1
|
Anastasakis DG, Benhalevy D, Çuburu N, Altan-Bonnet N, Hafner M. Epigenetic repression of antiviral genes by SARS-CoV-2 NSP1. PLoS One 2024; 19:e0297262. [PMID: 38277395 PMCID: PMC10817131 DOI: 10.1371/journal.pone.0297262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the innate immune machinery through multiple viral proteins, including nonstructural protein 1 (NSP1). While NSP1 is known to suppress translation of host mRNAs, the mechanisms underlying its immune evasion properties remain elusive. By integrating RNA-seq, ribosome footprinting, and ChIP-seq in A549 cells we found that NSP1 predominantly represses transcription of immune-related genes by favoring Histone 3 Lysine 9 dimethylation (H3K9me2). G9a/GLP H3K9 methyltransferase inhibitor UNC0638 restored expression of antiviral genes and restricted SARS-CoV-2 replication. Our multi-omics study unravels an epigenetic mechanism underlying host immune evasion by SARS-CoV-2 NSP1. Elucidating the factors involved in this phenomenon, may have implications for understanding and treating viral infections and other immunomodulatory diseases.
Collapse
Affiliation(s)
- Dimitrios G. Anastasakis
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Benhalevy
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicolas Çuburu
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Paudel B, Jeong SY, Martinez CP, Rickman A, Haluck-Kangas A, Bartom ET, Fredriksen K, Affaneh A, Kessler JA, Mazzulli JR, Murmann AE, Rogalski E, Geula C, Ferreira A, Heckmann BL, Green DR, Sadleir KR, Vassar R, Peter ME. Death Induced by Survival gene Elimination (DISE) correlates with neurotoxicity in Alzheimer's disease and aging. Nat Commun 2024; 15:264. [PMID: 38238311 PMCID: PMC10796375 DOI: 10.1038/s41467-023-44465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aβ42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aβ42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aβ42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.
Collapse
Affiliation(s)
- Bidur Paudel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Si-Yeon Jeong
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ministry of Food and Drug Safety, Pharmaceutical Safety Bureau, Pharmaceutical Policy Division 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Carolina Pena Martinez
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Alexis Rickman
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kristina Fredriksen
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amira Affaneh
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Healthy Aging & Alzheimer's Research Care (HAARC) Center, Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradlee L Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute; Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine R Sadleir
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert Vassar
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Vaidyanathan A, Taylor HE, Hope TJ, D'Aquila RT, Bartom ET, Hultquist JF, Peter ME. Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity. J Virol 2023; 97:e0065223. [PMID: 37310263 PMCID: PMC10373551 DOI: 10.1128/jvi.00652-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harry E. Taylor
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard T. D'Aquila
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Haluck-Kangas A, Fink M, Bartom ET, Peter ME. CD95/Fas ligand mRNA is toxic to cells through more than one mechanism. MOLECULAR BIOMEDICINE 2023; 4:11. [PMID: 37059938 PMCID: PMC10105004 DOI: 10.1186/s43556-023-00119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 04/16/2023] Open
Abstract
CD95/Fas ligand (CD95L) induces apoptosis through protein binding to the CD95 receptor. However, CD95L mRNA also induces toxicity in the absence of CD95 through induction of DISE (Death Induced by Survival Gene Elimination), a form of cell death mediated by RNA interference (RNAi). We now report that CD95L mRNA processing generates a short (s)RNA nearly identical to shL3, a commercial CD95L-targeting shRNA that led to the discovery of DISE. Neither of the miRNA biogenesis proteins Drosha nor Dicer are required for this processing. Interestingly, CD95L toxicity depends on the core component of the RISC, Ago2, in some cell lines, but not in others. In the HCT116 colon cancer cell line, Ago 1-4 appear to function redundantly in RNAi. In fact, Ago 1/2/3 knockout cells retain sensitivity to CD95L mRNA toxicity. Toxicity was only blocked by mutation of all in-frame start codons in the CD95L ORF. Dying cells exhibited an enrichment of RISC bound (R)-sRNAs with toxic 6mer seed sequences, while expression of the non-toxic CD95L mutant enriched for loading of R-sRNAs with nontoxic 6mer seeds. However, CD95L is not the only source of these R-sRNAs. We find that CD95L mRNA may induce DISE directly and indirectly, and that alternate mechanisms may underlie CD95L mRNA processing and toxicity.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Madelaine Fink
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Chicago, IL, USA
- Department of Preventive Medicine/Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Chicago, IL, USA.
| |
Collapse
|
5
|
Zhao J, Chow EYC, Yeung PY, Zhang QC, Chan TF, Kwok CK. Enhanced transcriptome-wide RNA G-quadruplex sequencing for low RNA input samples with rG4-seq 2.0. BMC Biol 2022; 20:257. [PMID: 36372875 PMCID: PMC9661767 DOI: 10.1186/s12915-022-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background RNA G-quadruplexes (rG4s) are non-canonical structural motifs that have diverse functional and regulatory roles, for instance in transcription termination, alternative splicing, mRNA localization and stabilization, and translational process. We recently developed the RNA G-quadruplex structure sequencing (rG4-seq) technique and described rG4s in both eukaryotic and prokaryotic transcriptomes. However, rG4-seq suffers from a complicated gel purification step and limited PCR product yield, thus requiring a high amount of RNA input, which limits its applicability in more physiologically or clinically relevant studies often characterized by the limited availability of biological material and low RNA abundance. Here, we redesign and enhance the workflow of rG4-seq to address this issue. Results We developed rG4-seq 2.0 by introducing a new ssDNA adapter containing deoxyuridine during library preparation to enhance library quality with no gel purification step, less PCR amplification cycles and higher yield of PCR products. We demonstrate that rG4-seq 2.0 produces high-quality cDNA libraries that support reliable and reproducible rG4 identification at varying RNA inputs, including RNA mounts as low as 10 ng. rG4-seq 2.0 also improved the rG4-seq calling outcome and nucleotide bias in rG4 detection persistent in rG4-seq 1.0. We further provide in vitro mapping of rG4 in the HEK293T cell line, and recommendations for assessing RNA input and sequencing depth for individual rG4 studies based on transcript abundance. Conclusions rG4-seq 2.0 can improve the identification and study of rG4s in low abundance transcripts, and our findings can provide insights to optimize cDNA library preparation in other related methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01448-3.
Collapse
|
6
|
Meng Q, Stoyko D, Andrews CM, Konstantinidou P, Genzor P, O T, Elchert AR, Benner L, Sobti S, Katz EY, Haase AD. Functional editing of endogenous genes through rapid selection of cell pools (Rapid generation of endogenously tagged genes in Drosophila ovarian somatic sheath cells). Nucleic Acids Res 2022; 50:e90. [PMID: 35639929 DOI: 10.1093/nar/gkac448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The combination of genome-editing and epitope tagging provides a powerful strategy to study proteins with high affinity and specificity while preserving their physiological expression patterns. However, stably modifying endogenous genes in cells that do not allow for clonal selection has been challenging. Here, we present a simple and fast strategy to generate stable, endogenously tagged alleles in a non-transformed cell culture model. At the example of piwi in Drosophila ovarian somatic sheath cells, we show that this strategy enables the generation of an N-terminally tagged protein that emulates the expression level and subcellular localization of the wild type protein and forms functional Piwi-piRNA complexes. We further present a concise workflow to establish endogenously N-terminally and C-terminally tagged proteins, and knockout alleles through rapid selection of cell pools in fly and human models.
Collapse
Affiliation(s)
- Qingcai Meng
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Stoyko
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celine Marlin Andrews
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Pavol Genzor
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy O
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra R Elchert
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leif Benner
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sushil Sobti
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Esther Y Katz
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Topouza DG, Choi J, Nesdoly S, Tarnouskaya A, Nicol CJB, Duan QL. Novel MicroRNA-Regulated Transcript Networks Are Associated with Chemotherapy Response in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms23094875. [PMID: 35563265 PMCID: PMC9101651 DOI: 10.3390/ijms23094875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecologic cancer, in part due to resistance to platinum-based chemotherapy reported among 20% of patients. This study aims to generate novel hypotheses of the biological mechanisms underlying chemotherapy resistance, which remain poorly understood. Differential expression analyses of mRNA- and microRNA-sequencing data from HGSOC patients of The Cancer Genome Atlas identified 21 microRNAs associated with angiogenesis and 196 mRNAs enriched for adaptive immunity and translation. Coexpression network analysis identified three microRNA networks associated with chemotherapy response enriched for lipoprotein transport and oncogenic pathways, as well as two mRNA networks enriched for ubiquitination and lipid metabolism. These network modules were replicated in two independent ovarian cancer cohorts. Moreover, integrative analyses of the mRNA/microRNA sequencing and single-nucleotide polymorphisms (SNPs) revealed potential regulation of significant mRNA transcripts by microRNAs and SNPs (expression quantitative trait loci). Thus, we report novel transcriptional networks and biological pathways associated with resistance to platinum-based chemotherapy in HGSOC patients. These results expand our understanding of the effector networks and regulators of chemotherapy response, which will help to improve the management of ovarian cancer.
Collapse
Affiliation(s)
- Danai G. Topouza
- Department of Biomedical and Molecular Sciences, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6, Canada; (D.G.T.); (J.C.); (C.J.B.N.)
| | - Jihoon Choi
- Department of Biomedical and Molecular Sciences, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6, Canada; (D.G.T.); (J.C.); (C.J.B.N.)
| | - Sean Nesdoly
- School of Computing, Queen’s University, 21-25 Union St., Kingston, ON K7L 2N8, Canada; (S.N.); (A.T.)
| | - Anastasiya Tarnouskaya
- School of Computing, Queen’s University, 21-25 Union St., Kingston, ON K7L 2N8, Canada; (S.N.); (A.T.)
| | - Christopher J. B. Nicol
- Department of Biomedical and Molecular Sciences, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6, Canada; (D.G.T.); (J.C.); (C.J.B.N.)
- Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St., Kingston, ON K7L 3N6, Canada
- Division of Cancer Biology and Genetics, Queen’s University Cancer Research Institute, Queen’s University, 10 Stuart St., Kingston, ON K7L 3N6, Canada
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6, Canada; (D.G.T.); (J.C.); (C.J.B.N.)
- School of Computing, Queen’s University, 21-25 Union St., Kingston, ON K7L 2N8, Canada; (S.N.); (A.T.)
