1
|
Mirra P, Parascandolo A, Marino G, D'Alterio F, Zinna L, Desiderio A, Patitucci G, Vita GAC, Condelli V, Russi S, D'Andrea F, Beguinot F, Miele C, Formisano P, D'Esposito V. Increased levels of versican and insulin-like growth factor 1 in peritumoral mammary adipose tissue are related to aggressiveness in estrogen receptor-positive breast cancer. Mol Med 2024; 30:201. [PMID: 39501160 PMCID: PMC11539550 DOI: 10.1186/s10020-024-00968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
The adipose tissue (AT) surrounding breast cancer (BC) plays a pivotal role in cancer progression and represents an optimal source for new biomarker discovery. The aim of this work was to investigate whether specific AT factors may have prognostic value in estrogen receptor-positive (ER+) BC. Proteoglycan Versican (VCAN), Insulin-like Growth Factor 1 (IGF1), Reticulon 4B (RTN4), chemokines CCL5 (also known as RANTES) and interleukin 8 (IL-8) are expressed in AT and may play important roles in BC progression. Peritumoral AT and tumoral biopsies were obtained from patients with ER+ BC (N = 23). AT specimens were collected also from healthy women (N = 17; CTRL-AT). The analysis of gene expression by qPCR revealed significantly higher mRNA levels of VCAN, IGF1, RTN4, and CCL5 in BC-AT compared to the CTRL-AT, and no difference in IL-8 mRNA levels. VCAN positively correlated with patient Body Mass Index (BMI) in BC-AT, while not in CTRL-AT. Moreover, VCAN and IGF1 positively correlated with RTN4 and negatively with CCL5. Interestingly, VCAN correlated with tumoral Ki67, while IGF1 with tumoral OCT4 that, in turn, correlated with tumoral Ki67 and patient BMI. Thus, peritumoral AT content of VCAN, and IGF1 are related to BC proliferation and aggressiveness.
Collapse
Affiliation(s)
- Paola Mirra
- URT "Genomic of Diabetes", Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy
| | - Alessia Parascandolo
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Graziella Marino
- Department of Breast Surgery, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Federica D'Alterio
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Lorenza Zinna
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Patitucci
- Department of Anatomical Pathology, Centro di Riferimento oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
| | - Giulia Anna Carmen Vita
- Department of Anatomical Pathology, Centro di Riferimento oncologico della Basilicata (IRCCS CROB), Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratory of Preclinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Francesco D'Andrea
- Department of Public Health, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Francesco Beguinot
- URT "Genomic of Diabetes", Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Claudia Miele
- URT "Genomic of Diabetes", Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Pietro Formisano
- URT "Genomic of Diabetes", Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy.
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Vittoria D'Esposito
- URT "Genomic of Diabetes", Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy
- Department of Translational Medicine, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
2
|
Kim H, Lichtenstein AH, Coresh J, Appel LJ, Rebholz CM. Serum protein responses to Dietary Approaches to Stop Hypertension (DASH) and DASH-Sodium trials and associations with blood pressure changes. J Hypertens 2024; 42:1823-1830. [PMID: 39196693 DOI: 10.1097/hjh.0000000000003828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
OBJECTIVES The Dietary Approaches to Stop Hypertension (DASH) diet reduces blood pressure, but the mechanisms underlying DASH diet-blood pressure relations are not well understood. Proteomic measures may provide insights into the pathophysiological mechanisms through which the DASH diet reduces blood pressure. METHODS The DASH (1994-1996) and DASH-Sodium (1997-1999) trials were multicenter, randomized-controlled feeding trials. Proteomic profiling was conducted in serum collected at the end of the feeding period (DASH, N = 215; DASH-Sodium, N = 390). Multivariable linear regression models were used to identify interactions between 71 DASH diet-related proteins and changes in systolic and diastolic blood pressure. Estimates were meta-analyzed across both trials. Elastic net models were used to identify proteins that predict changes in blood pressure. RESULTS Ten significant interactions were identified [systolic blood pressure: seven proteins; diastolic blood pressure: three proteins], which represented nine unique proteins. A high level of renin at the end of the feeding period was associated with greater reductions in diastolic blood pressure in individuals consuming the control than DASH diets. A high level of procollagen c-endopeptidase enhancer 1 (PCOLCE) and collagen triple helix repeat-containing protein 1 (CTHRC1) were associated with greater reductions in systolic blood pressure in individuals consuming the DASH than control diets, and with elevations in systolic blood pressure in individuals consuming the control diets (P for interaction for all tests < 0.05). Elastic net models identified six additional proteins that predicted change in blood pressure. CONCLUSIONS Several novel proteins were identified that may provide some insight into the relationship between the DASH diet and blood pressure.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Josef Coresh
- New York University Grossman School of Medicine, New York, New York
| | - Lawrence J Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Li G, Lin D, Fan X, Peng B. Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates. Cardiol Res Pract 2024; 2024:4639334. [PMID: 38994496 PMCID: PMC11239233 DOI: 10.1155/2024/4639334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
HCM is a heterogeneous monogenic cardiac disease that can lead to arrhythmia, heart failure, and atrial fibrillation. This study aims to identify biomarkers that have a positive impact on the treatment, diagnosis, and prediction of HCM through bioinformatics analysis. We selected the GSE36961 and GSE180313 datasets from the Gene Expression Omnibus (GEO) database for differential analysis. GSE36961 generated 6 modules through weighted gene co-expression network analysis (WGCNA), with the green and grey modules showing the highest positive correlation with HCM (green module: cor = 0.88, p = 2e - 48; grey module: cor = 0.78, p = 4e - 31). GSE180313 generated 17 modules through WGCNA, with the turquoise module exhibiting the highest positive correlation with HCM (turquoise module: cor = 0.92, p = 6e - 09). We conducted GO and KEGG pathway analysis on the intersection genes of the selected modules from GSE36961 and GSE180313 and intersected their GO enriched pathways with the GO enriched pathways of endothelial cell subtypes calculated after clustering single-cell data GSE181764, resulting in 383 genes on the enriched pathways. Subsequently, we used LASSO prediction on these 383 genes and identified RTN4, COL4A1, and IER3 as key genes involved in the occurrence and development of HCM. The expression levels of these genes were validated in the GSE68316 and GSE32453 datasets. In conclusion, RTN4, COL4A1, and IER3 are potential biomarkers of HCM, and protein degradation, mechanical stress, and hypoxia may be associated with the occurrence and development of HCM.
