1
|
Bayraktutan H, Symonds P, Brentville VA, Moloney C, Galley C, Bennett CL, Mata A, Durrant L, Alexander C, Gurnani P. Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine. Biomaterials 2024; 311:122647. [PMID: 38878479 DOI: 10.1016/j.biomaterials.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/06/2024]
Abstract
DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of the vector must be carefully tuned to enhance interaction with immune cells and generate sufficient immune response for disease protection. In this study, we have engineered a range of polymer-based nanocarriers based on the poly(beta-amino ester) (PBAE) polycation platform to investigate the role that surface poly(ethylene glycol) (PEG) density has on pDNA encapsulation, formulation properties and gene transfectability both in vitro and in vivo. We achieved this by synthesising a non-PEGylated and PEGylated PBAE and produced formulations containing these PBAEs, and mixed polyplexes to tune surface PEG density. All polymers and co-formulations produced small polyplex nanoparticles with almost complete encapsulation of the cargo in all cases. Despite high gene transfection in HEK293T cells, only the fully PEGylated and mixed formulations displayed significantly higher expression of the reporter gene than the negative control in dendritic cells. Further in vivo studies with a bivalent SARS-CoV-2 pDNA vaccine revealed that only the mixed formulation led to strong antigen specific T-cell responses, however this did not translate into the presence of serum antibodies indicating the need for further studies into improving immunisation with polymer delivery systems.
Collapse
Affiliation(s)
- Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Peter Symonds
- Scancell Ltd, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| | - Victoria A Brentville
- Scancell Ltd, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| | - Cara Moloney
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Charlotte Galley
- Department of Haematology, UCL Cancer Institute, 72 Huntley Street, University College London, London, WC1E 6DD, UK
| | - Clare L Bennett
- Department of Haematology, UCL Cancer Institute, 72 Huntley Street, University College London, London, WC1E 6DD, UK
| | - Alvaro Mata
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lindy Durrant
- Scancell Ltd, University of Nottingham Biodiscovery Institute, Nottingham, NG7 2RD, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Pratik Gurnani
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
2
|
De Lombaerde E, Cui X, Chen Y, Zhong Z, Deckers J, Mencarelli G, Opsomer L, Wang H, De Baere J, Lienenklaus S, Lambrecht BN, Sanders NN, De Geest BG. Amplification of Protein Expression by Self-Amplifying mRNA Delivered in Lipid Nanoparticles Containing a β-Aminoester Ionizable Lipid Correlates with Reduced Innate Immune Activation. ACS NANO 2024; 18:28311-28324. [PMID: 39352021 DOI: 10.1021/acsnano.4c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Self-amplifying mRNA (saRNA) is witnessing increased interest as a platform technology for protein replacement therapy, gene editing, immunotherapy, and vaccination. saRNA can replicate itself inside cells, leading to a higher and more sustained production of the desired protein at a lower dose. Controlling innate immune activation, however, is crucial to suppress unwanted inflammation upon delivery and self-replication of RNA in vivo. In this study, we report on a class of β-aminoester lipids (βAELs) synthesized through the Michael addition of an acrylate to diethanolamine, followed by esterification with fatty acids. These lipids possessed one or two ionizable amines, depending on the use of nonionic or amine-containing acrylates. We utilized βAELs for encapsulating saRNA in lipid nanoparticles (LNPs) and evaluated their transfection efficiency in vitro and in vivo in mice, while comparing them to LNPs containing ALC-0315 as an ionizable lipid reference. Among the tested lipids, OC7, which comprises two unsaturated oleoyl alkyl chains and an ionizable azepanyl motif, emerged as a βAEL with low cytotoxicity and immunogenicity relative to ALC-0315. Interestingly, saRNA delivered via the OC7 LNP exhibited a distinct in vivo transfection profile. Initially, intramuscular injection of OC7 LNP resulted in low protein expression shortly after administration, followed by a gradual increase over a period of up to 7 days. This pattern is indicative of successful self-amplification of saRNA. In contrast, saRNA delivered via ALC-0315 LNP demonstrated high protein translation initially, which gradually declined over time and lacked the amplification seen with OC7 LNP. We observed that, in contrast to saRNA OC7 LNP, saRNA ALC-0315 LNP induced potent innate immune activation by triggering cytoplasmic RIG-I-like receptors (RLRs), likely due to the highly efficient endosomal membrane rupturing properties of ALC-0315 LNP. Consequently, the massive production of type I interferons quickly hindered the amplification of the saRNA. Our findings highlight the critical role of the choice of ionizable lipid for saRNA formulation in LNPs, particularly in shaping the qualitative profile of protein expression. For applications where minimizing inflammation is desired, the use of ionizable lipids, such as the βAEL reported in this study, that elicit a low type I interferon response in saRNA LNP is crucial.