- Correspondence:
| |
Collapse
|
8
|
Muthukumar T, Akat KM, Yang H, Schwartz JE, Li C, Bang H, Ben-Dov IZ, Lee JR, Ikle D, Demetris AJ, Tuschl T, Suthanthiran M. Serum MicroRNA Transcriptomics and Acute Rejection or Recurrent Hepatitis C Virus in Human Liver Allograft Recipients: A Pilot Study. Transplantation 2022; 106:806-820. [PMID: 33979314 PMCID: PMC8581074 DOI: 10.1097/tp.0000000000003815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute rejection (AR) and recurrent hepatitis C virus (R-HCV) are significant complications in liver allograft recipients. Noninvasive diagnosis of intragraft pathologies may improve their management. METHODS We performed small RNA sequencing and microRNA (miRNA) microarray profiling of RNA from sera matched to liver allograft biopsies from patients with nonimmune, nonviral (NINV) native liver disease. Absolute levels of informative miRNAs in 91 sera matched to 91 liver allograft biopsies were quantified using customized real-time quantitative PCR (RT-qPCR) assays: 30 biopsy-matched sera from 26 unique NINV patients and 61 biopsy-matched sera from 41 unique R-HCV patients. The association between biopsy diagnosis and miRNA abundance was analyzed by logistic regression and calculating the area under the receiver operating characteristic curve. RESULTS Nine miRNAs-miR-22, miR-34a, miR-122, miR-148a, miR-192, miR-193b, miR-194, miR-210, and miR-885-5p-were identified by both sRNA-seq and TLDA to be associated with NINV-AR. Logistic regression analysis of absolute levels of miRNAs and goodness-of-fit of predictors identified a linear combination of miR-34a + miR-210 (P < 0.0001) as the best statistical model and miR-122 + miR-210 (P < 0.0001) as the best model that included miR-122. A different linear combination of miR-34a + miR-210 (P < 0.0001) was the best model for discriminating NINV-AR from R-HCV with intragraft inflammation, and miR-34a + miR-122 (P < 0.0001) was the best model for discriminating NINV-AR from R-HCV with intragraft fibrosis. CONCLUSIONS Circulating levels of miRNAs, quantified using customized RT-qPCR assays, may offer a rapid and noninvasive means of diagnosing AR in human liver allografts and for discriminating AR from intragraft inflammation or fibrosis due to R-HCV.
Collapse
Affiliation(s)
- Thangamani Muthukumar
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY
| | - Kemal M. Akat
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY
| | - Hua Yang
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY
| | - Joseph E. Schwartz
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY
| | - Carol Li
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY
| | - Heejung Bang
- Division of Biostatistics, Department of Public Health Sciences, University of California at Davis, Davis, CA
| | - Iddo Z. Ben-Dov
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY
| | - John R. Lee
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY
| | | | - Anthony J. Demetris
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine and Department of Transplantation Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Kaczmarek E, Nanayakkara J, Sedghi A, Pesteie M, Tuschl T, Renwick N, Mousavi P. Topology preserving stratification of tissue neoplasticity using Deep Neural Maps and microRNA signatures. BMC Bioinformatics 2022; 23:38. [PMID: 35026982 PMCID: PMC8756719 DOI: 10.1186/s12859-022-04559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/30/2021] [Indexed: 11/14/2022] Open
Abstract
Background Accurate cancer classification is essential for correct treatment selection and better prognostication. microRNAs (miRNAs) are small RNA molecules that negatively regulate gene expression, and their dyresgulation is a common disease mechanism in many cancers. Through a clearer understanding of miRNA dysregulation in cancer, improved mechanistic knowledge and better treatments can be sought. Results We present a topology-preserving deep learning framework to study miRNA dysregulation in cancer. Our study comprises miRNA expression profiles from 3685 cancer and non-cancer tissue samples and hierarchical annotations on organ and neoplasticity status. Using unsupervised learning, a two-dimensional topological map is trained to cluster similar tissue samples. Labelled samples are used after training to identify clustering accuracy in terms of tissue-of-origin and neoplasticity status. In addition, an approach using activation gradients is developed to determine the attention of the networks to miRNAs that drive the clustering. Using this deep learning framework, we classify the neoplasticity status of held-out test samples with an accuracy of 91.07%, the tissue-of-origin with 86.36%, and combined neoplasticity status and tissue-of-origin with an accuracy of 84.28%. The topological maps display the ability of miRNAs to recognize tissue types and neoplasticity status. Importantly, when our approach identifies samples that do not cluster well with their respective classes, activation gradients provide further insight in cancer subtypes or grades. Conclusions An unsupervised deep learning approach is developed for cancer classification and interpretation. This work provides an intuitive approach for understanding molecular properties of cancer and has significant potential for cancer classification and treatment selection.
Collapse
|
10
|
Blanco LP, Wang X, Carlucci PM, Torres-Ruiz JJ, Romo-Tena J, Sun HW, Hafner M, Kaplan MJ. RNA Externalized by Neutrophil Extracellular Traps Promotes Inflammatory Pathways in Endothelial Cells. Arthritis Rheumatol 2021; 73:2282-2292. [PMID: 33983685 PMCID: PMC8589882 DOI: 10.1002/art.41796] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neutrophil extracellular traps (NETs) are extracellular lattices composed of nucleic material bound to neutrophil granule proteins. NETs may play pathogenic roles in the development and severity of autoimmune diseases such as systemic lupus erythematosus (SLE), at least in part, through induction of type I interferon (IFN) responses via externalization of oxidized immunostimulatory DNA. A distinct subset of SLE proinflammatory neutrophils (low-density granulocytes [LDGs]) displays enhanced ability to form proinflammatory NETs that damage the vasculature. We undertook this study to assess whether NET-bound RNA can contribute to inflammatory responses in endothelial cells (ECs) and the pathways that mediate this effect. METHODS Expression of newly synthesized and total RNA was quantified in NETs from healthy controls and lupus patients. The ability of ECs to take up NET-bound RNA and downstream induction of type I IFN responses were quantified. RNAs present in NETs were sequenced and specific small RNAs were tested for induction of endothelial type I IFN pathways. RESULTS NETs extruded RNA that was internalized by ECs, and this was enhanced when NET-bound nucleic acids were oxidized, particularly in lupus LDG-derived NETs. Internalization of NET-bound RNA by ECs was dependent on endosomal Toll-like receptors (TLRs) and the actin cytoskeleton and induced type I IFN-stimulated genes (ISGs). This ISG induction was dependent on NET-associated microRNA let-7b, a small RNA expressed at higher levels in LDG-derived NETs, which acted as a TLR-7 agonist. CONCLUSION These findings highlight underappreciated roles for small RNAs externalized in NETs in the induction of proinflammatory responses in vascular cells, with implications for lupus vasculopathy.
Collapse
Affiliation(s)
- Luz P. Blanco
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xinghao Wang
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Philip M. Carlucci
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jose Jiram Torres-Ruiz
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Medical Science PhD Program, School of Medicine, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Markus Hafner
- RNA Molecular Biology Group, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
11
|
Genzor P, Konstantinidou P, Stoyko D, Manzourolajdad A, Marlin Andrews C, Elchert AR, Stathopoulos C, Haase AD. Cellular abundance shapes function in piRNA-guided genome defense. Genome Res 2021; 31:2058-2068. [PMID: 34667116 PMCID: PMC8559710 DOI: 10.1101/gr.275478.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022]
Abstract
Defense against genome invaders universally relies on RNA-guided immunity. Prokaryotic CRISPR-Cas and eukaryotic RNA interference pathways recognize targets by complementary base-pairing, which places the sequences of their guide RNAs at the center of self/nonself discrimination. Here, we explore the sequence space of PIWI-interacting RNAs (piRNAs), the genome defense of animals, and establish functional priority among individual sequences. Our results reveal that only the topmost abundant piRNAs are commonly present in every cell, whereas rare sequences generate cell-to-cell diversity in flies and mice. We identify a skewed distribution of sequence abundance as a hallmark of piRNA populations and show that quantitative differences of more than a 1000-fold are established by conserved mechanisms of biogenesis. Finally, our genomics analyses and direct reporter assays reveal that abundance determines function in piRNA-guided genome defense. Taken together, we identify an effective sequence space and untangle two classes of piRNAs that differ in complexity and function. The first class represents the topmost abundant sequences and drives silencing of genomic parasites. The second class sparsely covers an enormous sequence space. These rare piRNAs cannot function in every cell, every individual, or every generation but create diversity with potential for adaptation in the ongoing arms race with genome invaders.
Collapse
Affiliation(s)
- Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Parthena Konstantinidou
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Daniel Stoyko
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amirhossein Manzourolajdad
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Celine Marlin Andrews
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandra R Elchert
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Danan C, Manickavel S, Hafner M. PAR-CLIP: A Method for Transcriptome-Wide Identification of RNA Binding Protein Interaction Sites. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2404:167-188. [PMID: 34694609 DOI: 10.1007/978-1-0716-1851-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During post-transcriptional gene regulation (PTGR), RNA binding proteins (RBPs) interact with all classes of RNA to control RNA maturation, stability, transport, and translation. Here, we describe Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), a transcriptome-scale method for identifying RBP binding sites on target RNAs with nucleotide-level resolution. This method is readily applicable to any protein directly contacting RNA, including RBPs that are predicted to bind in a sequence- or structure-dependent manner at discrete RNA recognition elements (RREs), and those that are thought to bind transiently, such as RNA polymerases or helicases.
Collapse
Affiliation(s)
- Charles Danan
- RNA Molecular Biology Group, NIAMS, Bethesda, MD, USA
| | | | - Markus Hafner
- RNA Molecular Biology Group, NIAMS, Bethesda, MD, USA.
| |
Collapse
|
13
|
Rohan TE, Ginsberg M, Wang Y, Couch FJ, Feigelson HS, Greenlee RT, Honda S, Stark A, Chitale D, Wang T, Xue X, Oktay MH, Sparano JA, Loudig O. Molecular markers of risk of subsequent invasive breast cancer in women with ductal carcinoma in situ: protocol for a population-based cohort study. BMJ Open 2021; 11:e053397. [PMID: 34702732 PMCID: PMC8549665 DOI: 10.1136/bmjopen-2021-053397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Ductal carcinoma in situ (DCIS) of the breast is a non-obligate precursor of invasive breast cancer (IBC). Many DCIS patients are either undertreated or overtreated. The overarching goal of the study described here is to facilitate detection of patients with DCIS at risk of IBC development. Here, we propose to use risk factor data and formalin-fixed paraffin-embedded (FFPE) DCIS tissue from a large, ethnically diverse, population-based cohort of 8175 women with a first diagnosis of DCIS and followed for subsequent IBC to: identify/validate miRNA expression changes in DCIS tissue associated with risk of subsequent IBC; evaluate ipsilateral IBC risk in association with two previously identified marker sets (triple immunopositivity for p16, COX-2, Ki67; Oncotype DX Breast DCIS score); examine the association of risk factor data with IBC risk. METHODS AND ANALYSIS We are conducting a series of case-control studies nested within the cohort. Cases are women with DCIS who developed subsequent IBC; controls (2/case) are matched to cases on calendar year of and age at DCIS diagnosis. We project 485 cases/970 controls in the aim focused on risk factors. We estimate obtaining FFPE tissue for 320 cases/640 controls for the aim focused on miRNAs; of these, 173 cases/346 controls will be included in the aim focused on p16, COX-2 and Ki67 immunopositivity, and of the latter, 156 case-control pairs will be included in the aim focused on the Oncotype DX Breast DCIS score®. Multivariate conditional logistic regression will be used for statistical analyses. ETHICS AND DISSEMINATION Ethics approval was obtained from the Institutional Review Boards of Albert Einstein College of Medicine (IRB 2014-3611), Kaiser Permanente Colorado, Kaiser Permanente Hawaii, Henry Ford Health System, Mayo Clinic, Marshfield Clinic Research Institute and Hackensack Meridian Health, and from Lifespan Research Protection Office. The study results will be presented at meetings and published in peer-reviewed journals.