Collapse
Affiliation(s)
- Guanmou Li
- Zhujiang Hospital of Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Dongqun Lin
- Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Bo Peng
- Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| |
Collapse
|
4
|
Ling L, Chen J, Zhan L, Fu J, He R, Wang W, Wei B, Ma X, Cao Y. NLRC5 promotes tumorigenesis by regulating the PI3K/AKT signaling pathway in cervical cancer. Sci Rep 2024; 14:15353. [PMID: 38961101 PMCID: PMC11222428 DOI: 10.1038/s41598-024-66153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer among women worldwide. NLR Family CARD Domain Containing 5 (NLRC5) plays an important role in tumorigenesis. However, its effect and mechanism in CC remains unclear. In this study, we aimed to investigate the function of NLRC5 in CC. NLRC5 was found to be down-regulated in CC tissues compared with normal cervical tissues. However, patients with higher NLRC5 expression had better prognosis, patients with higher age, HPV infection, lymph node metastasis, recurrence and histological grade had worse prognosis. Univariate and multivariate analyses showed NLRC5 to be a potential prognostic indicator for CC. Pearson correlation analysis showed that NLRC5 might exert its function in CC through autophagy related proteins, especially LC3. In vitro experiments demonstrated that NLRC5 inhibited LC3 levels and promoted the proliferation, migration, and invasion of CC cells by activating the PI3K/AKT signaling pathway. Treatment with LY294002 reversed the above phenotype. Taken together, our finding suggested that NLRC5 would participate in cervical tumorigenesis and progression by regulating PI3K/AKT signaling pathway. In addition, NLRC5 and LC3 combined as possible predictors in CC.
Collapse
Affiliation(s)
- Lin Ling
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Juanjuan Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Runhua He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
5
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Pang B, Wang Q, Chen H, Liu Z, Han M, Gong J, Yue L, Ding X, Wang S, Yan Z, Chen Y, Malouf D, Bucci J, Guo T, Zhou C, Jiang J, Li Y. Proteomic Identification of Small Extracellular Vesicle Proteins LAMB1 and Histone H4 for Prostate Cancer Diagnosis and Risk Stratification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402509. [PMID: 38590132 PMCID: PMC11187897 DOI: 10.1002/advs.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Diagnosis and stratification of prostate cancer (PCa) patients using the prostate-specific antigen (PSA) test is challenging. Extracellular vesicles (EVs), as a new star of liquid biopsy, has attracted interest to complement inaccurate PSA screening and invasiveness of tissue biopsy. In this study, a panel of potential small EV (sEV) protein biomarkers is identified from PCa cell lines using label-free LC-MS/MS proteomics. These biomarkers underwent further validation with plasma and urine samples from different PCa stages through parallel reaction monitoring-based targeted proteomics, western blotting, and ELISA. Additionally, a tissue microarray containing cancerous and noncancerous tissues is screened to provide additional evidence of selected sEV proteins associated with cancer origin. Results indicate that sEV protein LAMB1 is highly expressed in human plasma of metastatic PCa patients compared with localised PCa patients and control subjects, while sEV protein Histone H4 is highly expressed in human urine of high-risk PCa patients compared to low-risk PCa patients and control subjects. These two sEV proteins demonstrate higher specificity and sensitivity than the PSA test and show promise for metastatic PCa diagnosis, progression monitoring, and risk stratification.
Collapse
Affiliation(s)
- Bairen Pang
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Qi Wang
- Cancer Care CentreSt George HospitalKogarahNSW2217Australia
- St. George and Sutherland Clinical CampusesSchool of Clinical MedicineUNSW SydneyKensingtonNSW2052Australia
| | - Haotian Chen
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Health Science CentreNingbo UniversityNingboZhejiang315211China
| | - Zhihan Liu
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Health Science CentreNingbo UniversityNingboZhejiang315211China
| | - Meng Han
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Jie Gong
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
| | - Liang Yue
- Westlake Centre for Intelligent ProteomicsWestlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310030China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310030China
| | - Xuan Ding
- Westlake Centre for Intelligent ProteomicsWestlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310030China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310030China
| | - Suying Wang
- Department of PathologyNingbo Diagnostic Pathology CentreNingboZhejiang315021China
| | - Zejun Yan
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
| | - Yingzhi Chen
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
| | - David Malouf
- Department of UrologySt George HospitalKogarahNSW2217Australia
| | - Joseph Bucci
- Cancer Care CentreSt George HospitalKogarahNSW2217Australia
- St. George and Sutherland Clinical CampusesSchool of Clinical MedicineUNSW SydneyKensingtonNSW2052Australia
| | - Tiannan Guo
- Westlake Centre for Intelligent ProteomicsWestlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310030China
- Key Laboratory of Structural Biology of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiang310030China
| | - Cheng Zhou
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Junhui Jiang
- Department of UrologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Ningbo Clinical Research Centre for Urological DiseaseThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Translational Research Laboratory for UrologyThe Key Laboratory of NingboThe First Affiliated Hospital of Ningbo UniversityNingboZhejiang315010China
- Zhejiang Engineering Research Center of Innovative technologies and diagnostic and therapeutic equipment for urinary system diseasesNingboZhejiang315010China
| | - Yong Li
- Cancer Care CentreSt George HospitalKogarahNSW2217Australia
- St. George and Sutherland Clinical CampusesSchool of Clinical MedicineUNSW SydneyKensingtonNSW2052Australia
| |
Collapse
|
7
|
Rubinstein JC, Domanskyi S, Sheridan TB, Sanderson B, Park S, Kaster J, Li H, Anczukow O, Herlyn M, Chuang JH. Spatiotemporal profiling defines persistence and resistance dynamics during targeted treatment of melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577085. [PMID: 38370717 PMCID: PMC10871267 DOI: 10.1101/2024.02.02.577085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.
Collapse
|
8
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Pourzand P, Tabasi F, Fayazbakhsh F, Sarhadi S, Bahari G, Mohammadi M, Jomepour S, Nafeli M, Mosayebi F, Heravi M, Taheri M, Hashemi M, Ghavami S. The Reticulon-4 3-bp Deletion/Insertion Polymorphism Is Associated with Structural mRNA Changes and the Risk of Breast Cancer: A Population-Based Case-Control Study with Bioinformatics Analysis. Life (Basel) 2023; 13:1549. [PMID: 37511924 PMCID: PMC10381770 DOI: 10.3390/life13071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is a complex disease caused by molecular events that disrupt cellular survival and death. Discovering novel biomarkers is still required to better understand and treat BC. The reticulon-4 (RTN4) gene, encoding Nogo proteins, plays a critical role in apoptosis and cancer development, with genetic variations affecting its function. We investigated the rs34917480 in RTN4 and its association with BC risk in an Iranian population sample. We also predicted the rs34917480 effect on RTN4 mRNA structure and explored the RTN4's protein-protein interaction network (PPIN) and related pathways. In this case-control study, 437 women (212 BC and 225 healthy) were recruited. The rs34917480 was genotyped using AS-PCR, mRNA secondary structure was predicted with RNAfold, and PPIN was constructed using the STRING database. Our findings revealed that this variant was associated with a decreased risk of BC in heterozygous (p = 0.012), dominant (p = 0.015), over-dominant (p = 0.017), and allelic (p = 0.035) models. Our prediction model showed that this variant could modify RTN4's mRNA thermodynamics and potentially its translation. RTN4's PPIN also revealed a strong association with apoptosis regulation and key signaling pathways highly implicated in BC. Consequently, our findings, for the first time, demonstrate that rs34917480 could be a protective factor against BC in our cohort, probably via preceding mechanisms.