Collapse
Affiliation(s)
| | - Xiaole Cui
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | | | | - Julie Deckers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
| | - Giulia Mencarelli
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
- Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | | | | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Zwijnaarde, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam 3015, Netherlands
| | - Niek N Sanders
- Laboratory of Gene Therapy, Ghent University, 9820 Ghent, Belgium
| | | |
Collapse
|
3
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2024; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
4
|
Gong Y, Yong D, Liu G, Xu J, Ding J, Jia W. A Novel Self-Amplifying mRNA with Decreased Cytotoxicity and Enhanced Protein Expression by Macrodomain Mutations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402936. [PMID: 39313862 DOI: 10.1002/advs.202402936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/13/2024] [Indexed: 09/25/2024]
Abstract
The efficacy and safety of self-amplifying mRNA (saRNA) have been demonstrated in COVID-19 vaccine applications. Unlike conventional non-replicating mRNA (nrmRNA), saRNA offers a key advantage: its self-replication mechanism fosters efficient expression of the encoded protein, leading to substantial dose savings during administration. Consequently, there is a growing interest in further optimizing the expression efficiency of saRNA. In this study, in vitro adaptive passaging of saRNA is conducted under exogenous interferon pressure, which revealed several mutations in the nonstructural protein (NSP). Notably, two stable mutations, Q48P and I113F, situated in the NSP3 macrodomain (MD), attenuated its mono adenosine diphosphate ribose (MAR) hydrolysis activity and exhibited decreased replication but increased payload expression compared to wild-type saRNA (wt saRNA). Transcriptome sequencing analysis unveils diminished activation of the double-stranded RNA (dsRNA) sensor and, consequently, a significantly reduced innate immune response compared to wt saRNA. Furthermore, the mutant saRNA demonstrated less translation inhibition and cell apoptosis than wt saRNA, culminating in higher protein expression both in vitro and in vivo. These findings underscore the potential of reducing saRNA replication-dependent dsRNA-induced innate immune responses through genetic modification as a valuable strategy for optimizing saRNA, enhancing payload translation efficiency, and mitigating saRNA cytotoxicity.
Collapse
Affiliation(s)
- Yue Gong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Danni Yong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Gensheng Liu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jiang Xu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| | - William Jia
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| |
Collapse
|
5
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
6
|
Miyazato P, Noguchi T, Ogawa F, Sugimoto T, Fauzyah Y, Sasaki R, Ebina H. 1mΨ influences the performance of various positive-stranded RNA virus-based replicons. Sci Rep 2024; 14:17634. [PMID: 39085360 PMCID: PMC11292005 DOI: 10.1038/s41598-024-68617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Self-amplifying RNAs (saRNAs) are versatile vaccine platforms that take advantage of a viral RNA-dependent RNA polymerase (RdRp) to amplify the messenger RNA (mRNA) of an antigen of interest encoded within the backbone of the viral genome once inside the target cell. In recent years, more saRNA vaccines have been clinically tested with the hope of reducing the vaccination dose compared to the conventional mRNA approach. The use of N1-methyl-pseudouridine (1mΨ), which enhances RNA stability and reduces the innate immune response triggered by RNAs, is among the improvements included in the current mRNA vaccines. In the present study, we evaluated the effects of this modified nucleoside on various saRNA platforms based on different viruses. The results showed that different stages of the replication process were affected depending on the backbone virus. For TNCL, an insect virus of the Alphanodavirus genus, replication was impaired by poor recognition of viral RNA by RdRp. In contrast, the translation step was severely abrogated in coxsackievirus B3 (CVB3), a member of the Picornaviridae family. Finally, the effects of 1mΨ on Semliki forest virus (SFV), were not detrimental in in vitro studies, but no advantages were observed when immunogenicity was tested in vivo.