Collapse
Affiliation(s)
- Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mindy Ginsberg
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robert T Greenlee
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Stacey Honda
- Center for Integrated Healthcare, Kaiser Permanente, Hawaii Permanente Medical Group, Honolulu, Hawaii, USA
| | - Azadeh Stark
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, Michigan, USA
- Breast Oncology Program and Department of Pathology, Henry Ford Health System, Detroit, Michigan, USA
| | - Dhananjay Chitale
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, Michigan, USA
- Breast Oncology Program and Department of Pathology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Joseph A Sparano
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
14
|
Patel M, Wang Y, Bartom ET, Dhir R, Nephew KP, Matei D, Murmann AE, Lengyel E, Peter ME. The Ratio of Toxic-to-Nontoxic miRNAs Predicts Platinum Sensitivity in Ovarian Cancer. Cancer Res 2021; 81:3985-4000. [PMID: 34224372 PMCID: PMC8338879 DOI: 10.1158/0008-5472.can-21-0953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Ovarian cancer remains one of the deadliest gynecologic malignancies affecting women, and development of resistance to platinum remains a major barrier to achieving a cure. Multiple mechanisms have been identified to confer platinum resistance. Numerous miRNAs have been linked to platinum sensitivity and resistance in ovarian cancer. miRNA activity occurs mainly when the guide strand of the miRNA, with its seed sequence at position 2-7/8, is loaded into the RNA-induced silencing complex (RISC) and targets complementary short seed matches in the 3' untranslated region of mRNAs. Toxic 6mer seeds, which target genes critical for cancer cell survival, have been found in tumor-suppressive miRNAs. Many siRNAs and short hairpin RNAs (shRNA) can also kill cancer cells via toxic seeds, the most toxic of which carry G-rich 6mer seed sequences. We showed here that treatment of ovarian cancer cells with platinum led to increased RISC-bound miRNAs carrying toxic 6mer seeds and decreased miRNAs with nontoxic seeds. Platinum-tolerant cells did not exhibit this toxicity shift but retained sensitivity to cell death mediated by siRNAs carrying toxic 6mer seeds. Analysis of RISC-bound miRNAs in tumors from patients with ovarian cancer revealed that the ratio between miRNAs with toxic versus nontoxic seeds was predictive of treatment outcome. Application of the 6mer seed toxicity concept to cancer relevant miRNAs provides a new framework for understanding and predicting cancer therapy responses. SIGNIFICANCE: These findings demonstrate that the balance of miRNAs that carry toxic and nontoxic 6mer seeds contributes to platinum resistance in ovarian cancer.
Collapse
Affiliation(s)
- Monal Patel
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rohin Dhir
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Andrea E Murmann
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Marcus E Peter
- Department of Medicine/Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
15
|
Kennel PJ, Yahi A, Naka Y, Mancini DM, Marboe CC, Max K, Akat K, Tuschl T, Vasilescu EM, Zorn E, Tatonetti NP, Schulze PC. Longitudinal profiling of circulating miRNA during cardiac allograft rejection: a proof-of-concept study. ESC Heart Fail 2021; 8:1840-1849. [PMID: 33713567 PMCID: PMC8120386 DOI: 10.1002/ehf2.13238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
AIMS Allograft rejection following heart transplantation (HTx) is a serious complication even in the era of modern immunosuppressive regimens and causes up to a third of early deaths after HTx. Allograft rejection is mediated by a cascade of immune mechanisms leading to acute cellular rejection (ACR) and/or antibody-mediated rejection (AMR). The gold standard for monitoring allograft rejection is invasive endomyocardial biopsy that exposes patients to complications. Little is known about the potential of circulating miRNAs as biomarkers to detect cardiac allograft rejection. We here present a systematic analysis of circulating miRNAs as biomarkers and predictors for allograft rejection after HTx using next-generation small RNA sequencing. METHODS AND RESULTS We used next-generation small RNA sequencing to investigate circulating miRNAs among HTx recipients (10 healthy controls, 10 heart failure patients, 13 ACR, and 10 AMR). MiRNA profiling was performed at different time points before, during, and after resolution of the rejection episode. We found three miRNAs with significantly increased serum levels in patients with biopsy-proven cardiac rejection when compared with patients without rejection: hsa-miR-139-5p, hsa-miR-151a-5p, and hsa-miR-186-5p. We identified miRNAs that may serve as potential predictors for the subsequent development of ACR: hsa-miR-29c-3p (ACR) and hsa-miR-486-5p (AMR). Overall, hsa-miR-486-5p was most strongly associated with acute rejection episodes. CONCLUSIONS Monitoring cardiac allograft rejection using circulating miRNAs might represent an alternative strategy to invasive endomyocardial biopsy.
Collapse
Affiliation(s)
- Peter J. Kennel
- Division of Cardiology, Department of MedicineColumbia UniversityNew YorkNYUSA
- Department of Medicine I, Division of CardiologyUniversity Hospital of Friedrich Schiller University JenaAm Klinikum 1Jena07747Germany
| | - Alexandre Yahi
- Department of Biomedical InformaticsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of MedicineColumbia UniversityNew YorkNYUSA
| | | | | | - Charles C. Marboe
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| | - Klaas Max
- Laboratory of RNA Molecular BiologyRockefeller UniversityNew YorkNYUSA
| | - Kemal Akat
- Laboratory of RNA Molecular BiologyRockefeller UniversityNew YorkNYUSA
| | - Thomas Tuschl
- Laboratory of RNA Molecular BiologyRockefeller UniversityNew YorkNYUSA
| | | | - Emmanuel Zorn
- Columbia Center for Translational ImmunologyColumbia UniversityNew YorkNYUSA
| | - Nicholas P. Tatonetti
- Department of Biomedical InformaticsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of MedicineColumbia UniversityNew YorkNYUSA
| | - Paul Christian Schulze
- Department of Medicine I, Division of CardiologyUniversity Hospital of Friedrich Schiller University JenaAm Klinikum 1Jena07747Germany
| |
Collapse
|
16
|
Yang X, Nanayakkara J, Claypool D, Saghafinia S, Wong JJM, Xu M, Wang X, Nicol CJB, Michael IP, Hafner M, Yang X, Renwick N. A miR-375/YAP axis regulates neuroendocrine differentiation and tumorigenesis in lung carcinoid cells. Sci Rep 2021; 11:10455. [PMID: 34001972 PMCID: PMC8129150 DOI: 10.1038/s41598-021-89855-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Jina Nanayakkara
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Duncan Claypool
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Sadegh Saghafinia
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Justin J. M. Wong
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Minqi Xu
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Xiantao Wang
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Christopher J. B. Nicol
- grid.410356.50000 0004 1936 8331Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada ,Division of Cancer Biology and Genetics, Queen’s Cancer Research Institute, 10 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Iacovos P. Michael
- grid.5333.60000000121839049Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Markus Hafner
- grid.420086.80000 0001 2237 2479Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, 50 South Drive, Bethesda, MD 20892 USA
| | - Xiaolong Yang
- grid.410356.50000 0004 1936 8331Cancer Research Laboratory, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| | - Neil Renwick
- grid.410356.50000 0004 1936 8331Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
17
|
Abstract
RNA silencing plays a critical role in diverse biological processes in plants including growth, development, and responses to abiotic and biotic stresses. RNA silencing is guided by small non-coding RNAs (sRNAs) with the length of 21-24 nucleotides (nt) that are loaded into Argonaute (AGO) to repress expression of target loci and transcripts through transcriptional or posttranscriptional gene silencing mechanisms. Identification and quantitative characterization of sRNAs are crucial steps toward appreciation of their functions in biology. Here, we developed a step-by-step protocol to precisely illustrate the process of cloning of sRNA libraries and correspondingly computational analysis of the recovered sRNAs. This protocol can be used in all kinds of organisms, including Arabidopsis, and is compatible with various high-throughput sequence technologies such as Illumina Hiseq. Thus, we wish that this protocol represents an accurate way to identify and quantify sRNAs in vivo.
Collapse
Affiliation(s)
- Di Sun
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
- Graduate Program for Molecular and Environmental Plant Science, Texas A&M University, College Station, TX, USA
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Wong JJM, Ginter PS, Tyryshkin K, Yang X, Nanayakkara J, Zhou Z, Tuschl T, Chen YT, Renwick N. Classifying Lung Neuroendocrine Neoplasms through MicroRNA Sequence Data Mining. Cancers (Basel) 2020; 12:E2653. [PMID: 32957587 PMCID: PMC7564332 DOI: 10.3390/cancers12092653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Lung neuroendocrine neoplasms (NENs) can be challenging to classify due to subtle histologic differences between pathological types. MicroRNAs (miRNAs) are small RNA molecules that are valuable markers in many neoplastic diseases. To evaluate miRNAs as classificatory markers for lung NENs, we generated comprehensive miRNA expression profiles from 14 typical carcinoid (TC), 15 atypical carcinoid (AC), 11 small cell lung carcinoma (SCLC), and 15 large cell neuroendocrine carcinoma (LCNEC) samples, through barcoded small RNA sequencing. Following sequence annotation and data preprocessing, we randomly assigned these profiles to discovery and validation sets. Through high expression analyses, we found that miR-21 and -375 are abundant in all lung NENs, and that miR-21/miR-375 expression ratios are significantly lower in carcinoids (TC and AC) than in neuroendocrine carcinomas (NECs; SCLC and LCNEC). Subsequently, we ranked and selected miRNAs for use in miRNA-based classification, to discriminate carcinoids from NECs. Using miR-18a and -155 expression, our classifier discriminated these groups in discovery and validation sets, with 93% and 100% accuracy. We also identified miR-17, -103, and -127, and miR-301a, -106b, and -25, as candidate markers for discriminating TC from AC, and SCLC from LCNEC, respectively. However, these promising findings require external validation due to sample size.