Collapse
Affiliation(s)
- Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Fariba Fayazbakhsh
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Shamim Sarhadi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Mohammadi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Sahar Jomepour
- Department of Cardiology, Cardiovascular Research Center, School of Medicine, Hormozgan University of Medical Science, Bandar Abbas 7916613885, Iran
| | - Mohammad Nafeli
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Fatemeh Mosayebi
- Tehran Heart Center, Tehran University of Medical Science, Tehran 1416634793, Iran
| | - Mehrdad Heravi
- School of Medicine, Zahedan University of Medical Science, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Tseng CC, Hung CC, Shu CW, Lee CH, Chen CF, Kuo MS, Kao YY, Chen CL, Ger LP, Liu PF. The Clinical and Biological Effects of Receptor Expression-Enhancing Protein 6 in Tongue Squamous Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051270. [PMID: 37238941 DOI: 10.3390/biomedicines11051270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
There are currently no effective biomarkers for the diagnosis and treatment of tongue squamous cell carcinoma (TSCC), which causes a poor 5-year overall survival rate. Thus, it is crucial to identify more effective diagnostic/prognostic biomarkers and therapeutic targets for TSCC patients. The receptor expression-enhancing protein 6 (REEP6), a transmembrane endoplasmic reticulum resident protein, controls the expression or transport of a subset of proteins or receptors. Although it was reported that REEP6 plays a role in lung and colon cancers, its clinical impact and biological role in TSCC are still unknown. The present study aimed to identify a novel effective biomarker and therapeutic target for TSCC patients. Expression levels of REEP6 in specimens from TSCC patients were determined with immunohistochemistry. Gene knockdown was used to evaluate the effects of REEP6 in cancer malignancy (colony/tumorsphere formation, cell cycle regulation, migration, drug resistance and cancer stemness) of TSCC cells. The clinical impact of REEP6 expression and gene co-expression on prognosis were analyzed in oral cancer patients including TSCC patients from The Cancer Genome Atlas database. Tumor tissues had higher levels of REEP6 compared to normal tissues in TSCC patients. Higher REEP6 expression was related to shorter disease-free survival (DFS) in oral cancer patients with poorly differentiated tumor cells. REEP6-knocked-down TSCC cells showed diminished colony/tumorsphere formation, and they also caused G1 arrest and decreased migration, drug resistance and cancer stemness. A high co-expression of REEP6/epithelial-mesenchymal transition or cancer stemness markers also resulted in poor DFS in oral cancer patients. Thus, REEP6 is involved in the malignancy of TSCC and might serve as a potential diagnostic/prognostic biomarker and therapeutic target for TSCC patients.
Collapse
Affiliation(s)
- Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Dentistry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - Chung-Ching Hung
- Department of Otolaryngology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Feng Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Mei-Shu Kuo
- Department of Biotechnology, Chia Nan University, Tainan 71710, Taiwan
| | - Yu-Ying Kao
- Department of Biotechnology, Chia Nan University, Tainan 71710, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
11
|
Kong A, Liu T, Deng S, Xu S, Luo Y, Li J, Du Z, Wang L, Xu X, Fan X. Novel antidepressant-like properties of the fullerenol in an LPS-induced depressive mouse model. Int Immunopharmacol 2023; 116:109792. [PMID: 36738679 DOI: 10.1016/j.intimp.2023.109792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Depression is a common mental disease and is highly prevalent in populations. Dysregulated neuroinflammation and concomitant-activated microglia are involved in the pathogenesis of depression. Experimental evidence has indicated that fullerenol exerts anti-neuroinflammation and protective effects against neurological diseases. Here, we evaluated fullerenol's effects against lipopolysaccharide (LPS)-induced mouse depressive-like behaviors. Fullerenol treatment produced an antidepressant-like effect, as indicated by preventing the LPS-induced reduction in the sucrose preference and shortening the immobility durations in both the tail suspension test and the forced swim test. We found that fullerenol treatment mitigated LPS-induced hippocampal microglia activation and released proinflammatory cytokines. Meanwhile, fullerenol promoted hippocampus neurogenesis, evidenced by increased DCX-positive cells in LPS-treated mice. Hippocampal RNA-Seq analysis revealed proinflammatory cytokine and neurogenesis involved in fullerenol's antidepressant-like effects. Our data indicate that fullerenol exerts antidepressant effects, which might be due to beneficial functions in reducing neuroinflammatory processes and promoting neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Anqi Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China; Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shilong Deng
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Shiyao Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China; Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianghui Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China; Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
12
|
Wang LY, Zhang LQ, Li QZ, Bai H. The risk model construction of the genes regulated by H3K36me3 and H3K79me2 in breast cancer. BIOPHYSICS REPORTS 2023; 9:45-56. [PMID: 37426199 PMCID: PMC10323774 DOI: 10.52601/bpr.2023.220022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/23/2023] [Indexed: 07/11/2023] Open
Abstract
Abnormal histone modifications (HMs) can promote the occurrence of breast cancer. To elucidate the relationship between HMs and gene expression, we analyzed HM binding patterns and calculated their signal changes between breast tumor cells and normal cells. On this basis, the influences of HM signal changes on the expression changes of breast cancer-related genes were estimated by three different methods. The results showed that H3K79me2 and H3K36me3 may contribute more to gene expression changes. Subsequently, 2109 genes with differential H3K79me2 or H3K36me3 levels during cancerogenesis were identified by the Shannon entropy and submitted to perform functional enrichment analyses. Enrichment analyses displayed that these genes were involved in pathways in cancer, human papillomavirus infection, and viral carcinogenesis. Univariate Cox, LASSO, and multivariate Cox regression analyses were then adopted, and nine potential breast cancer-related driver genes were extracted from the genes with differential H3K79me2/H3K36me3 levels in the TCGA cohort. To facilitate the application, the expression levels of nine driver genes were transformed into a risk score model, and its robustness was tested via time-dependent receiver operating characteristic curves in the TCGA dataset and an independent GEO dataset. At last, the distribution levels of H3K79me2 and H3K36me3 in the nine driver genes were reanalyzed in the two cell lines and the regions with significant signal changes were located.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
13
|
Shen S, Tu C, Shen H, Li J, Frangou C, Zhang J, Qu J. Comparative Proteomics Analysis of Exosomes Identifies Key Pathways and Protein Markers Related to Breast Cancer Metastasis. Int J Mol Sci 2023; 24:4033. [PMID: 36835443 PMCID: PMC9967130 DOI: 10.3390/ijms24044033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Proteomics analysis of circulating exosomes derived from cancer cells represents a promising approach to the elucidation of cell-cell communication and the discovery of putative biomarker candidates for cancer diagnosis and treatment. Nonetheless, the proteome of exosomes derived from cell lines with different metastatic capabilities still warrants further investigation. Here, we present a comprehensive quantitative proteomics investigation of exosomes isolated from immortalized mammary epithelial cells and matched tumor lines with different metastatic potentials in an attempt to discover exosome markers specific to breast cancer (BC) metastasis. A total of 2135 unique proteins were quantified with a high confidence level from 20 isolated exosome samples, including 94 of the TOP 100 exosome markers archived by ExoCarta. Moreover, 348 altered proteins were observed, among which several metastasis-specific markers, including cathepsin W (CATW), magnesium transporter MRS2 (MRS2), syntenin-2 (SDCB2), reticulon-4 (RTN), and UV excision repair protein RAD23 homolog (RAD23B), were also identified. Notably, the abundance of these metastasis-specific markers corresponds well with the overall survival of BC patients in clinical settings. Together, these data provide a valuable dataset for BC exosome proteomics investigation and prominently facilitate the elucidation of the molecular mechanisms underlying primary tumor development and progression.