Collapse
Affiliation(s)
- Paola Miyazato
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takafumi Noguchi
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Fumiyo Ogawa
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Takeshi Sugimoto
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Yuzy Fauzyah
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Ryo Sasaki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan
| | - Hirotaka Ebina
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Osaka, Japan.
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
McGee JE, Kirsch JR, Kenney D, Cerbo F, Chavez EC, Shih TY, Douam F, Wong WW, Grinstaff MW. Complete substitution with modified nucleotides in self-amplifying RNA suppresses the interferon response and increases potency. Nat Biotechnol 2024:10.1038/s41587-024-02306-z. [PMID: 38977924 DOI: 10.1038/s41587-024-02306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
The use of modified nucleotides to suppress the interferon response and maintain translation of self-amplifying RNA (saRNA), which has been achieved for mRNA, has not yet succeeded. We identify modified nucleotides that, when substituted at 100% in saRNA, confer innate immune evasion and robust long-term protein expression, and when formulated as a vaccine, protect against lethal SARS-CoV-2 challenge in mice. This discovery advances saRNA therapeutics by enabling prolonged protein expression at low doses.
Collapse
Affiliation(s)
- Joshua E McGee
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jack R Kirsch
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Devin Kenney
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Faith Cerbo
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Elizabeth C Chavez
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Ting-Yu Shih
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology and Microbiology, Boston University School of Medicine, Boston, MA, USA.
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
8
|
Wang Z, Chen Y, Wu H, Wang M, Mao L, Guo X, Zhu J, Ye Z, Luo X, Yang X, Liu X, Yang J, Sheng Z, Lee J, Guo Z, Liu Y. Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep 2024; 14:7366. [PMID: 38548896 PMCID: PMC10978917 DOI: 10.1038/s41598-024-57997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Interleukin 12 (IL-12) is a potent immunostimulatory cytokine mainly produced by antigen-presenting cells (e.g., dendritic cells, macrophages) and plays an important role in innate and adaptive immunity against cancers. Therapies that can synergistically modulate innate immunity and stimulate adaptive anti-tumor responses are of great interest for cancer immunotherapy. Here we investigated the lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 (referred to as JCXH-211) for the treatment of cancers. Both local (intratumoral) and systemic (intravenous) administration of JCXH-211 in tumor-bearing mice induced a high-level expression of IL-12 in tumor tissues, leading to modulation of tumor microenvironment and systemic activation of antitumor immunity. Particularly, JCXH-211 can inhibit the tumor-infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). When combined with anti-PD1 antibody, it was able to enhance the recruitment of T cells and NK cells into tumors. In multiple mouse solid tumor models, intravenous injection of JCXH-211 not only eradicated large preestablished tumors, but also induced protective immune memory that prevented the growth of rechallenged tumors. Finally, intravenous injection of JCXH-211 did not cause noticeable systemic toxicity in tumor-bearing mice and non-human primates. Thus, our study demonstrated the feasibility of intravenous administration of JCXH-211 for the treatment of advanced cancers.
