1
|
Wei X, Lee K, Mullassery N, Dhungana P, Kang DS, Sim C. Transcription profiling reveals tissue-specific metabolic pathways in the fat body and ovary of the diapausing mosquito Culex pipiens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101260. [PMID: 38820803 PMCID: PMC11529574 DOI: 10.1016/j.cbd.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The northern house mosquito, Culex pipiens, employs diapause as an essential survival strategy during winter, inducing important phenotypic changes such as enhanced stress tolerance, lipid accumulation, and extended longevity. During diapause, the cessation of reproductive development represents another distinctive phenotypic change, underlining the need for adjusted modulation of gene expressions within the ovary. Although considerable advancements in screening gene expression profiles in diapausing and non-diapausing mosquitoes, there remains a gap in tissue-specific transcriptomic profiling that could elucidate the complicated formation of diverse diapause features in Cx. pipiens. Here, we filled this gap by utilizing RNA sequencing, providing a detailed examination of gene expression patterns in the fat body and ovary during diapause compared to non-diapause conditions. Functional annotation of upregulated genes identified associations with carbohydrate metabolism, stress tolerance, immunity, and epigenetic regulation. The validation of candidate genes using quantitative real-time PCR verified the differentially expressed genes identified in diapausing mosquitoes. Our findings contribute novel insights into potential regulators during diapause in Cx. pipiens, thereby opening possible avenues for developing innovative vector control strategies.
Collapse
Affiliation(s)
- Xueyan Wei
- Department of Biology, Baylor University, Waco, TX, USA. https://twitter.com/XueyanWei
| | - Karina Lee
- Department of Biology, Baylor University, Waco, TX, USA
| | | | - Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX, USA. https://twitter.com/Prabin_988
| | - David S Kang
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Park B, Kim SH, Yu SN, Kim KY, Jeon H, Ahn SC. Exploring a Novel Role of Glycerol Kinase 1 in Prostate Cancer PC-3 Cells. Biomolecules 2024; 14:997. [PMID: 39199385 PMCID: PMC11352368 DOI: 10.3390/biom14080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Clinically, prostate cancer is infamous for its histological and molecular heterogeneity, which causes great challenges to pinpoint therapy and pharmaceutical development. To overcome these difficulties, researchers are focusing on modulating tumor microenvironment and immune responses in addition to genetic alteration and epigenetic regulation. Here, we aimed to identify potential biomarkers or modulators of prostate cancer by investigating genes specifically altered in prostate cancer cells treated with established anti-cancer agents. Glycerol kinase 1 (GK1) is phosphotransferase encoded on the X chromosome, is associated with the synthesis of triglycerides and glycerophospholipids, and has been mainly studied for X-linked metabolic disorder GK deficiency (GKD). Interestingly, our DNA microarray analysis showed that several anti-cancer agents highly induced the expression of GK1, especially GK1a and GK1b isoforms, in human prostate cancer PC-3 cells. To elucidate the relationship between GK1 and cancer cell death, a human GK1b-specific expression vector was constructed and transfected into the PC-3 cells. Surprisingly, GK1b overexpression dramatically reduced cell viability and significantly accelerated apoptotic cell death. These findings suggest that GK1b may serve as a promising modulator and biomarker of cell death in prostate cancer, offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Bobae Park
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Sun-Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| | - Kwang-Youn Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea;
| | - Hoyeon Jeon
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; (S.-N.Y.); (H.J.)
| |
Collapse
|
3
|
Ying F, Chen X, Lv L. Glycerol kinase enzyme is a prognostic predictor in esophageal carcinoma and is associated with immune cell infiltration. Sci Rep 2024; 14:3922. [PMID: 38365953 PMCID: PMC10873286 DOI: 10.1038/s41598-024-54425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
The influence of lipid metabolism on tumorigenesis and progression has garnered significant attention. However, the role of Glycerol Kinase (GK), a key enzyme in glycerol metabolism, in Esophageal Carcinoma (ESCA) remains unclear. To further elucidate the relationship between GK and ESCA, we investigated GK expression levels using database information. Controlled studies employing immunohistochemistry were conducted on clinical ESCA tumor samples and normal specimens, confirming GK's elevated expression in ESCA. Analysis of The Cancer Genome Atlas (TCGA) data via Kaplan-Meier (KM) survival plots revealed that increased GK expression correlates with poorer ESCA patient outcomes, particularly in overall survival (OS) and disease-specific survival (DSS). Multiple regression analysis indicated that elevated GK expression is an independent risk factor affecting ESCA prognosis. Statistical analysis of prognostic data from clinical samples further corroborated this finding. Moreover, there appears to be a significant correlation between GK expression and immune infiltration, specifically involving certain T and B lymphocytes. In conclusion, elevated GK expression in ESCA is strongly linked to poor prognosis and increased immune cell infiltration, highlighting its potential as an independent prognostic biomarker and a viable therapeutic target.