Collapse
Affiliation(s)
- Justin J. M. Wong
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.J.M.W.); (K.T.); (X.Y.); (J.N.); (Z.Z.)
| | - Paula S. Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (P.S.G.); (Y.-T.C.)
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.J.M.W.); (K.T.); (X.Y.); (J.N.); (Z.Z.)
| | - Xiaojing Yang
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.J.M.W.); (K.T.); (X.Y.); (J.N.); (Z.Z.)
| | - Jina Nanayakkara
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.J.M.W.); (K.T.); (X.Y.); (J.N.); (Z.Z.)
| | - Zier Zhou
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.J.M.W.); (K.T.); (X.Y.); (J.N.); (Z.Z.)
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA;
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (P.S.G.); (Y.-T.C.)
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (J.J.M.W.); (K.T.); (X.Y.); (J.N.); (Z.Z.)
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
19
|
Nanayakkara J, Tyryshkin K, Yang X, Wong JJM, Vanderbeck K, Ginter PS, Scognamiglio T, Chen YT, Panarelli N, Cheung NK, Dijk F, Ben-Dov IZ, Kim MK, Singh S, Morozov P, Max KEA, Tuschl T, Renwick N. Characterizing and classifying neuroendocrine neoplasms through microRNA sequencing and data mining. NAR Cancer 2020; 2:zcaa009. [PMID: 32743554 PMCID: PMC7380486 DOI: 10.1093/narcan/zcaa009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are clinically diverse and incompletely characterized cancers that are challenging to classify. MicroRNAs (miRNAs) are small regulatory RNAs that can be used to classify cancers. Recently, a morphology-based classification framework for evaluating NENs from different anatomical sites was proposed by experts, with the requirement of improved molecular data integration. Here, we compiled 378 miRNA expression profiles to examine NEN classification through comprehensive miRNA profiling and data mining. Following data preprocessing, our final study cohort included 221 NEN and 114 non-NEN samples, representing 15 NEN pathological types and 5 site-matched non-NEN control groups. Unsupervised hierarchical clustering of miRNA expression profiles clearly separated NENs from non-NENs. Comparative analyses showed that miR-375 and miR-7 expression is substantially higher in NEN cases than non-NEN controls. Correlation analyses showed that NENs from diverse anatomical sites have convergent miRNA expression programs, likely reflecting morphological and functional similarities. Using machine learning approaches, we identified 17 miRNAs to discriminate 15 NEN pathological types and subsequently constructed a multilayer classifier, correctly identifying 217 (98%) of 221 samples and overturning one histological diagnosis. Through our research, we have identified common and type-specific miRNA tissue markers and constructed an accurate miRNA-based classifier, advancing our understanding of NEN diversity.
Collapse
Affiliation(s)
- Jina Nanayakkara
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Xiaojing Yang
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Justin J M Wong
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Kaitlin Vanderbeck
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Paula S Ginter
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Nicole Panarelli
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Frederike Dijk
- Department of Pathology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Michelle Kang Kim
- Center for Carcinoid and Neuroendocrine Tumors of Mount Sinai, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Simron Singh
- Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, ON M4N 3M5, Canada
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Klaas E A Max
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, 88 Stuart Street, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
20
|
The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell 2020; 177:231-242. [PMID: 30951667 DOI: 10.1016/j.cell.2019.03.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Extracellular RNA Communication Consortium (ERCC) was launched to accelerate progress in the new field of extracellular RNA (exRNA) biology and to establish whether exRNAs and their carriers, including extracellular vesicles (EVs), can mediate intercellular communication and be utilized for clinical applications. Phase 1 of the ERCC focused on exRNA/EV biogenesis and function, discovery of exRNA biomarkers, development of exRNA/EV-based therapeutics, and construction of a robust set of reference exRNA profiles for a variety of biofluids. Here, we present progress by ERCC investigators in these areas, and we discuss collaborative projects directed at development of robust methods for EV/exRNA isolation and analysis and tools for sharing and computational analysis of exRNA profiling data.
Collapse
|
21
|
Zhou X, Nair GG, Russ HA, Belair CD, Li ML, Shveygert M, Hebrok M, Blelloch R. LIN28B Impairs the Transition of hESC-Derived β Cells from the Juvenile to Adult State. Stem Cell Reports 2019; 14:9-20. [PMID: 31883920 PMCID: PMC6962644 DOI: 10.1016/j.stemcr.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
Differentiation of human embryonic stem cells into pancreatic β cells holds great promise for the treatment of diabetes. Recent advances have led to the production of glucose-responsive insulin-secreting cells in vitro, but resulting cells remain less mature than their adult primary β cell counterparts. The barrier(s) to in vitro β cell maturation are unclear. Here, we evaluated a potential role for microRNAs. MicroRNA profiling showed high expression of let-7 family microRNAs in vivo, but not in in vitro differentiated β cells. Reduced levels of let-7 in vitro were associated with increased levels of the RNA binding protein LIN28B, a negative regulator of let-7 biogenesis. Ablation of LIN28B during human embryonic stem cell (hESC) differentiation toward β cells led to a more mature glucose-stimulated insulin secretion profile and the suppression of juvenile-specific genes. However, let-7 overexpression had little effect. These results uncover LIN28B as a modulator of β cell maturation in vitro.
Collapse
Affiliation(s)
- Xin Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Gopika G Nair
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Holger A Russ
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Mei-Lan Li
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Mayya Shveygert
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, CA 94143, USA.
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Mjelle R, Dima SO, Bacalbasa N, Chawla K, Sorop A, Cucu D, Herlea V, Sætrom P, Popescu I. Comprehensive transcriptomic analyses of tissue, serum, and serum exosomes from hepatocellular carcinoma patients. BMC Cancer 2019; 19:1007. [PMID: 31660891 PMCID: PMC6816220 DOI: 10.1186/s12885-019-6249-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The expression of microRNAs (miRNAs) is a promising prognostic and diagnostic tool in hepatocellular carcinoma (HCC). Here we performed small RNA sequencing (sRNA-seq) of tissue, serum and serum exosomes to investigate changes in miRNA expression between the different sample types and correlated the expression with clinical parameters. We also performed gene expression arrays on tumor and normal tissue. RESULTS Paired tissue, serum and serum exosomes sequencing revealed consistent positive correlation of miR-21 between serum exosomes and tumor tissue, indicating that miR-21 could be exported from tissue to circulation via exosomes. We found that let-7 miRNAs are generally upregulated in serum exosomes compared to whole serum, indicating that these miRNAs could be preferentially loaded into exosomes. Comparing serum from HCC patients with serum from healthy individuals revealed a global increase of miRNAs in serum from HCC patients, including an almost 4-fold increase of several miRNAs, including the liver-specific miR-122. When correlating miRNA expression with clinical parameters we detected significant association between hepatitis B virus (HBV) infection and miR-122 in serum as well as several serum and tissue-miRNAs that correlated with surgery type. We found that miR-141 and miR-146 correlated with cirrhosis in tumor tissue and normal tissue, respectively. Finally, high expression of miR-21 in tumors were associated with poor survival. Focusing on gene expression we found several significant messenger RNAs (mRNAs) between tumor and normal tissue and a Gene Ontology (GO) analysis revealed that these changes were mainly related to cell cycle and metabolism. Further, we detected mRNAs that correlated with cirrhosis and HBV infection in tissue. Finally, GO analysis of predicted targets for miRNAs down-regulated in tumor found that these were enriched for functions related to collagen synthesis. CONCLUSIONS Our combined data point to altered miRNA and mRNA expression contributing to both generally impaired lipid metabolism and increased cell proliferation and a miRNA-driven increase in collagen synthesis in HCC. Our results further indicate a correlation in miRNA expression between exosomes, serum, and tissue samples suggesting export from tumors via exosomes. This correlation could provide a basis for a more tumor-specific miRNA profile in serum.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway. .,Department of Computer Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.
| | - Simona O Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Dana Cucu
- Department of Anatomy, Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Bioinformatics Core Facility-BioCore, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania.,Acad. Nicolae Cajal Institute of Medical Scientific Research, Titu Maiorescu University, Bucharest, Romania
| |
Collapse
|
23
|
Computational Workflow for Small RNA Profiling in Virus-Infected Plants. Methods Mol Biol 2019; 2028:185-214. [PMID: 31228116 DOI: 10.1007/978-1-4939-9635-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In this chapter we describe a series of computational pipelines for the in silico analysis of small RNAs (sRNA) produced in response to viral infections in plants. Our workflow is primarily focused on the analysis of sRNA populations derived from known or previously undescribed viruses infecting host plants. Furthermore, we provide an additional pipeline to examine host-specific endogenous sRNAs activated or specifically expressed during viral infections in plants. We present some key points for a successful and cost-efficient processing of next generation sequencing sRNA libraries, from purification of high quality RNA to guidance for library preparation and sequencing strategies. We report a series of free available tools and programs as well as in-house Perl scripts to perform customized sRNA-seq data mining. Previous bioinformatic background is not required, but experience with basic Unix commands is desirable.
Collapse
|
24
|
Muys BR, Sousa JF, Plaça JR, de Araújo LF, Sarshad AA, Anastasakis DG, Wang X, Li XL, de Molfetta GA, Ramão A, Lal A, Vidal DO, Hafner M, Silva WA. miR-450a Acts as a Tumor Suppressor in Ovarian Cancer by Regulating Energy Metabolism. Cancer Res 2019; 79:3294-3305. [PMID: 31101765 DOI: 10.1158/0008-5472.can-19-0490] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.