Collapse
Affiliation(s)
- Zihao Wang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China.
| | - Yanni Chen
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Hongyue Wu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Min Wang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Li Mao
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Xingdong Guo
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Jianbo Zhu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Zilan Ye
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xiaoyan Luo
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xiurong Yang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xueke Liu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Junhao Yang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Zhaolang Sheng
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Jaewoo Lee
- Immorna Biotherapeutics, Inc., Morrisville, NC, 27560, USA
| | - Zhijun Guo
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Yuanqing Liu
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| |
Collapse
|
9
|
Mobasher M, Ansari R, Castejon AM, Barar J, Omidi Y. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochim Biophys Acta Gen Subj 2024; 1868:130558. [PMID: 38185238 DOI: 10.1016/j.bbagen.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.
Collapse
Affiliation(s)
- Maha Mobasher
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
10
|
Vanluchene H, Gillon O, Peynshaert K, De Smedt SC, Sanders N, Raemdonck K, Remaut K. Less is more: Self-amplifying mRNA becomes self-killing upon dose escalation in immune-competent retinal cells. Eur J Pharm Biopharm 2024; 196:114204. [PMID: 38302048 DOI: 10.1016/j.ejpb.2024.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
In the last few years, mRNA therapeutics experienced a new wave of interest as therapy for retinal diseases. Nevertheless, despite the widespread use of mRNA vaccines in the COVID-19 pandemic, mRNA delivery to the eye is still in its infancy. Recently, our research group has demonstrated that after subretinal and intravitreal delivery of modified mRNA, the number of transfected retinal cells and protein expression per cell remains limited. In this study, we aimed to tackle this limitation by using self-amplifying mRNA (saRNA), which in theory will increase the duration and level of protein expression when only a few mRNA molecules reach their target cells. A one-on-one comparison between modified mRNA and saRNA in two immune-competent human retinal cell types, including Müller cells and retinal pigment epithelial cells, and in immune-deficient BHK-21 cells revealed that saRNA delivery induced an innate immune response blocking its own translation above a certain dose threshold. Removal of double-stranded (ds)RNA byproducts by cellulose-based purification and addition of the innate immune inhibitor B18R remarkably improved translation from saRNA through a reduction in innate immune response. Taken together, when saRNA is applied for retinal disease, the dose should be controlled and measures should be taken to limit immunogenicity.
Collapse
Affiliation(s)
- Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Oriane Gillon
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
11
|
Guéguen C, Ben Chimol T, Briand M, Renaud K, Seiler M, Ziesel M, Erbacher P, Hellal M. Evaluating how cationic lipid affects mRNA-LNP physical properties and biodistribution. Eur J Pharm Biopharm 2024; 195:114077. [PMID: 37579889 DOI: 10.1016/j.ejpb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
RNA therapeutics represents a powerful strategy for diseases where other approaches have failed, especially given the recent successes of mRNA vaccines against the coronavirus disease 2019 (COVID-19) and small interfering (siRNA) therapeutics. However, further developments are still required to reduce toxicity, improve stability and biodistribution of mRNA-LNPs (lipid nanoparticles). Here, we show a rational combinatorial approach to select the best formulation based on a new cationic lipid molecule (IM21.7c), which includes an imidazolium polar head. The study allowed us to select the optimal 5 lipids composition for in vivo mRNA delivery. IM21.7c based mRNA-LNPs measuring less than 100 nm had high encapsulation efficiency, protected mRNA from degradation, and exhibited sustained release kinetics for effective in vitro transfection. Most interestingly the biodistribution was significantly different from other clinically approved LNPs, with increased targeting to the lung. Further studies are now required to expand the possible applications of these new molecules.