Collapse
Affiliation(s)
- Fei Ying
- Department of Gastroenterology, Xianju People's Hospital, NO.53 North East Road, Xianju County, Taizhou, Zhejiang Province, China
| | - Xuyong Chen
- Department of Gastroenterology, Xianju People's Hospital, NO.53 North East Road, Xianju County, Taizhou, Zhejiang Province, China
| | - Lihong Lv
- Department of Gastroenterology, Xianju People's Hospital, NO.53 North East Road, Xianju County, Taizhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Abdulazeez I, Ismail IS, Mohd Faudzi SM, Christianus A, Chong SG. Study on the acute toxicity of sodium taurocholate via zebrafish mortality, behavioral response, and NMR-metabolomics analysis. Drug Chem Toxicol 2024; 47:115-130. [PMID: 37548163 DOI: 10.1080/01480545.2023.2242005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Sodium taurocholate (NaT) is a hydrophobic bile salt that exhibits varying toxicity and antimicrobial activity. The accumulation of BSs during their entero-hepatic cycle causes cytotoxicity in the liver and intestine and could also alter the intestinal microbiome leading to various diseases. In this research, the acute toxicity of sodium taurocholate in different concentrations (3000 mg/L, 1500 mg/L, 750 mg/L, 375 mg/L, and 0 mg/L) was investigated on four months old zebrafish by immersion in water for 96 h. The results were determined based on the fish mortality, behavioral response, and NMR metabolomics analysis which revealed LC50 of 1760.32 mg/L and 1050.42 mg/L after 72 and 96 h treatment, respectively. However, the non-lethal NaT concentrations of 750 mg/L and 375 mg/L at 96 h exposure significantly (p ≤ 0.05) decreased the total distance traveled and the activity duration, also caused surface respiration on the zebrafish. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) revealed that the metabolome of the fish treated with 750 mg/L was discriminated from that of the control by PC1. Major significantly downregulated metabolites by NaT-induction include valine, isoleucine, 2-hydroxyvalerate, glycine, glycerol, choline, glucose, pyruvate, anserine, threonine, carnitine and homoserine. On the contrary, taurine, creatine, lactate, acetate and 3-hydroxybutyrate were upregulated suggesting cellular consumption of lipids, glucose and amino acids for adenosine triphosphate (ATP) generation during immune and inflammatory response. whereby these metabolites were released in the process. In conclusion, the research revealed the toxic effect of NaT and its potential to trigger changes in zebrafish metabolism.
Collapse
Affiliation(s)
- Isah Abdulazeez
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Annie Christianus
- Department of Aquaculture, Faculty of Agricultural Sciences, Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| | - Seok-Giok Chong
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, UPM Serdang Selangor, Malaysia
| |
Collapse
|
5
|
Mi H, Hu F, Gebeyew K, Cheng Y, Du R, Gao M, He Z, Tan Z. Genome wide transcriptome analysis provides bases on hepatic lipid metabolism disorder affected by increased dietary grain ratio in fattening lambs. BMC Genomics 2023; 24:364. [PMID: 37386405 DOI: 10.1186/s12864-023-09465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Moiz B, Li A, Padmanabhan S, Sriram G, Clyne AM. Isotope-Assisted Metabolic Flux Analysis: A Powerful Technique to Gain New Insights into the Human Metabolome in Health and Disease. Metabolites 2022; 12:1066. [PMID: 36355149 PMCID: PMC9694183 DOI: 10.3390/metabo12111066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 04/28/2024] Open
Abstract
Cell metabolism represents the coordinated changes in genes, proteins, and metabolites that occur in health and disease. The metabolic fluxome, which includes both intracellular and extracellular metabolic reaction rates (fluxes), therefore provides a powerful, integrated description of cellular phenotype. However, intracellular fluxes cannot be directly measured. Instead, flux quantification requires sophisticated mathematical and computational analysis of data from isotope labeling experiments. In this review, we describe isotope-assisted metabolic flux analysis (iMFA), a rigorous computational approach to fluxome quantification that integrates metabolic network models and experimental data to generate quantitative metabolic flux maps. We highlight practical considerations for implementing iMFA in mammalian models, as well as iMFA applications in in vitro and in vivo studies of physiology and disease. Finally, we identify promising new frontiers in iMFA which may enable us to fully unlock the potential of iMFA in biomedical research.
Collapse
Affiliation(s)
- Bilal Moiz
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Andrew Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Surya Padmanabhan
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Alisa Morss Clyne
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Meng Q, Zhang Y, Hao S, Sun H, Liu B, Zhou H, Wang Y, Xu ZX. Recent findings in the regulation of G6PD and its role in diseases. Front Pharmacol 2022; 13:932154. [PMID: 36091812 PMCID: PMC9448902 DOI: 10.3389/fphar.2022.932154] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme in the pentose phosphate pathway (PPP). Rapidly proliferating cells require metabolites from PPP to synthesize ribonucleotides and maintain intracellular redox homeostasis. G6PD expression can be abnormally elevated in a variety of cancers. In addition, G6PD may act as a regulator of viral replication and vascular smooth muscle function. Therefore, G6PD-mediated activation of PPP may promote tumor and non-neoplastic disease progression. Recently, studies have identified post-translational modifications (PTMs) as an important mechanism for regulating G6PD function. Here, we provide a comprehensive review of various PTMs (e.g., phosphorylation, acetylation, glycosylation, ubiquitination, and glutarylation), which are identified in the regulation of G6PD structure, expression and enzymatic activity. In addition, we review signaling pathways that regulate G6PD and evaluate the role of oncogenic signals that lead to the reprogramming of PPP in tumor and non-neoplastic diseases as well as summarize the inhibitors that target G6PD.
Collapse
Affiliation(s)
- Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| |
Collapse
|
8
|
Panserat S, Plagnes-Juan E, Gazzola E, Palma M, Magnoni LJ, Marandel L, Viegas I. Hepatic Glycerol Metabolism-Related Genes in Carnivorous Rainbow Trout ( Oncorhynchus mykiss): Insights Into Molecular Characteristics, Ontogenesis, and Nutritional Regulation. Front Physiol 2020; 11:882. [PMID: 32848841 PMCID: PMC7413064 DOI: 10.3389/fphys.2020.00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Glycerol metabolism in rainbow trout is poorly studied even though it is at the interface between lipid and glucose metabolism. Moreover, glycerol can be an important ingredient in new aquafeed formulation to decrease the catabolism of dietary amino acids. Thus, the present study aimed to characterize for the first time the different genes coding for key enzymes and proteins involved in hepatic glycerol metabolism. From the trout genomes, all the paralogous genes coding for glycerol transport (aqp9b), glycerol kinase (gk2a and gk5), glycerol-3-phosphate phosphatase (pgp), and glycerol-3-phosphate dehydrogenase (gpd1a, gpd1b, and gpd1c) were identified. The ontogenesis determined that the capacity to metabolize glycerol begins with the apparition of the liver during the development (stage 22) and are more expressed at the endogenous–exogenous feeding period (stage 35). The postprandial regulation of the expression of these genes in juvenile trout showed that the postprandial peak of expression is between 4 and 24 h after the last meal for many of the genes, demonstrating that glycerol metabolism could be nutritionally regulated at a molecular level. However, surprisingly, no regulation of the mRNA abundance for the glycerol metabolism-related genes by different levels of dietary glycerol (0, 2.5, and 5%) have been detected, showing that hepatic glycerol metabolism is poorly regulated at a molecular level by dietary glycerol in rainbow trout juveniles.
