1
|
Bassett S, Suganda JC, Da Silva NA. Engineering peroxisomal surface display for enhanced biosynthesis in the emerging yeast Kluyveromyces marxianus. Metab Eng 2024:S1096-7176(24)00142-3. [PMID: 39489214 DOI: 10.1016/j.ymben.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The non-conventional yeast Kluyveromyces marxianus is a promising microbial host for industrial biomanufacturing. With the recent development of Cas9-based genome editing systems and other novel synthetic biology tools for K. marxianus, engineering of this yeast has become far more accessible. Enzyme colocalization is a proven approach to increase pathway flux and the synthesis of non-native products. Here, we engineer K. marxianus to enable peroxisomal surface display, an enzyme colocalization technique for displaying enzymes on the peroxisome membrane via an anchoring motif from the peroxin Pex15. The native KmPex15 anchoring motif was identified and fused to GFP, resulting in successful localization to the surface of the peroxisomes. To demonstrate the advantages for pathway localization, the Pseudomonas savastanoi IaaM and IaaH enzymes were co-displayed on the peroxisome surface; this increased production of indole-acetic acid 7.9-fold via substrate channeling effects. We then redirected pathway flux by displaying the violacein pathway enzymes VioE and VioD from Chromobacterium violaceum, increasing selectivity of proviolacein to prodeoxyviolacein by 2.5-fold. Finally, we improved direct access to peroxisomal acetyl-CoA and increased titers of the polyketide triacetic acid lactone (TAL) by 2-fold through concurrent display of the proteins Cat2, Acc1, and the type III PKS 2-pyrone synthase from Gerbera hybrida relative to the same three enzymes diffusing in the cytosol. We further improved TAL production by up to 2.1-fold through engineering peroxisome morphology and lifespan. Our findings demonstrate that peroxisomal surface display is an efficient enzyme colocalization strategy in K. marxianus and applicable for improving production of a wide range of non-native products.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA 92697-2580
| | - Jonathan C Suganda
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA 92697-2580
| | - Nancy A Da Silva
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA 92697-2580.
| |
Collapse
|
2
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
3
|
Bassett S, Da Silva NA. Engineering a carbon source-responsive promoter for improved biosynthesis in the non-conventional yeast Kluyveromyces marxianus. Metab Eng Commun 2024; 18:e00238. [PMID: 38845682 PMCID: PMC11153928 DOI: 10.1016/j.mec.2024.e00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast Kluyveromyces marxianus, by fusing carbon-source responsive elements of the native ICL1 promoter to the strong S. cerevisiae TDH3 or native NC1 promoter cores. Two hybrids, P IT350 and P IN450 , were validated via EGFP fluorescence and demonstrated exceptional strength, partial repression during growth, and late phase activation in glucose- and lactose-based medium, respectively. Expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for synthesis of the polyketide triacetic acid lactone (TAL) under the control of P IN450 increased TAL more than 50% relative to the native NC1 promoter, and additional promoter engineering further increased TAL titer to 1.39 g/L in tube culture. Expression of the Penicillium griseofulvum 6-methylsalicylic acid synthase (6-MSAS) under the control of P IN450 resulted in a 6.6-fold increase in 6-MSA titer to 1.09 g/L and a simultaneous 1.5-fold increase in cell growth. Finally, we used P IN450 to express the Pseudomonas savastanoi IaaM and IaaH proteins and the Salvia pomifera sabinene synthase protein to improve production of the auxin hormone indole-3-acetic acid and the monoterpene sabinene, respectively, both extremely toxic to yeast. The development of carbon-responsive promoters adds to the synthetic biology toolbox and available metabolic engineering strategies for K. marxianus, allowing greater control over heterologous protein expression and improved production of toxic metabolites.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Nancy A. Da Silva
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| |
Collapse
|
4
|
Zhou Y, Zhou S, Lyons S, Sun H, Sweedler JV, Lu Y. Enhancing 2-Pyrone Synthase Efficiency by High-Throughput Mass-Spectrometric Quantification and In Vitro/In Vivo Catalytic Performance Correlation. Chembiochem 2024; 25:e202300849. [PMID: 38116888 DOI: 10.1002/cbic.202300849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Engineering efficient biocatalysts is essential for metabolic engineering to produce valuable bioproducts from renewable resources. However, due to the complexity of cellular metabolic networks, it is challenging to translate success in vitro into high performance in cells. To meet such a challenge, an accurate and efficient quantification method is necessary to screen a large set of mutants from complex cell culture and a careful correlation between the catalysis parameters in vitro and performance in cells is required. In this study, we employed a mass-spectrometry based high-throughput quantitative method to screen new mutants of 2-pyrone synthase (2PS) for triacetic acid lactone (TAL) biosynthesis through directed evolution in E. coli. From the process, we discovered two mutants with the highest improvement (46 fold) in titer and the fastest kcat (44 fold) over the wild type 2PS, respectively, among those reported in the literature. A careful examination of the correlation between intracellular substrate concentration, Michaelis-Menten parameters and TAL titer for these two mutants reveals that a fast reaction rate under limiting intracellular substrate concentrations is important for in-cell biocatalysis. Such properties can be tuned by protein engineering and synthetic biology to adopt these engineered proteins for the maximum activities in different intracellular environments.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| | - Shuaizhen Zhou
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| | - Scott Lyons
- Department of Molecular Bioscience, The University of Texas at Austin, 100 E 24th St, Austin, TX 78712, USA
| | - Haoran Sun
- Department of Molecular Bioscience, The University of Texas at Austin, 100 E 24th St, Austin, TX 78712, USA
| | - Jonathan V Sweedler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX 78712, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
6
|
Matsuoka Y, Fujie N, Nakano M, Koshiba A, Kondo A, Tanaka T. Triacetic acid lactone production using 2-pyrone synthase expressing Yarrowia lipolytica via targeted gene deletion. J Biosci Bioeng 2023; 136:320-326. [PMID: 37574415 DOI: 10.1016/j.jbiosc.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
An environmentally sustainable world can be realized by using microorganisms to produce value-added materials from renewable biomass. Triacetic acid lactone (TAL) is a high-value-added compound that is used as a precursor of various organic compounds such as food additives and pharmaceuticals. In this study, we used metabolic engineering to produce TAL from glucose using an oleaginous yeast Yarrowia lipolytica. We first introduced TAL-producing gene 2-pyrone synthase into Y. lipolytica, which enabled TAL production. Next, we increased TAL production by engineering acetyl-CoA and malonyl-CoA biosynthesis pathways by redirecting carbon flux to glycolysis. Finally, we optimized the carbon and nitrogen ratios in the medium, culminating in the production of 4078 mg/L TAL. The strategy presented in this study had the potential to improve the titer and yield of polyketide biosynthesis.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Naofumi Fujie
