1
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
2
|
Hautanen V, Morikka J, Saarimäki LA, Bisenberger J, Toimela T, Serra A, Greco D. The in vitro immunomodulatory effect of multi-walled carbon nanotubes by multilayer analysis. NANOIMPACT 2023; 31:100476. [PMID: 37437691 DOI: 10.1016/j.impact.2023.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The study of multi-walled carbon nanotube (MWCNT) induced immunotoxicity is crucial for determining hazards posed to human health. MWCNT exposure most commonly occurs via the airways, where macrophages are first line responders. Here we exploit an in vitro assay, measuring dose-dependent secretion of a wide panel of cytokines, as a measure of immunotoxicity following the non-lethal, multi-dose exposure (IC5, IC10 and IC20) to 7 MWCNTs with different intrinsic properties. We find that a tangled structure, and small aspect ratio are key properties predicting MWCNT induced immunotoxicity, mediated predominantly by IL1B cytokine secretion. To assess the mechanism of action giving rise to MWCNT immunotoxicity, transcriptomics analysis was linked to cytokine secretion in a multilayer model established through correlation analysis across exposure concentrations. This reinforced the finding that tangled MWCNTs have greater immunomodulatory potency, displaying enrichment of immune system, signal transduction and pattern recognition associated pathways. Together our results further elucidate how structure, length and aspect ratio, critical intrinsic properties of MWCNTs, are tied to immunotoxicity.
Collapse
Affiliation(s)
- Veera Hautanen
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Institute of Biotechnology, University of Helsinki, P.O.Box 56, Helsinki, Uusimaa 00014, Finland
| | - Jack Morikka
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Jan Bisenberger
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Tarja Toimela
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Tampere Institute for Advanced Study, Tampere University, Kalevantie 4, Tampere 33100, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland; Institute of Biotechnology, University of Helsinki, P.O.Box 56, Helsinki, Uusimaa 00014, Finland; Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
3
|
Yuan Y, Wang X, Ge J, Jiang W, Li Z, Wang Z, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. Developmental immunotoxicity of maternal exposure to yttrium nitrate on BALB/c offspring mice. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37102272 DOI: 10.1002/tox.23820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Yttrium is a typical heavy rare earth element with widespread use in numerous sectors. Only one previous study has indicated that yttrium has the potential to cause developmental immunotoxicity (DIT). Therefore, there remains a paucity of evidence on the DIT of yttrium. This study aimed to explore the DIT of yttrium nitrate (YN) and the self-recovery of YN-induced DIT. Dams were treated with 0, 0.2, 2, and 20 mg/kg bw/day YN by gavage during gestation and lactation. No significant changes were found in innate immunity between the control and YN-treated groups in offspring. In female offspring at postnatal day 21 (PND21), YN markedly inhibited humoral and cellular immune responses, the proliferative capacity of splenic T lymphocytes, and the expression of costimulatory molecules in splenic lymphocytes. Moreover, the inhibitory effect on cellular immunity in female offspring persisted to PND42. Unlike females, YN exposure did not change the adaptive immune responses in male offspring. Overall, maternal exposure to YN showed a strong DIT to offspring, with the lowest effective dose of 0.2 mg/kg in the current study. The toxicity of cellular immunity could persist throughout development into adulthood. There were sex-specific differences in YN-induced DIT, with females being more vulnerable.
Collapse
Affiliation(s)
- Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Zekang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
5
|
Onoda A, Okamoto S, Shimizu R, El-Sayed YS, Watanabe S, Ogawa S, Abe R, Kamimura M, Soga K, Tachibana K, Takeda K, Umezawa M. Effect of Carbon Black Nanoparticle on Neonatal Lymphoid Tissues Depending on the Gestational Period of Exposure in Mice. FRONTIERS IN TOXICOLOGY 2022; 3:700392. [PMID: 35295157 PMCID: PMC8915855 DOI: 10.3389/ftox.2021.700392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Particulate air pollution, containing nanoparticles, enhances the risk of pediatric allergic diseases that is potentially associated with disruption of neonatal immune system. Previous studies have revealed that maternal exposure to carbon black nanoparticles (CB-NP) disturbs the development of the lymphoid tissues in newborns. Interestingly, the CB-NP-induced immune profiles were observed to be different depending on the gestational period of exposure. It is important to identify the critical exposure period to prevent toxic effects of nanoparticles on the development of the immune system. Therefore, the present study was aimed to investigate the effect of CB-NP on the development of neonatal lymphoid tissues in mice, depending on the gestational period of exposure. Methods: Pregnant ICR mice were treated with a suspension of CB-NP (95 μg/kg body weight) by intranasal instillation; the suspension was administered twice during each gestational period as follows: the pre-implantation period (gestational days 4 and 5), organogenesis period (gestational days 8 and 9), and fetal developmental period (gestational days 15 and 16). The spleen and thymus were collected from offspring mice at 1, 3, and 5-days post-partum. Splenocyte and thymocyte phenotypes were examined by flow cytometry. Gene expression in the spleen was examined by quantitative reverse transcription-polymerase chain reaction. Results: The numbers of total splenocytes and splenic CD3−B220− phenotype (non-T/non-B lymphocytes) in offspring on postnatal day 5 were significantly increased after exposure to CB-NP during the organogenesis period compared with other gestational periods of exposure and control (no exposure). In contrast, expression levels of mRNA associated with chemotaxis and differentiation of immune cells in the spleen were not affected by CB-NP exposure during any gestational period. Conclusion: The organogenesis period was the most susceptible period to CB-NP exposure with respect to lymphoid tissue development. Moreover, the findings of the present and previous studies suggested that long-term exposure to CB-NP across multiple gestational periods including the organogenesis period, rather than acute exposure only organogenesis period, may more severely affect the development of the immune system.
