1
|
Cao Y, Li J, Liu L, Du G, Liu Y. Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology. Synth Syst Biotechnol 2024; 10:281-293. [PMID: 39686977 PMCID: PMC11646789 DOI: 10.1016/j.synbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology-driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains - reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Mao J, Zhang H, Chen Y, Wei L, Liu J, Nielsen J, Chen Y, Xu N. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms. Biotechnol Adv 2024; 74:108401. [PMID: 38944217 DOI: 10.1016/j.biotechadv.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Hongyu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
3
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
4
|
Wei X, Reddy VS, Gao S, Zhai X, Li Z, Shi J, Niu L, Zhang D, Ramakrishna S, Zou X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens Bioelectron 2024; 248:115947. [PMID: 38181518 DOI: 10.1016/j.bios.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
5
|
Ugolini GS, Wang M, Secchi E, Pioli R, Ackermann M, Stocker R. Microfluidic approaches in microbial ecology. LAB ON A CHIP 2024; 24:1394-1418. [PMID: 38344937 PMCID: PMC10898419 DOI: 10.1039/d3lc00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Miaoxiao Wang
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
6
|
Lima C, Muhamadali H, Goodacre R. Monitoring Phenotype Heterogeneity at the Single-Cell Level within Bacillus Populations Producing Poly-3-hydroxybutyrate by Label-Free Super-resolution Infrared Imaging. Anal Chem 2023; 95:17733-17740. [PMID: 37997371 DOI: 10.1021/acs.analchem.3c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Phenotypic heterogeneity is commonly found among bacterial cells within microbial populations due to intrinsic factors as well as equipping the organisms to respond to external perturbations. The emergence of phenotypic heterogeneity in bacterial populations, particularly in the context of using these bacteria as microbial cell factories, is a major concern for industrial bioprocessing applications. This is due to the potential impact on overall productivity by allowing the growth of subpopulations consisting of inefficient producer cells. Monitoring the spread of phenotypes across bacterial cells within the same population at the single-cell level is key to the development of robust, high-yield bioprocesses. Here, we discuss the novel development of optical photothermal infrared (O-PTIR) spectroscopy to probe phenotypic heterogeneity within Bacillus strains by monitoring the production of the bioplastic poly-3-hydroxybutyrate (PHB) at the single-cell level. Measurements obtained on single-point and in imaging mode show significant variability in the PHB content within bacterial cells, ranging from whether or not a cell produces PHB to variations in the intragranular biochemistry of PHB within bacterial cells. Our results show the ability of O-PTIR spectroscopy to probe PHB production at the single-cell level in a rapid, label-free, and semiquantitative manner. These findings highlight the potential of O-PTIR spectroscopy in single-cell microbial metabolomics as a whole-organism fingerprinting tool that can be used to monitor the dynamic of bacterial populations as well as for understanding their mechanisms for dealing with environmental stress, which is crucial for metabolic engineering research.
Collapse
Affiliation(s)
- Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
7
|
Tavares LF, Ribeiro NV, Zocca VFB, Corrêa GG, Amorim LAS, Lins MRCR, Pedrolli DB. Preventing Production Escape Using an Engineered Glucose-Inducible Genetic Circuit. ACS Synth Biol 2023; 12:3124-3130. [PMID: 37772403 DOI: 10.1021/acssynbio.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A proper balance of metabolic pathways is crucial for engineering microbial strains that can efficiently produce biochemicals on an industrial scale while maintaining cell fitness. High production loads can negatively impact cell fitness and hinder industrial-scale production. To address this, fine-tuning gene expression using engineered promoters and genetic circuits can promote control over multiple targets in pathways and reduce the burden. We took advantage of the robust carbon catabolite repression system of Bacillus subtilis to engineer a glucose-inducible genetic circuit that supports growth and production. The circuit is resilient, enabling a quick switch in the production status when exposed to the correct carbon source. By performing serial cultivations for 61 generations under repressive conditions, we preserved the production capacity of the cells, which could be fully accessed by switching to glucose in the next cultivation step. Switching to glucose after 61 generations resulted in 34-fold activation and generated 70% higher production in comparison to standard cultivation in glucose. Conversely, serial cultivation under permanent induction resulted in 62% production loss after 67 generations alongside an increase in the culture growth rate. As a pathway-independent circuit activated by the preferred carbon source, our engineered glucose-inducible genetic circuit is broadly useful and imposes no additional cost to traditional production processes.
Collapse
Affiliation(s)
- Leonardo F Tavares
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Nathan V Ribeiro
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Vitória F B Zocca
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Graciely G Corrêa
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Laura A S Amorim
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Milca R C R Lins
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, 09210-580, Brazil
| | - Danielle B Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| |
Collapse
|
8
|
Abstract
The first discovered and well-characterized bacterial quorum sensing (QS) system belongs to Vibrio fischeri, which uses N-acyl homo-serine lactones (AHLs) for cell-cell signaling. AHL QS cell-cell communication is often regarded as a cell density-dependent regulatory switch. Since the discovery of QS, it has been known that AHL concentration (which correlates imperfectly with cell density) is not necessarily the only QS trigger. Additionally, not all cells respond to a QS signal. Bacteria could, via QS, exhibit phenotypic heterogeneity, resulting in sub-populations with unique phenotypes. It is time to ascribe greater importance to QS-dependent phenotypic heterogeneity, and its potential purpose in natura, with emphasis on the division of labor, specialization, and "bet-hedging". We hope that this perspective article will stimulate the awareness that QS can be more than just a cell-density switch. This basic mechanism could result in "bacterial civilizations", thus forcing us to reconsider the way bacterial communities are envisioned in natura.
Collapse
Affiliation(s)
- Mihael Spacapan
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
9
|
Henrion L, Martinez JA, Vandenbroucke V, Delvenne M, Telek S, Zicler A, Grünberger A, Delvigne F. Fitness cost associated with cell phenotypic switching drives population diversification dynamics and controllability. Nat Commun 2023; 14:6128. [PMID: 37783690 PMCID: PMC10545768 DOI: 10.1038/s41467-023-41917-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
Isogenic cell populations can cope with stress conditions by switching to alternative phenotypes. Even if it can lead to increased fitness in a natural context, this feature is typically unwanted for a range of applications (e.g., bioproduction, synthetic biology, and biomedicine) where it tends to make cellular response unpredictable. However, little is known about the diversification profiles that can be adopted by a cell population. Here, we characterize the diversification dynamics for various systems (bacteria and yeast) and for different phenotypes (utilization of alternative carbon sources, general stress response and more complex development patterns). Our results suggest that the diversification dynamics and the fitness cost associated with cell switching are coupled. To quantify the contribution of the switching cost on population dynamics, we design a stochastic model that let us reproduce the dynamics observed experimentally and identify three diversification regimes, i.e., constrained (at low switching cost), dispersed (at medium and high switching cost), and bursty (for very high switching cost). Furthermore, we use a cell-machine interface called Segregostat to demonstrate that different levels of control can be applied to these diversification regimes, enabling applications involving more precise cellular responses.
Collapse
Affiliation(s)
- Lucas Henrion
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Juan Andres Martinez
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Vincent Vandenbroucke
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mathéo Delvenne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Samuel Telek
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Andrew Zicler
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Alexander Grünberger
- Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
10
|
Schirmer M, Dusny C. Microbial single-cell mass spectrometry: status, challenges, and prospects. Curr Opin Biotechnol 2023; 83:102977. [PMID: 37515936 DOI: 10.1016/j.copbio.2023.102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Single-cell analysis uncovers phenotypic differences between cells in a population and dissects their individual physiological states and differences on all omics levels from genome to phenome. Spectrometric observation allows label-free analysis of the metabolome and proteome of individual cells, but is still mainly limited to the analysis of mammalian single cells. Recent progress in mass spectrometry approaches now enables the analysis of microbial single cells - mainly by miniaturizing cell handling, incubation, and improving chip-coupling concepts for analyte ionization by interfacing microfluidic chips and mass spectrometers. This review aims at distilling the enabling principles behind microbial single-cell mass spectrometry and puts them into perspective for the future of the field.