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
7
|
Lin P, Fu Z, Liu X, Liu C, Bai Z, Yang Y, Li Y. Direct Utilization of Peroxisomal Acetyl-CoA for the Synthesis of Polyketide Compounds in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1599-1607. [PMID: 37172280 DOI: 10.1021/acssynbio.2c00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Polyketides are a class of natural products with many applications but are mainly appealing as pharmaceuticals. Heterologous production of polyketides in the yeast Saccharomyces cerevisiae has been widely explored because of the many merits of this model eukaryotic microorganism. Although acetyl-CoA and malonyl-CoA, the precursors for polyketide synthesis, are distributed in several yeast subcellular organelles, only cytosolic synthesis of polyketides has been pursued in previous studies. In this study, we investigate polyketide synthesis by directly using acetyl-CoA in the peroxisomes of yeast strain CEN.PK2-1D. We first demonstrate that the polyketide flaviolin can be synthesized in this organelle upon peroxisomal colocalization of native acetyl-CoA carboxylase and 1,3,6,8-tetrahydroxynaphthalene synthase (a type III polyketide synthase). Next, using the synthesis of the polyketide triacetic acid lactone as an example, we show that (1) a new peroxisome targeting sequence, pPTS1, is more effective than the previously reported ePTS1 for peroxisomal polyketide synthesis; (2) engineering peroxisome proliferation is effective to boost polyketide production; and (3) peroxisomes provide an additional acetyl-CoA reservoir and extra space to accommodate enzymes so that utilizing the peroxisomal pathway plus the cytosolic pathway produces more polyketide than the cytosolic pathway alone. This research lays the groundwork for more efficient heterologous polyketide biosynthesis using acetyl-CoA pools in subcellular organelles.
Collapse
Affiliation(s)
- Pingxin Lin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhenhao Fu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China
| |
Collapse
|
8
|
Wu Z, Liang X, Li M, Ma M, Zheng Q, Li D, An T, Wang G. Advances in the optimization of central carbon metabolism in metabolic engineering. Microb Cell Fact 2023; 22:76. [PMID: 37085866 PMCID: PMC10122336 DOI: 10.1186/s12934-023-02090-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023] Open
Abstract
Central carbon metabolism (CCM), including glycolysis, tricarboxylic acid cycle and the pentose phosphate pathway, is the most fundamental metabolic process in the activities of living organisms that maintains normal cellular growth. CCM has been widely used in microbial metabolic engineering in recent years due to its unique regulatory role in cellular metabolism. Using yeast and Escherichia coli as the representative organisms, we summarized the metabolic engineering strategies on the optimization of CCM in eukaryotic and prokaryotic microbial chassis, such as the introduction of heterologous CCM metabolic pathways and the optimization of key enzymes or regulatory factors, to lay the groundwork for the future use of CCM optimization in metabolic engineering. Furthermore, the bottlenecks in the application of CCM optimization in metabolic engineering and future application prospects are summarized.
Collapse
Affiliation(s)
- Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
9
|
Feng L, Xu J, Ye C, Gao J, Huang L, Xu Z, Lian J. Metabolic Engineering of Pichia pastoris for the Production of Triacetic Acid Lactone. J Fungi (Basel) 2023; 9:jof9040494. [PMID: 37108948 PMCID: PMC10145311 DOI: 10.3390/jof9040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Triacetic acid lactone (TAL) is a promising renewable platform polyketide with broad biotechnological applications. In this study, we constructed an engineered Pichia pastoris strain for the production of TAL. We first introduced a heterologous TAL biosynthetic pathway by integrating the 2-pyrone synthase encoding gene from Gerbera hybrida (Gh2PS). We then removed the rate-limiting step of TAL synthesis by introducing the posttranslational regulation-free acetyl-CoA carboxylase mutant encoding gene from S. cerevisiae (ScACC1*) and increasing the copy number of Gh2PS. Finally, to enhance intracellular acetyl-CoA supply, we focused on the introduction of the phosphoketolase/phosphotransacetylase pathway (PK pathway). To direct more carbon flux towards the PK pathway for acetyl-CoA generation, we combined it with a heterologous xylose utilization pathway or endogenous methanol utilization pathway. The combination of the PK pathway with the xylose utilization pathway resulted in the production of 825.6 mg/L TAL in minimal medium with xylose as the sole carbon source, with a TAL yield of 0.041 g/g xylose. This is the first report on TAL biosynthesis in P. pastoris and its direct synthesis from methanol. The present study suggests potential applications in improving the intracellular pool of acetyl-CoA and provides a basis for the construction of efficient cell factories for the production of acetyl-CoA derived compounds.
Collapse
Affiliation(s)
- Linjuan Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Junhao Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
10
|
Mining an O-methyltransferase for de novo biosynthesis of physcion in Aspergillus nidulans. Appl Microbiol Biotechnol 2023; 107:1177-1188. [PMID: 36648527 DOI: 10.1007/s00253-023-12373-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Physcion is one of natural anthraquinones, registered as a novel plant-derived fungicide due to its excellent prevention of plant disease. However, the current production of physcion via plant extraction limits its yield promotion and application. Here, a pair of polyketide synthases (PKS) in emodin biosynthesis were used as probes to mining the potential O-methyltransferase (OMT) responsible for physcion biosynthesis. Further refinement using the phylogenetic analysis of the mined OMTs revealed a distinct OMT (AcOMT) with the ability of transferring a methyl group to C-6 hydroxyl of emodin to form physcion. Through introducing AcOMT, we successfully obtained the de novo production of physcion in Aspergillus nidulans. The physcion biosynthetic pathway was further rationally engineered by expressing the decarboxylase genes from different fungi. Finally, the titer of physcion reached to 64.6 mg/L in shake-flask fermentation through enhancing S-adenosylmethionine supply. Our work provides a native O-methyltransferase for physcion biosynthesis and lays the foundation for further improving the production of physcion via a sustainable route. KEY POINTS: • Genome mining of the native O-methyltransferase responsible for physcion biosynthesis • De novo biosynthesis of physcion in the engineered Aspergillus nidulans • Providing an alternative way to produce plant-derived fungicide physcion.