Collapse
Affiliation(s)
- Atsuto Onoda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Saki Okamoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryuhei Shimizu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yasser S El-Sayed
- Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Shiho Watanabe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shuhei Ogawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Advanced Comprehensive Research Center, Teikyo University, Hachioji, Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Ken Tachibana
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Ken Takeda
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyoonoda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| |
Collapse
|
6
|
Wang X, Tang M, Ge J, Jiang W, Li Z, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. Effects of intrauterine and lactational exposure to lanthanum nitrate on BALB/c offspring mice: Developmental immunotoxicity and self-recovery. Toxicol Lett 2022; 362:17-25. [DOI: 10.1016/j.toxlet.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
7
|
Zhang H, Shen L, Fang W, Zhang X, Zhong Y. Perfluorooctanoic acid-induced immunotoxicity via NF-kappa B pathway in zebrafish (Danio rerio) kidney. FISH & SHELLFISH IMMUNOLOGY 2021; 113:9-19. [PMID: 33727078 DOI: 10.1016/j.fsi.2021.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial production due to its stable chemical structure and hydrophobic and oleophobic characteristics. PFOA has been frequently detected in environmental media and organisms, leading to increased health risks. There is a lack of information about the immunotoxicity of aquatic organisms induced by PFOA, and the molecular mechanisms remain unclear. In this study, LC-MS analysis proved that PFOA can accumulate in the kidney of zebrafish. In the 0.05 mg/L PFOA treatment group, the accumulation of PFOA in the kidney after 21 days of exposure significantly increased by 79.89%, compared to 14 days of exposure. And a hydropic endoplasmic reticulum, swelling of mitochondria and vacuolization were observed in kidney immune cells of zebrafish. The Toll-like receptor 2 (TLR2)/myeloid differentiation factor 88 (myd88)/NF-κB (P65) pathway was activated when PFOA exerted its effects, which led to regulation of antibody expression; RT-PCR results showed that the mRNA expression level of interleukin-4 (IL-4) decreased in a dose-dependent manner, decreasing to 29.6% of the control level in the 1 mg/L PFOA group after 21 d of exposure. According to triangle plot analysis, immunoglobulin exhibited a notable stress response to PFOA at an early phase; a high concentration of PFOA may disrupt the immune system of zebrafish. Third-order polynomial fitting analysis showed that the high-mRNA-expression regions of IL-4 and antibodies were partially consistent. The results indicated that PFOA could affect antibodies by increasing the concentrations of proinflammatory cytokines. Changes in antibody levels further influenced the expression of other cytokines, which eventually caused disorders in the zebrafish immune system. This study expands the understanding of PFOA-induced immunosuppression and suggests that toxicity mechanisms should be considered for further health risk assessment of emerging pollutants.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wendi Fang
- School of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
8
|
Ogungbesan A, Neal-Kluever A, Rice P. Exploring the use of current immunological assays for the developmental immunotoxicity assessment of food contact materials. Food Chem Toxicol 2019; 133:110801. [PMID: 31499121 DOI: 10.1016/j.fct.2019.110801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
The mammalian immune system is a highly complex, interactive network of cells that facilitates innate and adaptive immune responses. The neonatal immune system may be more susceptible to chemical perturbations than that of the adult. The effects of immunotoxicants during development may not be fully detected in toxicity studies performed on adult animals. Studies characterizing the ontogeny of the immune system in developing animals have shown that there are different critical windows of susceptibility to immunotoxicants. Developmental differences are evident among species compared to humans. Functional immune assays, such as the T-cell antibody dependent response assay, in rat models have been validated for use in the assessment of immunotoxicity with other assays. Recently, published studies have explored the feasibility of using additional techniques, such as in vitro studies using human whole blood cells or cell lines, mostly lacking either sensitivity or proper validation for regulatory purposes. However, some techniques may be developed further to enable translation of animal toxicity findings to human risk assessment of potential immunotoxicants. This paper summarizes the information on the developing immune system in humans versus rats and how the currently available assays might be used to contribute to the safety assessment of food contact substances.