Collapse
Affiliation(s)
- Stephane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - Elsa Gazzola
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - Mariana Palma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Leonardo J Magnoni
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Lucie Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NuMéA, Saint-Pée-sur-Nivelle, France
| | - Ivan Viegas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Miao L, Su F, Yang Y, Liu Y, Wang L, Zhan Y, Yin R, Yu M, Li C, Yang X, Ge C. Glycerol kinase enhances hepatic lipid metabolism by repressing nuclear receptor subfamily 4 group A1 in the nucleus. Biochem Cell Biol 2020; 98:370-377. [DOI: 10.1139/bcb-2019-0317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycerol kinase (GYK) plays a critical role in hepatic metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. GYK isoform b is the only glycerol kinase present in whole cells, and has a non-enzymatic moonlighting function in the nucleus. GYK isoform b acts as a co-regulator of nuclear receptor subfamily 4 group A1 (NR4A1) and participates in the regulation of hepatic glucose metabolism by protein–protein interaction with NR4A1. Herein, GYK expression was found to upregulate the expression of NR4A1-mediated lipid metabolism-related genes (SREBP1C, FASN, ACACA, and GPAM) in HEK293T and L02 cells, and in mouse in vivo studies. GYK expression increased blood levels of cholesterol, triglyceride, and high-density lipoprotein cholesterol, but not low-density lipoprotein cholesterol levels. It enhanced the transcriptional activity of Nr4a1 target genes by negatively cooperating with NR4A1 and its enzymatic activity or by other undefined moonlighting functions. This enhancement was observed in both normal and diabetic mice. We also found a feed-forward regulation loop between GYK and NR4A1, serving as part of a GYK-NR4A1 regulatory mechanism in hepatic metabolism. Thus, GYK regulates the effect of NR4A1 on hepatic lipid metabolism in normal and diabetic mice, partially through the cooperation of GYK and NR4A1.
Collapse
Affiliation(s)
- Lili Miao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Graduate School of Anhui Medical University, Hefei 230032, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongsheng Yang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Liu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
- Graduate School of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
10
|
Azevedo LF, Hornos Carneiro MF, Dechandt CRP, Cassoli JS, Alberici LC, Barbosa F. Global liver proteomic analysis of Wistar rats chronically exposed to low-levels of bisphenol A and S. ENVIRONMENTAL RESEARCH 2020; 182:109080. [PMID: 31901629 DOI: 10.1016/j.envres.2019.109080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 05/26/2023]
Abstract
Exposure to bisphenol A (BPA) and bisphenol S (BPS) has been associated with the development of metabolic disorders, such as obesity, dyslipidemias, and nonalcoholic fatty liver disease. Nonetheless, the associated mechanisms are still not fully understood. BPS is being used with no restrictions to replace BPA, which increases the concern regarding its safety and claims for further investigation on its potential mechanisms of toxicity. The present study aims to access liver molecular disturbances which could be associated with systemic metabolic disorders following exposure to BPA or BPS. Therefore, body weight gain and serum biochemical parameters were measured in male Wistar rats chronically exposed to 50 or 500 µg/kg/day of BPA or BPS, while an extensive evaluation of liver protein expression changes was conducted after exposure to 50 µg/kg/day of both compounds. Exposure to the lowest dose of BPA led to the development of hyperglycemia and hypercholesterolemia, while the BPS lowest dose led to the development of hypertriglyceridemia. Besides, exposure to 500 µg/kg/day of BPS significantly increased body weight gain and LDL-cholesterol levels. Hepatic proteins differentially expressed in BPA and BPS-exposed groups compared to the control group were mostly related to lipid metabolism and synthesis, with upregulation of glucokinase activity-related sequence 1 (1.8-fold in BPA and 2.4-fold in BPS), which is involved in glycerol triglycerides synthesis, and hydroxymethylglutaryl-CoA synthase cytoplasmic (2-fold in BPS), an enzyme involved in mevalonate biosynthesis. Essential mitochondrial proteins of the electron transport chain were upregulated after exposure to both contaminants. Also, BPA and BPS dysregulated expression of liver antioxidant enzymes, which are involved in cellular reactive oxygen species detoxification. Altogether, the results of the present study contribute to expand the scientific understanding of how BPA and BPS lead to the development of metabolic disorders and reinforce the risks associated with exposure to these contaminants.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Maria Fernanda Hornos Carneiro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil; Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carlos Roberto Porto Dechandt
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | | | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil.