Collapse
|
11
|
Qiu C, Tao H, Shen Y, Qi Q, Hou J. Dynamic-tuning yeast storage carbohydrate improves the production of acetyl-CoA-derived chemicals. iScience 2022; 26:105817. [PMID: 36636342 PMCID: PMC9830206 DOI: 10.1016/j.isci.2022.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acetyl-coenzyme A (Acetyl-CoA) and malonyl-coenzyme A (malonyl-CoA) are important precursors for producing various chemicals, and their availability affects the production of their downstream chemicals. Storage carbohydrates are considered important carbon and energy reservoirs. Herein, we find that regulating the storage carbohydrate synthesis improves metabolic fluxes toward malonyl-CoA. Interestingly, not only directly decreasing storage carbohydrate accumulation improved malonyl-CoA availability but also increasing the storage carbohydrate by UGP1 overexpression enables an even higher production of acetyl-CoA- and malonyl-CoA-derived chemicals. We find that Ugp1p overexpression dynamically regulates the carbon flux to storage carbohydrate synthesis. In early exponential phases, Ugp1 overexpression causes more storage carbohydrate accumulation, while the carbon flux is then redirected toward acetyl-CoA and malonyl-CoA in later phases, thereby contributing to the synthesis of their derived products. Our study demonstrates the importance of storage carbohydrates rearrangement for the availability of acetyl-CoA and malonyl-CoA and therefore will facilitate the synthesis of their derived chemicals.
Collapse
Affiliation(s)
- Chenxi Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Huilin Tao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong 266237, P. R. China,Corresponding author
| |
Collapse
|
12
|
Promsuk G, Vuttipongchaikij S, Prommarit K, Suttangkakul A, Lazarus CM, Wonnapinij P, Wattana-Amorn P. Anthranilic Acid Accumulation in Saccharomyces cerevisiae Induced by Expression of a Nonribosomal Peptide Synthetase Gene from Paecilomyces cinnamomeus BCC 9616. Chembiochem 2022; 23:e202200573. [PMID: 36250803 DOI: 10.1002/cbic.202200573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Indexed: 01/25/2023]
Abstract
Heterologous expression of nrps33, a nonribosomal peptide synthetase gene, from Paecilomyces cinnamomeus BCC 9616 in Saccharomyces cerevisiae unexpectedly resulted in the accumulation of anthranilic acid, an intermediate in tryptophan biosynthesis. Based on transcriptomic and real-time quantitative polymerase chain reaction (RT-qPCR) results, expression of nrps33 affected the transcription of tryptophan biosynthesis genes especially TRP1 which is also the selectable auxotrophic marker for the expression vector used in this work. The product of nrps33 could inhibit the activity of Trp4 involved in the conversion of anthranilate to N-(5'-phosphoribosyl)anthranilate and therefore caused the accumulation of anthranilic acid. This accumulation could in turn result in down-regulation of downstream tryptophan biosynthesis genes. Anthranilic acid is typically produced by chemical synthesis and has been used as a substrate for synthesising bioactive compounds including commercial drugs; our results could provide a new biological platform for production of this compound.
Collapse
Affiliation(s)
- Gunlatida Promsuk
- Interdisciplinary Graduate Program in Bioscience Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand
- Omics Centre for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Pakorn Wattana-Amorn
- Interdisciplinary Graduate Program in Bioscience Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Department of Chemistry Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
13
|
Otoupal PB, Geiselman GM, Oka AM, Barcelos CA, Choudhary H, Dinh D, Zhong W, Hwang H, Keasling JD, Mukhopadhyay A, Sundstrom E, Haushalter RW, Sun N, Simmons BA, Gladden JM. Advanced one-pot deconstruction and valorization of lignocellulosic biomass into triacetic acid lactone using Rhodosporidium toruloides. Microb Cell Fact 2022; 21:254. [PMID: 36482295 PMCID: PMC9733078 DOI: 10.1186/s12934-022-01977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.
Collapse
Affiliation(s)
- Peter B. Otoupal
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Gina M. Geiselman
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Asun M. Oka
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Carolina A. Barcelos
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Hemant Choudhary
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA
| | - Duy Dinh
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Wenqing Zhong
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - HeeJin Hwang
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| | - Jay D. Keasling
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA ,grid.5170.30000 0001 2181 8870Center for Biosustainability, Danish Technical University, Lyngby, Denmark ,grid.458489.c0000 0001 0483 7922Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Aindrila Mukhopadhyay
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA ,grid.184769.50000 0001 2231 4551Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Eric Sundstrom
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Robert W. Haushalter
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Ning Sun
- grid.184769.50000 0001 2231 4551Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Blake A. Simmons
- grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA ,grid.184769.50000 0001 2231 4551Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - John M. Gladden
- grid.474523.30000000403888279Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA USA ,grid.184769.50000 0001 2231 4551DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA USA ,Agile BioFoundry, Department of Energy, Emeryville, CA USA
| |
Collapse
|
14
|
Liu C, Li S. Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms. Front Bioeng Biotechnol 2022; 10:1017190. [PMID: 36312548 PMCID: PMC9614166 DOI: 10.3389/fbioe.2022.1017190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plant specialized metabolites occupy unique therapeutic niches in human medicine. A large family of plant specialized metabolites, namely plant polyketides, exhibit diverse and remarkable pharmaceutical properties and thereby great biomanufacturing potential. A growing body of studies has focused on plant polyketide synthesis using plant type III polyketide synthases (PKSs), such as flavonoids, stilbenes, benzalacetones, curcuminoids, chromones, acridones, xanthones, and pyrones. Microbial expression of plant type III PKSs and related biosynthetic pathways in workhorse microorganisms, such as Saccharomyces cerevisiae, Escherichia coli, and Yarrowia lipolytica, have led to the complete biosynthesis of multiple plant polyketides, such as flavonoids and stilbenes, from simple carbohydrates using different metabolic engineering approaches. Additionally, advanced biosynthesis techniques led to the biosynthesis of novel and complex plant polyketides synthesized by diversified type III PKSs. This review will summarize efforts in the past 10 years in type III PKS-catalyzed natural product biosynthesis in microorganisms, especially the complete biosynthesis strategies and achievements.