Collapse
Affiliation(s)
- Martin Schirmer
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany
| | - Christian Dusny
- Department of Solar Materials - Microscale Analysis and Engineering, Helmholtz-Centre for Environmental Research - UFZ Leipzig, Leizpig, Germany.
| |
Collapse
|
11
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Bartelds MW, García-Blay Ó, Verhagen PGA, Wubbolts EJ, van Sluijs B, Heus HA, de Greef TFA, Huck WTS, Hansen MMK. Noise Minimization in Cell-Free Gene Expression. ACS Synth Biol 2023; 12:2217-2225. [PMID: 37478000 PMCID: PMC10443034 DOI: 10.1021/acssynbio.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 07/23/2023]
Abstract
Biochemical reactions that involve small numbers of molecules are accompanied by a degree of inherent randomness that results in noisy reaction outcomes. In synthetic biology, the ability to minimize noise particularly during the reconstitution of future synthetic protocells is an outstanding challenge to secure robust and reproducible behavior. Here we show that by encapsulation of a bacterial cell-free gene expression system in water-in-oil droplets, in vitro-synthesized MazF reduces cell-free gene expression noise >2-fold. With stochastic simulations we identify that this noise minimization acts through both increased degradation and the autoregulatory feedback of MazF. Specifically, we find that the expression of MazF enhances the degradation rate of mRNA up to 18-fold in a sequence-dependent manner. This sequence specificity of MazF would allow targeted noise control, making it ideal to integrate into synthetic gene networks. Therefore, including MazF production in synthetic biology can significantly minimize gene expression noise, impacting future design principles of more complex cell-free gene circuits.
Collapse
Affiliation(s)
- Mart W. Bartelds
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Óscar García-Blay
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Pieter G. A. Verhagen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elise J. Wubbolts
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Bob van Sluijs
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tom F. A. de Greef
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Center
for Living Technologies, Eindhoven-Wageningen-Utrecht
Alliance, 5600 MB Eindhoven, The Netherlands
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maike M. K. Hansen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Fu Y, Xu R, Yang B, Wu Y, Xia L, Tawfik A, Meng F. Mediation of Bacterial Interactions via a Novel Membrane-Based Segregator to Enhance Biological Nitrogen Removal. Appl Environ Microbiol 2023; 89:e0070923. [PMID: 37404187 PMCID: PMC10370321 DOI: 10.1128/aem.00709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The regulation of microbial subpopulations in wastewater treatment plants (WWTPs) with desired functions can guarantee nutrient removal. In nature, "good fences make good neighbors," which can be applied to engineering microbial consortia. Herein, a membrane-based segregator (MBSR) was proposed, where porous membranes not only promote the diffusion of metabolic products but also isolate incompatible microbes. The MBSR was integrated with an anoxic/aerobic membrane bioreactor (i.e., an experimental MBR). The long-term operation showed that the experimental MBR exhibited higher nitrogen removal (10.45 ± 2.73 mg/L total nitrogen) than the control MBR (21.68 ± 4.23 mg/L) in the effluent. The MBSR resulted in much lower oxygen reduction potential in the anoxic tank of the experimental MBR (-82.00 mV) compared to that of the control MBR (83.25 mV). The lower oxygen reduction potential can inevitably aid in the occurrence of denitrification. The 16S rRNA sequencing showed that the MBSR significantly enriched acidogenic consortia, which yielded considerable volatile fatty acids by fermenting the added carbon sources and allowed efficient transfer of these small molecules to the denitrifying community. Moreover, the sludge communities of the experimental MBR harbored a higher abundance of denitrifying bacteria than those of the control MBR. Metagenomic analysis further corroborated these sequencing results. The spatially structured microbial communities in the experimental MBR system demonstrate the practicability of the MBSR, achieving nitrogen removal efficiency superior to that of mixed populations. Our study provides an engineering method for modulating the assembly and metabolic division of labor of subpopulations in WWTPs. IMPORTANCE This study provides an innovative and applicable method for regulating subpopulations (activated sludge and acidogenic consortia), which contributes to the precise control of the metabolic division of labor in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Boyi Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Yingxin Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Lichao Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Cairo, Egypt
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
14
|
Hoang MD, Riessner S, Oropeza Vargas JE, von den Eichen N, Heins AL. Influence of Varying Pre-Culture Conditions on the Level of Population Heterogeneity in Batch Cultures with an Escherichia coli Triple Reporter Strain. Microorganisms 2023; 11:1763. [PMID: 37512936 PMCID: PMC10384452 DOI: 10.3390/microorganisms11071763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
When targeting robust, high-yielding bioprocesses, phenomena such as population heterogeneity have to be considered. Therefore, the influence of the conditions which the cells experience prior to the main culture should also be evaluated. Here, the influence of a pre-culture medium (complex vs. minimal medium), optical density for inoculation of the main culture (0.005, 0.02 and 0.0125) and harvest time points of the pre-culture in exponential growth phase (early, mid and late) on the level of population heterogeneity in batch cultures of the Escherichia coli triple reporter strain G7BL21(DE3) in stirred-tank bioreactors was studied. This strain allows monitoring the growth (rrnB-EmGFP), general stress response (rpoS-mStrawberry) and oxygen limitation (nar-TagRFP657) of single cells through the expression of fluorescent proteins. Data from batch cultivations with varying pre-culture conditions were analysed with principal component analysis. According to fluorescence data, the pre-culture medium had the largest impact on population heterogeneities during the bioprocess. While a minimal medium as a pre-culture medium elevated the differences in cellular growth behaviour in the subsequent batch process, a complex medium increased the general stress response and led to a higher population heterogeneity. The latter was promoted by an early harvest of the cells with low inoculation density. Seemingly, nar-operon expression acted independently of the pre-culture conditions.
Collapse
Affiliation(s)
- Manh Dat Hoang
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
| | - Sophi Riessner
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
| | - Jose Enrique Oropeza Vargas
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
| | - Nikolas von den Eichen
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
| | - Anna-Lena Heins
- Chair of Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
15
|
Tosaka T, Kamiya K. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Int J Mol Sci 2023; 24:ijms24087231. [PMID: 37108393 PMCID: PMC10138308 DOI: 10.3390/ijms24087231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Membrane proteins play an important role in key cellular functions, such as signal transduction, apoptosis, and metabolism. Therefore, structural and functional studies of these proteins are essential in fields such as fundamental biology, medical science, pharmacology, biotechnology, and bioengineering. However, observing the precise elemental reactions and structures of membrane proteins is difficult, despite their functioning through interactions with various biomolecules in living cells. To investigate these properties, methodologies have been developed to study the functions of membrane proteins that have been purified from biological cells. In this paper, we introduce various methods for creating liposomes or lipid vesicles, from conventional to recent approaches, as well as techniques for reconstituting membrane proteins into artificial membranes. We also cover the different types of artificial membranes that can be used to observe the functions of reconstituted membrane proteins, including their structure, number of transmembrane domains, and functional type. Finally, we discuss the reconstitution of membrane proteins using a cell-free synthesis system and the reconstitution and function of multiple membrane proteins.
Collapse
Affiliation(s)
- Toshiyuki Tosaka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
16
|
PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene. Metab Eng 2023; 77:12-20. [PMID: 36889504 DOI: 10.1016/j.ymben.2023.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Food wastes can be hydrolyzed into soluble microbial substrates, contributing to sustainability. Halomonas spp.-based Next Generation Industrial Biotechnology (NGIB) allows open, unsterile fermentation, eliminating the need for sterilization to avoid the Maillard reaction that negatively affects cell growth. This is especially important for food waste hydrolysates, which have a high nutrient content but are unstable due to batch, sources, or storage conditions. These make them unsuitable for polyhydroxyalkanoate (PHA) production, which usually requires limitation on either nitrogen, phosphorous, or sulfur. In this study, H. bluephagenesis was constructed by overexpressing the PHA synthesis operon phaCABCn (cloned from Cupriavidus necator) controlled by the essential gene ompW (encoding outer membrane protein W) promoter and the constitutive porin promoter that are continuously expressed at high levels throughout the cell growth process, allowing poly(3-hydroxybutyrate) (PHB) production to proceed in nutrient-rich (also nitrogen-rich) food waste hydrolysates of various sources. The recombinant H. bluephagenesis termed WZY278 generated 22 g L-1 cell dry weight (CDW) containing 80 wt% PHB when cultured in food waste hydrolysates in shake flasks, and it was grown to 70 g L-1 CDW containing 80 wt% PHB in a 7-L bioreactor via fed-batch cultivation. Thus, unsterilizable food waste hydrolysates can become nutrient-rich substrates for PHB production by H. bluephagenesis able to be grown contamination-free under open conditions.