| |
Collapse
|
11
|
Humpton TJ, Alagesan B, DeNicola GM, Lu D, Yordanov GN, Leonhardt CS, Yao MA, Alagesan P, Zaatari MN, Park Y, Skepper JN, Macleod KF, Perez-Mancera PA, Murphy MP, Evan GI, Vousden KH, Tuveson DA. Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discov 2019; 9:1268-1287. [PMID: 31263025 DOI: 10.1158/2159-8290.cd-18-1409] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/20/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Activating KRAS mutations are found in nearly all cases of pancreatic ductal adenocarcinoma (PDAC), yet effective clinical targeting of oncogenic KRAS remains elusive. Understanding of KRAS-dependent PDAC-promoting pathways could lead to the identification of vulnerabilities and the development of new treatments. We show that oncogenic KRAS induces BNIP3L/NIX expression and a selective mitophagy program that restricts glucose flux to the mitochondria and enhances redox capacity. Loss of Nix restores functional mitochondria to cells, increasing demands for NADPH reducing power and decreasing proliferation in glucose-limited conditions. Nix deletion markedly delays progression of pancreatic cancer and improves survival in a murine (KPC) model of PDAC. Although conditional Nix ablation in vivo initially results in the accumulation of mitochondria, mitochondrial content eventually normalizes via increased mitochondrial clearance programs, and pancreatic intraepithelial neoplasia (PanIN) lesions progress to PDAC. We identify the KRAS-NIX mitophagy program as a novel driver of glycolysis, redox robustness, and disease progression in PDAC. SIGNIFICANCE: NIX-mediated mitophagy is a new oncogenic KRAS effector pathway that suppresses functional mitochondrial content to stimulate cell proliferation and augment redox homeostasis. This pathway promotes the progression of PanIN to PDAC and represents a new dependency in pancreatic cancer.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York.,Medical Scientist Training Program, Stony Brook University, Stony Brook, New York
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Dan Lu
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Georgi N Yordanov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Carl S Leonhardt
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Melissa A Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Priya Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Maya N Zaatari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Jeremy N Skepper
- Cambridge Advanced Imaging Centre, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
12
|
Miao L, Yang Y, Liu Y, Lai L, Wang L, Zhan Y, Yin R, Yu M, Li C, Yang X, Ge C. Glycerol kinase interacts with nuclear receptor NR4A1 and regulates glucose metabolism in the liver. FASEB J 2019; 33:6736-6747. [PMID: 30821173 DOI: 10.1096/fj.201800945rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycerol kinase (Gyk), consisting of 4 isoforms, plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP-dependent reaction. Only Gyk isoform b is present in whole cells, but its function in the nucleus remains elusive. Previous studies have shown that nuclear orphan receptor subfamily 4 group A member (NR4A)-1 is an important regulator of hepatic glucose homeostasis and lipid metabolism in adipose tissue. We aimed to elucidate the functional interaction between nuclear Gyk and NR4A1 during hepatic gluconeogenesis in the unfed state and diabetes. We identified nuclear Gyk as a novel corepressor of NR4A1 in the liver; moreover, this recruitment was dependent on the C-terminal ligand-binding domain instead of the N-terminal activation function 1 domain, which interacts with other NR4A1 coregulators. NR4A1 transcriptional activity was inhibited by Gyk via protein-protein interaction but not enzymatic activity. Moreover, Gyk overexpression suppressed NR4A1 ability to regulate the expression of target genes involved in hepatic gluconeogenesis in vitro and in vivo as well as blood glucose regulation, which was observed in both unfed and diabetic mice. These results highlight the moonlighting function of nuclear Gyk, which was found to act as a coregulator of NR4A1, participating in the regulation of hepatic glucose homeostasis in the unfed state and diabetes.-Miao, L., Yang, Y., Liu, Y., Lai, L., Wang, L., Zhan, Y., Yin, R., Yu, M., Li, C., Yang, X., Ge, C. Glycerol kinase interacts with nuclear receptor NR4A1 and regulates glucose metabolism in the liver.
Collapse
Affiliation(s)
- Lili Miao
- Beijing Institute of Radiation Medicine, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| | - Yongsheng Yang
- Institute of AcuMoxibustion, China Academy of Chinese Medical Sciences, Beijing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Yue Liu
- Beijing Institute of Radiation Medicine, Beijing, China.,Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
| | - Lili Lai
- Beijing Institute of Radiation Medicine, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and.,Department of Pharmaceutical Engineering, Tianjin University, Tianjin, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China; and
| | - Changhui Ge
- Beijing Institute of Radiation Medicine, Beijing, China.,Graduate School, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Sake CL, Metcalf AJ, Boyle NR. The challenge and potential of photosynthesis: unique considerations for metabolic flux measurements in photosynthetic microorganisms. Biotechnol Lett 2018; 41:35-45. [PMID: 30430405 PMCID: PMC6313361 DOI: 10.1007/s10529-018-2622-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022]
Abstract
Photosynthetic microorganisms have the potential for sustainable production of chemical feedstocks and products but have had limited success due to a lack of tools and deeper understanding of metabolic pathway regulation. The application of instationary metabolic flux analysis (INST-MFA) to photosynthetic microorganisms has allowed researchers to quantify fluxes and identify bottlenecks and metabolic inefficiencies to improve strain performance or gain insight into cellular physiology. Additionally, flux measurements can also highlight deviations between measured and predicted fluxes, revealing weaknesses in metabolic models and highlighting areas where a lack of understanding still exists. In this review, we outline the experimental steps necessary to successfully perform photosynthetic flux experiments and analysis. We also discuss the challenges unique to photosynthetic microorganisms and how to account for them, including: light supply, quenching, concentration, extraction, analysis, and flux calculation. We hope that this will enable a larger number of researchers to successfully apply isotope assisted metabolic flux analysis (13C-MFA) to their favorite photosynthetic organism.
