1
|
Hong H, Dill-McFarland KA, Simmons JD, Peterson GJ, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Mycobacterium tuberculosis-dependent monocyte expression quantitative trait loci, cytokine production, and TB pathogenesis. Front Immunol 2024; 15:1359178. [PMID: 38515745 PMCID: PMC10954790 DOI: 10.3389/fimmu.2024.1359178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Glenna J. Peterson
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Laube E, Schiller J, Zickermann V, Vonck J. Using cryo-EM to understand the assembly pathway of respiratory complex I. Acta Crystallogr D Struct Biol 2024; 80:159-173. [PMID: 38372588 PMCID: PMC10910544 DOI: 10.1107/s205979832400086x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.
Collapse
Affiliation(s)
- Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
van Rensburg DJ, Lindeque Z, Harvey BH, Steyn SF. Ndufs4 KO mice: A model to study comorbid mood disorders associated with mitochondrial dysfunction. Pharmacol Biochem Behav 2024; 234:173689. [PMID: 38070656 DOI: 10.1016/j.pbb.2023.173689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.
Collapse
Affiliation(s)
- Daniël J van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
4
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
5
|
Hong H, Dill-McFarland KA, Simmons JD, Peterson GJ, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Mycobacterium tuberculosis-dependent Monocyte Expression Quantitative Trait Loci and Tuberculosis Pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294698. [PMID: 37693490 PMCID: PMC10491362 DOI: 10.1101/2023.08.28.23294698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in media condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Sordaria macrospora Sterile Mutant pro34 Is Impaired in Respiratory Complex I Assembly. J Fungi (Basel) 2022; 8:jof8101015. [PMID: 36294581 PMCID: PMC9605262 DOI: 10.3390/jof8101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of fruiting bodies is a highly regulated process that requires the coordinated formation of different cell types. By analyzing developmental mutants, many developmental factors have already been identified. Yet, a complete understanding of fruiting body formation is still lacking. In this study, we analyzed developmental mutant pro34 of the filamentous ascomycete Sordaria macrospora. Genome sequencing revealed a deletion in the pro34 gene encoding a putative mitochondrial complex I assembly factor homologous to Neurospora crassa CIA84. We show that PRO34 is required for fast vegetative growth, fruiting body and ascospore formation. The pro34 transcript undergoes adenosine to inosine editing, a process correlated with sexual development in fruiting body-forming ascomycetes. Fluorescence microscopy and western blot analysis showed that PRO34 is a mitochondrial protein, and blue-native PAGE revealed that the pro34 mutant lacks mitochondrial complex I. Inhibitor experiments revealed that pro34 respires via complexes III and IV, but also shows induction of alternative oxidase, a shunt pathway to bypass complexes III and IV. We discuss the hypothesis that alternative oxidase is induced to prevent retrograde electron transport to complex I intermediates, thereby protecting from oxidative stress.
Collapse
|
7
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
8
|
Curtabbi A, Enríquez JA. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 2022; 74:629-644. [PMID: 35166025 DOI: 10.1002/iub.2600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The flavin mononucleotide (FMN) cofactor of respiratory complex I occupies a key position in the electron transport chain. Here, the electrons coming from NADH start the sequence of oxidoreduction reactions, which drives the generation of the proton-motive force necessary for ATP synthesis. The overall architecture and the general catalytic proprieties of the FMN site are mostly well established. However, several aspects regarding the complex I flavin cofactor are still unknown. For example, the flavin binding to the N-module, the NADH-oxidizing portion of complex I, lacks a molecular description. The dissociation of FMN from the enzyme is beginning to emerge as an important regulatory mechanism of complex I activity and ROS production. Finally, how mitochondria import and metabolize FMN is still uncertain. This review summarizes the current knowledge on complex I flavin cofactor and discusses the open questions for future research.
Collapse
Affiliation(s)
- Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Padavannil A, Ayala-Hernandez MG, Castellanos-Silva EA, Letts JA. The Mysterious Multitude: Structural Perspective on the Accessory Subunits of Respiratory Complex I. Front Mol Biosci 2022; 8:798353. [PMID: 35047558 PMCID: PMC8762328 DOI: 10.3389/fmolb.2021.798353] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI’s accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI’s 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Maria G Ayala-Hernandez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Eimy A Castellanos-Silva
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Evolution of an assembly factor-based subunit contributed to a novel NDH-PSI supercomplex formation in chloroplasts. Nat Commun 2021; 12:3685. [PMID: 34140516 PMCID: PMC8211685 DOI: 10.1038/s41467-021-24065-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Chloroplast NADH dehydrogenase-like (NDH) complex is structurally related to mitochondrial Complex I and forms a supercomplex with two copies of Photosystem I (the NDH-PSI supercomplex) via linker proteins Lhca5 and Lhca6. The latter was acquired relatively recently in a common ancestor of angiosperms. Here we show that NDH-dependent Cyclic Electron Flow 5 (NDF5) is an NDH assembly factor in Arabidopsis. NDF5 initiates the assembly of NDH subunits (PnsB2 and PnsB3) and Lhca6, suggesting that they form a contact site with Lhca6. Our analysis of the NDF5 ortholog in Physcomitrella and angiosperm genomes reveals the subunit PnsB2 to be newly acquired via tandem gene duplication of NDF5 at some point in the evolution of angiosperms. Another Lhca6 contact subunit, PnsB3, has evolved from a protein unrelated to NDH. The structure of the largest photosynthetic electron transport chain complex has become more complicated by acquiring novel subunits and supercomplex formation with PSI. The chloroplast NDH complex interacts with Photosystem I to form the NDH-PSI supercomplex. Here the authors show that Arabidopsis NDF5 shares a common ancestor with the NDH subunit PnsB2 and acts as an NDH assembly factor initiating the assembly of PnsB2 and the evolutionarily distinct PnsB3.