Collapse
Affiliation(s)
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Bever D, Wheeldon I, Da Silva N. RNA polymerase II-driven CRISPR-Cas9 system for efficient non-growth-biased metabolic engineering of Kluyveromyces marxianus. Metab Eng Commun 2022; 15:e00208. [PMID: 36249306 PMCID: PMC9558044 DOI: 10.1016/j.mec.2022.e00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The thermotolerant yeast Kluyveromyces marxianus has gained significant attention in recent years as a promising microbial candidate for industrial biomanufacturing. Despite several contributions to the expanding molecular toolbox for gene expression and metabolic engineering of K. marxianus, there remains a need for a more efficient and versatile genome editing platform. To address this, we developed a CRISPR-based editing system that enables high efficiency marker-less gene disruptions and integrations using only 40 bp homology arms in NHEJ functional and non-functional K. marxianus strains. The use of a strong RNA polymerase II promoter allows efficient expression of gRNAs flanked by the self-cleaving RNA structures, tRNA and HDV ribozyme, from a single plasmid co-expressing a codon optimized Cas9. Implementing this system resulted in nearly 100% efficiency of gene disruptions in both NHEJ-functional and NHEJ-deficient K. marxianus strains, with donor integration efficiencies reaching 50% and 100% in the two strains, respectively. The high gRNA targeting performance also proved instrumental for selection of engineered strains with lower growth rate but improved polyketide biosynthesis by avoiding an extended outgrowth period, a common method used to enrich for edited cells but that fails to recover advantageous mutants with even slightly impaired fitness. Finally, we provide the first demonstration of simultaneous, markerless integrations at multiple loci in K. marxianus using a 2.6 kb and a 7.6 kb donor, achieving a dual integration efficiency of 25.5% in a NHEJ-deficient strain. These results highlight both the ease of use and general robustness of this system for rapid and flexible metabolic engineering in this non-conventional yeast. RNAP II-driven tRNA-gRNA-HDV ribozyme cassette built for K. marxianus genome editing. Gene integrations up to 7.6 kb were achieved with only 40 bp homology sequences. Recovery of growth-biased modifications achievable as extended outgrowth not required. Application (ZWF1 and GPD1 knockouts) increased polyketide specific titers. Expressing two unique gRNAs from one cassette enabled integrations at separate loci.
Collapse
|
16
|
Cao M, Tran VG, Qin J, Olson A, Mishra S, Schultz JC, Huang C, Xie D, Zhao H. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng 2022; 119:2529-2540. [PMID: 35701887 PMCID: PMC9540541 DOI: 10.1002/bit.28159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 12/19/2022]
Abstract
The plant‐sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here, we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2‐pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl‐CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of ATP‐citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl‐CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12‐ACL1‐ACC1 using fed‐batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for the production of TAL and other acetyl‐CoA‐derived polyketides from low‐cost carbon sources.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John C Schultz
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chunshuai Huang
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
18
|
Biosensor-Coupled In Vivo Mutagenesis and Omics Analysis Reveals Reduced Lysine and Arginine Synthesis To Improve Malonyl-Coenzyme A Flux in Saccharomyces cerevisiae. mSystems 2022; 7:e0136621. [PMID: 35229648 PMCID: PMC9040634 DOI: 10.1128/msystems.01366-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Malonyl-coenzyme A (malonyl-CoA) is an important precursor for producing various chemicals, but its low availability limits the synthesis of downstream products in Saccharomyces cerevisiae. Owing to the complexity of metabolism, evolutionary engineering is required for developing strains with improved malonyl-CoA synthesis. Here, using the biosensor we constructed previously, a growth-based screening system that links the availability of malonyl-CoA with cell growth is developed. Coupling this system with in vivo continuous mutagenesis enabled rapid generation of genome-scale mutation library and screening strains with improved malonyl-CoA availability. The mutant strains are analyzed by whole-genome sequencing and transcriptome analysis. The omics analysis revealed that the carbon flux rearrangement to storage carbohydrate and amino acids synthesis affected malonyl-CoA metabolism. Through reverse engineering, new processes especially reduced lysine and arginine synthesis were found to improve malonyl-CoA synthesis. Our study provides a valuable complementary tool to other high-throughput screening method for mutant strains with improved metabolite synthesis and improves our understanding of the metabolic regulation of malonyl-CoA synthesis. IMPORTANCE Malonyl-CoA is a key precursor for the production a variety of value-added chemicals. Although rational engineering has been performed to improve the synthesis of malonyl-CoA in S. cerevisiae, due to the complexity of the metabolism there is a need for evolving strains and analyzing new mechanism to improve malonyl-CoA flux. Here, we developed a growth-based screening system that linked the availability of malonyl-CoA with cell growth and manipulated DNA replication for rapid in vivo mutagenesis. The combination of growth-based screening with in vivo mutagenesis enabled quick evolution of strains with improved malonyl-CoA availability. The whole-genome sequencing, transcriptome analysis of the mutated strains, together with reverse engineering, demonstrated weakening carbon flux to lysine and arginine synthesis and storage carbohydrate can contribute to malonyl-CoA synthesis. Our work provides a guideline in simultaneous strain screening and continuous evolution for improved metabolic intermediates and identified new targets for improving malonyl-CoA downstream product synthesis.
Collapse
|
19
|
Bowman EK, Wagner JM, Yuan SF, Deaner M, Palmer CM, D'Oelsnitz S, Cordova L, Li X, Craig FF, Alper HS. Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proc Natl Acad Sci U S A 2021; 118:e2106818118. [PMID: 34475218 PMCID: PMC8433520 DOI: 10.1073/pnas.2106818118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.
Collapse
Affiliation(s)
- Emily K Bowman
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Shuo-Fu Yuan
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Claire M Palmer
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - Simon D'Oelsnitz
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712
| | - Lauren Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Xin Li
- Sphere Fluidics Limited, Cambridge CB21 6GP, United Kingdom
| | - Frank F Craig
- Sphere Fluidics Limited, Cambridge CB21 6GP, United Kingdom
| | - Hal S Alper
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
20
|
Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 2021; 12:4975. [PMID: 34404791 PMCID: PMC8371099 DOI: 10.1038/s41467-021-25241-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass. Cellulosic hydrolysates contain substantial amounts of acetate, which is toxic to fermenting microorganisms. Here, the authors engineer Baker’s yeast to co-consume xylose and acetate for triacetic acid lactone production from a hemicellulose hydrolysate of switchgrass.