Collapse
|
14
|
Parr LS, Sriram G, Nazarian R, Rahib L, Dipple KM. The ATP-stimulated translocation promoter (ASTP) activity of glycerol kinase plays central role in adipogenesis. Mol Genet Metab 2018; 124:254-265. [PMID: 29960856 DOI: 10.1016/j.ymgme.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022]
Abstract
Glycerol kinase (GK) is a multifunctional enzyme located at the interface of carbohydrate and fat metabolism. It contributes to both central carbon metabolism and adipogenesis; specifically, through its role as the ATP-stimulated translocation promoter (ASTP). GK overexpression leads to increased ASTP activity and increased fat storage in H4IIE cells. We performed metabolic flux analysis in human GK-overexpressing H4IIE cells and found that overexpressing cells had significantly altered fluxes through central carbon and lipid metabolism including increased flux through the pentose phosphate pathway and increased production of lipids. We also observed an equal contribution of glycerol to carbohydrate metabolism in all cell lines, suggesting that GK's alternate functions rather than its enzymatic function are important for these processes. To further elucidate the contributions of the enzymatic (phosphorylation) and alternative (ASTP) functions of GK in adipogenesis, we performed experiments on mammalian GK and E. coli GK. We determined that the ASTP function of GK (which is absent in E. coli GK) plays a greater role than the enzymatic activity in these processes. These studies further emphasize GK's diverse functionality and provides fundamental insights into the multiple protein functions of glycerol kinase.
Collapse
Affiliation(s)
- Lilly S Parr
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| | - Ganesh Sriram
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA; Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Science at UCLA, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, 1208D Building 90, Chemical and Nuclear Engineering Bldg, University of Maryland, College Park, MD 20742-2111, USA
| | - Ramin Nazarian
- Department of Medicine/Dermatology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Lola Rahib
- Biomedical Engineering, Interdepartmental Program, Henry Samueli School of Engineering and Applied Science at UCLA, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Katrina M Dipple
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA; Biomedical Engineering, Interdepartmental Program, Henry Samueli School of Engineering and Applied Science at UCLA, 420 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children's Hospital at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1782, USA; University of Washington, Department of Pediatrics, Seattle Children's Hospital, Division of Genetic Medicine, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| |
Collapse
|
15
|
Zhang X, Misra A, Nargund S, Coleman GD, Sriram G. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:472-488. [PMID: 29193384 DOI: 10.1111/tpj.13792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 05/20/2023]
Abstract
Reduced nitrogen is indispensable to plants. However, its limited availability in soil combined with the energetic and environmental impacts of nitrogen fertilizers motivates research into molecular mechanisms toward improving plant nitrogen use efficiency (NUE). We performed a systems-level investigation of this problem by employing multiple 'omics methodologies on cell suspensions of hybrid poplar (Populus tremula × Populus alba). Acclimation and growth of the cell suspensions in four nutrient regimes ranging from abundant to deficient supplies of carbon and nitrogen revealed that cell growth under low-nitrogen levels was associated with substantially higher NUE. To investigate the underlying metabolic and molecular mechanisms, we concurrently performed steady-state 13 C metabolic flux analysis with multiple isotope labels and transcriptomic profiling with cDNA microarrays. The 13 C flux analysis revealed that the absolute flux through the oxidative pentose phosphate pathway (oxPPP) was substantially lower (~threefold) under low-nitrogen conditions. Additionally, the flux partitioning ratio between the tricarboxylic acid cycle and anaplerotic pathways varied from 84%:16% under abundant carbon and nitrogen to 55%:45% under deficient carbon and nitrogen. Gene expression data, together with the flux results, suggested a plastidic localization of the oxPPP as well as transcriptional regulation of certain metabolic branchpoints, including those between glycolysis and the oxPPP. The transcriptome data also indicated that NUE-improving mechanisms may involve a redirection of excess carbon to aromatic metabolic pathways and extensive downregulation of potentially redundant genes (in these heterotrophic cells) that encode photosynthetic and light-harvesting proteins, suggesting the recruitment of these proteins as nitrogen sinks in nitrogen-abundant conditions.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ashish Misra
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shilpa Nargund
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
16
|
Steady-state and instationary modeling of proteinogenic and free amino acid isotopomers for flux quantification. Methods Mol Biol 2014; 1090:155-79. [PMID: 24222416 DOI: 10.1007/978-1-62703-688-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Metabolic flux analysis (MFA) is a powerful tool for exploring and quantifying carbon traffic in metabolic networks. Accurate flux quantification requires (1) high-quality isotopomer measurements, usually of biomass components including proteinogenic/free amino acids or central carbon metabolites, and (2) a mathematical model that relates the unknown fluxes to the measured isotopomers. Modeling requires a thorough knowledge of the structure of the underlying metabolic network, often available from many databases, as well as the ability to make reasonable assumptions that will enable simplification of the model. Here we describe a general methodology underlying computer-aided mathematical modeling of a flux-isotopomer relationship and some of the accompanying data-processing steps. One of two modeling strategies will need to be employed, depending on the type of isotope labeling experiment performed. These strategies-steady-state modeling and instationary modeling-have different experimental and computational demands. We discuss the concepts underlying these two types of modeling and demonstrate steady-state modeling in a step-by-step manner. Our methodology should be applicable to most isotope-assisted MFA applications and should serve as a general framework applicable to many realistic metabolic networks with little modification.