Collapse
|
11
|
Subrahmanian N, LaVoie MJ. Is there a special relationship between complex I activity and nigral neuronal loss in Parkinson's disease? A critical reappraisal. Brain Res 2021; 1767:147434. [PMID: 33745923 PMCID: PMC9520341 DOI: 10.1016/j.brainres.2021.147434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease manifesting both motor and non-motor symptoms. The motor features are generally ascribed to the selective loss of dopamine neurons within the substantia nigra pars compacta. While the precise etiology of PD remains elusive, multiple genetic and environmental elements have emerged as contributing factors. The discovery of MPTP-induced parkinsonism directed intense inquiry towards mitochondrial pathways, with a specific focus on mitochondrial complex I. Consisting of more than 40 subunits, complex I is the first enzyme of the electron transport chain that is required for mitochondrial ATP production. In this review, we present a critical analysis of studies assessing the prevalence and specificity of mitochondrial complex I deficiency in PD. In addition, we take the novel view of incorporating the features of genetically-defined bona fide complex I disorders and the prevalence of nigral involvement in such cases. Through this innovative bi-directional view, we consider both complex I changes in a disease of the substantia nigra and nigral changes in diseases of complex I. We assess the strength of association between nigral cell loss and complex I deficits, as well as the oft under-appreciated heterogeneity of complex I deficiency disorders and the variability of the PD data.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
12
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
13
|
Hock DH, Reljic B, Ang CS, Muellner-Wong L, Mountford HS, Compton AG, Ryan MT, Thorburn DR, Stroud DA. HIGD2A is Required for Assembly of the COX3 Module of Human Mitochondrial Complex IV. Mol Cell Proteomics 2020; 19:1145-1160. [PMID: 32317297 PMCID: PMC7338084 DOI: 10.1074/mcp.ra120.002076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Assembly factors play a critical role in the biogenesis of mitochondrial respiratory chain complexes I-IV where they assist in the membrane insertion of subunits, attachment of co-factors, and stabilization of assembly intermediates. The major fraction of complexes I, III and IV are present together in large molecular structures known as respiratory chain supercomplexes. Several assembly factors have been proposed as required for supercomplex assembly, including the hypoxia inducible gene 1 domain family member HIGD2A. Using gene-edited human cell lines and extensive steady state, translation and affinity enrichment proteomics techniques we show that loss of HIGD2A leads to defects in the de novo biogenesis of mtDNA-encoded COX3, subsequent accumulation of complex IV intermediates and turnover of COX3 partner proteins. Deletion of HIGD2A also leads to defective complex IV activity. The impact of HIGD2A loss on complex IV was not altered by growth under hypoxic conditions, consistent with its role being in basal complex IV assembly. Although in the absence of HIGD2A we show that mitochondria do contain an altered supercomplex assembly, we demonstrate it to harbor a crippled complex IV lacking COX3. Our results redefine HIGD2A as a classical assembly factor required for building the COX3 module of complex IV.
Collapse
Affiliation(s)
- Daniella H Hock
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Linden Muellner-Wong
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley S Mountford
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alison G Compton
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Mitochondrial Laboratory, Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Adjobo-Hermans MJW, de Haas R, Willems PHGM, Wojtala A, van Emst-de Vries SE, Wagenaars JA, van den Brand M, Rodenburg RJ, Smeitink JAM, Nijtmans LG, Sazanov LA, Wieckowski MR, Koopman WJH. NDUFS4 deletion triggers loss of NDUFA12 in Ndufs4 -/- mice and Leigh syndrome patients: A stabilizing role for NDUFAF2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148213. [PMID: 32335026 DOI: 10.1016/j.bbabio.2020.148213] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/07/2023]
Abstract
Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4-/- mouse tissues. Ndufs4-/- animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4-/- mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4-/- MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4-/- mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.
Collapse
Affiliation(s)
- Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Ria de Haas
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | | | - Sjenet E van Emst-de Vries
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Jori A Wagenaars
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Mariel van den Brand
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leo G Nijtmans
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Werner J H Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Parey K, Haapanen O, Sharma V, Köfeler H, Züllig T, Prinz S, Siegmund K, Wittig I, Mills DJ, Vonck J, Kühlbrandt W, Zickermann V. High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease. SCIENCE ADVANCES 2019; 5:eaax9484. [PMID: 31844670 PMCID: PMC6905873 DOI: 10.1126/sciadv.aax9484] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/22/2019] [Indexed: 05/23/2023]
Abstract
Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Kristian Parey
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Karin Siegmund
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Signes A, Fernandez-Vizarra E. Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 2018; 62:255-270. [PMID: 30030361 PMCID: PMC6056720 DOI: 10.1042/ebc20170098] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023]
Abstract
The assembly of the five oxidative phosphorylation system (OXPHOS) complexes in the inner mitochondrial membrane is an intricate process. The human enzymes comprise core proteins, performing the catalytic activities, and a large number of 'supernumerary' subunits that play essential roles in assembly, regulation and stability. The correct addition of prosthetic groups as well as chaperoning and incorporation of the structural components require a large number of factors, many of which have been found mutated in cases of mitochondrial disease. Nowadays, the mechanisms of assembly for each of the individual complexes are almost completely understood and the knowledge about the assembly factors involved is constantly increasing. On the other hand, it is now well established that complexes I, III and IV interact with each other, forming the so-called respiratory supercomplexes or 'respirasomes', although the pathways that lead to their formation are still not completely clear. This review is a summary of our current knowledge concerning the assembly of complexes I-V and of the supercomplexes.
