analytical series with low variation between biological replicates, thus allowing statistical comparison of the activities of the different RBSs in vivo. While the RBSs covered a relatively broad overall expression level range, the downstream gene sequence was demonstrated in a rigorous manner to have a clear impact on the resulting translational profiles. This was expected to reflect interfering sequence-specific mRNA-level interaction between the RBS and the coding region, yet correlation between potential secondary structure formation and observed translation levels could not be resolved with existing in silico prediction tools. Conclusions The study expands our current understanding on the potential and limitations associated with the regulation of protein expression at translational level in engineered cyanobacteria. The acquired information can be used for selecting appropriate RBSs for optimizing over-expression constructs or multicistronic pathways in Synechocystis, while underlining the complications in predicting the activity due to gene-specific interactions which may reduce the translational efficiency for a given RBS-gene combination. Ultimately, the findings emphasize the need for additional characterized insulator sequence elements to decouple the interaction between the RBS and the coding region for future engineering approaches. Electronic supplementary material The online version of this article (10.1186/s12934-018-0882-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kati Thiel
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Edita Mulaku
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Hariharan Dandapani
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Csaba Nagy
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Pauli Kallio
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
32
|
Sun T, Li S, Song X, Pei G, Diao J, Cui J, Shi M, Chen L, Zhang W. Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:26. [PMID: 29441124 PMCID: PMC5798194 DOI: 10.1186/s13068-018-1032-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Photosynthetic cyanobacteria have attracted a significant attention as promising chassis to produce renewable fuels and chemicals due to their capability to utilizing solar energy and CO2. Notably, the enhancing supply of key precursors like malonyl-CoA would benefit the production of many bio-compounds. Nevertheless, the lacking of genetic tools in cyanobacteria, especially the knockdown strategies for essential pathways, has seriously restricted the attempts to re-direct carbon flux from the central carbohydrate metabolism to the synthesis of bioproducts. RESULTS Aiming at developing new genetic tools, two small RNA regulatory tools are reported for the model cyanobacterium Synechocystis sp. PCC6803, based on paired termini RNAs as well as the exogenous Hfq chaperone and MicC scaffold (Hfq-MicC) previously developed in Escherichia coli. Both regulatory tools functioned well in regulating exogenous reporter gene lacZ and endogenous glgC gene in Synechocystis sp. PCC6803, achieving a downregulation of gene expression up to 90% compared with wildtype. In addition, the Hfq-MicC tool was developed to simultaneously regulate multiple genes related to essential fatty acids biosynthesis, which led to decreased fatty acids content by 11%. Furthermore, aiming to re-direct the carbon flux, the Hfq-MicC tool was utilized to interfere the competing pathway of malonyl-CoA, achieving an increased intracellular malonyl-CoA abundance up to 41% (~ 698.3 pg/mL/OD730 nm) compared to the wildtype. Finally, the Hfq-MicC system was further modified into an inducible system based on the theophylline-inducible riboswitch. CONCLUSIONS In this study, two small RNA regulatory tools for manipulating essential metabolic pathways and re-directing carbon flux are reported for Synechocystis sp. PCC6803. The work introduces efficient and valuable metabolic regulatory strategies for photosynthetic cyanobacteria.
Collapse
Affiliation(s)
- Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Xinyu Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
33
|
Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals. Appl Microbiol Biotechnol 2018; 102:1617-1628. [DOI: 10.1007/s00253-018-8755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
34
|
Wang B, Eckert C, Maness PC, Yu J. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2018; 7:276-286. [PMID: 29232504 DOI: 10.1021/acssynbio.7b00297] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E. coli σ70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. These systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.