Collapse
Affiliation(s)
- Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - He Shen
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Costa Frangou
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
14
|
Fekete JT, Győrffy B. New Transcriptomic Biomarkers of 5-Fluorouracil Resistance. Int J Mol Sci 2023; 24:ijms24021508. [PMID: 36675023 PMCID: PMC9867124 DOI: 10.3390/ijms24021508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The overall response rate to fluoropyrimidine monotherapy in colorectal cancer (CRC) is limited. Transcriptomic datasets of CRC patients treated with 5-fluorouracil (5FU) could assist in the identification of clinically useful biomarkers. In this research, we aimed to analyze transcriptomic cohorts of 5FU-treated cell lines to uncover new predictive biomarker candidates and to validate the strongest hits in 5FU-treated human colorectal cancer samples with available clinical response data. We utilized an in vitro dataset of cancer cell lines treated with 5FU and used the reported area under the dose-response curve values to determine the therapeutic response to 5FU treatment. Mann-Whitney and ROC analyses were performed to identify significant genes. The strongest genes were combined into a single signature using a random forest classifier. The compound 5-fluorouracil was tested in 592 cell lines (294 nonresponders and 298 responders). The validation cohort consisted of 157 patient samples with 5FU monotherapy from three datasets. The three strongest associations with treatment outcome were observed in SHISA4 (AUC = 0.745, p-value = 5.5 × 10-25), SLC38A6 (AUC = 0.725, p-value = 3.1 × 10-21), and LAPTM4A (AUC = 0.723, p-value = 6.4 × 10-21). A random forest model utilizing the top genes reached an AUC value of 0.74 for predicting therapeutic sensitivity. The model correctly identified 83% of the nonresponder and 73% of the responder patients. The cell line cohort is available and the entire human colorectal cohort have been added to the ROCPlot analysis platform. Here, by using in vitro and in vivo data, we present a framework enabling the ranking of future biomarker candidates of 5FU resistance. A future option is to conduct an independent validation of the established predictors of resistance.
Collapse
Affiliation(s)
- János Tibor Fekete
- Research Center for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary
- Correspondence: ; Tel.: +36-30-514-2822
| |
Collapse
|
15
|
MicroRNA and mRNA Expression Changes in Glioblastoma Cells Cultivated under Conditions of Neurosphere Formation. Curr Issues Mol Biol 2022; 44:5294-5311. [PMID: 36354672 PMCID: PMC9688839 DOI: 10.3390/cimb44110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM.
Collapse
|
16
|
Cichoń MA, Pfisterer K, Leitner J, Wagner L, Staud C, Steinberger P, Elbe-Bürger A. Interoperability of RTN1A in dendrite dynamics and immune functions in human Langerhans cells. eLife 2022; 11:e80578. [PMID: 36223176 PMCID: PMC9555864 DOI: 10.7554/elife.80578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is an active immune organ where professional antigen-presenting cells such as epidermal Langerhans cells (LCs) link innate and adaptive immune responses. While Reticulon 1A (RTN1A) was recently identified in LCs and dendritic cells in cutaneous and lymphoid tissues of humans and mice, its function is still unclear. Here, we studied the involvement of this protein in cytoskeletal remodeling and immune responses toward pathogens by stimulation of Toll-like receptors (TLRs) in resident LCs (rLCs) and emigrated LCs (eLCs) in human epidermis ex vivo and in a transgenic THP-1 RTN1A+ cell line. Hampering RTN1A functionality through an inhibitory antibody induced significant dendrite retraction of rLCs and inhibited their emigration. Similarly, expression of RTN1A in THP-1 cells significantly altered their morphology, enhanced aggregation potential, and inhibited the Ca2+ flux. Differentiated THP-1 RTN1A+ macrophages exhibited long cell protrusions and a larger cell body size in comparison to wild-type cells. Further, stimulation of epidermal sheets with bacterial lipoproteins (TLR1/2 and TLR2 agonists) and single-stranded RNA (TLR7 agonist) resulted in the formation of substantial clusters of rLCs and a significant decrease of RTN1A expression in eLCs. Together, our data indicate involvement of RTN1A in dendrite dynamics and structural plasticity of primary LCs. Moreover, we discovered a relation between activation of TLRs, clustering of LCs, and downregulation of RTN1A within the epidermis, thus indicating an important role of RTN1A in LC residency and maintaining tissue homeostasis.
Collapse
Affiliation(s)
| | - Karin Pfisterer
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Lena Wagner
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of ViennaViennaAustria
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | | |
Collapse
|
17
|
Clement M, Forbester JL, Marsden M, Sabberwal P, Sommerville MS, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg JA, Strittmatter SM, Weekes MP, Stanton RJ, Dong T, Humphreys IR. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nat Commun 2022; 13:5294. [PMID: 36075894 PMCID: PMC9454482 DOI: 10.1038/s41467-022-32587-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a restriction factor that limits viral pathogenesis and exerts poorly understood immunoregulatory functions. Here, using human and mouse models, we demonstrate that IFITM3 promotes MyD88-dependent, TLR-mediated IL-6 production following exposure to cytomegalovirus (CMV). IFITM3 also restricts IL-6 production in response to influenza and SARS-CoV-2. In dendritic cells, IFITM3 binds to the reticulon 4 isoform Nogo-B and promotes its proteasomal degradation. We reveal that Nogo-B mediates TLR-dependent pro-inflammatory cytokine production and promotes viral pathogenesis in vivo, and in the case of TLR2 responses, this process involves alteration of TLR2 cellular localization. Nogo-B deletion abrogates inflammatory cytokine responses and associated disease in virus-infected IFITM3-deficient mice. Thus, we uncover Nogo-B as a driver of viral pathogenesis and highlight an immunoregulatory pathway in which IFITM3 fine-tunes the responsiveness of myeloid cells to viral stimulation.