Collapse
Affiliation(s)
- Alba Signes
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, U.K.
| |
Collapse
|
17
|
Baertling F, Sánchez-Caballero L, van den Brand MAM, Distelmaier F, Janssen MCH, Rodenburg RJT, Smeitink JAM, Nijtmans LGJ. A Heterozygous NDUFV1 Variant Aggravates Mitochondrial Complex I Deficiency in a Family with a Homoplasmic ND1 Variant. J Pediatr 2018; 196:309-313.e3. [PMID: 29395179 DOI: 10.1016/j.jpeds.2017.12.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
We demonstrate that a heterozygous nuclear variant in the gene encoding mitochondrial complex I subunit NDUFV1 aggravates the cellular phenotype in the presence of a mitochondrial DNA variant in complex I subunit ND1. Our findings suggest that heterozygous variants could be more significant in inherited mitochondrial diseases than hitherto assumed.
Collapse
Affiliation(s)
- Fabian Baertling
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Laura Sánchez-Caballero
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mariël A M van den Brand
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J T Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo G J Nijtmans
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Formosa LE, Dibley MG, Stroud DA, Ryan MT. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin Cell Dev Biol 2018; 76:154-162. [DOI: 10.1016/j.semcdb.2017.08.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
|
19
|
Zimin PI, Woods CB, Kayser EB, Ramirez JM, Morgan PG, Sedensky MM. Isoflurane disrupts excitatory neurotransmitter dynamics via inhibition of mitochondrial complex I. Br J Anaesth 2018; 120:1019-1032. [PMID: 29661379 DOI: 10.1016/j.bja.2018.01.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mechanisms of action of volatile anaesthetics are unclear. Volatile anaesthetics selectively inhibit complex I in the mitochondrial respiratory chain. Mice in which the mitochondrial complex I subunit NDUFS4 is knocked out [Ndufs4(KO)] either globally or in glutamatergic neurons are hypersensitive to volatile anaesthetics. The volatile anaesthetic isoflurane selectively decreases the frequency of spontaneous excitatory events in hippocampal slices from Ndufs4(KO) mice. METHODS Complex I inhibition by isoflurane was assessed with a Clark electrode. Synaptic function was measured by stimulating Schaffer collateral fibres and recording field potentials in the hippocampus CA1 region. RESULTS Isoflurane specifically inhibits complex I dependent respiration at lower concentrations in mitochondria from Ndufs4(KO) than from wild-type mice. In hippocampal slices, after high frequency stimulation to increase energetic demand, short-term synaptic potentiation is less in KO compared with wild-type mice. After high frequency stimulation, both Ndufs4(KO) and wild-type hippocampal slices exhibit striking synaptic depression in isoflurane at twice the 50% effective concentrations (EC50). The pattern of synaptic depression by isoflurane indicates a failure in synaptic vesicle recycling. Application of a selective A1 adenosine receptor antagonist partially eliminates isoflurane-induced short-term depression in both wild-type and Ndufs4(KO) slices, implicating an additional mitochondria-dependent effect on exocytosis. When mitochondria are the sole energy source, isoflurane completely eliminates synaptic output in both mutant and wild-type mice at twice the (EC50) for anaesthesia. CONCLUSIONS Volatile anaesthetics directly inhibit mitochondrial complex I as a primary target, limiting synaptic ATP production, and excitatory vesicle endocytosis and exocytosis.
Collapse
Affiliation(s)
- P I Zimin
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - C B Woods
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - E B Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - P G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - M M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Choi WS, Kim HW, Tronche F, Palmiter RD, Storm DR, Xia Z. Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson's disease-like non-motor symptoms without loss of dopamine neurons. Sci Rep 2017; 7:44989. [PMID: 28327638 PMCID: PMC5361188 DOI: 10.1038/srep44989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Reduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson’s disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson’s disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO). This conditional deletion of Ndufs4, which reduces complex I activity in dopamine neurons, did not cause a significant loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), and there was no loss of dopaminergic neurites in striatum or amygdala. However, Ndufs4 cKO mice had a reduced amount of dopamine in the brain compared to control mice. Furthermore, even though motor behavior were not affected, Ndufs4 cKO mice showed non-motor symptoms experienced by many Parkinson’s disease patients including impaired cognitive function and increased anxiety-like behavior. These data suggest that mitochondrial complex I dysfunction in dopaminergic neurons promotes non-motor symptoms of Parkinson’s disease and reduces dopamine content in the absence of dopamine neuron loss.
Collapse
Affiliation(s)
- Won-Seok Choi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.,School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Hyung-Wook Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.,College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - François Tronche
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_CR18, Neuroscience, Paris-Seine, F-75005, Paris
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Kahlhöfer F, Kmita K, Wittig I, Zwicker K, Zickermann V. Accessory subunit NUYM (NDUFS4) is required for stability of the electron input module and activity of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:175-181. [PMID: 27871794 DOI: 10.1016/j.bbabio.2016.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
Abstract
Mitochondrial complex I is an intricate 1MDa membrane protein complex with a central role in aerobic energy metabolism. The minimal form of complex I consists of fourteen central subunits that are conserved from bacteria to man. In addition, eukaryotic complex I comprises some 30 accessory subunits of largely unknown function. The gene for the accessory NDUFS4 subunit of human complex I is a hot spot for fatal pathogenic mutations in humans. We have deleted the gene for the orthologous NUYM subunit in the aerobic yeast Yarrowia lipolytica, an established model system to study eukaryotic complex I and complex I linked diseases. We observed assembly of complex I which lacked only subunit NUYM and retained weak interaction with assembly factor N7BML (human NDUFAF2). Absence of NUYM caused distortion of iron sulfur clusters of the electron input domain leading to decreased complex I activity and increased release of reactive oxygen species. We conclude that NUYM has an important stabilizing function for the electron input module of complex I and is essential for proper complex I function.