Collapse
|
17
|
Täuber S, Grünberger A. Microfluidic single-cell scale-down systems: introduction, application, and future challenges. Curr Opin Biotechnol 2023; 81:102915. [PMID: 36871470 DOI: 10.1016/j.copbio.2023.102915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Performance losses during the scaling-up of bioprocesses from the laboratory to the production scale are common obstacles caused by the formation of concentration gradients in bioreactors. To overcome these obstacles, so-called scale-down bioreactors are used to analyze selected large-scale conditions and are one of the most important predictive tools for the successful transfer of bioprocesses from the lab to the industrial scale. In this regard, cellular behavior is usually measured as an averaged value, neglecting possible cell-to-cell heterogeneity within the culture. In contrast, microfluidic single-cell cultivation (MSCC) systems offer the possibility of understanding cellular processes on a single-cell level. To date, most MSCC systems have a limited choice of cultivation parameters that are not representative of bioprocess-relevant environmental conditions. Herein, we critically review recent advances in MSCC that allow the cultivation and analysis of cells under dynamic (bioprocess-relevant) environmental conditions. Finally, we discuss what technological advances and efforts are needed to bridge the gap between current MSCC systems and the use of these systems as single-cell scale-down devices.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Bielefeld, Germany; Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
18
|
Simas RG, Pessoa Junior A, Long PF. Mechanistic aspects of IPTG (isopropylthio-β-galactoside) transport across the cytoplasmic membrane of Escherichia coli-a rate limiting step in the induction of recombinant protein expression. J Ind Microbiol Biotechnol 2023; 50:kuad034. [PMID: 37849239 PMCID: PMC10639102 DOI: 10.1093/jimb/kuad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Coupling transcription of a cloned gene to the lac operon with induction by isopropylthio-β-galactoside (IPTG) has been a favoured approach for recombinant protein expression using Escherichia coli as a heterologous host for more than six decades. Despite a wealth of experimental data gleaned over this period, a quantitative relationship between extracellular IPTG concentration and consequent levels of recombinant protein expression remains surprisingly elusive across a broad spectrum of experimental conditions. This is because gene expression under lac operon regulation is tightly correlated with intracellular IPTG concentration due to allosteric regulation of the lac repressor protein (lacY). An in-silico mathematical model established that uptake of IPTG across the cytoplasmic membrane of E. coli by simple diffusion was negligible. Conversely, lacY mediated active transport was a rapid process, taking only some seconds for internal and external IPTG concentrations to equalize. Optimizing kcat and KM parameters by targeted mutation of the galactoside binding site in lacY could be a future strategy to improve the performance of recombinant protein expression. For example, if kcat were reduced whilst KM was increased, active transport of IPTG across the cytoplasmic membrane would be reduced, thereby lessening the metabolic burden on the cell and expediating accumulation of recombinant protein. The computational model described herein is made freely available and is amenable to optimize recombinant protein expression in other heterologous hosts. ONE-SENTENCE SUMMARY A computational model made freely available to optimize recombinant protein expression in Escherichia coli other heterologous hosts.
Collapse
Affiliation(s)
- Rodrigo G Simas
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, 05508-000 São Paulo, SP, Brazil
| | - Adalberto Pessoa Junior
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, 05508-000 São Paulo, SP, Brazil
| | - Paul F Long
- Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
19
|
Mu X, Zhang F. Diverse mechanisms of bioproduction heterogeneity in fermentation and their control strategies. J Ind Microbiol Biotechnol 2023; 50:kuad033. [PMID: 37791393 PMCID: PMC10583207 DOI: 10.1093/jimb/kuad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Microbial bioproduction often faces challenges related to populational heterogeneity, where cells exhibit varying biosynthesis capabilities. Bioproduction heterogeneity can stem from genetic and non-genetic factors, resulting in decreased titer, yield, stability, and reproducibility. Consequently, understanding and controlling bioproduction heterogeneity are crucial for enhancing the economic competitiveness of large-scale biomanufacturing. In this review, we provide a comprehensive overview of current understandings of the various mechanisms underlying bioproduction heterogeneity. Additionally, we examine common strategies for controlling bioproduction heterogeneity based on these mechanisms. By implementing more robust measures to mitigate heterogeneity, we anticipate substantial enhancements in the scalability and stability of bioproduction processes. ONE-SENTENCE SUMMARY This review summarizes current understandings of different mechanisms of bioproduction heterogeneity and common control strategies based on these mechanisms.
Collapse
Affiliation(s)
- Xinyue Mu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
20
|
Delvigne F, Henrion L, Vandenbroucke V, Martinez JA. Avoiding the All-or-None Response in Gene Expression During E. coli Continuous Cultivation Based on the On-Line Monitoring of Cell Phenotypic Switching Dynamics. Methods Mol Biol 2023; 2617:103-120. [PMID: 36656519 DOI: 10.1007/978-1-0716-2930-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Different expression vectors are available for the effective production of recombinant proteins by bacterial populations. However, the productivity of such systems is limited by the inherent noise of the gene circuits used for the synthesis of recombinant products. An extreme case of cell-to-cell heterogeneity that has been previously reported for the ara- and lac-based expression systems in E. coli is the all-or-none response. According to this mode of response, two subpopulations of cells are generated, i.e., a "low-" subpopulation exhibiting a shallow expression level and a "high-" subpopulation exhibiting a high-expression level. The "low-" subpopulation can be considered as a cluster of non-producing cells contributing to the loss of productivity. Here we describe the setup, design, and operation of a continuous culture where inducer addition is operated based on microbial population dynamics. The determination of population dynamics is done based on an automated flow cytometry (FC) procedure previously denoted as segregostat. We illustrate how this setup can be used to control the activation of an ara-based expression system and avoid phenotypic diversification leading to an all-or-none response. Upon the determination of the natural frequency of the gene circuit used as an expression system, our current protocol can be set up without the requirement of a feedback controller.
Collapse
Affiliation(s)
- Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Lucas Henrion
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Vincent Vandenbroucke
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Juan Andres Martinez
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
21
|
Hoang MD, Doan DT, Schmidt M, Kranz H, Kremling A, Heins A. Application of an Escherichia coli triple reporter strain for at-line monitoring of single-cell physiology during L-phenylalanine production. Eng Life Sci 2023; 23:e2100162. [PMID: 36619877 PMCID: PMC9815085 DOI: 10.1002/elsc.202100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Biotechnological production processes are sustainable approaches for the production of biobased components such as amino acids for food and feed industry. Scale-up from ideal lab-scale bioreactors to large-scale processes is often accompanied by loss in productivity. This may be related to population heterogeneities of cells originating from isogenic cultures that arise due to dynamic non-ideal conditions in the bioreactor. To better understand this phenomenon, deeper insights into single-cell physiologies in bioprocesses are mandatory before scale-up. Here, a triple reporter strain (3RP) was developed by chromosomally integrating the fluorescent proteins mEmerald, CyOFP1, and mTagBFP2 into the L-phenylalanine producing Escherichia coli strain FUS4 (pF81kan) to allow monitoring of growth, oxygen availability, and general stress response of the single cells. Functionality of the 3RP was confirmed in well-mixed lab-scale fed-batch processes with glycerol as carbon source in comparison to the strain without fluorescent proteins, leading to no difference in process performance. Fluorescence levels could successfully reflect the course of related process state variables, revealed population heterogeneities during the transition between different process phases and potentially subpopulations that exhibit superior process performance. Furthermore, indications were found for noise in gene expression as regulation strategy against environmental perturbation.