Collapse
Affiliation(s)
- M Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - J L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - M Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - P Sabberwal
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - M S Sommerville
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - D Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - S Dimonte
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - S Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - K Harcourt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Z Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - L Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - B Jin
- Fourth Military Medical University, Xian, China
| | - M Chen
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - S Makvandi-Nejad
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - J A Lindborg
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - S M Strittmatter
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - R J Stanton
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - T Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - I R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
18
|
Guan X, Lu N, Zhang J. Construction of a prognostic model related to copper dependence in breast cancer by single-cell sequencing analysis. Front Genet 2022; 13:949852. [PMID: 36082002 PMCID: PMC9445252 DOI: 10.3389/fgene.2022.949852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: To explore the clinical significance of copper-dependent-related genes (CDRG) in female breast cancer (BC). Methods: CDRG were obtained by single-cell analysis of the GSE168410 dataset in the Gene Expression Omnibus (GEO) database. According to a 1:1 ratio, the Cancer Genome Atlas (TCGA) cohort was separated into a training and a test cohort randomly. Based on the training cohort, the prognostic model was built using COX and Lasso regression. The test cohort was used to validate the model. The GSE20685 dataset and GSE20711 dataset were used as two external validation cohorts to further validate the prognostic model. According to the median risk score, patients were classified as high-risk or low-risk. Survival analysis, immune microenvironment analysis, drug sensitivity analysis, and nomogram analysis were used to evaluate the clinical importance of this prognostic model. Results: 384 CDRG were obtained by single-cell analysis. According to the prognostic model, patients were classified as high-risk or low-risk in both cohorts. The high-risk group had a significantly worse prognosis. The area under the curve (AUC) of the model was around 0.7 in the four cohorts. The immunological microenvironment was examined for a possible link between risk score and immune cell infiltration. Veliparib, Selumetinib, Entinostat, and Palbociclib were found to be more sensitive medications for the high-risk group after drug sensitivity analysis. Conclusion: Our CDRG-based prognostic model can aid in the prediction of prognosis and treatment of BC patients.
Collapse
|
19
|
Wehrens M, de Leeuw AE, Wright-Clark M, Eding JEC, Boogerd CJ, Molenaar B, van der Kraak PH, Kuster DWD, van der Velden J, Michels M, Vink A, van Rooij E. Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep 2022; 39:110809. [PMID: 35545053 DOI: 10.1016/j.celrep.2022.110809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations are often the genetic basis for HCM, the mechanistic origin for the heterogeneous remodeling remains largely unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is required to improve therapeutic strategies. Patients suffering from HCM often receive a septal myectomy surgery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq) on septal myectomy samples from patients with HCM, we identify functional links between genes, transcription factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hypertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved in HCM that can eventually contribute to the development of enhanced therapies.
Collapse
Affiliation(s)
- Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Anne E de Leeuw
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Maya Wright-Clark
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Petra H van der Kraak
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
20
|
An emerging role of KRAS in biogenesis, cargo sorting and uptake of cancer-derived extracellular vesicles. Future Med Chem 2022; 14:827-845. [PMID: 35502655 DOI: 10.4155/fmc-2021-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles secreted for intercellular communication with endosomal network regulating secretion of small EVs (or exosomes) that play roles in cancer progression. As an essential oncoprotein, Kirsten rat sarcoma virus (KRAS) is tightly regulated by its endosomal trafficking for membrane attachment. However, the crosstalk between KRAS and EVs has been scarcely discussed despite its endocytic association. An overview of the oncogenic role of KRAS focusing on its correlation with cancer-associated EVs should provide important clues for disease prognosis and inspire novel therapeutic approaches for treating KRAS mutant cancers. Therefore, this review summarizes the relevant studies that provide substantial evidence linking KRAS mutation to EVs and discusses the oncogenic implication from the aspects of biogenesis, cargo sorting, and release and uptake of the EVs.
Collapse
|
21
|
Reader JC, Fan C, Ory ECH, Ju J, Lee R, Vitolo MI, Smith P, Wu S, Ching MMN, Asiedu EB, Jewell CM, Rao GG, Fulton A, Webb TJ, Yang P, Santin AD, Huang HC, Martin SS, Roque DM. Microtentacle Formation in Ovarian Carcinoma. Cancers (Basel) 2022; 14:800. [PMID: 35159067 PMCID: PMC8834106 DOI: 10.3390/cancers14030800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. METHODS We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot β-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. RESULTS Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. CONCLUSIONS McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery.
Collapse
Affiliation(s)
- Jocelyn C. Reader
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Cong Fan
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Eleanor Claire-Higgins Ory
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Julia Ju
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Rachel Lee
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Michele I. Vitolo
- Department of Pharmacology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.I.V.); (S.S.M.)
| | - Paige Smith
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Sulan Wu
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA;
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mc Millan Nicol Ching
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Cancer Imaging, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Emmanuel B. Asiedu
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.B.A.); (T.J.W.)
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (C.M.J.); (H.-C.H.)
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA;
| | - Gautam G. Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Amy Fulton
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA;
- Department of Pathology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tonya J. Webb
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.B.A.); (T.J.W.)
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences and Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alessandro D. Santin
- Division of Gynecologic Oncology, Smilow Cancer Center, Yale University, New Haven, CT 06520, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (C.M.J.); (H.-C.H.)
| | - Stuart S. Martin
- Department of Pharmacology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.I.V.); (S.S.M.)
- Department of Pathology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dana M. Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| |
Collapse
|
22
|
Nogo-B promotes invasion and metastasis of nasopharyngeal carcinoma via RhoA-SRF-MRTFA pathway. Cell Death Dis 2022; 13:76. [PMID: 35075114 PMCID: PMC8786944 DOI: 10.1038/s41419-022-04518-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Distant metastasis remains the major cause for treatment failure in patients with nasopharyngeal carcinoma (NPC). Thus, it is necessary to investigate the underlying regulation mechanisms and potential biomarkers for NPC metastasis. Nogo-B (neurite outgrowth inhibitor B), encoded by reticulon-4, has been shown to be associated with the progression and advanced stage of several cancer types. However, the relationship between Nogo-B and NPC remains unknown. In this study, we found that higher expression of Nogo-B was detected in NPC cells and tissues. Higher expression of Nogo-B was statistically relevant to N stage, M stage, and poor prognosis in NPC patients. Further functional investigations indicated that Nogo-B overexpression could increase the migration, invasion, and metastasis ability of NPC cells in vitro and in vivo. Mechanistically, Nogo-B promoted epithelial-mesenchymal transition (EMT) and enhanced the invasive potency by interacting directly with its receptor NgR3 in NPC. Additionally, overexpression of Nogo-B could upregulate the protein levels of p-RhoA, SRF, and MRTFA. A positive relationship was found between the expression of Nogo-B and the p-RhoA in NPC patients as well as in mouse lung xenografts. Nogo-Bhigh p-RhoAhigh expression was significantly associated with N stage, M stage, and poor prognosis in NPC patients. Notably, CCG-1423, an inhibitor of the RhoA-SRF-MRTFA pathway, could reverse the invasive potency of Nogo-B and NgR3 in NPC cell lines, and decrease the expression of N-Cadherin, indicating that CCG-1423 may be a potential target drug of NPC. Taken together, our findings reveal that Nogo-B enhances the migration and invasion potency of NPC cells via EMT by binding to its receptor NgR3 to regulate the RhoA-SRF-MRTFA pathway. These findings could provide a novel insight into understanding the metastasis mechanism and targeted therapy of advanced NPC.