Collapse
Affiliation(s)
- Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto, Brazil.,Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland.,Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Josane F Sousa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto, Brazil.,Genetics and Molecular Biology Program, Institute of Biological Sciences, Federal University of Para-UFPA, Belem, Brazil
| | - Jessica Rodrigues Plaça
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto, Brazil
| | - Luíza Ferreira de Araújo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto, Brazil.,Medical Genomics Laboratory, AC Camargo Cancer Center, São Paulo, Brazil
| | - Aishe A Sarshad
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
| | - Dimitrios G Anastasakis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Greice Andreotti de Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland.
| | - Wilson A Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Akat KM, Lee YA, Hurley A, Morozov P, Max KE, Brown M, Bogardus K, Sopeyin A, Hildner K, Diacovo TG, Neurath MF, Borggrefe M, Tuschl T. Detection of circulating extracellular mRNAs by modified small-RNA-sequencing analysis. JCI Insight 2019; 5:127317. [PMID: 30973829 DOI: 10.1172/jci.insight.127317] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular mRNAs (ex-mRNAs) potentially supersede extracellular miRNAs (ex-miRNAs) and other RNA classes as biomarkers. We performed conventional small-RNA-sequencing (sRNA-seq) and sRNA-seq with T4 polynucleotide kinase (PNK) end-treatment of total exRNA isolated from serum and platelet-poor EDTA, ACD, and heparin plasma to study the effect on ex-mRNA capture. Compared to conventional sRNA-seq PNK-treatment increased the detection of informative ex-mRNAs reads up to 50-fold. The exRNA pool was dominated by hematopoietic cells and platelets, with additional contribution from the liver. About 60% of the 15- to 42-nt reads originated from the coding sequences, in a pattern reminiscent of ribosome-profiling. Blood sample type had a considerable influence on the exRNA profile. On average approximately 350 to 1,100 distinct ex-mRNA transcripts were detected depending on plasma type. In serum, additional transcripts from neutrophils and hematopoietic cells increased this number to near 2,300. EDTA and ACD plasma showed a destabilizing effect on ex mRNA and non-coding RNA ribonucleoprotein complexes compared to other plasma types. In a proof-of-concept study, we investigated differences between the exRNA profiles of patients with acute coronary syndrome (ACS) and healthy controls. The improved tissue resolution of ex mRNAs after PNK-treatment enabled us to detect a neutrophil-signature in ACS that escaped detection by ex miRNA analysis.
Collapse
Affiliation(s)
| | | | - Arlene Hurley
- Center for Translational Science, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Bavaria, Germany
| | - Thomas G Diacovo
- Departments of Pediatrics and Cell Biology and Pathology, Columbia University Medical Center, New York, New York, USA
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Bavaria, Germany
| | - Martin Borggrefe
- First Department of Medicine, University Medical Center Mannheim, Faculty of Medicine Mannheim, University of Heidelberg, European Center for AngioScience, and DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Baden-Wuerttemberg, Germany
| | | |
Collapse
|
26
|
Palangat M, Anastasakis DG, Fei DL, Lindblad KE, Bradley R, Hourigan CS, Hafner M, Larson DR. The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation. Genes Dev 2019; 33:482-497. [PMID: 30842218 PMCID: PMC6499322 DOI: 10.1101/gad.319590.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
Abstract
Palangat et al. uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. Somatic mutations in the genes encoding components of the spliceosome occur frequently in human neoplasms, including myeloid dysplasias and leukemias, and less often in solid tumors. One of the affected factors, U2AF1, is involved in splice site selection, and the most common change, S34F, alters a conserved nucleic acid-binding domain, recognition of the 3′ splice site, and alternative splicing of many mRNAs. However, the role that this mutation plays in oncogenesis is still unknown. Here, we uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. This splicing-independent role of U2AF1 is altered by the S34F mutation, and polysome profiling indicates that the mutation affects translation of hundreds of mRNA. One functional consequence is increased synthesis of the secreted chemokine interleukin 8, which contributes to metastasis, inflammation, and cancer progression in mice and humans.
Collapse
Affiliation(s)
- Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, National Cancer Insitute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dimitrios G Anastasakis
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Katherine E Lindblad
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Robert Bradley
- Computational Biology Program, Public Health Sciences and Biological Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Insitute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
27
|
Lama L, Cobo J, Buenaventura D, Ryan K. Small RNA-seq: The RNA 5'-end adapter ligation problem and how to circumvent it. J Biol Methods 2019; 6. [PMID: 31080843 PMCID: PMC6507418 DOI: 10.14440/jbm.2019.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The preparation of small RNA cDNA sequencing libraries depends on the unbiased ligation of adapters to the RNA ends. Small RNA with 5' recessed ends are poor substrates for enzymatic adapter ligation, but this 5' adapter ligation problem can go undetected if the library preparation steps are not monitored. Here we illustrate the severity of the 5' RNA end ligation problem using several pre-miRNA-like hairpins that allow us to expand the definition of the problem to include 5' ends close to a hairpin stem, whether recessed or in a short extension. The ribosome profiling method can avoid a difficult 5' adapter ligation, but the enzyme typically used to circularize the cDNA has been reported to be biased, calling into question the benefit of this workaround. Using the TS2126 RNA ligase 1 (a.k.a. CircLigase) as the circularizing enzyme, we devised a bias test for the circularization of first strand cDNA. All possible dinucleotides were circle-ligated with similar efficiency. To re-linearize the first strand cDNA in the ribosome profiling approach, we introduce an improved method wherein a single ribonucleotide is placed between the sequencing primer binding sites in the reverse transcriptase primer, which later serves as the point of re-linearization by RNase A. We incorporate this step into the ribosomal profiling method and describe a complete improved library preparation method, Coligo-seq, for the sequencing of small RNA with secondary structure close to the 5' end. This method accepts a variety of 5' modified RNA, including 5' monophosphorylated RNA, as demonstrated by the construction of a HeLa cell microRNA cDNA library.
Collapse
Affiliation(s)
- Lodoe Lama
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Jose Cobo
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Diego Buenaventura
- Biology Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Biochemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.,Chemistry Ph.D. Program, The City University of New York Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
28
|
Belair CD, Hu T, Chu B, Freimer JW, Cooperberg MR, Blelloch RH. High-throughput, Efficient, and Unbiased Capture of Small RNAs from Low-input Samples for Sequencing. Sci Rep 2019; 9:2262. [PMID: 30783180 PMCID: PMC6381177 DOI: 10.1038/s41598-018-38458-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs hold great promise as biomarkers of disease. However, there are few efficient and robust methods for measuring microRNAs from low input samples. Here, we develop a high-throughput sequencing protocol that efficiently captures small RNAs while minimizing inherent biases associated with library production. The protocol is based on early barcoding such that all downstream manipulations can be performed on a pool of many samples thereby reducing reagent usage and workload. We show that the optimization of adapter concentrations along with the addition of nucleotide modifications and random nucleotides increases the efficiency of small RNA capture. We further show, using unique molecular identifiers, that stochastic capture of low input RNA rather than PCR amplification influences the biased quantitation of intermediately and lowly expressed microRNAs. Our improved method allows the processing of tens to hundreds of samples simultaneously while retaining high efficiency quantitation of microRNAs in low input samples from tissues or bodily fluids.
Collapse
Affiliation(s)
- Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Tianyi Hu
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Brandon Chu
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | - Jacob W Freimer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Urology, University of California, San Francisco, CA, 94143, USA
| | | | - Robert H Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Urology, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
29
|
Panarelli N, Tyryshkin K, Wong JJM, Majewski A, Yang X, Scognamiglio T, Kim MK, Bogardus K, Tuschl T, Chen YT, Renwick N. Evaluating gastroenteropancreatic neuroendocrine tumors through microRNA sequencing. Endocr Relat Cancer 2019; 26:47-57. [PMID: 30021866 DOI: 10.1530/erc-18-0244] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) can be challenging to evaluate histologically. MicroRNAs (miRNAs) are small RNA molecules that often are excellent biomarkers due to their abundance, cell-type and disease stage specificity and stability. To evaluate miRNAs as adjunct tissue markers for classifying and grading well-differentiated GEP-NETs, we generated and compared miRNA expression profiles from four pathological types of GEP-NETs. Using quantitative barcoded small RNA sequencing and state-of-the-art sequence annotation, we generated comprehensive miRNA expression profiles from archived pancreatic, ileal, appendiceal and rectal NETs. Following data preprocessing, we randomly assigned sample profiles to discovery (80%) and validation (20%) sets prior to data mining using machine-learning techniques. High expression analyses indicated that miR-375 was the most abundant individual miRNA and miRNA cistron in all samples. Leveraging prior knowledge that GEP-NET behavior is influenced by embryonic derivation, we developed a dual-layer hierarchical classifier for differentiating GEP-NET types. In the first layer, our classifier discriminated midgut (ileum, appendix) from non-midgut (rectum, pancreas) NETs based on miR-615 and -92b expression. In the second layer, our classifier discriminated ileal from appendiceal NETs based on miR-125b, -192 and -149 expression, and rectal from pancreatic NETs based on miR-429 and -487b expression. Our classifier achieved overall accuracies of 98.5% and 94.4% in discovery and validation sets, respectively. We also found provisional evidence that low- and intermediate-grade pancreatic NETs can be discriminated based on miR-328 expression. GEP-NETs can be reliably classified and potentially graded using a limited panel of miRNA markers, complementing morphological and immunohistochemistry-based approaches to histologic evaluation.
Collapse
Affiliation(s)
- Nicole Panarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Justin Jong Mun Wong
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Adrianna Majewski
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Xiaojing Yang
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michelle Kang Kim
- Center for Carcinoid and Neuroendocrine Tumors of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kimberly Bogardus
- HHMI, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Thomas Tuschl
- HHMI, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Yao-Tseng Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- HHMI, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
30
|
Abstract
miRNAs, ∼20 to 22 nucleotide single-stranded RNA species that play a pivotal role in the regulation of protein-coding genes, are emerging as robust biomarkers for assessing allograft status. Herein, the authors briefly review the biogenesis and function of the miRNAs and provide an overview of the tools to quantify miRNAs in tissues and body fluids. They then review their studies of discovery and validation of alterations in miRNA expression within kidney allografts with or without acute rejection, as well as with or without fibrosis, and summarize published data on miRNA expression patterns in kidney transplant recipients.
Collapse
Affiliation(s)
- Zahraa Khan
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA.
| |
Collapse
|
31
|
Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat Methods 2018; 15:1074-1082. [PMID: 30478324 PMCID: PMC6289640 DOI: 10.1038/s41592-018-0220-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Methods to systematically study subcellular RNA localization are limited and lagging behind proteomic tools. Here, we combined APEX2-mediated proximity biotinylation of proteins with photoactivatable ribonucleoside-enhanced crosslinking to simultaneously profile the proteome, as well as the transcriptome bound by RNA-binding proteins in any given subcellular compartment. Our approach is fractionation-independent and enables to study the localization of RNA processing intermediates, as well as the identification of regulatory RNA cis-acting elements occupied by proteins in a cellular compartment-specific manner. We applied Proximity-CLIP to study RNA and protein in the nucleus, cytoplasm and at cell-cell interfaces. Among other insights, we observed frequent transcriptional readthrough continuing for several kilobases downstream of the canonical cleavage and polyadenylation site and a differential RBP occupancy pattern for mRNAs in the nucleus and cytoplasm. Surprisingly, mRNAs localized to cell-cell interfaces often encoded regulatory proteins and contained protein-occupied CUG sequence elements in their 3’ untranslated region.