Collapse
Affiliation(s)
- Manh Dat Hoang
- Chair of Biochemical EngineeringDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Dieu Thi Doan
- Systems BiotechnologyDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Marlen Schmidt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | - Harald Kranz
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | - Andreas Kremling
- Systems BiotechnologyDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Anna‐Lena Heins
- Chair of Biochemical EngineeringDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| |
Collapse
|
22
|
Martinez JA, Delvenne M, Henrion L, Moreno F, Telek S, Dusny C, Delvigne F. Controlling microbial co-culture based on substrate pulsing can lead to stability through differential fitness advantages. PLoS Comput Biol 2022; 18:e1010674. [PMID: 36315576 PMCID: PMC9648842 DOI: 10.1371/journal.pcbi.1010674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/10/2022] [Accepted: 10/22/2022] [Indexed: 11/12/2022] Open
Abstract
Microbial consortia are an exciting alternative for increasing the performances of bioprocesses for the production of complex metabolic products. However, the functional properties of microbial communities remain challenging to control, considering the complex interaction mechanisms occurring between co-cultured microbial species. Indeed, microbial communities are highly dynamic and can adapt to changing environmental conditions through complex mechanisms, such as phenotypic diversification. We focused on stabilizing a co-culture of Saccharomyces cerevisiae and Escherichia coli in continuous cultures. Our preliminary data pointed out that transient diauxic shifts could lead to stable co-culture by providing periodic fitness advantages to the yeast. Based on a computational toolbox called MONCKS (for MONod-type Co-culture Kinetic Simulation), we were able to predict the dynamics of diauxic shift for both species based on a cybernetic approach. This toolbox was further used to predict the frequency of diauxic shift to be applied to reach co-culture stability. These simulations were successfully reproduced experimentally in continuous bioreactors with glucose pulsing. Finally, based on a bet-hedging reporter, we observed that the yeast population exhibited an increased phenotypic diversification process in co-culture compared with mono-culture, suggesting that this mechanism could be the basis of the metabolic fitness of the yeast. Being able to manipulate the dynamics of microbial co-cultures is a technical challenge that need to be addressed in order to get a deeper insight about how microbial communities are evolving in their ecological context, as well as for exploiting the potential offered by such communities in an applied context e.g., for setting up more robust bioprocesses relying on the use of several microbial species. In this study, we used continuous cultures of bacteria (E. coli) and yeast (S. cerevisiae) in order to demonstrate that a simple nutrient pulsing strategy can be used for adjusting the composition of the community with time. As expected, during growth on glucose, E. coli quickly outcompeted S. cerevisiae. However, when glucose is pulsed into the culture, increased metabolic fitness of the yeast was observed upon reconsumption of the main side metabolites i.e., acetate and ethanol, leading to a robust oscillating growth profile for both species. The optimal pulsing frequency was predicted based on a cybernetic version of a Monod growth model taking into account the main metabolic routes involved in the process. Considering the limited number of metabolic details needed, this cybernetic approach could be generalized to other communities.
Collapse
Affiliation(s)
- J. Andres Martinez
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Matheo Delvenne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Lucas Henrion
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Fabian Moreno
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Samuel Telek
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Christian Dusny
- Microscale Analysis and Engineering, Department of Solar Materials, Helmholtz-Centre for Environmental Research- UFZ Leipzig, Leipzig, Germany
| | - Frank Delvigne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
- * E-mail:
| |
Collapse
|
23
|
Co-expression of an isopropanol synthetic operon and eGFP to monitor the robustness of Cupriavidus necator during isopropanol production. Enzyme Microb Technol 2022; 161:110114. [DOI: 10.1016/j.enzmictec.2022.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
|
24
|
Romain B, Delvigne F, Rémond C, Rakotoarivonina H. Control of phenotypic diversification based on serial cultivations on different carbon sources leads to improved bacterial xylanase production. Bioprocess Biosyst Eng 2022; 45:1359-1370. [PMID: 35881245 DOI: 10.1007/s00449-022-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium of interest for the production of thermostable hemicellulases. Enzymes' production by this bacterium is challenging, because the proliferation of a cheating subpopulation of cells during exponential growth impairs the production of xylanase after serial cultivations. Accordingly, a strategy of successive cultivations with cells transfers in stationary phase and the use of wheat bran and wheat straw as carbon sources were tested. The ratio between subpopulations and their corresponding metabolic activities were studied by flow cytometry and the resulting hemicellulases production (xylanase, acetyl esterase and β-xylosidase) followed. During serial cultivations, the results pointed out an increase of the enzymatic activities. On xylan, compared to the first cultivation, the xylanase activity increases by 7.15-fold after only four cultivations. On the other hand, the debranching activities were increased by 5.88-fold and 57.2-fold on wheat straw and by 2.77-fold and 3.34-fold on wheat bran for β-xylosidase and acetyl esterase, respectively. The different enzymatic activities then stabilized, reached a plateau and further decreased. Study of the stability and reversibility of the enzyme production revealed cell-to-cell heterogeneities in metabolic activities which could be linked to the reversibility of enzymatic activity changes. Thus, the strategy of successive transfers during the stationary phase of growth, combined with the use of complex lignocellulosic substrates as carbon sources, is an efficient strategy to optimize the hemicellulases production by T. xylanilyticus, by preventing the selection of cheaters.
Collapse
Affiliation(s)
- Bouchat Romain
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France.,Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | | |
Collapse
|
25
|
Henrion L, Delvenne M, Bajoul Kakahi F, Moreno-Avitia F, Delvigne F. Exploiting Information and Control Theory for Directing Gene Expression in Cell Populations. Front Microbiol 2022; 13:869509. [PMID: 35547126 PMCID: PMC9081792 DOI: 10.3389/fmicb.2022.869509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial populations can adapt to adverse environmental conditions either by appropriately sensing and responding to the changes in their surroundings or by stochastically switching to an alternative phenotypic state. Recent data point out that these two strategies can be exhibited by the same cellular system, depending on the amplitude/frequency of the environmental perturbations and on the architecture of the genetic circuits involved in the adaptation process. Accordingly, several mitigation strategies have been designed for the effective control of microbial populations in different contexts, ranging from biomedicine to bioprocess engineering. Technically, such control strategies have been made possible by the advances made at the level of computational and synthetic biology combined with control theory. However, these control strategies have been applied mostly to synthetic gene circuits, impairing the applicability of the approach to natural circuits. In this review, we argue that it is possible to expand these control strategies to any cellular system and gene circuits based on a metric derived from this information theory, i.e., mutual information (MI). Indeed, based on this metric, it should be possible to characterize the natural frequency of any gene circuits and use it for controlling gene circuits within a population of cells.
Collapse
Affiliation(s)
- Lucas Henrion
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mathéo Delvenne
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Fatemeh Bajoul Kakahi
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Fabian Moreno-Avitia
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), Terra Research and Teaching Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
26
|
Nikolic N, Sauert M, Albanese TG, Moll I. Quantifying heterologous gene expression during ectopic MazF production in Escherichia coli. BMC Res Notes 2022; 15:173. [PMID: 35562780 PMCID: PMC9102682 DOI: 10.1186/s13104-022-06061-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE MazF is a sequence-specific endoribonuclease-toxin of the MazEF toxin-antitoxin system. MazF cleaves single-stranded ribonucleic acid (RNA) regions at adenine-cytosine-adenine (ACA) sequences in the bacterium Escherichia coli. The MazEF system has been used in various biotechnology and synthetic biology applications. In this study, we infer how ectopic mazF overexpression affects production of heterologous proteins. To this end, we quantified the levels of fluorescent proteins expressed in E. coli from reporters translated from the ACA-containing or ACA-less messenger RNAs (mRNAs). Additionally, we addressed the impact of the 5'-untranslated region of these reporter mRNAs under the same conditions by comparing expression from mRNAs that comprise (canonical mRNA) or lack this region (leaderless mRNA). RESULTS Flow cytometry analysis indicates that during mazF overexpression, fluorescent proteins are translated from the canonical as well as leaderless mRNAs. Our analysis further indicates that longer mazF overexpression generally increases the concentration of fluorescent proteins translated from ACA-less mRNAs, however it also substantially increases bacterial population heterogeneity. Finally, our results suggest that the strength and duration of mazF overexpression should be optimized for each experimental setup, to maximize the heterologous protein production and minimize the amount of phenotypic heterogeneity in bacterial populations, which is unfavorable in biotechnological processes.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria.
- Living Systems Institute, University of Exeter, Exeter, UK.
| | - Martina Sauert
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Tanino G Albanese
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
28
|
Abstract
![]()
Stable cell performance
in a fluctuating environment is essential
for sustainable bioproduction and synthetic cell functionality; however,
microbial robustness is rarely quantified. Here, we describe a high-throughput
strategy for quantifying robustness of multiple cellular functions
and strains in a perturbation space. We evaluated quantification theory
on experimental data and concluded that the mean-normalized Fano factor
allowed accurate, reliable, and standardized quantification. Our methodology
applied to perturbations related to lignocellulosic bioethanol production
showed that the industrial bioethanol producing strain Saccharomyces
cerevisiae Ethanol Red exhibited both higher and more robust
growth rates than the laboratory strain CEN.PK and industrial strain
PE-2, while a more robust product yield traded off for lower mean
levels. The methodology validated that robustness is function-specific
and characterized by positive and negative function-specific trade-offs.