Collapse
Affiliation(s)
- Flora Kahlhöfer
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University Frankfurt am Main, Germany
| | - Katarzyna Kmita
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Biochemistry I, Medical School, Goethe-University Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes", Goethe-University Frankfurt am Main, Germany
| | - Klaus Zwicker
- Institute of Biochemistry I, Medical School, Goethe University Frankfurt am Main, Germany
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes", Goethe-University Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Zhang Q, Chen S, Yu S, Qin J, Zhang J, Cheng Q, Ke K, Ding F. Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease. Neuropharmacology 2016; 108:238-51. [DOI: 10.1016/j.neuropharm.2016.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/08/2023]
|
23
|
Sánchez-Caballero L, Guerrero-Castillo S, Nijtmans L. Unraveling the complexity of mitochondrial complex I assembly: A dynamic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:980-90. [PMID: 27040506 DOI: 10.1016/j.bbabio.2016.03.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Laura Sánchez-Caballero
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo Nijtmans
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
24
|
Potluri P, Procaccio V, Scheffler IE, Wallace DC. High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (ρ(-)) mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1336-1343. [PMID: 26946086 DOI: 10.1016/j.bbabio.2016.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
To identify nuclear DNA (nDNA) oxidative phosphorylation (OXPHOS) gene mutations using cultured cells, we have developed a complementation system based on retroviral transduction with a full length cDNA expression library and selection for OXHOS function by growth in galactose. We have used this system to transduce the Chinese hamster V79-G7 OXPHOS mutant cell line with a defect in mitochondrial protein synthesis. The complemented cells were found to have acquired the cDNA for the bS6m polypeptide of the small subunit of the mitochondrial ribosome. bS6m is a 14 kDa polypeptide located on the outside of the mitochondrial 28S ribosomal subunit and interacts with the rRNA. The V79-G7 mutant protein was found to harbor a methionine to threonine missense mutation at codon 13. The hamster bS6m null mutant could also be complemented by its orthologs from either mouse or human. bS6m protein tagged at its C-terminus by HA, His or GFP localized to the mitochondrion and was fully functional. Through site-directed mutagenesis we identified the probable RNA interacting residues of the bS6m peptide and tested the functional significance of mammalian specific C-terminal region. The N-terminus of the bS6m polypeptide functionally corresponds to that of the prokaryotic small ribosomal subunit, but deletion of C-terminal residues along with the zinc ion coordinating cysteine had no functional effect. Since mitochondrial diseases can result from hundreds to thousands of different nDNA gene mutations, this one step viral complementation cloning may facilitate the molecular diagnosis of a range of nDNA mitochondrial disease mutations. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vincent Procaccio
- Dépt. de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Immo E Scheffler
- Division of Biological Sciences, University of California - San Diego, La Jolla, CA, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
25
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach. Oncotarget 2016; 6:3947-62. [PMID: 25714130 PMCID: PMC4414165 DOI: 10.18632/oncotarget.2968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023] Open
Abstract
Increase in aerobic glycolysis and mitochondrial dysfunction are important biochemical features observed in human cancers. Recent studies suggest oncogenic K-Ras can cause suppression of mitochondrial respiration and up-regulation of glycolytic activity through a yet unknown mechanism. Here we employed proteomic approach and used a K-RasG12V inducible cell system to investigate the impact of oncogenic K-Ras on mitochondria and cell metabolism. Mitochondria isolated from cells before and after K-Ras induction were subjected to protein analysis using stable isotope labeling with amino acids (SILAC) and liquid chromatography coupled with mass spectrometry (LC-MS). 70 mitochondrial proteins with significant expression alteration after K-Ras induction were identified. A majority of these proteins were involved in energy metabolism. Five proteins with significant decrease belong to mitochondrial respiratory chain complex I. NADH dehydrogenase 1 alpha subcomplex assembly factor 1 (NDUFAF1) showed most significant decrease by 50%. Such decrease was validated in primary human pancreatic cancer tissues. Knockdown of NDUFAF1 by siRNA caused mitochondrial respiration deficiency, accumulation of NADH and subsequent increase of glycolytic activity. Our study revealed that oncogenic K-Ras is able to induce significant alterations in mitochondrial protein expression, and identified NDUFAF1 as an important molecule whose low expression contributes to mitochondrial dysfunction induced by K-Ras.
Collapse
|
27
|
Maneb-induced dopaminergic neuronal death is not affected by loss of mitochondrial complex I activity: results from primary mesencephalic dopaminergic neurons cultured from individual Ndufs4+/+ and Ndufs4-/- mouse embryos. Neuroreport 2015; 25:1350-5. [PMID: 25275677 DOI: 10.1097/wnr.0000000000000271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary cultures from embryonic mouse ventral mesencephalon are widely used for investigating the mechanisms of dopaminergic neuronal death in Parkinson's disease models. Specifically, single mouse or embryo cultures from littermates can be very useful for comparative studies involving transgenic mice when the neuron cultures are to be prepared before genotyping. However, preparing single mouse embryo culture is technically challenging because of the small number of cells present in the mesencephalon of each embryo (150 000-300 000), of which only 0.5-5% are tyrosine hydroxylase-positive, dopaminergic neurons. In this study, we optimized the procedure for preparing primary mesencephalic neuron cultures from individual mouse embryos. Mesencephalic neurons were dissociated delicately, plated on Aclar film coverslips, and incubated in DMEM supplemented with fetal bovine serum for 5 days and then N2 supplement was added for 1 day, which resulted in the best survival of dopaminergic neurons from each embryo. Using this optimized method, we prepared mesencephalic neuron cultures from single Ndufs4 or Ndufs4 embryos and investigated the role of mitochondrial complex I in maneb-induced dopamine neuron death. Our results suggest that maneb toxicity to dopamine neurons is not affected by the loss of mitochondrial complex I activity in Ndufs4 cultures.