Collapse
Affiliation(s)
- Claire Guéguen
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France
| | | | - Margaux Briand
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France
| | - Kassandra Renaud
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France
| | - Mélodie Seiler
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France
| | - Morgane Ziesel
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France
| | - Patrick Erbacher
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France
| | - Malik Hellal
- Polyplus, 75 rue Marguerite Perey, 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
12
|
Kachko A, Selvaraj P, Liu S, Kim J, Rotstein D, Stauft CB, Chabot S, Rajasagi N, Zhao Y, Wang T, Major M. Vaccine-associated respiratory pathology correlates with viral clearance and protective immunity after immunization with self-amplifying RNA expressing the spike (S) protein of SARS-CoV-2 in mouse models. Vaccine 2024; 42:608-619. [PMID: 38142216 DOI: 10.1016/j.vaccine.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, we evaluated the immunogenicity and protective immunity of in vitro transcribed Venezuelan equine encephalitis virus (VEEV TC-83 strain) self-amplifying RNA (saRNA) encoding the SARS-CoV-2 spike (S) protein in wild type (S-WT) and stabilized pre-fusion conformations (S-PP). Immunization with S-WT and S-PP saRNA induced specific neutralizing antibody responses in both K18-Tg hACE2 (K18) and BALB/c mice, as assessed using SARS-CoV-2 pseudotyped viruses. Protective immunity was assessed in challenge experiments. Two immunizations with S-WT and S-PP induced protective immunity, evidenced by lower mortality, lower weight loss and more than one log10 lower subgenomic virus RNA titers in the upper and lower respiratory tracts in both K18 and BALB/c mice. Histopathologic examination of lungs post-challenge showed that immunization with S-WT and S-PP resulted in a higher degree of immune cell infiltration and inflammatory changes, compared with control mice, characterized by high levels of T- and B-cell infiltration. No substantial differences were found in the presence and localization of eosinophils, macrophages, neutrophils, and natural killer cells. CD4 and CD8 T-cell depletion post immunization resulted in reduced lung inflammation post challenge but also prolonged virus clearance. These data indicate that immunization with saRNA encoding the SARS-CoV-2 S protein induces immune responses that are protective following challenge, that virus clearance is associated with pulmonary changes caused by T-cell and B-cell infiltration in the lungs, but that this T and B-cell infiltration plays an important role in viral clearance.
Collapse
Affiliation(s)
- Alla Kachko
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jaekwan Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Rotstein
- Division of Food Compliance, Center for Veterinary Medicine, Food and Drug Administration, Rockville, MD, USA
| | - Charles B Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sylvie Chabot
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Naveen Rajasagi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yangqing Zhao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tony Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
13
|
Mochida Y, Uchida S. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol 2024; 21:1-27. [PMID: 38528828 DOI: 10.1080/15476286.2024.2333123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.
Collapse
Affiliation(s)
- Yuki Mochida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
14
|
Kramps T. Introduction to RNA Vaccines Post COVID-19. Methods Mol Biol 2024; 2786:1-22. [PMID: 38814388 DOI: 10.1007/978-1-0716-3770-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Available prophylactic vaccines help prevent many infectious diseases that burden humanity. Future vaccinology will likely extend these benefits by more effectively countering newly emerging pathogens, fighting currently intractable infections, or even generating novel treatment modalities for non-infectious diseases. Instead of applying protein antigen directly, RNA vaccines contain short-lived genetic information that guides the expression of protein antigen in the vaccinee, like infection with a recombinant viral vector. Upon decades of research, messenger RNA-lipid nanoparticle (mRNA-LNP) vaccines have proven clinical value in addressing the COVID-19 pandemic as they combine benefits of killed subunit vaccines and live-attenuated vectors, including flexible production, self-adjuvanting effects, and stimulation of humoral and cellular immunity. RNA vaccines remain subject to continued development raising high hopes for broader future application. Their mechanistic versatility promises to make them a key tool of vaccinology and immunotherapy going forward. Here, I briefly review key developments in RNA vaccines and outline the contents of this volume of Methods in Molecular Biology.