Systematic quantification of robustness to end-use perturbations will
be important to analyze and construct robust strains with more predictable
functions.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Peter Rugbjerg
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Enduro Genetics ApS, Copenhagen 2200, Denmark
| |
Collapse
|
29
|
Bao Z, Zhu Y, Zhang K, Feng Y, Zhang M, Li R, Yu L. New insights into phenotypic heterogeneity for the distinct lipid accumulation of Schizochytrium sp. H016. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:33. [PMID: 35337369 PMCID: PMC8957170 DOI: 10.1186/s13068-022-02126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Schizochytrium sp. is a marine heterotrophic protist and an important sustainable resource for high value-added docosahexaenoic acid in the future. The production of different phenotypes during the continuous subculture of Schizochytrium sp. results in a serious reduction in lipid yield and complicates the used of this strain in scientific research and industrial production. Hence, obtaining an improved understanding of the phenotypic differences and molecular mechanisms underlying the cell-to-cell heterogeneity of Schizochytrium sp. is necessary. RESULTS After continuous culture passage, Schizochytrium sp. H016 differentiated into two subpopulations with different morphologies and showed decreased capacity for lipid production. The presence of cell subpopulations with degraded lipid droplets led to a substantial decrease in overall lipid yield. Here, a rapid screening strategy based on fluorescence-activated cell sorting was proposed to classify and isolate subpopulations quickly in accordance with their lipid-producing capability. The final biomass and lipid yield of the subpopulation with high cell lipid content (i.e., H016-H) were 38.83 and 17.22 g/L, respectively, which were 2.07- and 5.38-fold higher than those of the subpopulation with low lipid content (i.e., H016-L), respectively. Subsequently, time‑resolved transcriptome analysis was performed to elucidate the mechanism of phenotypic heterogeneity in different subpopulations. Results showed that the expression of genes related to the cell cycle and lipid degradation was significantly upregulated in H016-L, whereas the metabolic pathways related to fatty acid synthesis and glyceride accumulation were remarkably upregulated in H016-H. CONCLUSION This study innovatively used flow cytometry combined with transcriptome technology to provide new insights into the phenotypic heterogeneity of different cell subpopulations of Schizochytrium sp. Furthermore, these results lay a strong foundation for guiding the breeding of oleaginous microorganisms with high lipid contents.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Ruili Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China. .,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China. .,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
30
|
High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiol Spectr 2022; 10:e0204521. [PMID: 35171018 PMCID: PMC8849057 DOI: 10.1128/spectrum.02045-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating phenotypic heterogeneity in clonal bacterial populations is important for both the fundamental understanding of bacterial behavior and the synthetic engineering of bacteria in biotechnology. In this study, we present and validate a high-throughput and high-resolution time-lapse fluorescence microscopy-based strategy to easily and systematically screen for heterogeneously expressed genes in the Bacillus subtilis model bacterium. This screen allows detection of expression patterns at high spatial and temporal resolution, which often escape detection by other approaches, and can readily be extrapolated to other bacteria. A proof-of-concept screening in B. subtilis revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating the approach. IMPORTANCE Differential gene expression among isogenic siblings often leads to phenotypic heterogeneity and the emergence of complex social behavior and functional capacities within clonal bacterial populations. Despite the importance of such features for both the fundamental understanding and synthetic engineering of bacterial behavior, approaches to systematically map such population heterogeneity are scarce. In this context, we have elaborated a new time-lapse fluorescence microscopy-based strategy to easily and systematically screen for such heterogeneously expressed genes in bacteria with high resolution and throughput. A proof-of-concept screening in the Bacillus subtilis model bacterium revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating our approach.
Collapse
|
31
|
Boy C, Lesage J, Alfenore S, Guillouet SE, Gorret N. Study of plasmid-based expression level heterogeneity under plasmid-curing like conditions in Cupriavidus necator. J Biotechnol 2022; 345:17-29. [PMID: 34995560 DOI: 10.1016/j.jbiotec.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Plasmid expression level heterogeneity in Cupriavidus necator was studied in response to stringent culture conditions, supposed to enhance plasmid instability, through plasmid curing strategies. Two plasmid curing strategies were compared based on their efficiency at generating heterogeneity in batch: rifampicin addition and temperature increase. A temperature increase from 30° to 37 °C was the most efficient plasmid curing strategy. To generate a heterogeneous population in terms of plasmid expression levels, successive batches at supra-optimal culture temperature (i.e. 37 °C) were initially conducted. Three distinct fluorescent subpopulations P0 (not fluorescent), P1 (low fluorescence intensity, median = 1 103) and P2 (high fluorescence intensity, median = 6 103) were obtained. From there, the chemostat culture was implemented to study the long-term stress response under well-controlled environment at defined dilution rates. For dilution rates comprised between 0.05 and 0.10 h-1, the subpopulation P2 (62% vs 90%) was favored compared to P1 cells (54% vs 1%), especially when growth rate increased. Our biosensor was efficient at discriminating subpopulation presenting different expression levels under stringent culture conditions. Plus, we showed that controlling growth kinetics had a stabilizing impact on plasmid expression levels, even under heterogeneous expression conditions.
Collapse
Affiliation(s)
- Catherine Boy
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Julie Lesage
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | | - Nathalie Gorret
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
32
|
Schnabel T, Sattely E. Improved Stability of Engineered Ammonia Production in the Plant-Symbiont Azospirillum brasilense. ACS Synth Biol 2021; 10:2982-2996. [PMID: 34591447 PMCID: PMC8604774 DOI: 10.1021/acssynbio.1c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioavailable nitrogen is the limiting nutrient for most agricultural food production. Associative diazotrophs can colonize crop roots and fix their own bioavailable nitrogen from the atmosphere. Wild-type (WT) associative diazotrophs, however, do not release fixed nitrogen in culture and are not known to directly transfer fixed nitrogen resources to plants. Efforts to engineer diazotrophs for plant nitrogen provision as an alternative to chemical fertilization have yielded several strains that transiently release ammonia. However, these strains suffer from selection pressure for nonproducers, which rapidly deplete ammonia accumulating in culture, likely limiting their potential for plant growth promotion (PGP). Here we report engineered Azospirillum brasilense strains with significantly extend ammonia production lifetimes of up to 32 days in culture. Our approach relies on multicopy genetic redundancy of a unidirectional adenylyltransferase (uAT) as a posttranslational mechanism to induce ammonia release via glutamine synthetase deactivation. Testing our multicopy stable strains with the model monocot Setaria viridis in hydroponic monoassociation reveals improvement in plant growth promotion compared to single copy strains. In contrast, inoculation of Zea mays in nitrogen-poor, nonsterile soil does not lead to increased PGP relative to WT, suggesting strain health, resource competition, or colonization capacity in soil may also be limiting factors. In this context, we show that while engineered strains fix more nitrogen per cell compared to WT strains, the expression strength of multiple uAT copies needs to be carefully balanced to maximize ammonia production rates and avoid excessive fitness defects caused by excessive glutamine synthetase shutdown.
Collapse
Affiliation(s)
- Tim Schnabel
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University and HHMI, Stanford, California 94305, United States
| |
Collapse
|
33
|
Boy C, Lesage J, Alfenore S, Guillouet SE, Gorret N. Investigation of the robustness of Cupriavidus necator engineered strains during fed-batch cultures. AMB Express 2021; 11:151. [PMID: 34783891 PMCID: PMC8595445 DOI: 10.1186/s13568-021-01307-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
It is of major interest to ensure stable and performant microbial bioprocesses, therefore maintaining high strain robustness is one of the major future challenges in industrial microbiology. Strain robustness can be defined as the persistence of genotypic and/or phenotypic traits in a system. In this work, robustness of an engineered strain is defined as plasmid expression stability, cultivability, membrane integrity and macroscopic cell behavior and was assessed in response to implementations of sugar feeding strategies (pulses and continuous) and two plasmid stabilization systems (kanamycin resistance and Post-Segregational Killing hok/sok). Fed-batch bioreactor cultures, relevant mode to reach high cell densities and higher cell generation number, were implemented to investigate the robustness of C. necator engineered strains. Host cells bore a recombinant plasmid encoding for a plasmid expression level monitoring system, based on eGFP fluorescence quantified by flow cytometry. We first showed that well-controlled continuous feeding in comparison to a pulse-based feeding allowed a better carbon use for protein synthesis (avoiding organic acid excretion), a lower heterogeneity of the plasmid expression and a lower cell permeabilization. Moreover, the plasmid stabilization system Post-Segregational Killing hok/sok, an autonomous system independent on external addition of compounds, showed the best ability to maintain plasmid expression level stability insuring a greater population homogeneity in the culture. Therefore, in the case of engineered C. necator, the PSK system hok/sok appears to be a relevant and an efficient alternative to antibiotic resistance system for selection pressure, especially, in the case of bioprocess development for economic and environmental reasons.