Collapse
Affiliation(s)
- Bo Wang
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Carrie Eckert
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Renewable
and Sustainable Energy Institute, University of Colorado, Boulder, 4001 Discovery Drive, Boulder, Colorado 80303, United States
| | - Pin-Ching Maness
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Jianping Yu
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
35
|
Fathima AM, Chuang D, Laviña WA, Liao J, Putri SP, Fukusaki E. Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in Synechococcus elongatus. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:188. [PMID: 30002728 PMCID: PMC6036673 DOI: 10.1186/s13068-018-1187-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Metabolomics is the comprehensive study of metabolites that can demonstrate the downstream effects of gene and protein regulation, arguably representing the closest correlation with phenotypic features. Hence, metabolomics-driven approach offers an effective way to facilitate strain improvement. Previously, targeted metabolomics on the 1-butanol-producing cyanobacterial strain Synechococcus elongatus BUOHSE has revealed the reduction step from butanoyl-CoA to butanal, catalyzed by CoA-acylating propionaldehyde dehydrogenase (PduP), as a rate-limiting step in the CoA-dependent pathway. Moreover, an increase in acetyl-CoA synthesis rate was also observed in this strain, by which the increased rate of release of CoA from butanoyl-CoA was used to enhance formation of acetyl-CoA to feed into the pathway. RESULTS In the present study, a new strain (DC7) with an improved activity of PduP enzyme, was constructed using BUOHSE as the background strain. DC7 showed a 33% increase in 1-butanol production compared to BUOHSE. For a deeper understanding of the metabolic state of DC7, widely targeted metabolomics approach using ion-pair reversed-phase LC/MS was performed. Results showed a decreased level of butanoyl-CoA and an increased level of acetyl-CoA in DC7 compared to BUOHSE. This served as an indication that the previous bottleneck has been solved and free CoA regeneration increased upon the improvement of the PduP enzyme. In order to utilize the enhanced levels of acetyl-CoA in DC7 for 1-butanol production, overexpression of acetyl-CoA carboxylase (ACCase) in DC7 was performed by inserting the gene encoding an ACCase subunit from Yarrowia lipolytica into the aldA site. The resulting strain, named DC11, was able to reach a production titer of 418.7 mg/L in 6 days, compared to DC7 that approached a similar titer in 12 days. A maximum productivity of 117 mg/L/day was achieved between days 4 and 5 in DC11. CONCLUSIONS In this study, the iterative cycle of genetic modification based on insights from metabolomics successfully resulted in the highest reported 1-butanol productivity for engineered Synechococcus elongatus PCC 7942.
Collapse
Affiliation(s)
- Artnice Mega Fathima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Derrick Chuang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Walter Alvarez Laviña
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los, Banos, 4031 Philippines
| | - James Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Sastia Prama Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
36
|
Chaves JE, Rueda-Romero P, Kirst H, Melis A. Engineering Isoprene Synthase Expression and Activity in Cyanobacteria. ACS Synth Biol 2017; 6:2281-2292. [PMID: 28858481 DOI: 10.1021/acssynbio.7b00214] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Efforts to heterologously produce quantities of isoprene hydrocarbons (C5H8) renewably from CO2 and H2O through the photosynthesis of cyanobacteria face barriers, including low levels of recombinant enzyme accumulation compounded by their slow innate catalytic activity. The present work sought to alleviate the "expression level" barrier upon placing the isoprene synthase (IspS) enzyme in different fusion configurations with the cpcB protein, the highly expressed β-subunit of phycocyanin. Different cpcB*IspS fusion constructs were made, distinguished by the absence or presence of linker amino acids between the two proteins. Composition of linker amino acids was variable with lengths of 7, 10, 16, and 65 amino acids designed to test for optimal activity of the IspS through spatial positioning between the cpcB and IspS. Results showed that fusion constructs with the highly expressed cpcB gene, as the leader sequence, improved transgene expression in the range of 61 to 275-fold over what was measured with the unfused IspS control. However, the specific activity of the IspS enzyme was attenuated in all fusion transformants, possibly because of allosteric effects exerted by the leader cpcB fusion protein. This inhibition varied depending on the nature of the linker amino acids between the cpcB and IspS proteins. In terms of isoprene production, the results further showed a trade-off between specific activity and transgenic enzyme accumulation. For example, the cpcB*L7*IspS strain showed only about 10% the isoprene synthase specific-activity of the unfused cpcB-IspS control, but it accumulated 254-fold more IspS enzyme. The latter more than countered the slower specific activity and made the cpcB*L7*IspS transformant the best isoprene producing strain in this work. Isoprene to biomass yield ratios improved from 0.2 mg g-1 in the unfused cpcB-IspS control to 5.4 mg g-1 in the cpcB*L7*IspS strain, a 27-fold improvement.