Collapse
|
17
|
Nargund S, Misra A, Zhang X, Coleman GD, Sriram G. Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis. MOLECULAR BIOSYSTEMS 2014; 10:1496-508. [PMID: 24675729 DOI: 10.1039/c3mb70348g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isotope-assisted metabolic flux analysis (MFA) is a powerful methodology to quantify intracellular fluxes via isotope labeling experiments (ILEs). In batch cultures, which are often convenient, inexpensive or inevitable especially for eukaryotic systems, MFA is complicated by the presence of the initially present biomass. This unlabeled biomass may either mix with the newly synthesized labeled biomass or reflux into the metabolic network, thus masking the true labeling patterns in the newly synthesized biomass. Here, we report a detailed investigation of such metabolite reflux in cell suspensions of the tree poplar. In ILEs supplying 28% or 98% U-(13)C glucose as the sole organic carbon source, biomass components exhibited lower (13)C enrichments than the supplied glucose as well as anomalous isotopomers not explainable by simple mixing of the initial and newly synthesized biomass. These anomalous labeling patterns were most prominent in a 98% U-(13)C glucose ILE. By comparing the performance of light- and dark-grown cells as well as by analyzing the isotope labeling patterns in aspartic and glutamic acids, we eliminated photosynthetic or anaplerotic fixation of extracellular (12)CO2 as explanations for the anomalous labeling patterns. We further investigated four different metabolic models for interpreting the labeling patterns and evaluating fluxes: (i) a carbon source (glucose) dilution model, (ii) an isotopomer correction model with uniform dilution for all amino acids, (iii) an isotopomer correction model with variable dilution for different amino acids, and (iv) a comprehensive metabolite reflux model. Of these, the metabolite reflux model provided a substantially better fit for the observed labeling patterns (sum of squared residues: 538) than the other three models whose sum of squared residues were (i) 4626, (ii) 4983, and (iii) 1748, respectively. We compared fluxes determined using the metabolite reflux model to those determined using an independent methodology involving an excessively long ILE to wash out initial biomass and a minimal reflux model. This comparison showed identical or similar distributions for a majority of fluxes, thus validating our comprehensive reflux model. In summary, we have demonstrated the need for quantifying interactions between initially present biomass and newly synthesized biomass in batch ILEs, especially through the use of ≈100% U-(13)C carbon sources. Our ILEs reveal a high amount of metabolite reflux in poplar cell suspensions, which is well explained by a comprehensive metabolite reflux model.
Collapse
Affiliation(s)
- Shilpa Nargund
- Department of Chemical and Biomolecular Engineering, University of Maryland, 1208D, Chemical and Nuclear Engineering Building 090, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
18
|
Nargund S, Sriram G. Mathematical modeling of isotope labeling experiments for metabolic flux analysis. Methods Mol Biol 2014; 1083:109-131. [PMID: 24218213 DOI: 10.1007/978-1-62703-661-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.
Collapse
|
19
|
Zheng Y, Quinn AH, Sriram G. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum. Microb Cell Fact 2013; 12:109. [PMID: 24228629 PMCID: PMC3842785 DOI: 10.1186/1475-2859-12-109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/06/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. RESULTS Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-(13)C glucose and naturally abundant (~99% (12)C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-(13)C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-(13)C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but insensitive to glucose. CONCLUSION We have shown that Pt can use glucose as a primary carbon source when grown in light, but cannot use glucose to sustain growth in the dark. We further analyzed the metabolic mechanisms underlying the mixotrophic metabolism of glucose and found isotopic evidence for unusual pathways active in Pt. These insights expand the envelope of Pt cultivation methods using organic substrates. We anticipate that they will guide further engineering of Pt towards sustainable production of fuels, pharmaceuticals, and platform chemicals.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, MD 20742, USA
| | - Andrew H Quinn
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, MD 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, MD 20742, USA
| |
Collapse
|
20
|
Misra A, Conway MF, Johnnie J, Qureshi TM, Lige B, Derrick AM, Agbo EC, Sriram G. Metabolic analyses elucidate non-trivial gene targets for amplifying dihydroartemisinic acid production in yeast. Front Microbiol 2013; 4:200. [PMID: 23898325 PMCID: PMC3724057 DOI: 10.3389/fmicb.2013.00200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022] Open
Abstract
Synthetic biology enables metabolic engineering of industrial microbes to synthesize value-added molecules. In this, a major challenge is the efficient redirection of carbon to the desired metabolic pathways. Pinpointing strategies toward this goal requires an in-depth investigation of the metabolic landscape of the organism, particularly primary metabolism, to identify precursor and cofactor availability for the target compound. The potent antimalarial therapeutic artemisinin and its precursors are promising candidate molecules for production in microbial hosts. Recent advances have demonstrated the production of artemisinin precursors in engineered yeast strains as an alternative to extraction from plants. We report the application of in silico and in vivo metabolic pathway analyses to identify metabolic engineering targets to improve the yield of the direct artemisinin precursor dihydroartemisinic acid (DHA) in yeast. First, in silico extreme pathway (ExPa) analysis identified NADPH-malic enzyme and the oxidative pentose phosphate pathway (PPP) as mechanisms to meet NADPH demand for DHA synthesis. Next, we compared key DHA-synthesizing ExPas to the metabolic flux distributions obtained from in vivo (13)C metabolic flux analysis of a DHA-synthesizing strain. This comparison revealed that knocking out ethanol synthesis and overexpressing glucose-6-phosphate dehydrogenase in the oxidative PPP (gene YNL241C) or the NADPH-malic enzyme ME2 (YKL029C) are vital steps toward overproducing DHA. Finally, we employed in silico flux balance analysis and minimization of metabolic adjustment on a yeast genome-scale model to identify gene knockouts for improving DHA yields. The best strategy involved knockout of an oxaloacetate transporter (YKL120W) and an aspartate aminotransferase (YKL106W), and was predicted to improve DHA yields by 70-fold. Collectively, our work elucidates multiple non-trivial metabolic engineering strategies for improving DHA yield in yeast.
Collapse
Affiliation(s)
- Ashish Misra
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| | - Matthew F. Conway
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| | - Joseph Johnnie
- Institute for Systems Engineering, University of MarylandCollege Park, MD, USA
| | - Tabish M. Qureshi
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| | - Bao Lige
- Fyodor BiotechnologiesBaltimore, MD, USA
| | | | | | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of MarylandCollege Park, MD, USA
| |
Collapse
|
21
|
Nargund S, Sriram G. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks. ACTA ACUST UNITED AC 2013; 9:99-112. [DOI: 10.1039/c2mb25253h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 2012; 15:206-17. [PMID: 22898717 DOI: 10.1016/j.ymben.2012.07.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 01/07/2023]
Abstract
We assessed several methods of (13)C metabolic flux analysis (MFA) and found that isotopically nonstationary MFA achieved maximum flux resolution in cultured P493-6 B-cells, which have been engineered to provide tunable expression of the Myc oncoprotein. Comparison of metabolic flux maps obtained under oncogenic (High) and endogenous (Low) Myc expression levels revealed network-wide reprogramming in response to ectopic Myc expression. High Myc cells relied more heavily on mitochondrial oxidative metabolism than Low Myc cells and globally upregulated their consumption of amino acids relative to glucose. TCA cycle and amphibolic mitochondrial pathways exhibited 2- to 4-fold flux increases in High Myc cells, in contrast to modest increases in glucose uptake and lactate excretion. Because our MFA approach relied exclusively upon isotopic measurements of protein-bound amino acids and RNA-bound ribose, it is readily applicable to more complex tumor models that are not amenable to direct extraction and isotopic analysis of free intracellular metabolites.