Collapse
|
21
|
Sajjad H, Prebihalo EA, Tolman WB, Reineke TM. Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative. Polym Chem 2021. [DOI: 10.1039/d1py00561h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the synthesis and polymerization of a novel disubstituted valerolactone, β-acetoxy-δ-methylvalerolactone, derived from the renewable feedstock triacetic acid lactone (TAL).
Collapse
Affiliation(s)
- Hussnain Sajjad
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | - Emily A. Prebihalo
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | - William B. Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Campus Box 1134, St Louis, MO 63130-4899, USA
| | - Theresa M. Reineke
- Department of Chemistry and Center for Sustainable Polymers, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
22
|
Kim J, Hoang Nguyen Tran P, Lee SM. Current Challenges and Opportunities in Non-native Chemical Production by Engineered Yeasts. Front Bioeng Biotechnol 2021; 8:594061. [PMID: 33381497 PMCID: PMC7767886 DOI: 10.3389/fbioe.2020.594061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Yeasts are promising industrial hosts for sustainable production of fuels and chemicals. Apart from efficient bioethanol production, yeasts have recently demonstrated their potential for biodiesel production from renewable resources. The fuel-oriented product profiles of yeasts are now expanding to include non-native chemicals with the advances in synthetic biology. In this review, current challenges and opportunities in yeast engineering for sustainable production of non-native chemicals will be discussed, with a focus on the comparative evaluation of a bioethanol-producing Saccharomyces cerevisiae strain and a biodiesel-producing Yarrowia lipolytica strain. Synthetic pathways diverging from the distinctive cellular metabolism of these yeasts guide future directions for product-specific engineering strategies for the sustainable production of non-native chemicals on an industrial scale.
Collapse
Affiliation(s)
- Jiwon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biotechnology, Korea University, Seoul, South Korea
| | - Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea.,Green School, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Lang X, Besada-Lombana PB, Li M, Da Silva NA, Wheeldon I. Developing a broad-range promoter set for metabolic engineering in the thermotolerant yeast Kluyveromyces marxianus. Metab Eng Commun 2020; 11:e00145. [PMID: 32995271 PMCID: PMC7508702 DOI: 10.1016/j.mec.2020.e00145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Kluyveromyces marxianus is an emerging host for metabolic engineering. This thermotolerant yeast is the fastest growing eukaryote, has high flux through the TCA cycle, and can metabolize a broad range of C5, C6, and C12 carbon sources. In comparison to the common host Saccharomyces cerevisiae, this non-conventional yeast suffers from a lack of metabolic engineering tools to control gene expression over a wide transcriptional range. To address this issue, we designed a library of 25 native-derived promoters from K. marxanius CBS6556 that spans 87-fold transcriptional strength under glucose metabolism. Six promoters from the library were further characterized in both glucose and xylose as well as across various temperatures from 30 to 45 °C. The temperature study revealed that in most cases EGFP expression decreased with elevating temperature; however, two promoters, P SSA3 and P ADH1 , increased expression above 40 °C in both xylose and glucose. The six-promoter set was also validated in xylose for triacetic acid lactone (TAL) production. By controlling the expression level of heterologous 2-pyrone synthase (2-PS), the specific TAL titer increased over 8-fold at 37 °C. Cultures at 41 °C exhibited a similar TAL biosynthesis capability, while at 30 °C TAL levels were lower. Taken together, these results advance the metabolic engineering tool set in K. marxianus and further develop this new host for chemical biosynthesis.
Collapse
Affiliation(s)
- Xuye Lang
- Department of Chemical and Environmental Engineering, UC Riverside, United States
| | | | - Mengwan Li
- Department of Chemical and Environmental Engineering, UC Riverside, United States
| | - Nancy A. Da Silva
- Department of Chemical and Biomolecular Engineering, UC Irvine, United States
- Corresponding author. Department of Chemical and Biomolecular Engineering, UC Irvine, United States.
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, UC Riverside, United States
- Center for Industrial Biotechnology, UC Riverside, United States
- Corresponding author. Department of Chemical and Environmental Engineering, UC Riverside, United States.
| |
Collapse
|
24
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
25
|
Huo J, Shanks BH. Bioprivileged Molecules: Integrating Biological and Chemical Catalysis for Biomass Conversion. Annu Rev Chem Biomol Eng 2020; 11:63-85. [PMID: 32155351 DOI: 10.1146/annurev-chembioeng-101519-121127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Further development of biomass conversions to viable chemicals and fuels will require improved atom utilization, process efficiency, and synergistic allocation of carbon feedstock into diverse products, as is the case in the well-developed petroleum industry. The integration of biological and chemical processes, which harnesses the strength of each type of process, can lead to advantaged processes over processes limited to one or the other. This synergy can be achieved through bioprivileged molecules that can be leveraged to produce a diversity of products, including both replacement molecules and novel molecules with enhanced performance properties. However, important challenges arise in the development of bioprivileged molecules. This review discusses the integration of biological and chemical processes and its use in the development of bioprivileged molecules, with a further focus on key hurdles that must be overcome for successful implementation.
Collapse
Affiliation(s)
- Jiajie Huo
- Center for Biorenewable Chemicals and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Brent H Shanks
- Center for Biorenewable Chemicals and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
26
|
A Technoeconomic Platform for Early-Stage Process Design and Cost Estimation of Joint Fermentative‒Catalytic Bioprocessing. Processes (Basel) 2020. [DOI: 10.3390/pr8020229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Technoeconomic analyses using established tools such as SuperPro Designer® require a level of detail that is typically unavailable at the early stage of process evaluation. To facilitate this, members of our group previously created a spreadsheet-based process modeling and technoeconomic platform explicitly aimed at joint fermentative‒catalytic biorefinery processes. In this work, we detail the reorganization and expansion of this model—ESTEA2 (Early State Technoeconomic Analysis, version 2), including detailed design and cost calculations for new unit operations. Furthermore, we describe ESTEA2 validation using ethanol and sorbic acid process. The results were compared with estimates from the literature, SuperPro Designer® (Version 8.5, Intelligen Inc., Scotch Plains, NJ, 2013), and other third-party process models. ESTEA2 can perform a technoeconomic analysis for a joint fermentative‒catalytic process with just 12 user-supplied inputs, which, when modeled in SuperPro Designer®, required approximately eight additional inputs such as equipment design configurations. With a reduced amount of user information, ESTEA2 provides results similar to those in the literature, and more sophisticated models (ca. 7%–11% different).