Collapse
Affiliation(s)
- Adejoke Ogungbesan
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA.
| | - April Neal-Kluever
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| | - Penny Rice
- FDA/CFSAN/OFAS, 5001 Campus Drive, HFS 275, College Park, MD, 20740, USA
| |
Collapse
|
9
|
Jusko TA, Singh K, Greener EA, Oktapodas Feiler M, Thevenet-Morrison K, Lawrence BP, Wright RO, Thurston SW. Blood Lead Concentrations and Antibody Levels to Measles, Mumps, and Rubella among U.S. Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173035. [PMID: 31443341 PMCID: PMC6747326 DOI: 10.3390/ijerph16173035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
Child blood lead concentrations have been associated with measures of immune dysregulation in nationally representative study samples. However, response to vaccination-often considered the gold standard in immunotoxicity testing-has not been examined in relation to typical background lead concentrations common among U.S. children. The present study estimated the association between blood lead concentrations and antigen-specific antibody levels to measles, mumps, and rubella in a nationally representative sample of 7005 U.S. children aged 6-17 years. Data from the 1999-2004 cycles of the National Health and Nutrition Examination Survey (NHANES) were used. In the adjusted models, children with blood lead concentrations between 1 and 5 µg/dL had an 11% lower anti-measles (95% CI: -16, -5) and a 6% lower anti-mumps antibody level (95% CI: -11, -2) compared to children with blood lead concentrations <1 µg/dL. The odds of a seronegative anti-measles antibody level was approximately two-fold greater for children with blood lead concentrations between 1 and 5 µg/dL compared to children with blood lead concentrations <1 µg/dL (OR = 2.0, 95% CI: 1.4, 3.1). The adverse associations observed in the present study provide further evidence of potential immunosuppression at blood lead concentrations <5 µg/dL, the present Centers for Disease Control and Prevention action level.
Collapse
Affiliation(s)
- Todd A Jusko
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Kyra Singh
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Elizabeth A Greener
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Marina Oktapodas Feiler
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Skaggs H, Chellman GJ, Collinge M, Enright B, Fuller CL, Krayer J, Sivaraman L, Weinbauer GF. Comparison of immune system development in nonclinical species and humans: Closing information gaps for immunotoxicity testing and human translatability. Reprod Toxicol 2019; 89:178-188. [PMID: 31233776 DOI: 10.1016/j.reprotox.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Affiliation(s)
- H Skaggs
- Incyte Corporation, Wilmington, DE, USA.
| | | | - M Collinge
- Pfizer Worldwide Research and Development, Groton, CT, USA
| | | | - C L Fuller
- Merck and Co., Safety Assessment and Laboratory Animal Resources, West Point, PA, USA
| | - J Krayer
- Janssen Research & Development, Nonclinical Safety, Spring House, PA, USA
| | - L Sivaraman
- Bristol-Myers Squibb Company, Research & Development, New Brunswick, New Jersey, USA
| | - G F Weinbauer
- Covance Preclinical Services GmbH, Muenster, Germany
| |
Collapse
|
11
|
Seemann F, Peterson DR, Chiang MWL, Au DWT. The development of cellular immune defence in marine medaka Oryzias melastigma. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:81-89. [PMID: 28347744 DOI: 10.1016/j.cbpc.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022]
Abstract
Environmentally induced alterations of the immune system during sensitive developmental stages may manifest as abnormalities in immune organ configuration and/or immune cell differentiation. These not only render the early life stages more vulnerable to pathogens, but may also affect the adult immune competence. Knowledge of these sensitive periods in fish would provide an important prognostic/diagnostic tool for aquatic risk assessment of immunotoxicants. The marine medaka Oryzias melastigma is an emerging seawater fish model for immunotoxicology. Here, the presence and onset of four potentially sensitive periods during the development of innate and adaptive cellular immune defence were revealed in O. melastigma: 1.) initiation of phagocyte differentiation, 2.) migration and expansion of lymphoid progenitor cells, 3.) colonization of immune organs through lymphocyte progenitors and 4.) establishment of immune competence in the thymus. By using an established bacterial resistance assay for O. melastigma, larval immune competence (from newly hatched 1dph to 14dph) was found concomitantly increased with advanced thymus development and the presence of mature T-lymphocytes. A comparison between the marine O. melastigma and the freshwater counterpart Oryzias latipes disclosed a disparity in the T-lymphocyte maturation pattern, resulting in differences in the length of T-lymphocyte maturation. The results shed light on a potential difference between seawater and freshwater medaka in their sensitivity to environmental immunotoxicants. Further, medaka immune system development was compared and contrasted to economically important fish. The present study has provided a strong scientific basis for advanced investigation of critical windows for immune system development in fish.
Collapse
Affiliation(s)
- Frauke Seemann
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Drew Ryan Peterson
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael Wai Lun Chiang
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Doris Wai Ting Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Bresson JL, Dusemund B, Gundert-Remy U, Kersting M, Lambré C, Penninks A, Tritscher A, Waalkens-Berendsen I, Woutersen R, Arcella D, Court Marques D, Dorne JL, Kass GE, Mortensen A. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J 2017; 15:e04849. [PMID: 32625502 PMCID: PMC7010120 DOI: 10.2903/j.efsa.2017.4849] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health-based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case-by-case basis, depending on whether the substance is added intentionally to food and is systemically available.