Collapse
|
28
|
Kim HW, Choi WS, Sorscher N, Park HJ, Tronche F, Palmiter RD, Xia Z. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo. Neurobiol Aging 2015; 36:2617-27. [PMID: 26070241 DOI: 10.1016/j.neurobiolaging.2015.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition.
Collapse
Affiliation(s)
- Hyung-Wook Kim
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; College of Life Sciences, Sejong University, Seoul, Korea
| | - Won-Seok Choi
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Korea; College of Medicine, Chonnam National University, Gwangju, Korea
| | - Noah Sorscher
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, WA, USA
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Korea; College of Medicine, Chonnam National University, Gwangju, Korea
| | - François Tronche
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_CR18, Neuroscience Paris-Seine, Paris, France; Centre National de la Recherche Scientifique UMR 8246, Paris, France; Institut National de la Santé et de la Rechesrche Médicale U1130, Paris, France
| | - Richard D Palmiter
- Howard Huges Medical Institute, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Zhengui Xia
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Rak M, Rustin P. Supernumerary subunits NDUFA3, NDUFA5 and NDUFA12 are required for the formation of the extramembrane arm of human mitochondrial complex I. FEBS Lett 2014; 588:1832-8. [PMID: 24717771 DOI: 10.1016/j.febslet.2014.03.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 12/13/2022]
Abstract
Mammalian complex I is composed of fourteen highly conserved core subunits and additional thirty subunits acquired in the course of evolution. At present, the function of the majority of these supernumerary subunits is poorly understood. In this work, we have studied NDUFA3, NDUFA5 and NDUFA12 supernumerary subunits to gain insight into their role in CI activity and biogenesis. Using human cell lines in which the expression of these subunits was knocked down with miRNAs, we showed that they are necessary for the formation of a functional holoenzyme. Analysis of the assembly intermediates in mitochondria depleted for these subunits further suggested that they are required for assembly and/or stability of the electron transferring Q module in the peripheral arm of the CI.
Collapse
Affiliation(s)
- Malgorzata Rak
- INSERM UMR 1141, Bâtiment Ecran, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France.
| | - Pierre Rustin
- INSERM UMR 1141, Bâtiment Ecran, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France
| |
Collapse
|
30
|
Abstract
Mitochondrial respiratory complex I is a product of both the nuclear and mitochondrial genomes. The integration of seven subunits encoded in mitochondrial DNA into the inner membrane, their association with 14 nuclear-encoded membrane subunits, the construction of the extrinsic arm from 23 additional nuclear-encoded proteins, iron-sulfur clusters, and flavin mononucleotide cofactor require the participation of assembly factors. Some are intrinsic to the complex, whereas others participate transiently. The suppression of the expression of the NDUFA11 subunit of complex I disrupted the assembly of the complex, and subcomplexes with masses of 550 and 815 kDa accumulated. Eight of the known extrinsic assembly factors plus a hydrophobic protein, C3orf1, were associated with the subcomplexes. The characteristics of C3orf1, of another assembly factor, TMEM126B, and of NDUFA11 suggest that they all participate in constructing the membrane arm of complex I.
Collapse
|
31
|
Schlehe JS, Journel MSM, Taylor KP, Amodeo KD, LaVoie MJ. The mitochondrial disease associated protein Ndufaf2 is dispensable for Complex-1 assembly but critical for the regulation of oxidative stress. Neurobiol Dis 2013; 58:57-67. [PMID: 23702311 PMCID: PMC3748239 DOI: 10.1016/j.nbd.2013.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 02/03/2023] Open
Abstract
Deficiency in human mitochondrial Complex-1 has been linked to a wide variety of neurological disorders. Homozygous deletion of the Complex-1 associated protein, Ndufaf2, leads to a severe juvenile onset encephalopathy involving degeneration of the substantia nigra and other sub-cortical regions resulting in adolescent lethality. To understand the precise role of Ndufaf2 in Complex-1 function and its links to neurologic disease, we studied the effects on Complex-1 assembly and function, as well as pathological consequences at the cellular level, in multiple in vitro models of Ndufaf2 deficiency. Using both Ndufaf2-deficient human neuroblastoma cells and primary fibroblasts cultured from Ndufaf2 knock-out mice we found that Ndufaf2-deficiency selectively reduces Complex-1 activity. While Ndufaf2 is traditionally referred to as an assembly factor of Complex-1, surprisingly, however, Ndufaf2-deficient cells were able to assemble a fully mature Complex-1 enzyme, albeit with reduced kinetics. Importantly, no evidence of intermediate or incomplete assembly was observed. Ndufaf2 deficiency resulted in significant increases in oxidative stress and mitochondrial DNA deletion, consistent with contemporary hypotheses regarding the pathophysiology of inherited mutations in Complex-1 disorders. These data suggest that Ndufaf2, unlike other Complex-1 assembly factors, may be more accurately described as a chaperone involved in proper folding during Complex-1 assembly, since it is dispensable for Complex-1 maturation but not its proper function.
Collapse
Affiliation(s)
- Julia S Schlehe
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Novel insights into the role of Neurospora crassa NDUFAF2, an evolutionarily conserved mitochondrial complex I assembly factor. Mol Cell Biol 2013; 33:2623-34. [PMID: 23648483 DOI: 10.1128/mcb.01476-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Complex I deficiency is commonly associated with mitochondrial oxidative phosphorylation diseases. Mutations in nuclear genes encoding structural subunits or assembly factors of complex I have been increasingly identified as the cause of the diseases. One such factor, NDUFAF2, is a paralog of the NDUFA12 structural subunit of the enzyme, but the mechanism by which it exerts its function remains unknown. Herein, we demonstrate that the Neurospora crassa NDUFAF2 homologue, the 13.4 L protein, is a late assembly factor that associates with complex I assembly intermediates containing the membrane arm and the connecting part but lacking the N module of the enzyme. Furthermore, we provide evidence that dissociation of the assembly factor is dependent on the incorporation of the putative regulatory module composed of the subunits of 13.4 (NDUFA12), 18.4 (NDUFS6), and 21 (NDUFS4) kDa. Our results demonstrate that the 13.4 L protein is a complex I assembly factor functionally conserved from fungi to mammals.