Collapse
|
27
|
Chen R, Yang S, Zhang L, Zhou YJ. Advanced Strategies for Production of Natural Products in Yeast. iScience 2020; 23:100879. [PMID: 32087574 PMCID: PMC7033514 DOI: 10.1016/j.isci.2020.100879] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Natural products account for more than 50% of all small-molecule pharmaceutical agents currently in clinical use. However, low availability often becomes problematic when a bioactive natural product is promising to become a pharmaceutical or leading compound. Advances in synthetic biology and metabolic engineering provide a feasible solution for sustainable supply of these compounds. In this review, we have summarized current progress in engineering yeast cell factories for production of natural products, including terpenoids, alkaloids, and phenylpropanoids. We then discuss advanced strategies in metabolic engineering at three different dimensions, including point, line, and plane (corresponding to the individual enzymes and cofactors, metabolic pathways, and the global cellular network). In particular, we comprehensively discuss how to engineer cofactor biosynthesis for enhancing the biosynthesis efficiency, other than the enzyme activity. Finally, current challenges and perspective are also discussed for future engineering direction.
Collapse
Affiliation(s)
- Ruibing Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
28
|
Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metab Eng 2019; 57:174-181. [PMID: 31740389 DOI: 10.1016/j.ymben.2019.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Polyketides are a diverse class of molecules sought after for their valuable properties, including as potential pharmaceuticals. Previously, we demonstrated that the oleaginous yeast Yarrowia lipolytica is an optimal host for production of the simple polyketide, triacetic acid lactone (TAL). We here expand the capacities of this host by overcoming previous media challenges and enabling production of more complex polyketides. Specifically, we employ a β-oxidation related strategy to improve polyketide production directly from defined media. Beyond TAL production, we establish biosynthesis of the 4-coumaroyl-CoA derived polyketides: naringenin, resveratrol, and bisdemethoxycurcumin, as well as the diketide intermediate, (E)-5-(4-hydroxyphenyl)-3-oxopent-4-enoic acid. In this background, we enable high-level de novo production of naringenin through import of both a heterologous pathway and a mutant Y. lipolytica allele. In doing so, we generated an averaged maximum titer of 898 mg/L naringenin, the highest titer reported to date in any host. These results demonstrate that Y. lipolytica is an ideal polyketide production host for more complex 4-coumaroyl-CoA derived products.
Collapse
|
29
|
Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019; 103:9251-9262. [DOI: 10.1007/s00253-019-10200-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
30
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Liu H, Marsafari M, Wang F, Deng L, Xu P. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab Eng 2019; 56:60-68. [PMID: 31470116 DOI: 10.1016/j.ymben.2019.08.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022]
Abstract
Acetyl-CoA is the central metabolic node connecting glycolysis, Krebs cycle and fatty acids synthase. Plant-derived polyketides, are assembled from acetyl-CoA and malonyl-CoA, represent a large family of biological compounds with diversified bioactivity. Harnessing microbial bioconversion is considered as a feasible approach to large-scale production of polyketides from renewable feedstocks. Most of the current polyketide production platform relied on the lengthy glycolytic steps to provide acetyl-CoA, which inherently suffers from complex regulation with metabolically-costly cofactor/ATP requirements. Using the simplest polyketide triacetic acid lactone (TAL) as a testbed molecule, we demonstrate that acetate uptake pathway in oleaginous yeast (Yarrowia lipolytica) could function as an acetyl-CoA shortcut to achieve metabolic optimality in producing polyketides. We identified the metabolic bottlenecks to rewire acetate utilization for efficient TAL production in Y. lipolytica, including generation of the driving force for acetyl-CoA, malonyl-CoA and NADPH. The engineered strain, with the overexpression of endogenous acetyl-CoA carboxylase (ACC1), malic enzyme (MAE1) and a bacteria-derived cytosolic pyruvate dehydrogenase (PDH), affords robust TAL production with titer up to 4.76 g/L from industrial glacier acetic acid in shake flasks, representing 8.5-times improvement over the parental strain. The acetate-to-TAL conversion ratio (0.149 g/g) reaches 31.9% of the theoretical maximum yield. The carbon flux through this acetyl-CoA metabolic shortcut exceeds the carbon flux afforded by the native glycolytic pathways. Potentially, acetic acid could be manufactured in large-quantity at low-cost from Syngas fermentation or heterogenous catalysis (methanol carbonylation). This alternative carbon sources present a metabolic advantage over glucose to unleash intrinsic pathway limitations and achieve high carbon conversion efficiency and cost-efficiency. This work also highlights that low-cost acetic acid could be sustainably upgraded to high-value polyketides by oleaginous yeast species in an eco-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Fang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
32
|
McTaggart TL, Bever D, Bassett S, Da Silva NA. Synthesis of polyketides from low cost substrates by the thermotolerant yeast
Kluyveromyces marxianus. Biotechnol Bioeng 2019; 116:1721-1730. [DOI: 10.1002/bit.26976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tami L. McTaggart
- Department of Chemical and Biomolecular Engineering University of California Irvine California
| | - Danielle Bever
- Department of Chemical and Biomolecular Engineering University of California Irvine California
| | - Shane Bassett
- Department of Chemical and Biomolecular Engineering University of California Irvine California
| | - Nancy A. Da Silva
- Department of Chemical and Biomolecular Engineering University of California Irvine California
| |
Collapse
|
33
|
Castillo S, Patil KR, Jouhten P. Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:111-133. [PMID: 30911891 DOI: 10.1007/978-3-030-13035-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding genotype-phenotype dependency is a universal aim for all life sciences. While the complete genotype-phenotype relations remain challenging to resolve, metabolic phenotypes are moving within the reach through genome-scale metabolic model simulations. Genome-scale metabolic models are available for commonly investigated yeasts, such as model eukaryote and domesticated fermentation species Saccharomyces cerevisiae, and automatic reconstruction methods facilitate obtaining models for any sequenced species. The models allow for investigating genotype-phenotype relations through simulations simultaneously considering the effects of nutrient availability, and redox and energy homeostasis in cells. Genome-scale models also offer frameworks for omics data integration to help to uncover how the translation of genotypes to the apparent phenotypes is regulated at different levels. In this chapter, we provide an overview of the yeast genome-scale metabolic models and the simulation approaches for using these models to interrogate genotype-phenotype relations. We review the methodological approaches according to the underlying biological reasoning in order to inspire formulating novel questions and applications that the genome-scale metabolic models could contribute to. Finally, we discuss current challenges and opportunities in the genome-scale metabolic model simulations.