Collapse
|
13
|
Wang S, Jin H, Tang Q, Fu J, Ren Z, Peng C, Shang L, Hao W, Wei X. The effect of ethephon on immune system in male offspring of mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:119-123. [PMID: 27987403 DOI: 10.1016/j.etap.2016.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Ethephon can liberate ethylene which could interfere the plant growth process. The aim of the present study was to determine the effect of ethephon on developing immune system of male offspring. Ethephon could enhance NK cell activity in male mice. For 4-week-old male mice, lymphocytes of peripheral blood increased while the hemolytic plaque number decreased. Delayed type hypersensitivity(DTH) was inhibited in all groups. The expression of protein Bcl11b and p-p38 in thymus of treatment groups were lower than control group. Our results indicated that cellular immunity of male offspring is more sensitive to ethephon when exposed in pregnancy and lactation period. It should be emphasized that exposure to ethephon during the in utero stage and lactation stage still could damage the immune function of animal in the period before fully mature even in the dosage that could not influence the immune function of adult animal.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Haifeng Jin
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiuqiong Tang
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jun Fu
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zeming Ren
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Cike Peng
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
14
|
Current Issues in Developmental Immunotoxicity. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Moore NP, Beekhuijzen M, Boogaard PJ, Foreman JE, North CM, Palermo C, Schneider S, Strauss V, van Ravenzwaay B, Poole A. Guidance on the selection of cohorts for the extended one-generation reproduction toxicity study (OECD test guideline 443). Regul Toxicol Pharmacol 2016; 80:32-40. [DOI: 10.1016/j.yrtph.2016.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/26/2016] [Indexed: 01/11/2023]
|
16
|
El-Sayed YS, Shimizu R, Onoda A, Takeda K, Umezawa M. Carbon black nanoparticle exposure during middle and late fetal development induces immune activation in male offspring mice. Toxicology 2015; 327:53-61. [DOI: 10.1016/j.tox.2014.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
|
17
|
Dietert RR. Developmental Immunotoxicity, Perinatal Programming, and Noncommunicable Diseases: Focus on Human Studies. Adv Med 2014; 2014:867805. [PMID: 26556429 PMCID: PMC4590951 DOI: 10.1155/2014/867805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/17/2013] [Accepted: 10/30/2013] [Indexed: 12/20/2022] Open
Abstract
Developmental immunotoxicity (DIT) is a term given to encompass the environmentally induced disruption of normal immune development resulting in adverse outcomes. A myriad of chemical, physical, and psychological factors can all contribute to DIT. As a core component of the developmental origins of adult disease, DIT is interlinked with three important concepts surrounding health risks across a lifetime: (1) the Barker Hypothesis, which connects prenatal development to later-life diseases, (2) the hygiene hypothesis, which connects newborns and infants to risk of later-life diseases and, (3) fetal programming and epigenetic alterations, which may exert effects both in later life and across future generations. This review of DIT considers: (1) the history and context of DIT research, (2) the fundamental features of DIT, (3) the emerging role of DIT in risk of noncommunicable diseases (NCDs) and (4) the range of risk factors that have been investigated through human research. The emphasis on the human DIT-related literature is significant since most prior reviews of DIT have largely focused on animal research and considerations of specific categories of risk factors (e.g., heavy metals). Risk factors considered in this review include air pollution, aluminum, antibiotics, arsenic, bisphenol A, ethanol, lead (Pb), maternal smoking and environmental tobacco smoke, paracetamol (acetaminophen), pesticides, polychlorinated biphenyls, and polyfluorinated compounds.
Collapse
Affiliation(s)
- Rodney R. Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, North Tower Road, Ithaca, NY 14853, USA
- *Rodney R. Dietert:
| |
Collapse
|
18
|
Collinge M, Thorn M, Peachee V, White K. Validation of a Candida albicans delayed-type hypersensitivity (DTH) model in female juvenile rats for use in immunotoxicity assessments. J Immunotoxicol 2013; 10:341-8. [PMID: 23282408 DOI: 10.3109/1547691x.2012.747232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Establishing an in vivo cell-mediated immunity (CMI) assay, such as the delayed-type hypersensitivity (DTH) assay, has been identified as an important gap and recommended to receive highest priority for new model development in several workshops on developmental immunotoxicity. A Candida albicans DTH model has recently been developed that has the advantage over other DTH models, which use alternative sensitizing antigens, in that antigen-specific antibodies, which may interfere with the assay, are not produced. In addition, the in vivo C. albicans DTH model was demonstrated to be more sensitive in detecting immunosuppression than DTH models using keyhole limpet hemocyanin (KLH) or sheep red blood cells as antigens, as well as some ex vivo CMI assays. While KLH and sheep red blood cells are non-physiological immunogens, C. albicans is an important human pathogen. The present studies were conducted in order to optimize and validate the C. albicans DTH model for use in developmental immunotoxicity studies using juvenile rats. Three known immunosuppressive compounds with different mechanisms of action were tested in this model, cyclosprorin A (CsA), cyclophosphamide (CPS), and dexamethasone (DEX). Animals were sensitized with formalin-fixed C. albicans on postnatal day (PND) 28 and challenged with chitosan on PND 38. Drug was administered beginning on PND 23 and continued until PND 37. Exposure to each of the three immunotoxicants resulted in statistically significant decreases in the DTH response to C. albicans-derived chitosan. Decreases in footpad swelling were observed at ≥10 mg CsA/kg/day, ≥5 mg CPS/kg/day, and ≥0.03 mg DEX/kg/day. These results demonstrate that the C. albicans DTH model, optimized for use in juvenile rats, can be used to identify immunotoxic compounds, and fills the need for a sensitive in vivo CMI model for assessments of developmental immunotoxicity. Abbreviations Ab, antibody APC, antigen presenting cell BSA, bovine serum albumin C. albicans, Candida albicans CI, challenge interval CMI, cell-mediated immunity CO, challenge only CPS, cyclophosphamide CsA, cyclosporin A CTL, cytotoxic T lymphocyte DEX, dexamethasone DIT, developmental immunotoxicity DTH, delayed-type hypersensitivity ip, intraperitoneal KLH, keyhole limpet hemocyanin MLR, mixed lymphocyte reaction OVA, ovalbumin PBS, phosphate-buffered saline PND, postnatal day sc, subcutaneous SEM, standard error of the mean SRBC, sheep red blood cells.