Collapse
|
15
|
Zimmermann L, Erbar S. Trans-Amplifying RNA Vaccines Against Infectious Diseases: A Comparison with Non-Replicating and Self-Amplifying RNA. Methods Mol Biol 2024; 2786:135-144. [PMID: 38814392 DOI: 10.1007/978-1-0716-3770-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The recent COVID-19 pandemic as well as other past and recent outbreaks of newly or re-emerging viruses show the urgent need to develop potent new vaccine approaches, that enable a quick response to prevent global spread of infectious diseases. The breakthrough of first messenger RNA (mRNA)-based vaccines 2019 approved only months after identification of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opens a big new field for vaccine engineering. Currently, two major types of mRNA are being pursued as vaccines for the prevention of infectious diseases. One is non-replicating mRNA, including nucleoside-modified mRNA, used in the current COVID-19 vaccines of Moderna and BioNTech (Sahin et al., Nat Rev Drug Discov 13(10):759-780, 2014; Baden et al., N Engl J Med 384(5):403-416, 2021; Polack et al., N Engl J Med 383(27):2603-2615, 2020), the other is self-amplifying RNA (saRNA) derived from RNA viruses. Recently, trans-amplifying RNA, a split vector system, has been described as a third class of mRNA (Spuul et al., J Virol 85(10):4739-4751, 2011; Blakney et al., Front Mol Biosci 5:71, 2018; Beissert et al., Mol Ther 28(1):119-128, 2020). In this chapter we review the different types of mRNA currently used for vaccine development with focus on trans-amplifying RNA.
Collapse
|
16
|
Cheng H, Zhang H, Cai H, Liu M, Wen S, Ren J. Molecular biology of canine parainfluenza virus V protein and its potential applications in tumor immunotherapy. Front Microbiol 2023; 14:1282112. [PMID: 38173672 PMCID: PMC10761501 DOI: 10.3389/fmicb.2023.1282112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Canine parainfluenza virus (CPIV) is a zoonotic virus that is widely distributed and is the main pathogen causing canine infectious respiratory disease (CIRD), also known as "kennel cough," in dogs. The CPIV-V protein is the only nonstructural protein of the virus and plays an important role in multiple stages of the virus life cycle by inhibiting apoptosis, altering the host cell cycle and interfering with the interferon response. In addition, studies have shown that the V protein has potential applications in the field of immunotherapy in oncolytic virus therapy or self-amplifying RNA vaccines. In this review, the biosynthesis, structural characteristics and functions of the CPIV-V protein are reviewed with an emphasis on how it facilitates viral immune escape and its potential applications in the field of immunotherapy. Therefore, this review provides a scientific basis for research into the CPIV-V protein and its potential applications.
Collapse
Affiliation(s)
- Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, China
| | - Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, China
| |
Collapse
|
17
|
Casmil IC, Huang C, Blakney AK. A duplex droplet digital PCR assay for absolute quantification and characterization of long self-amplifying RNA. Sci Rep 2023; 13:19050. [PMID: 37923834 PMCID: PMC10624827 DOI: 10.1038/s41598-023-46314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Self-amplifying messenger ribonucleic acid (saRNA) provides extended expression of genes of interest by encoding an alphavirus-derived RNA replicase and thus is 2-3 times larger than conventional messenger RNA. However, quality assessment of long RNA transcripts is challenging using standard techniques. Here, we utilized a multiplex droplet digital polymerase chain reaction (ddPCR) assay to assess the quality of saRNA produced from an in vitro transcription reaction and the replication kinetics in human cell lines. Using the one-step reverse transcription ddPCR, we show that an in vitro transcription generates 50-60% full-length saRNA transcripts. However, we note that the two-step reverse transcription ddPCR assay results in a 20% decrease from results obtained using the one-step and confirmed using capillary gel electrophoresis. Additionally, we provided three formulas that differ in the level of stringency and assumptions made to calculate the fraction of intact saRNA. Using ddPCR, we also showed that subgenomic transcripts of saRNA were 19-to-108-fold higher than genomic transcripts at different hours post-transfection of mammalian cells in copies. Therefore, we demonstrate that multiplex ddPCR is well suited for quality assessment of long RNA and replication kinetics of saRNA based on absolute quantification.