Collapse
|
34
|
Jusková P, Schmitt S, Armbrecht L, Dittrich PS. Microbial factories: monitoring vitamin B 2 production by Escherichia coli in microfluidic cultivation chambers. LAB ON A CHIP 2021; 21:4071-4080. [PMID: 34618882 PMCID: PMC8547325 DOI: 10.1039/d1lc00621e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Microbial cells represent a standard production host for various important biotechnological products. Production yields can be increased by optimising strains and growth conditions and understanding deviations in production rates over time or within the microbial population. We introduce here microfluidic cultivation chambers for highly parallel studies on microbial cultures, enabling continuous biosynthesis monitoring of the industrially relevant product by Escherichia coli cells. The growth chambers are defined by ring-valves that encapsulate a volume of 200 pL when activated. Bacterial cells, labelled with magnetic beads, are inoculated in a small magnetic trap, positioned in the centre of each chamber. Afterwards, the ring-valves are partially activated, allowing for exchange reagents, such as the addition of fresh media or specific inducers of biosynthesis, while the bacterial cells and their progeny are maintained inside. On this platform, we monitor the production of riboflavin (vitamin B2). We used different variants of a riboflavin-overproducing bacterial strain with different riboflavin production levels and could distinguish them on the level of individual micro-colonies. In addition, we could also observe differences in the bacterial morphology with respect to the production. The presented platform represents a flexible microfluidic tool for further studies of microbial cell factories.
Collapse
Affiliation(s)
- Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
35
|
Waite CJ, Lindström Battle A, Bennett MH, Carey MR, Hong CK, Kotta-Loizou I, Buck M, Schumacher J. Resource Allocation During the Transition to Diazotrophy in Klebsiella oxytoca. Front Microbiol 2021; 12:718487. [PMID: 34434180 PMCID: PMC8381380 DOI: 10.3389/fmicb.2021.718487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Free-living nitrogen-fixing bacteria can improve growth yields of some non-leguminous plants and, if enhanced through bioengineering approaches, have the potential to address major nutrient imbalances in global crop production by supplementing inorganic nitrogen fertilisers. However, nitrogen fixation is a highly resource-costly adaptation and is de-repressed only in environments in which sources of reduced nitrogen are scarce. Here we investigate nitrogen fixation (nif) gene expression and nitrogen starvation response signaling in the model diazotroph Klebsiella oxytoca (Ko) M5a1 during ammonium depletion and the transition to growth on atmospheric N2. Exploratory RNA-sequencing revealed that over 50% of genes were differentially expressed under diazotrophic conditions, among which the nif genes are among the most highly expressed and highly upregulated. Isotopically labelled QconCAT standards were designed for multiplexed, absolute quantification of Nif and nitrogen-stress proteins via multiple reaction monitoring mass spectrometry (MRM-MS). Time-resolved Nif protein concentrations were indicative of bifurcation in the accumulation rates of nitrogenase subunits (NifHDK) and accessory proteins. We estimate that the nitrogenase may account for more than 40% of cell protein during diazotrophic growth and occupy approximately half the active ribosome complement. The concentrations of free amino acids in nitrogen-starved cells were insufficient to support the observed rates of Nif protein expression. Total Nif protein accumulation was reduced 10-fold when the NifK protein was truncated and nitrogenase catalysis lost (nifK1–1203), implying that reinvestment of de novo fixed nitrogen is essential for further nif expression and a complete diazotrophy transition. Several amino acids accumulated in non-fixing ΔnifLA and nifK1–1203 mutants, while the rest remained highly stable despite prolonged N starvation. Monitoring post-translational uridylylation of the PII-type signaling proteins GlnB and GlnK revealed distinct nitrogen regulatory roles in Ko M5a1. GlnK uridylylation was persistent throughout the diazotrophy transition while a ΔglnK mutant exhibited significantly reduced Nif expression and nitrogen fixation activity. Altogether, these findings highlight quantitatively the scale of resource allocation required to enable the nitrogen fixation adaptation to take place once underlying signaling processes are fulfilled. Our work also provides an omics-level framework with which to model nitrogen fixation in free-living diazotrophs and inform rational engineering strategies.
Collapse
Affiliation(s)
- Christopher J Waite
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Mark H Bennett
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Matthew R Carey
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chun K Hong
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jörg Schumacher
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy. Methods Mol Biol 2021. [PMID: 34235654 DOI: 10.1007/978-1-0716-1460-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Studies on cell-to-cell phenotypic variation in microbial populations, with individuals sharing the same genetic background, provide insights not only on bacterial behavior but also on the adaptive spectrum of the population. Phenotypic variation is an innate property of microbial populations, and this can be further amplified under stressful conditions, providing a fitness advantage. Furthermore, phenotypic variation may also precede a latter step of genetic-based diversification, resulting in the transmission of the most beneficial phenotype to the progeny. While population-wide studies provide a measure of the collective average behavior, single-cell studies, which have expanded over the last decade, delve into the behavior of smaller subpopulations that would otherwise remain concealed. In this chapter, we describe approaches to carry out spatiotemporal analysis of individual mycobacterial cells using time-lapse microscopy. Our method encompasses the fabrication of a microfluidic device; the assembly of a microfluidic system suitable for long-term imaging of mycobacteria; and the quantitative analysis of single-cell behavior under varying growth conditions. Phenotypic variation is conceivably associated to the resilience and endurance of mycobacterial cells. Therefore, shedding light on the dynamics of this phenomenon, on the transience or stability of the given phenotype, on its molecular bases and its functional consequences, offers new scope for intervention.
Collapse
|
37
|
Abstract
Recently, there has been a resurgence of interest in continuous bioprocessing as a cost-optimised production strategy, driven by a rising global requirement for recombinant proteins used as biological drugs. This strategy could provide several benefits over traditional batch processing, including smaller bioreactors, smaller facilities, and overall reduced plant footprints and investment costs. Continuous processes may also offer improved product quality and minimise heterogeneity, both in the culture and in the product. In this paper, a model protein, green fluorescent protein (GFP) mut3*, was used to test the recombinant protein expression in an Escherichia coli strain with industrial relevance grown in chemostat. An important factor in enabling stable productivity in continuous cultures is the carbon source. We have studied the viability and heterogeneity of the chemostat cultures using a chemically defined medium based on glucose or glycerol as the single carbon source. As a by-product of biodiesel production, glycerol is expected to become a sustainable alternative substrate to glucose. We have found that although glycerol gives a higher cell density, it also generates higher heterogeneity in the culture and a less stable recombinant protein production. We suggest that manipulating the balance between different subpopulations to increase the proportion of productive cells may be a possible solution for making glycerol a successful alternative to glucose.
Collapse
|
38
|
Burmeister A, Akhtar Q, Hollmann L, Tenhaef N, Hilgers F, Hogenkamp F, Sokolowsky S, Marienhagen J, Noack S, Kohlheyer D, Grünberger A. (Optochemical) Control of Synthetic Microbial Coculture Interactions on a Microcolony Level. ACS Synth Biol 2021; 10:1308-1319. [PMID: 34075749 DOI: 10.1021/acssynbio.0c00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic microbial cocultures carry enormous potential for applied biotechnology and are increasingly the subject of fundamental research. So far, most cocultures have been designed and characterized based on bulk cultivations without considering the potentially highly heterogeneous and diverse single-cell behavior. However, an in-depth understanding of cocultures including their interacting single cells is indispensable for the development of novel cultivation approaches and control of cocultures. We present the development, validation, and experimental characterization of an optochemically controllable bacterial coculture on a microcolony level consisting of two Corynebacterium glutamicum strains. Our coculture combines an l-lysine auxotrophic strain together with a l-lysine-producing variant carrying the genetically IPTG-mediated induction of l-lysine production. We implemented two control approaches utilizing IPTG as inducer molecule. First, unmodified IPTG was supplemented to the culture enabling a medium-based control of the production of l-lysine, which serves as the main interacting component. Second, optochemical control was successfully performed by utilizing photocaged IPTG activated by appropriate illumination. Both control strategies were validated studying cellular growth on a microcolony level. The novel microfluidic single-cell cultivation strategies applied in this work can serve as a blueprint to validate cellular control strategies of synthetic mono- and cocultures with single-cell resolution at defined environmental conditions.