Collapse
Affiliation(s)
- Sandra Castillo
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02044, Espoo, Finland
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Paula Jouhten
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, 02044, Espoo, Finland.
| |
Collapse
|
34
|
Bond CM, Tang Y. Engineering Saccharomyces cerevisiae for production of simvastatin. Metab Eng 2019; 51:1-8. [PMID: 30213650 PMCID: PMC6348118 DOI: 10.1016/j.ymben.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
Simvastatin is a semisynthetic cholesterol-lowering medication and one of the top-selling statins in the world. Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural product lovastatin. For this reason, there is significant interest in direct production of simvastatin from a microbial host. In this study, six heterologous biosynthetic genes were introduced into Saccharomyces cerevisiae and the acyl-donor dimethylbutyryl-S-methyl mercaptopropionate (DMB-SMMP) was added, resulting in initial production of 0.5 mg/L SVA. Switching the yeast strain from JHY686 to BJ5464-NpgA increased total polyketide production to over 60 mg/L and conversion from dihydromonacolin L acid to monacolin J acid (MJA) was increased from 60% to 90% by tuning the copy number of the P450 lovA. Increasing the media pH to 8.7 led to a further 10-fold increase in SVA production. Optimized chemical lysis of the cell walls in situ after maximum MJA production led to 55 mg/L SVA titer, representing nearly complete conversion from MJA and a 110-fold increase in titer from the initial SVA production strain. The yeast strains developed in this work can be used as an alternative production method for SVA, and the strategies employed can be broadly applied for heterologous production of other fungal polyketides and semisynthetic compounds in yeast.
Collapse
Affiliation(s)
- Carly M Bond
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
35
|
Obydennov DL, El-Tantawy AI, Sosnovskikh VY. Triacetic acid lactone as a bioprivileged molecule in organic synthesis. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Palmer CM, Alper HS. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides. Biotechnol J 2018; 14:e1700463. [DOI: 10.1002/biot.201700463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Claire M. Palmer
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| |
Collapse
|
37
|
Yu J, Landberg J, Shavarebi F, Bilanchone V, Okerlund A, Wanninayake U, Zhao L, Kraus G, Sandmeyer S. Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnol Bioeng 2018; 115:2383-2388. [PMID: 29777591 PMCID: PMC6855914 DOI: 10.1002/bit.26733] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023]
Abstract
Yarrowia lipolytica is an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study used Y. lipolytica as a host organism for the production of TAL via expression of the 2-pyrone synthase gene from Gerbera hybrida. Induction of lipid biosynthesis by nitrogen-limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut-and-paste transposon to mobilize and integrate multiple copies of the 2-pyrone synthase gene. Strain modifications and batch fermentation in nitrogen-limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.
Collapse
Affiliation(s)
- James Yu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - Jenny Landberg
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Farbod Shavarebi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - Adam Okerlund
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - Umayangani Wanninayake
- Department of Chemistry, Iowa State University, Ames, Iowa, IA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - Le Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa, IA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - George Kraus
- Department of Chemistry, Iowa State University, Ames, Iowa, IA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| | - Suzanne Sandmeyer
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, IA, USA
| |
Collapse
|
38
|
Engineering Escherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system. ACTA ACUST UNITED AC 2018; 45:789-793. [DOI: 10.1007/s10295-018-2062-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Triacetic acid lactone (TAL) (4-hydroxy-6-methyl-2-pyrone) can be upgraded into a variety of higher-value products, and has potential to be developed into a renewable platform chemical through metabolic engineering. We previously developed an endogenous TAL sensor based on the regulatory protein AraC, and applied it to screen 2-pyrone synthase (2-PS) variant libraries in E. coli, resulting in the identification of variants conferring up to 20-fold improved TAL production in liquid culture. In this study, the sensor-reporter system was further optimized and used to further improve TAL production from recombinant E. coli, this time by screening a genomic overexpression library. We identified new and unpredictable gene targets (betT, ompN, and pykA), whose plasmid-based expression improved TAL yield (mg/L/OD595) up to 49% over the control strain. This work further demonstrates the utility of customized transcription factors as molecular reporters in high-throughput engineering of biocatalytic strains.
Collapse
|
39
|
Selective Production of Terminally Unsaturated Methyl Esters from Lactones Over Metal Oxide Catalysts. Catal Letters 2018. [DOI: 10.1007/s10562-018-2507-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Shih PM. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:84-91. [PMID: 29907312 PMCID: PMC6005202 DOI: 10.1016/j.plantsci.2018.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/28/2018] [Accepted: 03/10/2018] [Indexed: 05/23/2023]
Abstract
Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism.
Collapse
Affiliation(s)
- Patrick M Shih
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA, 94608, United States; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA, 94720, United States; Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
41
|
Costello Z, Martin HG. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst Biol Appl 2018; 4:19. [PMID: 29872542 PMCID: PMC5974308 DOI: 10.1038/s41540-018-0054-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 02/01/2023] Open
Abstract
New synthetic biology capabilities hold the promise of dramatically improving our ability to engineer biological systems. However, a fundamental hurdle in realizing this potential is our inability to accurately predict biological behavior after modifying the corresponding genotype. Kinetic models have traditionally been used to predict pathway dynamics in bioengineered systems, but they take significant time to develop, and rely heavily on domain expertise. Here, we show that the combination of machine learning and abundant multiomics data (proteomics and metabolomics) can be used to effectively predict pathway dynamics in an automated fashion. The new method outperforms a classical kinetic model, and produces qualitative and quantitative predictions that can be used to productively guide bioengineering efforts. This method systematically leverages arbitrary amounts of new data to improve predictions, and does not assume any particular interactions, but rather implicitly chooses the most predictive ones.