Collapse
|
33
|
Li L, Nelson CJ, Carrie C, Gawryluk RMR, Solheim C, Gray MW, Whelan J, Millar AH. Subcomplexes of ancestral respiratory complex I subunits rapidly turn over in vivo as productive assembly intermediates in Arabidopsis. J Biol Chem 2012; 288:5707-17. [PMID: 23271729 DOI: 10.1074/jbc.m112.432070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subcomplexes of mitochondrial respiratory complex I (CI; EC 1.6.5.3) are shown to turn over in vivo, and we propose a role in an ancestral assembly pathway. By progressively labeling Arabidopsis cell cultures with (15)N and isolating mitochondria, we have identified CI subcomplexes through differences in (15)N incorporation into their protein subunits. The 200-kDa subcomplex, containing the ancestral γ-carbonic anhydrase (γ-CA), γ-carbonic anhydrase-like, and 20.9-kDa subunits, had a significantly higher turnover rate than intact CI or CI+CIII(2). In vitro import of precursors for these CI subunits demonstrated rapid generation of subcomplexes and revealed that their specific abundance varied when different ancestral subunits were imported. Time course studies of precursor import showed the further assembly of these subcomplexes into CI and CI+CIII(2), indicating that the subcomplexes are productive intermediates of assembly. The strong transient incorporation of new subunits into the 200-kDa subcomplex in a γ-CA mutant is consistent with this subcomplex being a key initiator of CI assembly in plants. This evidence alongside the pattern of coincident occurrence of genes encoding these particular proteins broadly in eukaryotes, except for opisthokonts, provides a framework for the evolutionary conservation of these accessory subunits and evidence of their function in ancestral CI assembly.
Collapse
Affiliation(s)
- Lei Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoefs SJ, Rodenburg RJ, Smeitink JA, van den Heuvel LP. Molecular base of biochemical complex I deficiency. Mitochondrion 2012; 12:520-32. [DOI: 10.1016/j.mito.2012.07.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/21/2022]
|
35
|
Kensche PR, Duarte I, Huynen MA. A three-dimensional topology of complex I inferred from evolutionary correlations. BMC STRUCTURAL BIOLOGY 2012; 12:19. [PMID: 22857522 PMCID: PMC3436739 DOI: 10.1186/1472-6807-12-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
Background The quaternary structure of eukaryotic NADH:ubiquinone oxidoreductase (complex I), the largest complex of the oxidative phosphorylation, is still mostly unresolved. Furthermore, it is unknown where transiently bound assembly factors interact with complex I. We therefore asked whether the evolution of complex I contains information about its 3D topology and the binding positions of its assembly factors. We approached these questions by correlating the evolutionary rates of eukaryotic complex I subunits using the mirror-tree method and mapping the results into a 3D representation by multidimensional scaling. Results More than 60% of the evolutionary correlation among the conserved seven subunits of the complex I matrix arm can be explained by the physical distance between the subunits. The three-dimensional evolutionary model of the eukaryotic conserved matrix arm has a striking similarity to the matrix arm quaternary structure in the bacterium Thermus thermophilus (rmsd=19 Å) and supports the previous finding that in eukaryotes the N-module is turned relative to the Q-module when compared to bacteria. By contrast, the evolutionary rates contained little information about the structure of the membrane arm. A large evolutionary model of 45 subunits and assembly factors allows to predict subunit positions and interactions (rmsd = 52.6 Å). The model supports an interaction of NDUFAF3, C8orf38 and C2orf56 during the assembly of the proximal matrix arm and the membrane arm. The model further suggests a tight relationship between the assembly factor NUBPL and NDUFA2, which both have been linked to iron-sulfur cluster assembly, as well as between NDUFA12 and its paralog, the assembly factor NDUFAF2. Conclusions The physical distance between subunits of complex I is a major correlate of the rate of protein evolution in the complex I matrix arm and is sufficient to infer parts of the complex’s structure with high accuracy. The resulting evolutionary model predicts the positions of a number of subunits and assembly factors.
Collapse
Affiliation(s)
- Philip R Kensche
- Center for Molecular and Biomolecular Informatics/Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, Nijmegen, HB, 6500, The Netherlands.