Collapse
Affiliation(s)
- Julie E. Chaves
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Paloma Rueda-Romero
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Henning Kirst
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Anastasios Melis
- Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| |
Collapse
|
37
|
Hirokawa Y, Matsuo S, Hamada H, Matsuda F, Hanai T. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Microb Cell Fact 2017; 16:212. [PMID: 29178875 PMCID: PMC5702090 DOI: 10.1186/s12934-017-0824-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background Production directly from carbon dioxide by engineered cyanobacteria is one of the promising technologies for sustainable future. Previously, we have successfully achieved 1,3-propanediol (1,3-PDO) production using Synechococcus elongatus PCC 7942 with a synthetic metabolic pathway. The strain into which the synthetic metabolic pathway was introduced produced 3.48 mM (0.265 g/L) 1,3-PDO and 14.3 mM (1.32 g/L) glycerol during 20 days of incubation. In this study, the productivities of 1,3-PDO were improved by gene disruption selected by screening with in silico simulation. Methods First, a stoichiometric metabolic model was applied to prediction of cellular metabolic flux distribution in a 1,3-PDO-producing strain of S. elongatus PCC 7942. A genome-scale model of S. elongatus PCC 7942 constructed by Knoop was modified by the addition of a synthetic metabolic pathway for 1,3-PDO production. Next, the metabolic flux distribution predicted by metabolic flux balance analysis (FBA) was used for in silico simulation of gene disruption. As a result of gene disruption simulation, NADPH dehydrogenase 1 (NDH-1) complexes were found by screening to be the most promising candidates for disruption to improve 1,3-PDO production. The effect of disruption of the gene encoding a subunit of the NDH-1 complex was evaluated in the 1,3-PDO-producing strain. Results and Conclusions During 20 days of incubation, the ndhF1-null 1,3-PDO-producing strain showed the highest titers: 4.44 mM (0.338 g/L) 1,3-PDO and 30.3 mM (2.79 g/L) glycerol. In this study, we successfully improved 1,3-PDO productivity on the basis of in silico simulation of gene disruption. Electronic supplementary material The online version of this article (10.1186/s12934-017-0824-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasutaka Hirokawa
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shingo Matsuo
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Hamada
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taizo Hanai
- Laboratory for Bioinformatics, Graduate School of Systems Biosciences, Kyushu University, 804 Westwing, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
38
|
Nozzi NE, Case AE, Carroll AL, Atsumi S. Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium. ACS Synth Biol 2017; 6:2136-2144. [PMID: 28718632 DOI: 10.1021/acssynbio.7b00157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria have attracted significant interest as a platform for renewable production of fuel and feedstock chemicals from abundant atmospheric carbon dioxide by way of photosynthesis. While great strides have been made in developing this technology in freshwater cyanobacteria, logistical issues remain in scale-up. Use of the cyanobacterium Synechococcus sp. PCC 7002 (7002) as a chemical production chassis could address a number of these issues given the higher tolerance to salt, light, and heat as well as the fast growth rate of 7002 in comparison to traditional model cyanobacteria such as Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803. However, despite growing interest, the development of genetic engineering tools for 7002 continues to lag behind those available for model cyanobacterial strains. In this work we demonstrate the systematic development of a 7002 production strain for the feedstock chemical 2,3-butanediol (23BD). We expand the range of tools available for use in 7002 by identifying and utilizing new integration sites for homologous recombination, demonstrating the inducibility of theophylline riboswitches, and screening a set of isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoters. We then demonstrate improvements of 23BD production with the systematic screening of different conditions including: operon arrangement and copy number, light strength, inducer concentration, cell density at the time of induction, and nutrient concentration. Final production tests yielded titers of 1.6 g/L 23BD after 16 days at a rate of 100 mg/L/day. This work represents great strides in the development of 7002 as an industrially relevant production host.