Collapse
Affiliation(s)
- Irafasha C Casmil
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cynthia Huang
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
18
|
Shattock RJ, Andrianaivoarimanana V, McKay PF, Randriantseheno LN, Murugaiah V, Samnuan K, Rogers P, Tregoning JS, Rajerison M, Moore KM, Laws TR, Williamson ED. A self-amplifying RNA vaccine provides protection in a murine model of bubonic plague. Front Microbiol 2023; 14:1247041. [PMID: 38029221 PMCID: PMC10652872 DOI: 10.3389/fmicb.2023.1247041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Mice were immunized with a combination of self-amplifying (sa) RNA constructs for the F1 and V antigens of Yersinia pestis at a dose level of 1 μg or 5 μg or with the respective protein sub-units as a reference vaccine. The immunization of outbred OF1 mice on day 0 and day 28 with the lowest dose used (1 μg) of each of the saRNA constructs in lipid nanoparticles protected 5/7 mice against subsequent sub-cutaneous challenge on day 56 with 180 cfu (2.8 MLD) of a 2021 clinical isolate of Y. pestis termed 10-21/S whilst 5/7 mice were protected against 1800cfu (28MLD) of the same bacteria on day 56. By comparison, only 1/8 or 1/7 negative control mice immunized with 10 μg of irrelevant haemagglutin RNA in lipid nanoparticles (LNP) survived the challenge with 2.8 MLD or 28 MLD Y. pestis 10-21/S, respectively. BALB/c mice were also immunized with the same saRNA constructs and responded with the secretion of specific IgG to F1 and V, neutralizing antibodies for the V antigen and developed a recall response to both F1 and V. These data represent the first report of an RNA vaccine approach using self-amplifying technology and encoding both of the essential virulence antigens, providing efficacy against Y. pestis. This saRNA vaccine for plague has the potential for further development, particularly since its amplifying nature can induce immunity with less boosting. It is also amenable to rapid manufacture with simpler downstream processing than protein sub-units, enabling rapid deployment and surge manufacture during disease outbreaks.
Collapse
Affiliation(s)
- Robin John Shattock
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Paul F. McKay
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | - K. Samnuan
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul Rogers
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | - John S. Tregoning
- Dept. of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Comes JDG, Pijlman GP, Hick TAH. Rise of the RNA machines - self-amplification in mRNA vaccine design. Trends Biotechnol 2023; 41:1417-1429. [PMID: 37328401 PMCID: PMC10266560 DOI: 10.1016/j.tibtech.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023]
Abstract
mRNA vaccines have won the race for early COVID-19 vaccine approval, yet improvements are necessary to retain this leading role in combating infectious diseases. A next generation of self-amplifying mRNAs, also known as replicons, form an ideal vaccine platform. Replicons induce potent humoral and cellular responses with few adverse effects upon a minimal, single-dose immunization. Delivery of replicons is achieved with virus-like replicon particles (VRPs), or in nonviral vehicles such as liposomes or lipid nanoparticles. Here, we discuss innovative advances, including multivalent, mucosal, and therapeutic replicon vaccines, and highlight novelties in replicon design. As soon as essential safety evaluations have been resolved, this promising vaccine concept can transform into a widely applied clinical platform technology taking center stage in pandemic preparedness.