Collapse
|
23
|
Morais S, Pratoomyot J, Taggart JB, Bron JE, Guy DR, Bell JG, Tocher DR. Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis. BMC Genomics 2011; 12:255. [PMID: 21599965 PMCID: PMC3113789 DOI: 10.1186/1471-2164-12-255] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/20/2011] [Indexed: 01/05/2023] Open
Abstract
Background Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon. Results A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARβ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2. Conclusions This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.
Collapse
Affiliation(s)
- Sofia Morais
- Institute of Aquaculture, University of Stirling, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G. Tracking cellular metabolomics in lipoapoptosis- and steatosis-developing liver cells. MOLECULAR BIOSYSTEMS 2011; 7:1409-19. [PMID: 21327189 DOI: 10.1039/c0mb00309c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Palmitate (PA) is known to induce reactive oxygen species (ROS) formation and apoptosis in liver cells, whereas concurrent treatment of oleate (OA) with PA predominately induces steatosis without ROS in liver cells. We previously reported that PA treatment induces the decoupling of glycolysis and tricarboxylic acid cycle (TCA cycle) fluxes, but OA co-treatment restored most metabolic fluxes to their control levels. However, the mechanisms by which metabolites are linked to metabolic fluxes and subsequent lipoapoptotic or steatotic phenotypes remain unclear. To determine the link, we used GC-MS-based polar and non-polar metabolic profiling in lipoapoptosis- or steatosis-developing H4IIEC3 hepatoma cells, to examine the metabolome at different time points after treatment with either PA alone (PA cells) or both PA and OA (PA/OA cells). Metabolic profiles revealed various changes in metabolite levels for TCA cycle intermediates, pentose phosphate pathway (PPP) intermediates, and energy storage metabolites between PA and PA/OA cells. For example, adenosine was markedly increased only in PA cells, whereas gluconate was increased in PA/OA cells. To assess the interaction among these metabolites, the metabolite-to-metabolite correlations were calculated and correlation networks were visualized. These correlation networks demonstrate that a dissociation among PPP metabolites was introduced in PA-treated cells, and this dissociation was restored in PA/OA-treated cells. Thus, our data suggest that abnormal PPP fluxes, in addition to increased adenosine levels, might be related to the decoupling of glycolysis and the resulting lipoapoptotic phenotype.
Collapse
Affiliation(s)
- Yasushi Noguchi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hunnewell MG, Forbes NS. Active and inactive metabolic pathways in tumor spheroids: determination by GC-MS. Biotechnol Prog 2010; 26:789-96. [PMID: 20014107 DOI: 10.1002/btpr.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Active metabolic pathways in three-dimensional cancer-cell cultures are potential chemotherapeutic targets that would be effective throughout tumors. Chaotic vasculature creates cellular regions in tumors with distinct metabolic behavior that are only present in aggregate cell masses. To quantify cancer cell metabolism, transformed mouse fibroblasts were grown as spheroids and fed isotopically labeled culture medium. Metabolite uptake and production rates were measured as functions of time. Gas chromatography-mass spectrometry was used to quantify the extent of labeling on amino acids present in cytoplasmic extracts. The labeling pattern identified several active and inactive metabolic pathways: Glutaminolysis was found to be active, and malic enzyme and gluconeogenesis were inactive. Transformed cells in spheroids were also found to actively synthesize serine, cysteine, alanine, aspartate, glutamate, and proline; and not synthesize glutamine. The activities of these pathways suggest that cancer cells consume glutamine for biosynthesis and not to provide cellular energy. Determining active metabolic pathways indicates how cells direct carbon flow and may lead to the discovery of novel molecular targets for anticancer therapy.
Collapse
Affiliation(s)
- Michael G Hunnewell
- Dept. of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
26
|
Sriram G, Parr LS, Rahib L, Liao JC, Dipple KM. Moonlighting function of glycerol kinase causes systems-level changes in rat hepatoma cells. Metab Eng 2010; 12:332-40. [PMID: 20399282 DOI: 10.1016/j.ymben.2010.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
Glycerol kinase (GK) is an enzyme with diverse (moonlighting) cellular functions. GK overexpression affects central metabolic fluxes substantially; therefore, to elucidate the mechanism underlying these changes, we employed a systems-level evaluation of GK overexpression in H4IIE rat hepatoma cells. Microarray analysis revealed altered expression of genes in metabolism (central carbon and lipid), which correlated with previous flux analysis, and of genes regulated by the glucocorticoid receptor (GR). Oil Red O staining showed that GK overexpression leads to increased fat storage in H4IIE cells. Network component analysis revealed that activities of peroxisome proliferator-activated receptor alpha, GR, and seven other transcription factors were altered by GK overexpression. The increased activity of GR was experimentally verified by quantitative RT-PCR of GR-responsive genes in the presence and absence of the glucocorticoid agonist, dexamethasone. This systems biology approach further emphasizes GK's essential role in central and lipid metabolism and experimentally verifies GK's alternative (moonlighting) function of affecting GR transcription factor activity.