Collapse
Affiliation(s)
- Nicole E. Nozzi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anna E. Case
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Austin L. Carroll
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
39
|
Combinatorial pathway optimization for streamlined metabolic engineering. Curr Opin Biotechnol 2017; 47:142-151. [DOI: 10.1016/j.copbio.2017.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 11/20/2022]
|
40
|
Zhang A, Carroll AL, Atsumi S. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production. FEMS Microbiol Lett 2017; 364:4058408. [DOI: 10.1093/femsle/fnx165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/29/2017] [Indexed: 11/14/2022] Open
|
41
|
Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 2017; 37:990-1005. [DOI: 10.1080/07388551.2017.1299680] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu Province, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu Province, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942. J Biosci Bioeng 2017; 124:54-61. [PMID: 28325659 DOI: 10.1016/j.jbiosc.2017.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/10/2023]
Abstract
Using engineered cyanobacteria to produce various chemicals from carbon dioxide is a promising technology for a sustainable future. Lactate is a valuable commodity that can be used for the biodegradable plastic, polylactic acid. Typically, lactate production using engineered cyanobacteria was via the conversion of pyruvate in glycolysis by lactate dehydrogenase. In cyanobacteria, the metabolic flux in the Calvin cycle is higher than that in glycolysis under photoautotrophic conditions. The construction of a novel lactate producing pathway that uses metabolites from the Calvin cycle could potentially increase lactate productivity in cyanobacteria. In order to develop such a novel lactate production pathway, we engineered a cyanobacterium Synechococcus elongatus PCC 7942 strain that produced lactate directly from carbon dioxide using dihydroxyacetone phosphate (DHAP) via methylglyoxal. We confirmed that wild-type strain of S. elongatus PCC 7942 could produce lactate using exogenous methylglyoxal. A methylglyoxal synthase gene, mgsA, from Escherichia coli was introduced into Synechococcus elongates PCC 7942 for conversion of DHAP to methylglyoxal. This engineered strain produced lactate directly from carbon dioxide. Genes encoding intrinsic putative glyoxalase I, II (Synpcc7942_0638, 1403) and the lactate/H+ symporter from E. coli (lldP) were additionally introduced to enhance the production. For higher lactate production, it was important to maintain elevated extracellular pH due to the characteristics of lactate exporting system. In this study, the highest lactate titer of 13.7 mM (1.23 g/l) was achieved during a 24-day incubation with the engineered S. elongatus PCC 7942 strain possessing the novel lactate producing pathway.
Collapse
|
43
|
Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metab Eng 2017; 39:192-199. [DOI: 10.1016/j.ymben.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022]
|
44
|
Hirokawa Y, Dempo Y, Fukusaki E, Hanai T. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. J Biosci Bioeng 2017; 123:39-45. [DOI: 10.1016/j.jbiosc.2016.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
45
|
Ghosh IN, Landick R. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis. ACS Synth Biol 2016; 5:1519-1534. [PMID: 27404024 DOI: 10.1021/acssynbio.6b00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosome-binding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate to ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe2+-dependent AdhB and Zn2+-dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.
Collapse
Affiliation(s)
- Indro Neil Ghosh
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| | - Robert Landick
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
46
|
Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol 2016; 35:43-50. [DOI: 10.1016/j.cbpa.2016.08.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/21/2022]
|
47
|
Englund E, Liang F, Lindberg P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 2016; 6:36640. [PMID: 27857166 PMCID: PMC5114575 DOI: 10.1038/srep36640] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023] Open
Abstract
For effective metabolic engineering, a toolbox of genetic components that enables predictable control of gene expression is needed. Here we present a systematic study of promoters and ribosome binding sites in the unicellular cyanobacterium Synechocystis sp. PCC 6803. A set of metal ion inducible promoters from Synechocystis were compared to commonly used constitutive promoters, by measuring fluorescence of a reporter protein in a standardized setting to allow for accurate comparisons of promoter activity. The most versatile and useful promoter was found to be PnrsB, which from a relatively silent expression could be induced almost 40-fold, nearly up to the activity of the strong psbA2 promoter. By varying the concentrations of the two metal ion inducers Ni2+ and Co2+, expression from the promoter was highly tunable, results that were reproduced with PnrsB driving ethanol production. The activities of several ribosomal binding sites were also measured, and tested in parallel in Synechocystis and Escherichia coli. The results of the study add useful information to the Synechocystis genetic toolbox for biotechnological applications.
Collapse
Affiliation(s)
- Elias Englund
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Feiyan Liang
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
48
|
Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 2016; 38:293-302. [DOI: 10.1016/j.ymben.2016.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
49
|
Lechner A, Brunk E, Keasling JD. The Need for Integrated Approaches in Metabolic Engineering. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023903. [PMID: 27527588 DOI: 10.1101/cshperspect.a023903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.
Collapse
Affiliation(s)
- Anna Lechner
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, California 92093
| | - Jay D Keasling
- Joint Bioenergy Institute (JBEI), Emeryville, California 94608.,Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, California 94720.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
50
|
Venkata Mohan S, Nikhil GN, Chiranjeevi P, Nagendranatha Reddy C, Rohit MV, Kumar AN, Sarkar O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. BIORESOURCE TECHNOLOGY 2016; 215:2-12. [PMID: 27068056 DOI: 10.1016/j.biortech.2016.03.130] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 05/11/2023]
Abstract
Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India.
| | - G N Nikhil
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - P Chiranjeevi
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - C Nagendranatha Reddy
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - M V Rohit
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - A Naresh Kumar
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India, Academy of Scientific and Innovative Research (AcSIR), India
| |
Collapse
|