Collapse
|
23
|
Wong CH, Lou UK, Fung FKC, Tong JHM, Zhang CH, To KF, Chan SL, Chen Y. CircRTN4 promotes pancreatic cancer progression through a novel CircRNA-miRNA-lncRNA pathway and stabilizing epithelial-mesenchymal transition protein. Mol Cancer 2022; 21:10. [PMID: 34983537 PMCID: PMC8725379 DOI: 10.1186/s12943-021-01481-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in many biological processes. However, the detailed mechanism underlying the critical roles of circRNAs in cancer remains largely unexplored. We aim to explore the molecular mechanisms of circRTN4 with critical roles in pancreatic ductal adenocarcinoma (PDAC). METHODS CircRTN4 expression level was examined in PDAC primary tumors. The oncogenic roles of circRTN4 in PDAC tumor growth and metastasis were studied in mouse tumor models. Bioinformatics analysis, luciferase assay and miRNA pulldown assay were performed to study the novel circRTN4-miRNA-lncRNA pathway. To identify circRTN4-interacting proteins, we performed circRNA-pulldown and mass spectrometry in PDAC cells. Protein stability assay and 3-Dimensional structure modeling were performed to reveal the role of circRTN4 in stabilizing RAB11FIP1. RESULTS CircRTN4 was significantly upregulated in primary tumors from PDAC patients. In vitro and in vivo functional studies revealed that circRTN4 promoted PDAC tumor growth and liver metastasis. Mechanistically, circRTN4 interacted with tumor suppressor miR-497-5p in PDAC cells. CircRTN4 knockdown upregulated miR-497-5p to inhibit the oncogenic lncRNA HOTTIP expression. Furthermore, we identified critical circRTN4-intercting proteins by circRNA-pulldown in PDAC cells. CircRTN4 interacted with important epithelial-mesenchymal transition (EMT)- driver RAB11FIP1 to block its ubiquitination site. We found that circRTN4 knockdown promoted the degradation of RAB11FIP1 by increasing its ubiquitination. Also, circRTN4 knockdown inhibited the expression of RAB11FIP1-regulating EMT-markers Slug, Snai1, Twist, Zeb1 and N-cadherin in PDAC. CONCLUSION The upregulated circRTN4 promotes tumor growth and liver metastasis in PDAC through the novel circRTN4-miR-497-5p-HOTTIP pathway. Also, circRTN4 stabilizes RAB11FIP1 to contribute EMT.
Collapse
Affiliation(s)
- Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ut Kei Lou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Frederic Khe-Cheong Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Joanna H M Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chang-Hua Zhang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518087, China.
| |
Collapse
|
24
|
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5169052. [PMID: 34589136 PMCID: PMC8476266 DOI: 10.1155/2021/5169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Abstract
Variable selection and penalized regression models in high-dimension settings have become an increasingly important topic in many disciplines. For instance, omics data are generated in biomedical researches that may be associated with survival of patients and suggest insights into disease dynamics to identify patients with worse prognosis and to improve the therapy. Analysis of high-dimensional time-to-event data in the presence of competing risks requires special modeling techniques. So far, some attempts have been made to variable selection in low- and high-dimension competing risk setting using partial likelihood-based procedures. In this paper, a weighted likelihood-based penalized approach is extended for direct variable selection under the subdistribution hazards model for high-dimensional competing risk data. The proposed method which considers a larger class of semiparametric regression models for the subdistribution allows for taking into account time-varying effects and is of particular importance, because the proportional hazards assumption may not be valid in general, especially in the high-dimension setting. Also, this model relaxes from the constraint of the ability to simultaneously model multiple cumulative incidence functions using the Fine and Gray approach. The performance/effectiveness of several penalties including minimax concave penalty (MCP); adaptive LASSO and smoothly clipped absolute deviation (SCAD) as well as their L2 counterparts were investigated through simulation studies in terms of sensitivity/specificity. The results revealed that sensitivity of all penalties were comparable, but the MCP and MCP-L2 penalties outperformed the other methods in term of selecting less noninformative variables. The practical use of the model was investigated through the analysis of genomic competing risk data obtained from patients with bladder cancer and six genes of CDC20, NCF2, SMARCAD1, RTN4, ETFDH, and SON were identified using all the methods and were significantly correlated with the subdistribution.
Collapse
|
25
|
Fan P, Zhang L, Cheng T, Wang J, Zhou J, Zhao L, Hua C, Xia Q. MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4. J Mol Histol 2021; 52:955-964. [PMID: 34406553 DOI: 10.1007/s10735-021-10009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Heart failure (HF) is a rising epidemic and public health burden in modern society. It is of great need to find new biomarkers to ensure a timely diagnosis and to improve treatment and prognosis of the disease. The mouse model of HF was established by thoracic aortic constriction. Color Doppler ultrasound was performed to detect left ventricular end-diastolic diameter. Hematoxylin and eosin staining was conducted to observe the pathological changes of mouse myocardium. The RT-qPCR analysis was performed to detect miR-590-5p and RTN4 expression levels. Western blot was conducted to detect protein levels of the indicated genes. We found that the expression of miR-590-5p was downregulated in cardiac tissues of HF mice. Injection of AAV-miR-590-5p attenuated myocardium hypertrophy and myocyte apoptosis. Additionally, miR-590-5p overexpression promoted viability, inhibited apoptosis, and decreased ANF, BNP and beta-MHC protein levels in H9c2 cell. Mechanistically, miR-590-5p binds to RTN4 3'-untranslated region, as predicted by starBase online database and evidenced by luciferase reporter assay. Furthermore, miR-590-5p negatively regulates RTN4 mRNA expression and suppresses its translation. The final rescue experiments revealed that miR-590-5p modulated cardiomyocyte phenotypes by binding to RTN4. In conclusion, miR-590-5p modulates myocardium hypertrophy and myocyte apoptosis in HF by downregulating RTN4.