Collapse
Affiliation(s)
- Ganesh Sriram
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA
| | | | | | | | | |
Collapse
|
27
|
Oosterveer MH, Grefhorst A, van Dijk TH, Havinga R, Staels B, Kuipers F, Groen AK, Reijngoud DJ. Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice. J Biol Chem 2009; 284:34036-44. [PMID: 19801551 DOI: 10.1074/jbc.m109.051052] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence indicates that peroxisome proliferator-activated receptor alpha (PPARalpha) not merely serves as a transcriptional regulator of fatty acid catabolism but also exerts a much broader role in hepatic lipid metabolism. We determined adaptations in hepatic lipid metabolism and related aspects of carbohydrate metabolism upon treatment of C57Bl/6 mice with the PPARalpha agonist fenofibrate. Stable isotope procedures were applied to assess hepatic fatty acid synthesis, fatty acid elongation, and carbohydrate metabolism. Fenofibrate treatment strongly induced hepatic de novo lipogenesis and chain elongation (+/-300, 150, and 600% for C16:0, C18:0, and C18:1 synthesis, respectively) in parallel with an increased expression of lipogenic genes. The lipogenic induction in fenofibrate-treated mice was found to depend on sterol regulatory element-binding protein 1c (SREBP-1c) but not carbohydrate response element-binding protein (ChREBP). Fenofibrate treatment resulted in a reduced contribution of glycolysis to acetyl-CoA production, whereas the cycling of glucose 6-phosphate through the pentose phosphate pathway presumably was enhanced. Altogether, our data indicate that beta-oxidation and lipogenesis are induced simultaneously upon fenofibrate treatment. These observations may reflect a physiological mechanism by which PPARalpha and SREBP-1c collectively ensure proper handling of fatty acids to protect the liver against cytotoxic damage.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Metallo CM, Walther JL, Stephanopoulos G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 2009; 144:167-74. [PMID: 19622376 DOI: 10.1016/j.jbiotec.2009.07.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/26/2009] [Accepted: 07/08/2009] [Indexed: 01/19/2023]
Abstract
(13)C metabolic flux analysis (MFA) is the most comprehensive means of characterizing cellular metabolic states. Uniquely labeled isotopic tracers enable more focused analyses to probe specific reactions within the network. As a result, the choice of tracer largely determines the precision with which one can estimate metabolic fluxes, especially in complex mammalian systems that require multiple substrates. Here we have experimentally determined metabolic fluxes in a tumor cell line, successfully recapitulating the hallmarks of cancer cell metabolism. Using these data, we computationally evaluated specifically labeled (13)C glucose and glutamine tracers for their ability to precisely and accurately estimate fluxes in central carbon metabolism. These methods enabled us to identify the optimal tracer for analyzing individual fluxes, specific pathways, and central carbon metabolism as a whole. [1,2-(13)C(2)]glucose provided the most precise estimates for glycolysis, the pentose phosphate pathway, and the overall network. Tracers such as [2-(13)C]glucose and [3-(13)C]glucose also outperformed the more commonly used [1-(13)C]glucose. [U-(13)C(5)]glutamine emerged as the preferred isotopic tracer for the analysis of the tricarboxylic acid (TCA) cycle. These results provide valuable, quantitative information on the performance of (13)C-labeled substrates and can aid in the design of more informative MFA experiments in mammalian cell culture.
Collapse
Affiliation(s)
- Christian M Metallo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Building 56 Room 469C, 77 Massachusetts Ave, Cambridge, MA 02139, United States
| | | | | |
Collapse
|
29
|
Rahib L, Sriram G, Harada MK, Liao JC, Dipple KM. Transcriptomic and network component analysis of glycerol kinase in skeletal muscle using a mouse model of glycerol kinase deficiency. Mol Genet Metab 2009; 96:106-12. [PMID: 19121967 PMCID: PMC2702540 DOI: 10.1016/j.ymgme.2008.11.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/16/2008] [Accepted: 11/16/2008] [Indexed: 11/25/2022]
Abstract
Glycerol kinase (GK) is at the interface of fat and carbohydrate metabolism and has been linked to obesity and type 2 diabetes mellitus (T2DM). The purpose of this study was to investigate the role of GK in fat metabolism and insulin signaling in skeletal muscle (an important end organ tissue in T2DM). Microarray analysis determined that there were 525 genes that were differentially expressed (1.2-fold, p value<0.05) between knockout (KO) and wild-type (WT) mice. Quantitative PCR (qPCR) confirmed the differential expression of genes including glycerol kinase (Gyk), phosphatidylinositol 3-kinase regulatory subunit, polypeptide 1 (p85 alpha) (Pik3r1), insulin-like growth factor 1 (Igf1), and growth factor receptor bound protein 2-associated protein 1 (Gab1). Network component analysis demonstrated that transcription factor activities of myogenic differentiation 1 (MYOD), myogenic regulatory factor 5 (MYF5), myogenin (MYOG), nuclear receptor subfamily 4, group A, member 1 (NUR77) are decreased in the Gyk KO whereas the activity of paired box 3 (PAX3) is increased. The activity of MYOD was confirmed using a DNA binding assay. In addition, myoblasts from Gyk KO had less ability to differentiate into myotubes compared to WT myoblasts. These findings support our previous studies in brown adipose tissue and demonstrate that the role of Gyk in muscle is due in part to its non-metabolic (moonlighting) activities.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Female
- Gene Expression Profiling
- Gene Regulatory Networks
- Glycerol Kinase/deficiency
- Glycerol Kinase/genetics
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Protein Binding
Collapse
Affiliation(s)
- Lola Rahib
- Biomedical Engineering Interdepartmental Program, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
| | - Ganesh Sriram
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Melissa K. Harada
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Katrina M. Dipple
- Biomedical Engineering Interdepartmental Program, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Mattel Children’s Hospital at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|