Collapse
|
32
|
Akhmetov A, Ellington AD, Marcotte EM. A highly parallel strategy for storage of digital information in living cells. BMC Biotechnol 2018; 18:64. [PMID: 30333005 PMCID: PMC6191901 DOI: 10.1186/s12896-018-0476-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Encoding arbitrary digital information in DNA has attracted attention as a potential avenue for large scale and long term data storage. However, in order to enable DNA data storage technologies there needs to be improvements in data storage fidelity (tolerance to mutation), the facility of writing and reading the data (biases and systematic error arising from synthesis and sequencing), and overall scalability. RESULTS To this end, we have developed and implemented an encoding scheme that is suitable for detecting and correcting errors that may arise during storage, writing, and reading, such as those arising from nucleotide substitutions, insertions, and deletions. We propose a scheme for parallelized long term storage of encoded sequences that relies on overlaps rather than the address blocks found in previously published work. Using computer simulations, we illustrate the encoding, sequencing, decoding, and recovery of encoded information, ultimately demonstrating the possibility of a successful round-trip read/write. These demonstrations show that in theory a precise control over error tolerance is possible. Even after simulated degradation of DNA, recovery of original data is possible owing to the error correction capabilities built into the encoding strategy. A secondary advantage of our method is that the statistical characteristics (such as repetitiveness and GC-composition) of encoded sequences can also be tailored without sacrificing the overall ability to store large amounts of data. Finally, the combination of the overlap-based partitioning of data with the LZMA compression that is integral to encoding means that the entire sequence must be present for successful decoding. This feature enables inordinately strong encryptions. As a potential application, an encrypted pathogen genome could be distributed and carried by cells without danger of being expressed, and could not even be read out in the absence of the entire DNA consortium. CONCLUSIONS We have developed a method for DNA encoding, using a significantly different fundamental approach from existing work, which often performs better than alternatives and allows for a great deal of freedom and flexibility of application.
Collapse
Affiliation(s)
- Azat Akhmetov
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA. .,Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA. .,Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
33
|
Putzbach W, Haluck-Kangas A, Gao QQ, Sarshad AA, Bartom ET, Stults A, Qadir AS, Hafner M, Peter ME. CD95/Fas ligand mRNA is toxic to cells. eLife 2018; 7:38621. [PMID: 30324908 PMCID: PMC6191286 DOI: 10.7554/elife.38621] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022] Open
Abstract
CD95/Fas ligand binds to the death receptor CD95 to induce apoptosis in sensitive cells. We previously reported that CD95L mRNA is enriched in sequences that, when converted to si/shRNAs, kill all cancer cells by targeting critical survival genes (Putzbach et al., 2017). We now report expression of full-length CD95L mRNA itself is highly toxic to cells and induces a similar form of cell death. We demonstrate that small (s)RNAs derived from CD95L are loaded into the RNA induced silencing complex (RISC) which is required for the toxicity and processing of CD95L mRNA into sRNAs is independent of both Dicer and Drosha. We provide evidence that in addition to the CD95L transgene a number of endogenous protein coding genes involved in regulating protein translation, particularly under low miRNA conditions, can be processed to sRNAs and loaded into the RISC suggesting a new level of cell fate regulation involving RNAi.
Collapse
Affiliation(s)
- Will Putzbach
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Ashley Haluck-Kangas
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Quan Q Gao
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Aishe A Sarshad
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Austin Stults
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Abdul S Qadir
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, United States.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| |
Collapse
|
34
|
Rendleman J, Cheng Z, Maity S, Kastelic N, Munschauer M, Allgoewer K, Teo G, Zhang YBM, Lei A, Parker B, Landthaler M, Freeberg L, Kuersten S, Choi H, Vogel C. New insights into the cellular temporal response to proteostatic stress. eLife 2018; 7:39054. [PMID: 30272558 PMCID: PMC6185107 DOI: 10.7554/elife.39054] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Maintaining a healthy proteome involves all layers of gene expression regulation. By quantifying temporal changes of the transcriptome, translatome, proteome, and RNA-protein interactome in cervical cancer cells, we systematically characterize the molecular landscape in response to proteostatic challenges. We identify shared and specific responses to misfolded proteins and to oxidative stress, two conditions that are tightly linked. We reveal new aspects of the unfolded protein response, including many genes that escape global translation shutdown. A subset of these genes supports rerouting of energy production in the mitochondria. We also find that many genes change at multiple levels, in either the same or opposing directions, and at different time points. We highlight a variety of putative regulatory pathways, including the stress-dependent alternative splicing of aminoacyl-tRNA synthetases, and protein-RNA binding within the 3’ untranslated region of molecular chaperones. These results illustrate the potential of this information-rich resource.
Collapse
Affiliation(s)
- Justin Rendleman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Shuvadeep Maity
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Nicolai Kastelic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mathias Munschauer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kristina Allgoewer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Guoshou Teo
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Yun Bin Matteo Zhang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Amy Lei
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Brian Parker
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Integrative Research Institute for the Life Sciences, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | | - Hyungwon Choi
- National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| |
Collapse
|
35
|
Sarshad AA, Juan AH, Muler AIC, Anastasakis DG, Wang X, Genzor P, Feng X, Tsai PF, Sun HW, Haase AD, Sartorelli V, Hafner M. Argonaute-miRNA Complexes Silence Target mRNAs in the Nucleus of Mammalian Stem Cells. Mol Cell 2018; 71:1040-1050.e8. [PMID: 30146314 PMCID: PMC6690358 DOI: 10.1016/j.molcel.2018.07.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 07/17/2018] [Indexed: 01/13/2023]
Abstract
In mammals, gene silencing by the RNA-induced silencing complex (RISC) is a well-understood cytoplasmic posttranscriptional gene regulatory mechanism. Here, we show that embryonic stem cells (ESCs) contain high levels of nuclear AGO proteins and that in ESCs nuclear AGO protein activity allows for the onset of differentiation. In the nucleus, AGO proteins interact with core RISC components, including the TNRC6 proteins and the CCR4-NOT deadenylase complex. In contrast to cytoplasmic miRNA-mediated gene silencing that mainly operates on cis-acting elements in mRNA 3' untranslated (UTR) sequences, in the nucleus AGO binding in the coding sequence and potentially introns also contributed to post-transcriptional gene silencing. Thus, nuclear localization of AGO proteins in specific cell types leads to a previously unappreciated expansion of the miRNA-regulated transcriptome.
Collapse
Affiliation(s)
- Aishe A Sarshad
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Ana Iris Correa Muler
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Dimitrios G Anastasakis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Pavol Genzor
- Laboratory of Biochemistry and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD 20892, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Pei-Fang Tsai
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Hong-Wei Sun
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA
| | - Astrid D Haase
- Laboratory of Biochemistry and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA.
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Essig K, Kronbeck N, Guimaraes JC, Lohs C, Schlundt A, Hoffmann A, Behrens G, Brenner S, Kowalska J, Lopez-Rodriguez C, Jemielity J, Holtmann H, Reiche K, Hackermüller J, Sattler M, Zavolan M, Heissmeyer V. Roquin targets mRNAs in a 3'-UTR-specific manner by different modes of regulation. Nat Commun 2018; 9:3810. [PMID: 30232334 PMCID: PMC6145892 DOI: 10.1038/s41467-018-06184-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding proteins Roquin-1 and Roquin-2 redundantly control gene expression and cell-fate decisions. Here, we show that Roquin not only interacts with stem–loop structures, but also with a linear sequence element present in about half of its targets. Comprehensive analysis of a minimal response element of the Nfkbid 3′-UTR shows that six stem–loop structures cooperate to exert robust and profound post-transcriptional regulation. Only binding of multiple Roquin proteins to several stem–loops exerts full repression, which redundantly involved deadenylation and decapping, but also translational inhibition. Globally, most Roquin targets are regulated by mRNA decay, whereas a small subset, including the Nfat5 mRNA, with more binding sites in their 3′-UTRs, are also subject to translational inhibition. These findings provide insights into how the robustness and magnitude of Roquin-mediated regulation is encoded in complex cis-elements. Roquin targets are known to contain two types of sequence-structure motifs, the constitutive and the alternative decay elements (CDE and ADE). Here, the authors describe a linear Roquin binding element (LBE) also involved in target recognition, and show that Roquin binding affects the translation of a subset of targeted mRNAs.
Collapse
Affiliation(s)
- Katharina Essig
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Nina Kronbeck
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Claudia Lohs
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany
| | - Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Gesine Behrens
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Sven Brenner
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Cristina Lopez-Rodriguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Helmut Holtmann
- Institute of Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology-IZI, Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany. .,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany.
| |
Collapse
|
37
|
Imami K, Milek M, Bogdanow B, Yasuda T, Kastelic N, Zauber H, Ishihama Y, Landthaler M, Selbach M. Phosphorylation of the Ribosomal Protein RPL12/uL11 Affects Translation during Mitosis. Mol Cell 2018; 72:84-98.e9. [PMID: 30220558 DOI: 10.1016/j.molcel.2018.08.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/09/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation.
Collapse
Affiliation(s)
- Koshi Imami
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Department of Molecular and Cellular BioAnalysis, Kyoto University, 606-8501 Kyoto, Japan.
| | - Miha Milek
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Boris Bogdanow
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Tomoharu Yasuda
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Nicolai Kastelic
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Kyoto University, 606-8501 Kyoto, Japan
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
38
|
Shivram H, Iyer VR. Identification and removal of sequencing artifacts produced by mispriming during reverse transcription in multiple RNA-seq technologies. RNA (NEW YORK, N.Y.) 2018; 24:1266-1274. [PMID: 29950518 PMCID: PMC6097653 DOI: 10.1261/rna.066217.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The quality of RNA sequencing data relies on specific priming by the primer used for reverse transcription (RT-primer). Nonspecific annealing of the RT-primer to the RNA template can generate reads with incorrect cDNA ends and can cause misinterpretation of data (RT mispriming). This kind of artifact in RNA-seq based technologies is underappreciated and currently no adequate tools exist to computationally remove them from published data sets. We show that mispriming can occur with as little as two bases of complementarity at the 3' end of the primer followed by intermittent regions of complementarity. We also provide a computational pipeline that identifies cDNA reads produced from RT mispriming, allowing users to filter them out from any aligned data set. Using this analysis pipeline, we identify thousands of mispriming events in a dozen published data sets from diverse technologies including short RNA-seq, total/mRNA-seq, HITS-CLIP, and GRO-seq. We further show how RT mispriming can lead to misinterpretation of data. In addition to providing a solution to computationally remove RT-misprimed reads, we also propose an experimental solution to completely avoid RT-mispriming by performing RNA-seq using thermostable group II intron derived reverse transcriptase (TGIRT-seq).