Collapse
Affiliation(s)
- Ping Fan
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Likun Zhang
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Tianyu Cheng
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Jing Wang
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
- Department of General Practice, Confucius Temple Community Health Service Center, Nanjing, 210001, Jiangsu, China
| | - Junyun Zhou
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Li Zhao
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China
| | - Cuie Hua
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China.
| | - Quan Xia
- Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China.
| |
Collapse
|
26
|
Chen L, Hu Q, Liu H, Zhao Y, Chan SO, Wang J. Nogo-A Induced Polymerization of Microtubule Is Involved in the Inflammatory Heat Hyperalgesia in Rat Dorsal Root Ganglion Neurons. Int J Mol Sci 2021; 22:ijms221910360. [PMID: 34638704 PMCID: PMC8508904 DOI: 10.3390/ijms221910360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The microtubule, a major constituent of cytoskeletons, was shown to bind and interact with transient receptor potential vanilloid subfamily member 1 (TRPV1), and serves a pivotal role to produce thermal hyperalgesia in inflammatory pain. Nogo-A is a modulator of microtubule assembly and plays a key role in maintaining the function of TRPV1 in inflammatory heat pain. However, whether the microtubule dynamics modulated by Nogo-A in dorsal root ganglion (DRG) neurons participate in the inflammatory pain is not elucidated. Here we reported that the polymerization of microtubules in the DRG neurons, as indicated by the acetylated α-tubulin, tubulin polymerization-promoting protein 3 (TPPP3), and microtubule numbers, was significantly elevated in the complete Freund’s adjuvant (CFA) induced inflammatory pain. Consistent with our previous results, knock-out (KO) of Nogo-A protein significantly attenuated the heat hyperalgesia 72 h after CFA injection and decreased the microtubule polymerization via up-regulation of phosphorylation of collapsin response mediator protein 2 (CRMP2) in DRG. The colocalization of acetylated α-tubulin and TRPV1 in DRG neurons was also reduced dramatically in Nogo-A KO rats under inflammatory pain. Moreover, the down-regulation of TRPV1 in DRG of Nogo-A KO rats after injection of CFA was reversed by intrathecal injection of paclitaxel, a microtubule stabilizer. Furthermore, intrathecal injection of nocodazole (a microtubule disruptor) attenuated significantly the CFA-induced inflammatory heat hyperalgesia and the mechanical pain in a rat model of spared nerve injury (SNI). In these SNI cases, the Nogo-A and acetylated α-tubulin in DRG were also significantly up-regulated. We conclude that the polymerization of microtubules promoted by Nogo-A in DRG contributes to the development of inflammatory heat hyperalgesia mediated by TRPV1.
Collapse
Affiliation(s)
- Ling Chen
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (L.C.); (Q.H.); (H.L.); (Y.Z.)
| | - Qiguo Hu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (L.C.); (Q.H.); (H.L.); (Y.Z.)
| | - Huaicun Liu
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (L.C.); (Q.H.); (H.L.); (Y.Z.)
| | - Yan Zhao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (L.C.); (Q.H.); (H.L.); (Y.Z.)
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: (S.-O.C.); (J.W.); Tel.: +85-2-3943-6898 (S.-O.C.); +86-10-8280-1119 (J.W.)
| | - Jun Wang
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (L.C.); (Q.H.); (H.L.); (Y.Z.)
- Correspondence: (S.-O.C.); (J.W.); Tel.: +85-2-3943-6898 (S.-O.C.); +86-10-8280-1119 (J.W.)
| |
Collapse
|
27
|
Maimaris G, Christodoulou A, Santama N, Lederer CW. Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. Int J Mol Sci 2021; 22:10231. [PMID: 34638576 PMCID: PMC8508377 DOI: 10.3390/ijms221910231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.
Collapse
Affiliation(s)
- Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
28
|
Fogel EJ, Samouha A, Goel S, Maitra R. Transcriptome Signature of Immune Cells Post Reovirus Treatment in KRAS Mutated Colorectal Cancer. Cancer Manag Res 2021; 13:6743-6754. [PMID: 34475783 PMCID: PMC8407676 DOI: 10.2147/cmar.s324203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Reovirus propagates with high efficiency in KRAS mutated colorectal cancer (CRC). About 45–50% of CRC patients possess a KRAS mutation. Oncolytic reovirus treatment in combination with chemotherapy was tested in patients possessing KRAS mutated metastatic CRC. This study evaluates the biological responses to reovirus treatment by determining the gene expression patterns in RAS-related signaling pathways. Methods Reovirus was administered as a 60-min intravenous infusion for 5 consecutive days every 28 days, at a tissue culture infective dose (TCID50) of 3×1010. Peripheral blood mononuclear cells (PBMCs) were isolated from whole-blood pre- and post-reovirus administration at 48 hr, day-8, and day-15. Clariom_D_Human_Assay was used to determine the expression of vital genes compared to pre-reovirus treatment by RNA sequencing. Using exported sample signals, ΔΔCt method was used to analyze the fold changes of genes within seven gene pathways. Significance was calculated by students-two-tail-t-test. Hierarchical clustering dendrogram was constructed by calculating Pearson’s correlation coefficients. Results As compared to the control, SOS1[48 hr; 2.49X], RRAS [48 hr; 2.24X], PIK3CB [D8, D15; 2.27X, 3.16X], MIR 16–2 [D15; 1.70X], CHORDC1 [48 hr, D15; 1.89X, 4.54X], RTN4 [48 hr; 4.66X], FAM96A [48 hr; 4.54X], NFKB [D8, D15; 19.0X, 1.42X], CASP8 [D8, D15; 2.11X, 1.77X], and CASP9 [D8; 1.45X] are upregulated post-reovirus. NOS3 [D15; 0.61X], SYNE1 [D8, D15; 0.78X, 0.71X], ANGPT1 [D8; 0.62X], VEGFB [48 hr, D8, D15; 0.44X, 0.28X, 0.28X], JUN [D15; 0.69X], and IGF2 [D8; 0.73X] are downregulated post-reovirus. Fold change values were significant [p<0.05]. Conclusion This study highlights reovirus as a novel treatment option for KRAS mutated CRC and showcases its effect on the expression of crucial genes.
Collapse
Affiliation(s)
- Elisha J Fogel
- Department of Biology, Yeshiva University, New York, NY, 10033, USA
| | - Avishai Samouha
- Department of Biology, Yeshiva University, New York, NY, 10033, USA
| | - Sanjay Goel
- Albert Einstein College of Medicine at Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Radhashree Maitra
- Department of Biology, Yeshiva University, New York, NY, 10033, USA.,Albert Einstein College of Medicine at Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
29
|
Han D, Yang P, Qin B, Ji G, Wu Y, Yu L, Zhang H. Upregulation of Nogo-B by hypoxia inducible factor-1 and activator protein-1 in hepatocellular carcinoma. Cancer Sci 2021; 112:2728-2738. [PMID: 33963651 PMCID: PMC8253276 DOI: 10.1111/cas.14941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Nogo-B is an important regulator of tumor angiogenesis. Expression of Nogo-B is remarkably upregulated in multiple tumor types, especially hepatocellular carcinoma (HCC). Here, we show the transcriptional regulation mechanisms of Nogo-B in liver cancer. In response to hypoxia, expression of Nogo-B significantly increased in HCC tissues and cells. The distal hypoxia-responsive element in the promoter was essential for transcriptional activation of Nogo-B under hypoxic conditions, which is the specific site for hypoxia inducible factor-1α (HIF-1α) binding. In addition, Nogo-B expression was associated with c-Fos expression in HCC tissues. Nogo-B expression was induced by c-Fos, yet inhibited by a dominant negative mutant A-Fos. Deletion and mutation analysis of the predicted activator protein-1 binding sites revealed that functional element mediated the induction of Nogo-B promoter activity, which was confirmed by ChIP. These results indicate that HIF-1α and c-Fos induce the expression of Nogo-B depending on tumor microenvironments, such as hypoxia and low levels of nutrients, and play a role in upregulation of Nogo-B in tumor angiogenesis.