Collapse
Affiliation(s)
- Alina Burmeister
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615 Bielefeld, Germany
| | - Qiratt Akhtar
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lina Hollmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sascha Sokolowsky
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Aachener Verfahrenstechnik (AVT-MSB), RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
39
|
Nguyen TM, Telek S, Zicler A, Martinez JA, Zacchetti B, Kopp J, Slouka C, Herwig C, Grünberger A, Delvigne F. Reducing phenotypic instabilities of a microbial population during continuous cultivation based on cell switching dynamics. Biotechnol Bioeng 2021; 118:3847-3859. [PMID: 34129251 DOI: 10.1002/bit.27860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022]
Abstract
Predicting the fate of individual cells among a microbial population (i.e., growth and gene expression) remains a challenge, especially when this population is exposed to very dynamic environmental conditions, such as those encountered during continuous cultivation. Indeed, the dynamic nature of a continuous cultivation process implies the potential diversification of the microbial population resulting in genotypic and phenotypic heterogeneity. The present work focused on the induction of the arabinose operon in Escherichia coli as a model system to study this diversification process in continuous cultivations. As a preliminary step, the green fluorescent protein (GFP) level triggered by an arabinose-inducible ParaBAD promoter was tracked by flow cytometry in chemostat cultivations with glucose-arabinose co-feeding. For a wide range of glucose-arabinose co-feeding concentrations in the chemostats, the simultaneous occurrence of GFP positive and negative subpopulation was observed. In the second set of experiments, continuous cultivation was performed by adding glucose continuously and arabinose based on the capability of individual cells to switch from low GFP to high GFP expression states, performed with a technology setup called segregostat. In the segregostat cultivation mode, on-line flow cytometry analysis was used for adjusting the arabinose/glucose transitions based on the phenotypic switching profiles of the microbial population. This strategy allowed finding an appropriate arabinose pulsing frequency, leading to prolonged maintenance of the induction level with a limited increase in the phenotypic diversity for more than 60 generations. The results suggest that the steady forcing of individual cells into a given phenotypic trajectory may not be the best strategy for controlling cell populations. Instead, allowing individual cells to switch periodically around a predefined threshold seems to be a more robust strategy leading to oscillations, but within a predictable cell population behavior range.
Collapse
Affiliation(s)
- Thai M Nguyen
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Samuel Telek
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Andrew Zicler
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Juan A Martinez
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Boris Zacchetti
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Slouka
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria.,Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld Germany & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
40
|
Ziegler M, Zieringer J, Döring CL, Paul L, Schaal C, Takors R. Engineering of a robust Escherichia coli chassis and exploitation for large-scale production processes. Metab Eng 2021; 67:75-87. [PMID: 34098100 DOI: 10.1016/j.ymben.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR-PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering microbial hosts for large-scale applications.
Collapse
Affiliation(s)
- Martin Ziegler
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Julia Zieringer
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Clarissa-Laura Döring
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Liv Paul
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Christoph Schaal
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Ralf Takors
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
41
|
Cascaded processing enables continuous upstream processing with E. coli BL21(DE3). Sci Rep 2021; 11:11477. [PMID: 34075099 PMCID: PMC8169658 DOI: 10.1038/s41598-021-90899-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
In many industrial sectors continuous processing is already the golden standard to maximize productivity. However, when working with living cells, subpopulation formation causes instabilities in long-term cultivations. In cascaded continuous cultivation, biomass formation and recombinant protein expression can be spatially separated. This cultivation mode was found to facilitate stable protein expression using microbial hosts, however mechanistic knowledge of this cultivation strategy is scarce. In this contribution we present a method workflow to reduce workload and accelerate the establishment of stable continuous processes with E. coli BL21(DE3) exclusively based on bioengineering methods.
Collapse
|
42
|
Hartline CJ, Schmitz AC, Han Y, Zhang F. Dynamic control in metabolic engineering: Theories, tools, and applications. Metab Eng 2021; 63:126-140. [PMID: 32927059 PMCID: PMC8015268 DOI: 10.1016/j.ymben.2020.08.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Metabolic engineering has allowed the production of a diverse number of valuable chemicals using microbial organisms. Many biological challenges for improving bio-production exist which limit performance and slow the commercialization of metabolically engineered systems. Dynamic metabolic engineering is a rapidly developing field that seeks to address these challenges through the design of genetically encoded metabolic control systems which allow cells to autonomously adjust their flux in response to their external and internal metabolic state. This review first discusses theoretical works which provide mechanistic insights and design choices for dynamic control systems including two-stage, continuous, and population behavior control strategies. Next, we summarize molecular mechanisms for various sensors and actuators which enable dynamic metabolic control in microbial systems. Finally, important applications of dynamic control to the production of several metabolite products are highlighted, including fatty acids, aromatics, and terpene compounds. Altogether, this review provides a comprehensive overview of the progress, advances, and prospects in the design of dynamic control systems for improved titer, rate, and yield metrics in metabolic engineering.
Collapse
Affiliation(s)
- Christopher J Hartline
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Alexander C Schmitz
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
43
|
Potential of Integrating Model-Based Design of Experiments Approaches and Process Analytical Technologies for Bioprocess Scale-Down. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 33381857 DOI: 10.1007/10_2020_154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Typically, bioprocesses on an industrial scale are dynamic systems with a certain degree of variability, system inhomogeneities, and even population heterogeneities. Therefore, the scaling of such processes from laboratory to industrial scale and vice versa is not a trivial task. Traditional scale-down methodologies consider several technical parameters, so that systems on the laboratory scale tend to qualitatively reflect large-scale effects, but not the dynamic situation in an industrial bioreactor over the entire process, from the perspective of a cell. Supported by the enormous increase in computing power, the latest scientific focus is on the application of dynamic models, in combination with computational fluid dynamics to quantitatively describe cell behavior. These models allow the description of possible cellular lifelines which in turn can be used to derive a regime analysis for scale-down experiments. However, the approaches described so far, which were for a very few process examples, are very labor- and time-intensive and cannot be validated easily. In parallel, alternatives have been developed based on the description of the industrial process with hybrid process models, which describe a process mechanistically as far as possible in order to determine the essential process parameters with their respective variances. On-line analytical methods allow the characterization of population heterogeneity directly in the process. This detailed information from the industrial process can be used in laboratory screening systems to select relevant conditions in which the cell and process related parameters reflect the situation in the industrial scale. In our opinion, these technologies, which are available in research for modeling biological systems, in combination with process analytical techniques are so far developed that they can be implemented in industrial routines for faster development of new processes and optimization of existing ones.
Collapse
|
44
|
Tonn MK, Thomas P, Barahona M, Oyarzún DA. Computation of Single-Cell Metabolite Distributions Using Mixture Models. Front Cell Dev Biol 2020; 8:614832. [PMID: 33415109 PMCID: PMC7783310 DOI: 10.3389/fcell.2020.614832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic heterogeneity is widely recognized as the next challenge in our understanding of non-genetic variation. A growing body of evidence suggests that metabolic heterogeneity may result from the inherent stochasticity of intracellular events. However, metabolism has been traditionally viewed as a purely deterministic process, on the basis that highly abundant metabolites tend to filter out stochastic phenomena. Here we bridge this gap with a general method for prediction of metabolite distributions across single cells. By exploiting the separation of time scales between enzyme expression and enzyme kinetics, our method produces estimates for metabolite distributions without the lengthy stochastic simulations that would be typically required for large metabolic models. The metabolite distributions take the form of Gaussian mixture models that are directly computable from single-cell expression data and standard deterministic models for metabolic pathways. The proposed mixture models provide a systematic method to predict the impact of biochemical parameters on metabolite distributions. Our method lays the groundwork for identifying the molecular processes that shape metabolic heterogeneity and its functional implications in disease.