Collapse
Affiliation(s)
- Zak Costello
- 1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA.,DOE Agile Biofoundry, Emeryville, CA USA.,3DOE Joint BioEnergy Institute, Emeryville, CA USA
| | - Hector Garcia Martin
- 1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA.,DOE Agile Biofoundry, Emeryville, CA USA.,3DOE Joint BioEnergy Institute, Emeryville, CA USA.,4BCAM, Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
42
|
Vickery CR, Cardenas J, Bowman ME, Burkart MD, Da Silva NA, Noel JP. A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in Saccharomyces cerevisiae. Biotechnol Bioeng 2018; 115:1394-1402. [PMID: 29457628 DOI: 10.1002/bit.26564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
Polyketides are attractive compounds for uses ranging from biorenewable chemical precursors to high-value therapeutics. In many cases, synthesis in a heterologous host is required to produce these compounds in industrially relevant quantities. The type III polyketide synthase 2-pyrone synthase (2-PS) from Gerbera hybrida was used for the production of triacetic acid lactone (TAL) in Saccharomyces cerevisiae. Initial in vitro characterization of 2-PS led to the identification of active site variants with improved kinetic properties relative to wildtype. Further in vivo evaluation in S. cerevisiae suggested certain 2-PS mutations altered enzyme stability during fermentation. In vivo experiments also revealed beneficial cysteine to serine mutations that were not initially explored due to their distance from the active site of 2-PS, leading to the design of additional 2-PS enzymes. While these variants showed varying catalytic efficiencies in vitro, they exhibited up to 2.5-fold increases in TAL production when expressed in S. cerevisiae. Coupling of the 2-PS variant [C35S,C372S] to an engineered S. cerevisiae strain led to over 10 g/L TAL at 38% of theoretical yield following fed-batch fermentation, the highest reported to date. Our studies demonstrate the success of a coupled in vitro/in vivo approach to engineering enzymes and provide insight on cysteine-rich enzymes and design principles toward their use in non-native microbial hosts.
Collapse
Affiliation(s)
- Christopher R Vickery
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Javier Cardenas
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Marianne E Bowman
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California
| | - Joseph P Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
43
|
Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci U S A 2018; 115:2096-2101. [PMID: 29440400 DOI: 10.1073/pnas.1721203115] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl-CoA. By exploring three distinct metabolic engineering strategies for acetyl-CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a β-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.
Collapse
|
44
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
45
|
Chen X, Yang X, Shen Y, Hou J, Bao X. Increasing Malonyl-CoA Derived Product through Controlling the Transcription Regulators of Phospholipid Synthesis in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:905-912. [PMID: 28132498 DOI: 10.1021/acssynbio.6b00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malonyl-CoA is a precursor of a variety of compounds such as polyketides and flavonoids. In Saccharomyces cerevisiae, malonyl-CoA concentration is tightly regulated and therefore maintained at a very low level, limiting the production of malonyl-CoA-derived chemicals. Here we manipulated the phospholipid synthesis transcriptional regulators to control the malonyl-CoA levels and increase the downstream product. Through manipulating different regulators including Ino2p, Ino4p, Opi1p, and a series of synthetic Ino2p variants, combining with studying the inositol and choline effect, the engineered strain achieved a 9-fold increase of the titer of malonyl-CoA-derived product 3-hydroxypropionic acid, which is among the highest improvement relative to previously reported strategies. Our study provides a new strategy to regulate malonyl-CoA availability and will contribute to the production of other highly valued malonyl-CoA-derived chemicals.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiaoyu Yang
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
46
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
A Synthetic Hybrid Promoter for Xylose-Regulated Control of Gene Expression in Saccharomyces Yeasts. Mol Biotechnol 2016; 59:24-33. [DOI: 10.1007/s12033-016-9991-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Khodayari A, Maranas CD. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun 2016; 7:13806. [PMID: 27996047 PMCID: PMC5187423 DOI: 10.1038/ncomms13806] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/03/2016] [Indexed: 01/03/2023] Open
Abstract
Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). The Pearson correlation coefficient between experimental data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47 (k-ecoli457 is available for download at http://www.maranasgroup.com).
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
49
|
Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Microb Cell Fact 2016; 15:149. [PMID: 27577056 PMCID: PMC5004256 DOI: 10.1186/s12934-016-0549-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Background Type III polyketide synthases (PKSs) contribute to the synthesis of many economically important natural products, which are typically produced by direct extraction from plants or synthesized chemically. For example, humulone and lupulone (Fig. 1a) in hops (Humulus lupulus) account for the characteristic bitter taste of beer and display multiple pharmacological effects. 4-Hydroxy-6-methyl-2-pyrone is a precursor of parasorboside contributing to insect and disease resistance of plant Gerbera hybrida, and was recently demonstrated to be a potential platform chemical.Examples of phloroglucinols (a) and 2-pyrones (b) synthesized by type III PKS. PIBP phlorisobutyrophenone; PIVP phlorisovalerophenone; TAL 4-hydroxy-6-methyl-2-pyrone (triacetic acid lactone); HIPP 4-hydroxy-6-isopropyl-2-pyrone; HIBP 4-hydroxy-6-isobutyl-2-pyrone ![]() Results In this study, we achieved simultaneous biosynthesis of phlorisovalerophenone, a key intermediate of humulone biosynthesis and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. First, we constructed a biosynthetic pathway of isovaleryl-CoA via hydroxy-3-methylglutaryl CoA followed by dehydration, decarboxylation and reduction in E. coli. Subsequently, the type III PKSs valerophenone synthase or chalcone synthase from plants were introduced into the above E. coli strain, to produce phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone at the highest titers of 6.4 or 66.5 mg/L, respectively. Conclusions The report of biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in E. coli adds a new example to the list of valuable compounds synthesized in E. coli from renewable carbon resources by type III PKSs. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0549-9) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Schwartz TJ, Shanks BH, Dumesic JA. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Curr Opin Biotechnol 2016; 38:54-62. [DOI: 10.1016/j.copbio.2015.12.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 11/16/2022]
|