Collapse
Affiliation(s)
- Dingding Han
- Department of Clinical LaboratoryShanghai Children’s HospitalShanghai Jiaotong UniversityShanghaiChina
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsSchool of Life SciencesFudan UniversityShanghaiChina
| | - Penggao Yang
- Department of Plastic and Reconstruction SurgeryShanghai Ninth People’s HospitalSchool of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Bo Qin
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsSchool of Life SciencesFudan UniversityShanghaiChina
| | - Guoqing Ji
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsSchool of Life SciencesFudan UniversityShanghaiChina
| | - Yanhua Wu
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsSchool of Life SciencesFudan UniversityShanghaiChina
| | - Long Yu
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsSchool of Life SciencesFudan UniversityShanghaiChina
| | - Hong Zhang
- Department of Clinical LaboratoryShanghai Children’s HospitalShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
30
|
Xing Q, You Y, Zhao X, Ji J, Yan H, Dong Y, Ren L, Ding Y, Hou S. iTRAQ-Based Proteomics Reveals Gu-Ben-Fang-Xiao Decoction Alleviates Airway Remodeling via Reducing Extracellular Matrix Deposition in a Murine Model of Chronic Remission Asthma. Front Pharmacol 2021; 12:588588. [PMID: 34194321 PMCID: PMC8237094 DOI: 10.3389/fphar.2021.588588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Airway remodeling is a primary pathological feature of asthma. The current therapy for asthma mainly targets reducing inflammation but not particularly airway remodeling. Therefore, it is worthwhile to develop alternative and more effective therapies to attenuate remodeling. Gu-Ben-Fang-Xiao Decoction (GBFXD) has been used to effectively and safely treat asthma for decades. In this study, GBFXD regulated airway inflammation, collagen deposition, and the molecules relevant to airway remodeling such as Vimentin, α-SMA, hydroxyproline, and E-cadherin in chronic remission asthma (CRA) murine model. Proteomic analysis indicated that the overlapping differentially expressed proteins (DEPs) (Model/Control and GBFXD/Model) were mainly collagens and laminins, which were extracellular matrix (ECM) proteins. In addition, the KEGG analysis showed that GBFXD could regulate pathways related to airway remodeling including ECM-receptor interactions, focal adhesion, and the PI3K/AKT signaling pathway, which were the top three significantly enriched pathways containing the most DEPs for both Model/Control and GBFXD/Model. Further validation research showed that GBFXD regulated reticulon-4 (RTN4) and suppressed the activation of the PI3K/AKT pathway to alleviate ECM proteins deposition. In conclusion, our findings indicate that GBFXD possibly regulate the PI3K/AKT pathway via RTN4 to improve airway remodeling, which provides a new insight into the molecular mechanism of GBFXD for the treatment of CRA.
Collapse
Affiliation(s)
- Qiongqiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Yannan You
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Jianjian Ji
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Yuanyuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Shuting Hou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| |
Collapse
|
31
|
Yuan D, Tao Y, Chen G, Shi T. Systematic expression analysis of ligand-receptor pairs reveals important cell-to-cell interactions inside glioma. Cell Commun Signal 2019; 17:48. [PMID: 31118022 PMCID: PMC6532229 DOI: 10.1186/s12964-019-0363-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most commonly diagnosed malignant and aggressive brain cancer in adults. Traditional researches mainly explored the expression profile of glioma at cell-population level, but ignored the heterogeneity and interactions of among glioma cells. Methods Here, we firstly analyzed the single-cell RNA-seq (scRNA-seq) data of 6341 glioma cells using manifold learning and identified neoplastic and healthy cells infiltrating in tumor microenvironment. We systematically revealed cell-to-cell interactions inside gliomas based on corresponding scRNA-seq and TCGA RNA-seq data. Results A total of 16 significantly correlated autocrine ligand-receptor signal pairs inside neoplastic cells were identified based on the scRNA-seq and TCGA data of glioma. Furthermore, we explored the intercellular communications between cancer stem-like cells (CSCs) and macrophages, and identified 66 ligand-receptor pairs, some of which could significantly affect prognostic outcomes. An efficient machine learning model was constructed to accurately predict the prognosis of glioma patients based on the ligand-receptor interactions. Conclusion Collectively, our study not only reveals functionally important cell-to-cell interactions inside glioma, but also detects potentially prognostic markers for predicting the survival of glioma patients. Electronic supplementary material The online version of this article (10.1186/s12964-019-0363-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongsheng Yuan
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiran Tao
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.
| |
Collapse
|
32
|
Li J, Chen Q, Deng Z, Chen X, Liu H, Tao Y, Wang X, Lin S, Liu N. KRT17 confers paclitaxel-induced resistance and migration to cervical cancer cells. Life Sci 2019; 224:255-262. [PMID: 30928404 DOI: 10.1016/j.lfs.2019.03.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
AIM To understand potential pro-oncological effects of lower dose paclitaxel treatment in cervical cancer cells, we investigated the potential roles of KRT17 on migration and proliferation of cervical cancer cells which might respond to cytoskeletal-based drugs treatments. MATERIALS AND METHODS We extracted the clinic data of cervical cancer patients from TCGA database to investigate mRNA expression of different keratins. HPV genotypes were identified by reverse transcription PCR. krt17 mRNA and EMT markers were quantified by real-time PCR. krt17 and EMT markers protein were immunoblotted by western blot. Cell viability was detected by CCK8. Cell migration was performed by transwell migration assay. KEY FINDINGS Our results showed that HPV16 infection correlated with the expression of KRT17 in cervical cancer cell lines. KRT17 knockdown would decrease Snail2 and elevate E-Cadherin to inhibit migration of Caski cells and SiHa cells. Lower dose of paclitaxel promoted SiHa proliferation, it also significantly promoted the migration of Caski cells. Otherwise, colchicine and higher dose of paclitaxel dose-dependently suppressed the proliferation and migration of Caski cells and SiHa cells. Moreover, KRT17 knockdown significantly facilitated cytoskeletal-based drugs to inhibit migration and induce cytotoxicity in cervical cancer cells. SIGNIFICANCE KRT17 played pivotal oncogenic roles in cell survival, migration and paclitaxel-induced resistance of cervical cancer cells. Thus, KRT17 would serve as a promising target for compromising paclitaxel-induced resistance and metastasis.
Collapse
Affiliation(s)
- Jinyuan Li
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Qiufang Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhendong Deng
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China
| | - Xiaoting Chen
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China
| | - Hong Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China
| | - Ying Tao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China
| | - Xiaoyu Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Shaoqiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China; School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Naihua Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|