Collapse
Affiliation(s)
- Mona K. Tonn
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Philipp Thomas
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Diego A. Oyarzún
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Kopp J, Kittler S, Slouka C, Herwig C, Spadiut O, Wurm DJ. Repetitive Fed-Batch: A Promising Process Mode for Biomanufacturing With E. coli. Front Bioeng Biotechnol 2020; 8:573607. [PMID: 33240864 PMCID: PMC7683717 DOI: 10.3389/fbioe.2020.573607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recombinant protein production with Escherichia coli is usually carried out in fed-batch mode in industry. As set-up and cleaning of equipment are time- and cost-intensive, it would be economically and environmentally favorable to reduce the number of these procedures. Switching from fed-batch to continuous biomanufacturing with microbials is not yet applied as these cultivations still suffer from time-dependent variations in productivity. Repetitive fed-batch process technology facilitates critical equipment usage, reduces the environmental fingerprint and potentially increases the overall space-time yield. Surprisingly, studies on repetitive fed-batch processes for recombinant protein production can be found for yeasts only. Knowledge on repetitive fed-batch cultivation technology for recombinant protein production in E. coli is not available until now. In this study, a mixed feed approach, enabling repetitive fed-batch technology for recombinant protein production in E. coli, was developed. Effects of the cultivation mode on the space-time yield for a single-cycle fed-batch, a two-cycle repetitive fed-batch, a three-cycle repetitive fed batch and a chemostat cultivation were investigated. For that purpose, we used two different E. coli strains, expressing a model protein in the cytoplasm or in the periplasm, respectively. Our results demonstrate that a repetitive fed-batch for E. coli leads to a higher space-time yield compared to a single-cycle fed-batch and can potentially outperform continuous biomanufacturing. For the first time, we were able to show that repetitive fed-batch technology is highly suitable for recombinant protein production in E. coli using our mixed feeding approach, as it potentially (i) improves product throughput by using critical equipment to its full capacity and (ii) allows implementation of a more economic process by reducing cleaning and set-up times.
Collapse
Affiliation(s)
| | | | | | | | | | - David J. Wurm
- Research Area Biochemical Engineering, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
46
|
Rugbjerg P, Olsson L. The future of self-selecting and stable fermentations. J Ind Microbiol Biotechnol 2020; 47:993-1004. [PMID: 33136197 PMCID: PMC7695646 DOI: 10.1007/s10295-020-02325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
Unfavorable cell heterogeneity is a frequent risk during bioprocess scale-up and characterized by rising frequencies of low-producing cells. Low-producing cells emerge by both non-genetic and genetic variation and will enrich due to their higher specific growth rate during the extended number of cell divisions of large-scale bioproduction. Here, we discuss recent strategies for synthetic stabilization of fermentation populations and argue for their application to make cell factory designs that better suit industrial needs. Genotype-directed strategies leverage DNA-sequencing data to inform strain design. Self-selecting phenotype-directed strategies couple high production with cell proliferation, either by redirected metabolic pathways or synthetic product biosensing to enrich for high-performing cell variants. Evaluating production stability early in new cell factory projects will guide heterogeneity-reducing design choices. As good initial metrics, we propose production half-life from standardized serial-passage stability screens and production load, quantified as production-associated percent-wise growth rate reduction. Incorporating more stable genetic designs will greatly increase scalability of future cell factories through sustaining a high-production phenotype and enabling stable long-term production.
Collapse
Affiliation(s)
- Peter Rugbjerg
- Enduro Genetics ApS, Copenhagen, Denmark. .,Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
47
|
Kittler S, Kopp J, Veelenturf PG, Spadiut O, Delvigne F, Herwig C, Slouka C. The Lazarus Escherichia coli Effect: Recovery of Productivity on Glycerol/Lactose Mixed Feed in Continuous Biomanufacturing. Front Bioeng Biotechnol 2020; 8:993. [PMID: 32903513 PMCID: PMC7438448 DOI: 10.3389/fbioe.2020.00993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Continuous cultivation with Escherichia coli has several benefits compared to classical fed-batch cultivation. The economic benefits would be a stable process, which leads to time independent quality of the product, and hence ease the downstream process. However, continuous biomanufacturing with E. coli is known to exhibit a drop of productivity after about 4–5 days of cultivation depending on dilution rate. These cultivations are generally performed on glucose, being the favorite carbon source for E. coli and used in combination with isopropyl β-D-1 thiogalactopyranoside (IPTG) for induction. In recent works, harsh induction with IPTG was changed to softer induction using lactose for T7-based plasmids, with the result of reducing the metabolic stress and tunability of productivity. These mixed feed systems based on glucose and lactose result in high amounts of correctly folded protein. In this study we used different mixed feed systems with glucose/lactose and glycerol/lactose to investigate productivity of E. coli based chemostats. We tested different strains producing three model proteins, with the final aim of a stable long-time protein expression. While glucose fed chemostats showed the well-known drop in productivity after a certain process time, glycerol fed cultivations recovered productivity after about 150 h of induction, which corresponds to around 30 generation times. We want to further highlight that the cellular response upon galactose utilization in E. coli BL21(DE3), might be causing fluctuating productivity, as galactose is referred to be a weak inducer. This “Lazarus” phenomenon has not been described in literature before and may enable a stabilization of continuous cultivation with E. coli using different carbon sources.
Collapse
Affiliation(s)
- Stefan Kittler
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, TU Vienna, Vienna, Austria
| | - Patrick Gwen Veelenturf
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, TU Vienna, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech - Université de Liège, Gembloux, Belgium
| | - Christoph Herwig
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Bioscience Engineering, TU Vienna, Vienna, Austria
| | - Christoph Slouka
- Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
48
|
Wang G, Haringa C, Noorman H, Chu J, Zhuang Y. Developing a Computational Framework To Advance Bioprocess Scale-Up. Trends Biotechnol 2020; 38:846-856. [DOI: 10.1016/j.tibtech.2020.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/10/2023]
|
49
|
Burgess Tornaletti L, Manina G. Delving Into the Functional Meaning of Phenotypic Variation in Mycobacterial Persistence: Who Benefits the Most From Programmed Death of Individual Cells? Microbiol Insights 2020; 13:1178636120945304. [PMID: 32782432 PMCID: PMC7385815 DOI: 10.1177/1178636120945304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022] Open
Abstract
The lengthy tuberculosis therapy is emblematic of how hard drug-persistent infections are to eradicate. Phenotypic variation within clonal bacterial communities contributes to drug evasion and has major implications for the treatment of drug-persistent infections. We reported that single mycobacterial cells exhibit differential drug susceptibility, contingent on their inherent phenotypic variation in DNA damage response. Individual cells experiencing severe DNA damage massively induce the SOS response and exhibit signs of programmed cell death (PCD), such as unbalanced growth, chromosomal fragmentation, autolysis, and release of the intracellular content. Toxin-antitoxin systems are known to contribute to PCD in model microorganisms by targeting essential cellular processes, and they might function similarly in mycobacteria. We have found that the toxin MazF and a Clp protease, possibly responsible for degrading the MazF cognate antitoxin MazE, are induced during harsh conditions in a model organism for tuberculosis, and that cells that are about to lyse from drug exposure display a buildup of toxin. Deeper analysis of PCD in mycobacteria may reveal whether this process belongs to a broader strategy for the community's survival. Finally, disrupting the balance between survival and PCD may prove useful to tackle drug evasion in mycobacterial persistent subpopulations.
Collapse
Affiliation(s)
- Laura Burgess Tornaletti
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, and Microbiology Department, Institut Pasteur, Paris, France
| | - Giulia Manina
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, and Microbiology Department, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Schirmer M, Wink K, Ohla S, Belder D, Schmid A, Dusny C. Conversion Efficiencies of a Few Living Microbial Cells Detected at a High Throughput by Droplet-Based ESI-MS. Anal Chem 2020; 92:10700-10708. [DOI: 10.1021/acs.analchem.0c01839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Martin Schirmer
- Helmholtz Centre for Environmental Research−UFZ Leipzig, Leipzig 04318, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Leipzig 04103, Germany
| | - Stefan Ohla
- Institute of Analytical Chemistry, Leipzig University, Leipzig 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Leipzig 04103, Germany
| | - Andreas Schmid
- Helmholtz Centre for Environmental Research−UFZ Leipzig, Leipzig 04318, Germany
| | - Christian Dusny
- Helmholtz Centre for Environmental Research−UFZ Leipzig, Leipzig 04318, Germany
| |
Collapse
|