Collapse
Affiliation(s)
- Mark Collinge
- Immunotoxicology Center of Emphasis, Drug Safety Research and Development, Pfizer Inc. , Groton, CT , USA
| | | | | | | |
Collapse
|
19
|
DeWitt JC, Peden-Adams MM, Keil DE, Dietert RR. Developmental immunotoxicity (DIT): assays for evaluating effects of exogenous agents on development of the immune system. ACTA ACUST UNITED AC 2012; Chapter 18:Unit 18.15. [PMID: 22511116 DOI: 10.1002/0471140856.tx1815s51] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developmental immunotoxicity (DIT) occurs when exposure to environmental risk factors prior to adulthood, including chemical, biological, physical, or physiological factors, alters immune system development. DIT may elicit suppression, hyperactivation, or misregulation of immune responses and may present clinically as decreased resistance to pathogens, allergic and autoimmune diseases, and inflammatory diseases. Immunotoxicity testing guidelines established by the Environmental Protection Agency for adult animals (OPPTS 8703.7800) require functional tests and immunophenotyping that are suitable for detecting immunomodulation, especially immunosuppression. However, evaluating immune function in offspring that are not fully immunocompetent yields results that are challenging to interpret. Therefore, this unit will describe an optimum exposure scenario, reference two assays (immunophenotyping and histopathology) appropriate for detecting immunomodulation in weaning-age offspring, and reference four assays (immunophenotyping, histopathology, T cell-dependent antibody responses, and delayed-type hypersensitivity) appropriate for detecting immunomodulation in immunocompetent offspring. The protocol also will reference other assays (natural killer cell and cytotoxic T lymphocyte) with potential utility for assessing DIT.
Collapse
Affiliation(s)
- Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | | | | |
Collapse
|
20
|
Juvenile toxicity testing protocols for chemicals. Reprod Toxicol 2012; 34:482-6. [PMID: 22564981 DOI: 10.1016/j.reprotox.2012.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 11/21/2022]
Abstract
There is increased awareness of the specific position of children when it comes to hazards of xenobiotic exposures. Children are not small adults, since their exposure patterns, compound kinetics and metabolism, and sensitivity of their developing organs may differ extensively from adults. Current international hazard assessment test guidelines do not specifically address juvenile exposures and effects. In conjunction with the Annual Meeting of the European Teratology Society, a satellite meeting was organized to specifically address juvenile toxicity testing issues for chemicals. The workshop focused on developmental neurotoxicity and developmental immune toxicity testing in juvenile animals. A clear case was made for the importance of juvenile toxicity testing, showing that in animal studies developmental neurotoxicity and immunotoxicity parameters express specifically high sensitivities after exposure during the juvenile period. Additional data will be generated in the coming years, and OECD initiatives will need to further the issue at the global regulatory level.