| | | | | |
Collapse
|
36
|
Leong DW, Komen JC, Hewitt CA, Arnaud E, McKenzie M, Phipson B, Bahlo M, Laskowski A, Kinkel SA, Davey GM, Heath WR, Voss AK, Zahedi RP, Pitt JJ, Chrast R, Sickmann A, Ryan MT, Smyth GK, Thorburn DR, Scott HS. Proteomic and metabolomic analyses of mitochondrial complex I-deficient mouse model generated by spontaneous B2 short interspersed nuclear element (SINE) insertion into NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) gene. J Biol Chem 2012; 287:20652-63. [PMID: 22535952 PMCID: PMC3370248 DOI: 10.1074/jbc.m111.327601] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/05/2012] [Indexed: 01/11/2023] Open
Abstract
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
| | - Jasper C. Komen
- the Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Estelle Arnaud
- the Département de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Matthew McKenzie
- the Centre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Belinda Phipson
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Melanie Bahlo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Adrienne Laskowski
- the Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sarah A. Kinkel
- From the Molecular Medicine Division
- Immunology Division, and
- the Department of Medical Biology and
| | | | | | - Anne K. Voss
- From the Molecular Medicine Division
- the Department of Medical Biology and
| | - René P. Zahedi
- the Leibniz-Institut für Analytische Wissenschaften e.V., 44227 Dortmund, Germany
| | - James J. Pitt
- VCGS Pathology, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Roman Chrast
- the Département de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Albert Sickmann
- the Leibniz-Institut für Analytische Wissenschaften e.V., 44227 Dortmund, Germany
- the Medizinisches Proteom Center, Ruhr-Universität-Bochum, 44780 Bochum, Germany
| | - Michael T. Ryan
- the Department of Biochemistry, La Trobe University, Bundoora, Victoria 3086, Australia, and
| | - Gordon K. Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- the Department of Medical Biology and
- Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- the Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hamish S. Scott
- From the Molecular Medicine Division
- the Department of Medical Biology and
- the Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Box 14 Rundle Mall Post Office, Adelaide, South Australia 5000, Australia, and
- the Schools of Medicine and Molecular and Biomedical Science, University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
37
|
Assouline Z, Jambou M, Rio M, Bole-Feysot C, de Lonlay P, Barnerias C, Desguerre I, Bonnemains C, Guillermet C, Steffann J, Munnich A, Bonnefont J, Rötig A, Lebre A. A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4 mutations in patients with Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1062-9. [DOI: 10.1016/j.bbadis.2012.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/11/2012] [Accepted: 01/25/2012] [Indexed: 12/31/2022]
|
38
|
Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 2012; 15:324-35. [PMID: 22342700 PMCID: PMC3318979 DOI: 10.1016/j.cmet.2012.01.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/19/2011] [Accepted: 01/09/2012] [Indexed: 11/23/2022]
Abstract
The biogenesis and function of the mitochondrial respiratory chain (RC) involve the organization of RC enzyme complexes in supercomplexes or respirasomes through an unknown biosynthetic process. This leads to structural interdependences between RC complexes, which are highly relevant from biological and biomedical perspectives, because RC defects often lead to severe neuromuscular disorders. We show that in human cells, respirasome biogenesis involves a complex I assembly intermediate acting as a scaffold for the combined incorporation of complexes III and IV subunits, rather than originating from the association of preassembled individual holoenzymes. The process ends with the incorporation of complex I NADH dehydrogenase catalytic module, which leads to the respirasome activation. While complexes III and IV assemble either as free holoenzymes or by incorporation of free subunits into supercomplexes, the respirasomes constitute the structural units where complex I is assembled and activated, thus explaining the significance of the respirasomes for RC function.
Collapse
|
39
|
Pagniez-Mammeri H, Rak M, Legrand A, Bénit P, Rustin P, Slama A. Mitochondrial complex I deficiency of nuclear origin II. Non-structural genes. Mol Genet Metab 2012; 105:173-9. [PMID: 22099533 DOI: 10.1016/j.ymgme.2011.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/01/2022]
Abstract
Complex I deficiency is the most frequent cause of respiratory chain diseases. This large multiprotein complex is composed in human of 45 structural subunits, of which 7 are mitochondrial-encoded and 38 are nuclear-encoded. Most of the pathological mutations responsible for complex I deficiencies have been identified to date in complex I structural subunits. Numerous studies from last decade gave some insight into the biogenesis of this huge multi subunit complex of double genetic origin. A sequential incorporation of the structural subunits as well as ten complex I assembly factors has been described. Here, we present a short overview of the human complex I biogenesis and we review the pathological mutations identified to date in eight of the ten known complex I assembly factors.
Collapse
Affiliation(s)
- Hélène Pagniez-Mammeri
- Laboratoire de Biochimie, APHP Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin Bicêtre cedex, France
| | | | | | | | | | | |
Collapse
|
40
|
Nouws J, Nijtmans LGJ, Smeitink JA, Vogel RO. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 2011; 135:12-22. [DOI: 10.1093/brain/awr261] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Bianchi M, Rizza T, Verrigni D, Martinelli D, Tozzi G, Torraco A, Piemonte F, Dionisi-Vici C, Nobili V, Francalanci P, Boldrini R, Callea F, Santorelli FM, Bertini E, Carrozzo R. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy. Biochem Biophys Res Commun 2011; 415:300-4. [PMID: 22027147 PMCID: PMC3226962 DOI: 10.1016/j.bbrc.2011.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/09/2011] [Indexed: 11/16/2022]
Abstract
Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.
Collapse
Affiliation(s)
- Marzia Bianchi
- Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Calvaruso MA, Willems P, van den Brand M, Valsecchi F, Kruse S, Palmiter R, Smeitink J, Nijtmans L. Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. Hum Mol Genet 2011; 21:115-20. [DOI: 10.1093/hmg/ddr446] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Abstract
Mitochondrial diseases involve the dysfunction of the oxidative phosphorylation (OXPHOS) system. This group of diseases presents with heterogeneous clinical symptoms affecting mainly organs with high energy demands. Defects in the multimeric complexes comprising the OXPHOS system have a dual genetic origin, mitochondrial or nuclear DNA. Although many nuclear DNA mutations involve genes coding for subunits of the respiratory complexes, the majority of mutations found to date affect factors that do not form part of the final complexes. These assembly factors or chaperones have multiple functions ranging from cofactor insertion to proper assembly/stability of the complexes. Although significant progress has been made in the last few years in the discovery of new assembly factors, the function of many remains elusive. Here, we describe assembly factors or chaperones that are required for respiratory chain complex assembly and their clinical relevance.