Collapse
Affiliation(s)
- Haridha Shivram
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Vishwanath R Iyer
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
39
|
Lu Y, Baras AS, Halushka MK. miRge 2.0 for comprehensive analysis of microRNA sequencing data. BMC Bioinformatics 2018; 19:275. [PMID: 30153801 PMCID: PMC6112139 DOI: 10.1186/s12859-018-2287-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background miRNAs play important roles in the regulation of gene expression. The rapidly developing field of microRNA sequencing (miRNA-seq; small RNA-seq) needs comprehensive, robust, user-friendly and standardized bioinformatics tools to analyze these large datasets. We present miRge 2.0, in which multiple enhancements were made towards these goals. Results miRge 2.0 has become more comprehensive with increased functionality including a novel miRNA detection method, A-to-I editing analysis, integrated standardized GFF3 isomiR reporting, and improved alignment to miRNAs. The novel miRNA detection method uniquely uses both miRNA hairpin sequence structure and composition of isomiRs resulting in higher specificity for potential miRNA identification. Using known miRNA data, our support vector machine (SVM) model predicted miRNAs with an average Matthews correlation coefficient (MCC) of 0.939 over 32 human cell datasets and outperformed miRDeep2 and miRAnalyzer regarding phylogenetic conservation. The A-to-I editing detection strongly correlated with a reference dataset with adjusted R2 = 0.96. miRge 2.0 is the most up-to-date aligner with custom libraries to both miRBase v22 and MirGeneDB v2.0 for 6 species: human, mouse, rat, fruit fly, nematode and zebrafish; and has a tool to create custom libraries. For user-friendliness, miRge 2.0 is incorporated into bcbio-nextgen and implementable through Bioconda. Conclusions miRge 2.0 is a redesigned, leading miRNA RNA-seq aligner with several improvements and novel utilities. miRge 2.0 is freely available at: https://github.com/mhalushka/miRge. Electronic supplementary material The online version of this article (10.1186/s12859-018-2287-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yin Lu
- Department of Pathology, Johns Hopkins University SOM, 720 Rutland Avenue/Ross Bldg. Rm 632B, Baltimore, MD, 21205, USA
| | - Alexander S Baras
- Department of Pathology, Johns Hopkins University SOM, 720 Rutland Avenue/Ross Bldg. Rm 632B, Baltimore, MD, 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University SOM, 720 Rutland Avenue/Ross Bldg. Rm 632B, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci U S A 2018; 115:E5334-E5343. [PMID: 29777089 PMCID: PMC6003356 DOI: 10.1073/pnas.1714397115] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nucleic acids mediate storage and expression of genetic information. Extracellular DNA (exDNA) and exRNA are traces of nucleic acids released from cells into the extracellular environment. Their use as disease biomarkers has been limited by technical challenges in their isolation caused by abundant RNA- and DNA-degrading enzymes in biofluids. Using isolation protocols developed especially for biofluids, we generated plasma and serum exRNA reference profiles from 13 healthy volunteers over time and determined the effect of critical clinical parameters such as gender and fasting. Surprisingly, we encountered one participant with dramatically increased endocrine-origin exRNA contributions stable over 1 year and detectable in all of his samples, thereby demonstrating the robustness of this approach and the clinical potential of circulating RNAs as biomarkers. Circulating extracellular RNAs (exRNAs) have the potential to serve as biomarkers for a wide range of medical conditions. However, limitations in existing exRNA isolation methods and a lack of knowledge on parameters affecting exRNA variability in human samples may hinder their successful discovery and clinical implementation. Using combinations of denaturants, reducing agents, proteolysis, and revised organic extraction, we developed an automated, high-throughput approach for recovery of exRNAs and exDNA from the same biofluid sample. We applied this method to characterize exRNAs from 312 plasma and serum samples collected from 13 healthy volunteers at 12 time points over a 2-month period. Small RNA cDNA library sequencing identified nearly twofold increased epithelial-, muscle-, and neuroendocrine-cell–specific miRNAs in females, while fasting and hormonal cycle showed little effect. External standardization helped to detect quantitative differences in erythrocyte and platelet-specific miRNA contributions and in miRNA concentrations between biofluids. It also helped to identify a study participant with a unique exRNA phenotype featuring a miRNA signature of up to 20-fold elevated endocrine-cell–specific miRNAs and twofold elevated total miRNA concentrations stable for over 1 year. Collectively, these results demonstrate an efficient and quantitative method to discern exRNA phenotypes and suggest that plasma and serum RNA profiles are stable over months and can be routinely monitored in long-term clinical studies.
Collapse
|
41
|
Loudig O, Liu C, Rohan T, Ben-Dov IZ. Retrospective MicroRNA Sequencing: Complementary DNA Library Preparation Protocol Using Formalin-fixed Paraffin-embedded RNA Specimens. J Vis Exp 2018. [PMID: 29781987 DOI: 10.3791/57471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
-Archived, clinically classified formalin-fixed paraffin-embedded (FFPE) tissues can provide nucleic acids for retrospective molecular studies of cancer development. By using non-invasive or pre-malignant lesions from patients who later develop invasive disease, gene expression analyses may help identify early molecular alterations that predispose to cancer risk. It has been well described that nucleic acids recovered from FFPE tissues have undergone severe physical damage and chemical modifications, which make their analysis difficult and generally requires adapted assays. MicroRNAs (miRNAs), however, which represent a small class of RNA molecules spanning only up to ~18-24 nucleotides, have been shown to withstand long-term storage and have been successfully analyzed in FFPE samples. Here we present a 3' barcoded complementary DNA (cDNA) library preparation protocol specifically optimized for the analysis of small RNAs extracted from archived tissues, which was recently demonstrated to be robust and highly reproducible when using archived clinical specimens stored for up to 35 years. This library preparation is well adapted to the multiplex analysis of compromised/degraded material where RNA samples (up to 18) are ligated with individual 3' barcoded adapters and then pooled together for subsequent enzymatic and biochemical preparations prior to analysis. All purifications are performed by polyacrylamide gel electrophoresis (PAGE), which allows size-specific selections and enrichments of barcoded small RNA species. This cDNA library preparation is well adapted to minute RNA inputs, as a pilot polymerase chain reaction (PCR) allows determination of a specific amplification cycle to produce optimal amounts of material for next-generation sequencing (NGS). This approach was optimized for the use of degraded FFPE RNA from specimens archived for up to 35 years and provides highly reproducible NGS data.
Collapse
Affiliation(s)
- Olivier Loudig
- Department of Research, Hackensack University Medical Center; Department of Medical Sciences, Seton Hall University; Department of Epidemiology and Population Health, Albert Einstein College of Medicine;
| | - Christina Liu
- Department of Research, Hackensack University Medical Center; Department of Medical Sciences, Seton Hall University
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah - Hebrew University Medical Center
| |
Collapse
|
42
|
Mong EF, Akat KM, Canfield J, Lockhart J, VanWye J, Matar A, Tsibris JCM, Wu JK, Tuschl T, Totary-Jain H. Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arterioscler Thromb Vasc Biol 2018; 38:1321-1332. [PMID: 29724816 DOI: 10.1161/atvbaha.118.310908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infantile hemangiomas (IHs) are the most common benign vascular neoplasms of infancy, characterized by a rapid growth phase followed by a spontaneous involution, or triggered by propranolol treatment by poorly understood mechanisms. LIN28/let-7 axis plays a central role in the regulation of stem cell self-renewal and tumorigenesis. However, the role of LIN28B/let-7 signaling in IH pathogenesis has not yet been elucidated. APPROACH AND RESULTS LIN28B is highly expressed in proliferative IH and is less expressed in involuted and in propranolol-treated IH samples as measured by immunofluorescence staining and quantitative RT-PCR. Small RNA sequencing analysis of IH samples revealed a decrease in microRNAs that target LIN28B, including let-7, and an increase in microRNAs in the mir-498(46) cistron. Overexpression of LIN28B in HEK293 cells induced the expression of miR-516b in the mir-498(46) cistron. Propranolol treatment of induced pluripotent stem cells, which express mir-498(46) endogenously, reduced the expression of both LIN28B and mir-498(46) and increased the expression of let-7. Furthermore, propranolol treatment reduced the proliferation of induced pluripotent stem cells and induced epithelial-mesenchymal transition. CONCLUSIONS This work uncovers the role of the LIN28B/let-7 switch in IH pathogenesis and provides a novel mechanism by which propranolol induces IH involution. Furthermore, it provides therapeutic implications for cancers in which the LIN28/let-7 pathway is imbalanced.
Collapse
Affiliation(s)
- Ezinne Francess Mong
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Kemal Marc Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - John Canfield
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John Lockhart
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Jeffrey VanWye
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Andrew Matar
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John C M Tsibris
- Department of Obstetrics and Gynecology (J.C.M.T.), Morsani College of Medicine, University of South Florida, Tampa
| | - June K Wu
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York (J.K.W.)
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - Hana Totary-Jain
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| |
Collapse
|
43
|
Benway CJ, Iacomini J. Defining a microRNA-mRNA interaction map for calcineurin inhibitor induced nephrotoxicity. Am J Transplant 2018; 18:796-809. [PMID: 28925592 DOI: 10.1111/ajt.14503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023]
Abstract
Calcineurin inhibitors induce nephrotoxicity through poorly understood mechanisms thereby limiting their use in transplantation and other diseases. Here we define a microRNA (miRNA)-messenger RNA (mRNA) interaction map that facilitates exploration into the role of miRNAs in cyclosporine-induced nephrotoxicity (CIN) and the gene pathways they regulate. Using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP), we isolated RNAs associated with Argonaute 2 in the RNA-induced silencing complex (RISC) of cyclosporine A (CsA) treated and control human proximal tubule cells and identified mRNAs undergoing active targeting by miRNAs. CsA causes specific changes in miRNAs and mRNAs associated with RISC, thereby altering post-transcriptional regulation of gene expression. Pathway enrichment analysis identified canonical pathways regulated by miRNAs specifically following CsA treatment. RNA-seq performed on total RNA indicated that only a fraction of total miRNAs and mRNAs are actively targeted in the RISC, indicating that PAR-CLIP more accurately defines meaningful targeting interactions. Our data also revealed a role for miRNAs in calcineurin-independent regulation of JNK and p38 MAPKs caused by targeting of MAP3K1. Together, our data provide a novel resource and unique insights into molecular pathways regulated by miRNAs in CIN. The gene pathways and miRNAs defined may represent novel targets to reduce calcineurin induced nephrotoxicity.