Collapse
|
21
|
Collinge M, Burns-Naas LA, Chellman GJ, Kawabata TT, Komocsar WJ, Piccotti JR, Shenton J, Wierda D. Developmental immunotoxicity (DIT) testing of pharmaceuticals: Current practices, state of the science, knowledge gaps, and recommendations. J Immunotoxicol 2012; 9:210-30. [DOI: 10.3109/1547691x.2012.661486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Affiliation(s)
| | - Raegan O’Lone
- ILSI Health and Environmental Sciences Institute (HESI), Washington, DC, USA
| |
Collapse
|
23
|
Win-Shwe TT, Kunugita N, Nakajima D, Yoshida Y, Fujimaki H. Developmental stage-specific changes in immunological biomarkers in male C3H/HeN mice after early life toluene exposure. Toxicol Lett 2012; 208:133-41. [DOI: 10.1016/j.toxlet.2011.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 11/30/2022]
|
24
|
DeWitt JC, Peden-Adams MM, Keil DE, Dietert RR. Current Status of Developmental Immunotoxicity. Toxicol Pathol 2011; 40:230-6. [DOI: 10.1177/0192623311427709] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Margie M. Peden-Adams
- Harry Reid Center for Environmental Studies, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Deborah E. Keil
- Medical Laboratory Sciences, Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Rodney R. Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Menke A, Wolterbeek A, Snel C, Bruijntjes J, Groot DD, Oostrum LV, Waalkens I, Kuper CF. Potentially Increased Sensitivity of Pregnant and Lactating Female Rats to Immunotoxic Agents. Toxicol Pathol 2011; 40:255-60. [DOI: 10.1177/0192623311428476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Cor Snel
- TNO Triskelion BV, Zeist, the Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Tin-Tin Win-Shwe, Kunugita N, Yoshida Y, Nakajima D, Tsukahara S, Fujimaki H. Differential mRNA expression of neuroimmune markers in the hippocampus of infant mice following toluene exposure during brain developmental period. J Appl Toxicol 2011; 32:126-34. [DOI: 10.1002/jat.1643] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 12/29/2022]
Affiliation(s)
- Tin-Tin Win-Shwe
- National Institute for Environmental Studies; 16-2 Onogawa; Tsukuba, Ibaraki; 305-8506; Japan
| | - Naoki Kunugita
- National Institute of Public Health; 2-3-6 Minami; Wako-shi, Saitama; 351-0197; Japan
| | - Yasuhiro Yoshida
- University of Occupational and Environmental Health, Japan; 1-1 Iseigaoka, Yahatanishi-ku; Kitakyushu, Fukuoka; 807-8555; Japan
| | - Daisuke Nakajima
- National Institute for Environmental Studies; 16-2 Onogawa; Tsukuba, Ibaraki; 305-8506; Japan
| | - Shinji Tsukahara
- Graduate School of Science and Engineering Saitama University; 255 Shimo-Okubo, Sakura-ku; Saitama City, Saitama; 338-8570; Japan
| | - Hidekazu Fujimaki
- National Institute for Environmental Studies; 16-2 Onogawa; Tsukuba, Ibaraki; 305-8506; Japan
| |
Collapse
|
27
|
Jusko TA, De Roos AJ, Schwartz SM, Lawrence BP, Palkovicova L, Nemessanyi T, Drobna B, Fabisikova A, Kocan A, Jahnova E, Kavanagh TJ, Trnovec T, Hertz-Picciotto I. Maternal and early postnatal polychlorinated biphenyl exposure in relation to total serum immunoglobulin concentrations in 6-month-old infants. J Immunotoxicol 2011; 8:95-100. [PMID: 21299357 PMCID: PMC3086069 DOI: 10.3109/1547691x.2010.549096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal data indicate that developmental tetrachlorodibenzo-p-dioxin exposure alters immune function; however, the potential immunotoxicity of dioxin-like and non-dioxin-like polychlorinated biphenyls (PCBs) in the developing infant is an understudied area. The aim of the current study is to examine the association between maternal and early postnatal PCB concentrations in relation to total infant serum immunoglobulin concentrations determined at 6-months-of-age. We selected 384 mother-infant pairs participating in a birth cohort study in Eastern Slovakia. PCB concentrations of several congeners were determined in maternal and cord serum samples and in infant serum samples collected at 6-months-of-age using gas chromatography with electron capture detection. Total immunoglobulin (Ig) G, A, and M concentrations were determined by nephelometry, and IgE concentrations were determined by enzyme-linked immunoassay. Linear regression models with adjustment for potential confounding factors were used to estimate the associations between maternal, cord, and 6-month infant PCB concentrations and total serum immunoglobulins. The median maternal serum concentration of PCB-153 was 140?ng/g lipid, ?10-fold higher than concentrations in childbearing-age women in the United States during the same period. Maternal, cord, or 6-month infant PCB concentrations were not associated with total serum immunoglobulin levels at 6 months, regardless of the timing of PCB exposure, PCB congener, or specific immunoglobulin. In this population, which has high PCB concentrations relative to most populations in the world today, we did not observe any association between maternal and early postnatal PCB concentrations and total immunoglobulin measures of IgG, IgA, IgM, or IgE.
Collapse
Affiliation(s)
- Todd A Jusko
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709-2233, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Jusko TA, De Roos AJ, Schwartz SM, Lawrence BP, Palkovicova L, Nemessanyi T, Drobna B, Fabisikova A, Kocan A, Sonneborn D, Jahnova E, Kavanagh TJ, Trnovec T, Hertz-Picciotto I. A cohort study of developmental polychlorinated biphenyl (PCB) exposure in relation to post-vaccination antibody response at 6-months of age. ENVIRONMENTAL RESEARCH 2010; 110:388-95. [PMID: 20378105 PMCID: PMC2859670 DOI: 10.1016/j.envres.2010.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/04/2010] [Accepted: 02/22/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Extensive experimental data in animals indicate that exposure to polychlorinated biphenyls (PCBs) during pregnancy leads to changes in offspring immune function during the postnatal period. Whether developmental PCB exposure influences immunologic development in humans has received little study. METHODS The study population was 384 mother-infant pairs recruited from two districts of eastern Slovakia for whom prospectively collected maternal, cord, and 6-month infant blood specimens were available. Several PCB congeners were measured in maternal, cord, and 6-month infant sera by high-resolution gas chromatography with electron capture detection. Concentrations of IgG-specific anti-haemophilus influenzae type b, tetanus toxoid, and diphtheria toxoid were assayed in 6-month infant sera using ELISA methods. Multiple linear regression was used to estimate the relation between maternal, cord, and 6-month infant PCB concentrations and the antibody concentrations evaluated at 6-months of age. RESULTS Overall, there was little evidence of an association between infant antibody concentrations and PCB measures during the pre- and early postnatal period. In addition, our results did not show specificity in terms of associations limited to a particular developmental period (e.g. pre- vs. postnatal), a particular antibody, or a particular PCB congener. CONCLUSIONS At the PCB concentrations measured in this cohort, which are high relative to most human populations today, we did not detect an association between maternal or early postnatal PCB exposure and specific antibody responses at 6-months of age.