Collapse
|
44
|
Choi WS, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. ACTA ACUST UNITED AC 2011; 192:873-82. [PMID: 21383081 PMCID: PMC3051820 DOI: 10.1083/jcb.201009132] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of microtubule depolymerization and the accumulation of cytosolic dopamine and reactive oxygen species selectively affects survival of dopaminergic neurons. Mitochondrial complex I dysfunction is regarded as underlying dopamine neuron death in Parkinson’s disease models. However, inactivation of the Ndufs4 gene, which compromises complex I activity, does not affect the survival of dopamine neurons in culture or in the substantia nigra pars compacta of 5-wk-old mice. Treatment with piericidin A, a complex I inhibitor, does not induce selective dopamine neuron death in either Ndufs4+/+ or Ndufs4−/− mesencephalic cultures. In contrast, rotenone, another complex I inhibitor, causes selective toxicity to dopamine neurons, and Ndufs4 inactivation potentiates this toxicity. We identify microtubule depolymerization and the accumulation of cytosolic dopamine and reactive oxygen species as alternative mechanisms underlying rotenone-induced dopamine neuron death. Enhanced rotenone toxicity to dopamine neurons from Ndufs4 knockout mice may involve enhanced dopamine synthesis caused by the accumulation of nicotinamide adenine dinucleotide reduced. Our results suggest that the combination of disrupting microtubule dynamics and inhibiting complex I, either by mutations or exposure to toxicants, may be a risk factor for Parkinson’s disease.
Collapse
Affiliation(s)
- Won-Seok Choi
- Department of Environmental and Occupational Health Sciences, Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
45
|
Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes. Neurochem Res 2010; 35:1880-915. [DOI: 10.1007/s11064-010-0307-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 02/07/2023]
|
46
|
Janssen RJ, Distelmaier F, Smeets R, Wijnhoven T, Ostergaard E, Jaspers NG, Raams A, Kemp S, Rodenburg RJ, Willems PH, van den Heuvel LP, Smeitink JA, Nijtmans LG. Contiguous gene deletion of ELOVL7, ERCC8 and NDUFAF2 in a patient with a fatal multisystem disorder. Hum Mol Genet 2009; 18:3365-74. [DOI: 10.1093/hmg/ddp276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Dieteren CEJ, Koopman WJH, Nijtmans LGJ. Chapter 7 Tracing human mitochondrial complex I assembly by use of GFP-tagged subunits. Methods Enzymol 2009; 456:133-51. [PMID: 19348886 DOI: 10.1016/s0076-6879(08)04407-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Disturbances in the assembly of mitochondrial complex I (CI) are a frequent cause of mitochondrial disorders. Several lines of evidence hint at a semi-sequential assembly pathway, in which the 45 individual subunits that form the holoenzyme are pieced together by means of smaller intermediates. To understand this process, it is necessary to explain the exact order, the rate-limiting steps, and the dynamics of subunit incorporation. In this chapter, we describe an approach to regulate the expression levels of an AcGFP(1)-tagged subunit (NDUFS3) in mammalian cells by means of a tetracycline-inducible promoter. This strategy allows the study of the dynamics of CI assembly intermediates in living cells on native gels. After establishing that the AcGFP(1) tag does not interfere with the activity and assembly of the enzyme, we show how this system can be used to trace the labeled subunit in an induction pulse-chase experiment or to study its accumulation in specific assembly intermediates after inhibition of mitochondrial translation.
Collapse
Affiliation(s)
- Cindy E J Dieteren
- Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
48
|
Dieteren CEJ, Willems PHGM, Vogel RO, Swarts HG, Fransen J, Roepman R, Crienen G, Smeitink JAM, Nijtmans LGJ, Koopman WJH. Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem 2008; 283:34753-61. [PMID: 18826940 PMCID: PMC3259887 DOI: 10.1074/jbc.m807323200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial complex I (CI) is a large assembly of 45 different subunits, and defects in its biogenesis are the most frequent cause of mitochondrial disorders. In vitro evidence suggests a stepwise assembly process involving pre-assembled modules. However, whether these modules also exist in vivo is as yet unresolved. To answer this question, we here applied submitochondrial fluorescence recovery after photobleaching to HEK293 cells expressing 6 GFP-tagged subunits selected on the basis of current CI assembly models. We established that each subunit was partially present in a virtually immobile fraction, possibly representing the holo-enzyme. Four subunits (NDUFV1, NDUFV2, NDUFA2, and NDUFA12) were also present as highly mobile matrix-soluble monomers, whereas, in sharp contrast, the other two subunits (NDUFB6 and NDUFS3) were additionally present in a slowly mobile fraction. In the case of the integral membrane protein NDUFB6, this fraction most likely represented one or more membrane-bound subassemblies, whereas biochemical evidence suggested that for the NDUFS3 protein this fraction most probably corresponded to a matrix-soluble subassembly. Our results provide first time evidence for the existence of CI subassemblies in mitochondria of living cells.
Collapse
Affiliation(s)
- Cindy E. J. Dieteren
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Rutger O. Vogel
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Herman G. Swarts
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Jack Fransen
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Ronald Roepman
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Gijs Crienen
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Leo G. J. Nijtmans
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- Departments of Biochemistry,
Cell Biology, and Human
Genetics, and the Microscopical Imaging Centre
of the Nijmegen Centre for Molecular Life Sciences, the Department of
Pediatrics of the Nijmegen Centre for
Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB,
Nijmegen, The Netherlands
| |
Collapse
|
49
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R, Abu-Amero KK, Dahl HHM, Hutchison WM, Vascotto KA, Smith SM, Newbold RF, Christodoulou J, Calvo S, Mootha VK, Ryan MT, Thorburn DR. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 2008; 83:468-78. [PMID: 18940309 DOI: 10.1016/j.ajhg.2008.09.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 12/12/2022] Open
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.
Collapse
|