Collapse
Affiliation(s)
- Christopher J Benway
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - John Iacomini
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Cleary MD. Uncovering cell type-specific complexities of gene expression and RNA metabolism by TU-tagging and EC-tagging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e315. [PMID: 29369522 DOI: 10.1002/wdev.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023]
Abstract
Cell type-specific transcription is a key determinant of cell fate and function. An ongoing challenge in biology is to develop robust and stringent biochemical methods to explore gene expression with cell type specificity. This challenge has become even greater as researchers attempt to apply high-throughput RNA analysis methods under in vivo conditions. TU-tagging and EC-tagging are in vivo biosynthetic RNA tagging techniques that allow spatial and temporal specificity in RNA purification. Spatial specificity is achieved through targeted expression of pyrimidine salvage enzymes (uracil phosphoribosyltransferase and cytosine deaminase) and temporal specificity is achieved by controlling exposure to bioorthogonal substrates of these enzymes (4-thiouracil and 5-ethynylcytosine). Tagged RNAs can be purified from total RNA extracted from an animal or tissue and used in transcriptome profiling analyses. In addition to identifying cell type-specific mRNA profiles, these techniques are applicable to noncoding RNAs and can be used to measure RNA transcription and decay. Potential applications of TU-tagging and EC-tagging also include fluorescent RNA imaging and selective definition of RNA-protein interactions. TU-tagging and EC-tagging hold great promise for supporting research at the intersection of RNA biology and developmental biology. This article is categorized under: Technologies > Analysis of the Transcriptome.
Collapse
Affiliation(s)
- Michael D Cleary
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| |
Collapse
|
45
|
Essig K, Hu D, Guimaraes JC, Alterauge D, Edelmann S, Raj T, Kranich J, Behrens G, Heiseke A, Floess S, Klein J, Maiser A, Marschall S, Hrabĕ de Angelis M, Leonhardt H, Calkhoven CF, Noessner E, Brocker T, Huehn J, Krug AB, Zavolan M, Baumjohann D, Heissmeyer V. Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells. Immunity 2017; 47:1067-1082.e12. [PMID: 29246441 DOI: 10.1016/j.immuni.2017.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/20/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.
Collapse
Affiliation(s)
- Katharina Essig
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Desheng Hu
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dominik Alterauge
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stephanie Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377 München, Germany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Gesine Behrens
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Alexander Heiseke
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Juliane Klein
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Andreas Maiser
- Center for Integrated Protein Science, Department of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Susan Marschall
- German Center for Diabetes Research (DZD), 85764 Neuherberg, German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising 85353, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising 85353, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science, Department of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, the Netherlands
| | - Elfriede Noessner
- Immunoanalytics Core Facility, Helmholtz Zentrum München, 81377 München, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377 München, Germany.
| |
Collapse
|
46
|
Benhalevy D, Gupta SK, Danan CH, Ghosal S, Sun HW, Kazemier HG, Paeschke K, Hafner M, Juranek SA. The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation. Cell Rep 2017; 18:2979-2990. [PMID: 28329689 DOI: 10.1016/j.celrep.2017.02.080] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/18/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.
Collapse
Affiliation(s)
- Daniel Benhalevy
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Sanjay K Gupta
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Charles H Danan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Suman Ghosal
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Hong-Wei Sun
- Biostatistics and Datamining Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hinke G Kazemier
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Katrin Paeschke
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| | - Stefan A Juranek
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
47
|
Juzenas S, Venkatesh G, Hübenthal M, Hoeppner MP, Du ZG, Paulsen M, Rosenstiel P, Senger P, Hofmann-Apitius M, Keller A, Kupcinskas L, Franke A, Hemmrich-Stanisak G. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 2017; 45:9290-9301. [PMID: 28934507 PMCID: PMC5766192 DOI: 10.1093/nar/gkx706] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing. By employing a comprehensive bioinformatics and statistical analysis, we show that 3′ trimming modifications as well as composition of 3′ added non-templated nucleotides are distributed in a lineage-specific manner—the closer the hematopoietic progenitors are, the higher their similarities in sequence variation of the 3′ end. Furthermore, we define the blood cell-specific miRNA and isomiR expression patterns and identify novel cell type specific miRNA candidates. The study provides the most comprehensive contribution to date towards a complete miRNA catalogue of human peripheral blood, which can be used as a reference for future studies. The dataset has been deposited in GEO and also can be explored interactively following this link: http://134.245.63.235/ikmb-tools/bloodmiRs.
Collapse
Affiliation(s)
- Simonas Juzenas
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany.,Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 44307, Lithuania
| | - Geetha Venkatesh
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Zhipei Gracie Du
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Maren Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Philipp Senger
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66125 Saarbrücken, Germany
| | - Limas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 44307, Lithuania.,Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 50161, Lithuania
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
48
|
Mjelle R, Sellæg K, Sætrom P, Thommesen L, Sjursen W, Hofsli E. Identification of metastasis-associated microRNAs in serum from rectal cancer patients. Oncotarget 2017; 8:90077-90089. [PMID: 29163812 PMCID: PMC5685733 DOI: 10.18632/oncotarget.21412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are promising prognostic and diagnostic biomarkers due to their high stability in blood. Here we investigate the expression of miRNAs and other noncoding (nc) RNAs in serum of rectal cancer patients. Serum from 96 rectal cancer patients was profiled using small RNA sequencing and expression of small RNAs was correlated with the clinicopathological characteristics of the patients. Multiple classes of RNAs were detected, including miRNAs and fragments of tRNAs, snoRNAs, long ncRNAs, and other classes of RNAs. Several miRNAs, miRNA variants (isomiRs) and other ncRNAs were differentially expressed between Stage IV and Stage I-III rectal cancer patients, including several members of the miR-320 family. Furthermore, we show that high expression of miR-320d as well as one tRNA fragment is associated with poor survival. We also show that several miRNAs and isomiRs are differentially expressed between patients receiving preoperative chemoradiotherapy and patients who did not receive any treatment before serum collection. In summary, our study shows that the expression of miRNAs and other small ncRNAs in serum may be used to predict distant metastasis and survival in rectal cancer.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway
| | - Kjersti Sellæg
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,Department of Computer Science, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Liv Thommesen
- Department of Biomedical Science, Norwegian University of Science and Technology, 7030 Trondheim Norway
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,Department of Medical Genetics, St. Olavs Hospital, Norwegian University of Science and Technology, 7030 Trondheim Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, NO-7491 Trondheim, Norway.,The Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
49
|
Mizrahi A, Barzilai A, Gur-Wahnon D, Ben-Dov IZ, Glassberg S, Meningher T, Elharar E, Masalha M, Jacob-Hirsch J, Tabibian-Keissar H, Barshack I, Roszik J, Leibowitz-Amit R, Sidi Y, Avni D. Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene 2017; 37:218-230. [PMID: 28925390 DOI: 10.1038/onc.2017.315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Skin carcinogenesis is known to be a multi-step process with several stages along its malignant evolution. We hypothesized that transformation of normal epidermis to cutaneous squamous cell carcinoma (cSCC) is causally linked to alterations in microRNAs (miRNA) expression. For this end we decided to evaluate their alterations in the pathologic states ending in cSCC. Total RNA was extracted from formalin fixed paraffin embedded biopsies of five stages along the malignant evolution of keratinocytes towards cSCC: Normal epidermis, solar elastosis, actinic keratosis KIN1-2, advanced actinic keratosis KIN3 and well-differentiated cSCC. Next-generation small RNA sequencing was performed. We found that 18 miRNAs are overexpressed and 28 miRNAs are underexpressed in cSCC compared to normal epidermis. miR-424, miR-320, miR-222 and miR-15a showed the highest fold change among the overexpressed miRNAs. And miR-100, miR-101 and miR-497 showed the highest fold change among the underexpressed miRNAs. Heat map of hierarchical clustering analysis of significantly changed miRNAs and principle component analysis disclosed that the most prominent change in miRNAs expression occurred in the switch from 'early' stages; normal epidermis, solar elastosis and early actinic keratosis to the 'late' stages of epidermal carcinogenesis; late actinic keratosis and cSCC. We found several miRNAs with 'stage specific' alterations while others display a clear 'gradual', either progressive increase or decrease in expression along the malignant evolution of keratinocytes. The observed alterations focused in miRNAs involved in the regulation of AKT/mTOR or in those involved in epithelial to mesenchymal transition. We chose to concentrate on the evaluation of the molecular role of miR-497. We found that it induces reversion of epithelial to mesenchymal transition. We proved that SERPINE-1 is its biochemical target. The present study allows us to further study the pathways that are regulated by miRNAs along the malignant evolution of keratinocytes towards cSCC.
Collapse
Affiliation(s)
- A Mizrahi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - A Barzilai
- Department of Dermatology and Institute of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - D Gur-Wahnon
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - I Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Glassberg
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - T Meningher
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - E Elharar
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - M Masalha
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Jacob-Hirsch
- Center for Cancer Research, Sheba Medical Center, Tel Hashomer, Israel
| | - H Tabibian-Keissar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - I Barshack
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - J Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Leibowitz-Amit
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Y Sidi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
50
|
Mattijssen S, Arimbasseri AG, Iben JR, Gaidamakov S, Lee J, Hafner M, Maraia RJ. LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. eLife 2017; 6:e28889. [PMID: 28895529 PMCID: PMC5626478 DOI: 10.7554/elife.28889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA function is controlled by the 3' poly(A) tail (PAT) and poly(A)-binding protein (PABP). La-related protein-4 (LARP4) binds poly(A) and PABP. LARP4 mRNA contains a translation-dependent, coding region determinant (CRD) of instability that limits its expression. Although the CRD comprises <10% of LARP4 codons, the mRNA levels vary >20 fold with synonymous CRD substitutions that accommodate tRNA dynamics. Separately, overexpression of the most limiting tRNA increases LARP4 levels and reveals its functional activity, net lengthening of the PATs of heterologous mRNAs with concomitant stabilization, including ribosomal protein (RP) mRNAs. Genetic deletion of cellular LARP4 decreases PAT length and RPmRNA stability. This LARP4 activity requires its PABP-interaction domain and the RNA-binding module which we show is sensitive to poly(A) 3'-termini, consistent with protection from deadenylation. The results indicate that LARP4 is a posttranscriptional regulator of ribosomal protein production in mammalian cells and suggest that this activity can be controlled by tRNA levels.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | | | - James R Iben
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Sergei Gaidamakov
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Joowon Lee
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUnited States
| | - Richard J Maraia
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
- Commissioned CorpsUS Public Health ServiceBethesdaUnited Staes
| |
Collapse
|