Collapse
Affiliation(s)
- Todd A Jusko
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dietert RR, Dewitt J. Developmental immunotoxicity (DIT): the why, when, and how of DIT testing. Methods Mol Biol 2010; 598:17-25. [PMID: 19967503 DOI: 10.1007/978-1-60761-401-2_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developmental immunotoxicity (DIT) has emerged as a serious health consideration given the increases in the prevalence of many immune-based childhood diseases and conditions, including allergic diseases and asthma, recurrent otitis media, pediatric celiac disease, and type 1 diabetes. As a result, the use of DIT testing to identify potential environmental risk factors contributing to these and other diseases has become a higher priority. This introductory chapter considers: (1) the basis for an increased and earlier use of DIT testing in safety evaluations and (2) the general features of DIT testing strategies designed to reduce health risks.
Collapse
|
31
|
Dietert RR. Developmental immunotoxicology (DIT): windows of vulnerability, immune dysfunction and safety assessment. J Immunotoxicol 2009; 5:401-12. [PMID: 19404874 DOI: 10.1080/15476910802483324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Developmental immunotoxicity (DIT) is an increasing health concern since DIT outcomes predispose children to those diseases that have been on the rise in recent decades (e.g., childhood asthma, allergic diseases, autoimmune conditions, childhood infections). The enhanced vulnerability of the developing immune system for environmental insult is based on unique immune maturational events that occur during critical windows of vulnerability in early life. The semi-allogeneic pregnancy state, with suppression of graft rejection and associated skewing of the fetal and neonatal immune system, also influences the specific nature of DIT outcomes. In the exposed offspring, targeted immunosuppression can co-exist with an increased risk of allergic and/or autoimmune disease. Because with DIT immune dysfunction rather than profound immunosuppression is the greater concern, testing approaches should emphasize multi-functional assessment. Beyond T-cells, dendritic cells and macrophages are sensitive targets. The last-trimester fetus and the neonate are normally depressed in T(H)1-dependent functions and postnatal acquisition of needed T(H)1 capacity is a major concern with DIT. With this in mind, assessment should include a measure of T(H)1-dependent cell-mediated immunity [cytotoxic T-lymphocyte (CTL) activity or delayed-type hypersensitivity (DTH) response] in conjunction with a multi-isotype T-dependent antibody response (TDAR) and evaluation of innate immunity (e.g., NK activity). Other parameters such as immune histology, immunophenotyping, cytokine responses, and organ weights can be useful when included with immune functional evaluation. A multifunctional DIT protocol using influenza challenge is presented as one example of an approach that permits dysfunction and misregulation to be evaluated.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Fedulov AV, Kobzik L. Immunotoxicologic analysis of maternal transmission of asthma risk. J Immunotoxicol 2009; 5:445-52. [PMID: 19404877 DOI: 10.1080/15476910802481765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asthma has origins in early life. Epidemiological studies show that maternal, more than paternal, asthma significantly increases a child's risk of developing the disease. Experimental animal models exist which reproduce the increased susceptibility to asthma seen in human studies, and allow analysis of immunotoxic mechanisms that may contribute to neonatal allergy. In addition to maternal asthma, chemically-induced skin contact hypersensitivity or exposure during pregnancy of non-allergic females to certain environmental agents, e.g., air pollution particles, can also result in increased susceptibility to asthma in their offspring. We review here experimental models of maternal transmission of asthma risk, the progress to date in identifying mechanisms, and potential directions for future research.
Collapse
Affiliation(s)
- Alexey V Fedulov
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
33
|
Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS). Reprod Toxicol 2009; 27:307-318. [DOI: 10.1016/j.reprotox.2008.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/23/2008] [Accepted: 10/31/2008] [Indexed: 11/22/2022]
|
34
|
Dietert RR. Developmental immunotoxicity (DIT), postnatal immune dysfunction and childhood leukemia. Blood Cells Mol Dis 2009; 42:108-12. [DOI: 10.1016/j.bcmd.2008.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/28/2022]
|
35
|
Dietert RR, Zelikoff JT. Early-life environment, developmental immunotoxicology, and the risk of pediatric allergic disease including asthma. ACTA ACUST UNITED AC 2009; 83:547-60. [PMID: 19085948 DOI: 10.1002/bdrb.20170] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Incidence of childhood allergic disease including asthma (AD-A) has risen since the mid-20th century with much of the increase linked to changes in environment affecting the immune system. Childhood allergy is an early life disease where predisposing environmental exposures, sensitization, and onset of symptoms all occur before adulthood. Predisposition toward allergic disease (AD) is among the constellation of adverse outcomes following developmental immunotoxicity (DIT; problematic exposure of the developing immune system to xenobiotics and physical environmental factors). Because novel immune maturation events occur in early life, and the pregnancy state itself imposes certain restrictions on immune functional development, the period from mid-gestation until 2 years after birth is one of particular concern relative to DIT and AD-A. Several prenatal-perinatal risk factors have been identified as contributing to a DIT-mediated immune dysfunction and increased risk of AD. These include maternal smoking, environmental tobacco smoke, diesel exhaust and traffic-related particles, heavy metals, antibiotics, environmental estrogens and other endocrine disruptors, and alcohol. Diet and microbial exposure also significantly influence immune maturation and risk of allergy. This review considers (1) the critical developmental windows of vulnerability for the immune system that appear to be targets for risk of AD, (2) a model in which the immune system of the DIT-affected infant exhibits immune dysfunction skewed toward AD, and (3) the lack of allergy-relevant safety testing of drugs and chemicals that could identify DIT hazards and minimize problematic exposure of pregnant women and children.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
36
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|
37
|
Burns-Naas LA, Hastings KL, Ladics GS, Makris SL, Parker GA, Holsapple MP. What’s So Special about the Developing Immune System? Int J Toxicol 2008; 27:223-54. [DOI: 10.1080/10915810801978110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The evolution of the subdiscipline of developmental immunotoxicology (DIT) as it exists today has been shaped by significant regulatory pressures as well as key scientific advances. This review considers the role played by legislation to protect children’s health, and on the emergence of immunotoxcity and developmental immunotoxicity guidelines, as well as providing some context to the need for special attention on DIT by considering the evidence that the developing immune system may have unique susceptibilities when compared to the adult immune system. Understanding the full extent of this potential has been complicated by a paucity of data detailing the development of the immune system during critical life stages as well as by the complexities of comparisons across species. Notably, there are differences between humans and nonhuman species used in toxicity testing that include specific differences relative to the timing of the development of the immune system as well as more general anatomic differences, and these differences must be factored into the interpretation of DIT studies. Likewise, understanding how the timing of the immune development impacts on various immune parameters is critical to the design of DIT studies, parameters most extensively characterized to date in young adult animals. Other factors important to DIT, which are considered in this review, are the recognition that effects other than suppression (e.g., allergy and autoimmunity) are important; the need to improve our understanding of how to assess the potential for DIT in humans; and the role that pathology has played in DIT studies in test animals. The latter point receives special emphasis in this review because pathology evaluations have been a major component of standard nonclinical toxicology studies, and could serve an important role in studies to evaluate DIT. This possibility is very consistent with recommendations to incorporate a DIT evaluation into standard developmental and reproductive toxicology (DART) protocols. The overall objective of this review is to provide a ‘snapshot’ of the current state-of-the-science of DIT. Despite significant progress, DIT is still evolving and it is our hope that this review will advance the science.
Collapse
Affiliation(s)
- Leigh Ann Burns-Naas
- Drug Safety Research and Development, Pfizer Global Research and Development, San Diego, CA 92064, California, USA
| | - Kenneth L. Hastings
- United States Food and Drug Administration, Center for Drug Evaluation Research, Office of New Drugs, Rockville, Maryland, USA
| | | | - Susan L. Makris
- United States Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, USA
| | | | | |
Collapse
|
38
|
Dietert RR, Dietert JM. Possible role for early-life immune insult including developmental immunotoxicity in chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME). Toxicology 2008; 247:61-72. [PMID: 18336982 DOI: 10.1016/j.tox.2008.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 01/06/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Chronic fatigue syndrome (CFS), also known as myalgic encephalomyelitis (ME) in some countries, is a debilitating disease with a constellation of multi-system dysfunctions primarily involving the neurological, endocrine and immune systems. While substantial information is available concerning the complex dysfunction-associated symptoms of CFS, environmental origins of the disease have yet to be determined. Part of the dilemma in identifying the cause(s) has been the focus on biomarkers (hormones, neurotransmitters, cytokines, infectious agents) that are contemporary with later-life CFS episodes. Yet, recent investigations on the origins of environmental diseases of the neurological, endocrine, reproductive, respiratory and immune systems suggest that early life toxicologic and other insults are pivotal in producing later-life onset of symptoms. As with autism and childhood asthma, CFS can also occur in children where the causes are certainly early-life events. Immune dysfunction is recognized as part of the CFS phenotype but has received comparatively less attention than aberrant neurological or endocrine function. However, recent research results suggest that early life immune insults (ELII) including developmental immunotoxicity (DIT), which is induced by xenobiotics, may offer an important clue to the origin(s) of CFS. The developing immune system is a sensitive and novel target for environmental insult (xenobiotic, infectious agents, stress) with major ramifications for postnatal health risks. Additionally, many prenatal and early postnatal neurological lesions associated with postnatal neurobehavioral diseases are now recognized as linked to prenatal immune insult and inflammatory dysregulation. This review considers the potential role of ELII including DIT as an early-life component of later-life CFS.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
39
|
Abstract
Dietert discusses a new study in PLoS Medicine, by Heilmann et al., showing that children exposed to polychlorinated biphenyls (PCBs) have reduced antibody responses to childhood vaccinations.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|