Collapse
Affiliation(s)
- Jerome D G Comes
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Tessy A H Hick
- Wageningen University and Research, Laboratory of Virology, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
20
|
Beirigo EDF, Franco PIR, do Carmo Neto JR, Guerra RO, de Assunção TFS, de Sousa IDOF, Obata MMS, Rodrigues WF, Machado JR, da Silva MV. RNA vaccines in infectious diseases: A systematic review. Microb Pathog 2023; 184:106372. [PMID: 37743026 DOI: 10.1016/j.micpath.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Infectious diseases are a major health concern worldwide, especially as they are one of the main causes of mortality in underdeveloped and developing countries. Those that are considered emerging and re-emerging are characterized by unpredictability, high morbidity and mortality, exponential spread, and substantial social impact. These characteristics highlight the need to create an "on demand" control method, with rapid development, large-scale production, and wide distribution. In view of this, RNA vaccines have been investigated as an effective alternative for the treatment and prevention of infectious diseases since they can meet those needs and are considered safe, affordable, and totally synthetic. Therefore, this systematic review aimed to evaluate the use of RNA vaccines for infectious diseases from experimental, in vivo, and in vitro studies. PubMed, Web of Science, and Embase were searched for suitable studies. Additionally, further investigations, such as grey literature checks, were performed. A total of 723 articles were found, of which only 41 met the inclusion criteria. These studies demonstrated the potential of using RNA vaccines to control 19 different infectious diseases, of which COVID-19 was the most studied. Similarly, viruses comprised the largest number of reported vaccine targets, followed by protozoa and bacteria. The mRNA vaccines were the most widely used, and the intramuscular route of administration was the most reported. Regarding preclinical experimental models, mice were the most used to evaluate the impact and safety of the RNA vaccines developed. Thus, although further studies and evaluation of the subject are necessary, it is evident that RNA vaccines can be considered a promising alternative in the treatment and prophylaxis of infectious diseases.
Collapse
Affiliation(s)
- Emília de Freitas Beirigo
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil.
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Farnesi Soares de Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Isabella de Oliveira Ferrato de Sousa
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Malu Mateus Santos Obata
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil; Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
21
|
McGee JE, Kirsch JR, Kenney D, Chavez E, Shih TY, Douam F, Wong WW, Grinstaff MW. Complete substitution with modified nucleotides suppresses the early interferon response and increases the potency of self-amplifying RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557994. [PMID: 37745375 PMCID: PMC10516017 DOI: 10.1101/2023.09.15.557994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-amplifying RNA (saRNA) will revolutionize vaccines and in situ therapeutics by enabling protein expression for longer duration at lower doses. However, a major barrier to saRNA efficacy is the potent early interferon response triggered upon cellular entry, resulting in saRNA degradation and translational inhibition. Substitution of mRNA with modified nucleotides (modNTPs), such as N1-methylpseudouridine (N1mΨ), reduce the interferon response and enhance expression levels. Multiple attempts to use modNTPs in saRNA have been unsuccessful, leading to the conclusion that modNTPs are incompatible with saRNA, thus hindering further development. Here, contrary to the common dogma in the field, we identify multiple modNTPs that when incorporated into saRNA at 100% substitution confer immune evasion and enhance expression potency. Transfection efficiency enhances by roughly an order of magnitude in difficult to transfect cell types compared to unmodified saRNA, and interferon production reduces by >8 fold compared to unmodified saRNA in human peripheral blood mononuclear cells (PBMCs). Furthermore, we demonstrate expression of viral antigens in vitro and observe significant protection against lethal challenge with a mouse-adapted SARS-CoV-2 strain in vivo . A modified saRNA vaccine, at 100-fold lower dose than a modified mRNA vaccine, results in a statistically improved performance to unmodified saRNA and statistically equivalent performance to modified mRNA. This discovery considerably broadens the potential scope of self-amplifying RNA, enabling entry into previously impossible cell types, as well as the potential to apply saRNA technology to non-vaccine modalities such as cell therapy and protein replacement.
Collapse
|
22
|
Kimura T, Leal JM, Simpson A, Warner NL, Berube BJ, Archer JF, Park S, Kurtz R, Hinkley T, Nicholes K, Sharma S, Duthie MS, Berglund P, Reed SG, Khandhar AP, Erasmus JH. A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Mol Ther 2023; 31:2360-2375. [PMID: 37403357 PMCID: PMC10422015 DOI: 10.1016/j.ymthe.2023.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
RNA vaccines possess significant clinical promise in counteracting human diseases caused by infectious or cancerous threats. Self-amplifying replicon RNA (repRNA) has been thought to offer the potential for enhanced potency and dose sparing. However, repRNA is a potent trigger of innate immune responses in vivo, which can cause reduced transgene expression and dose-limiting reactogenicity, as highlighted by recent clinical trials. Here, we report that multivalent repRNA vaccination, necessitating higher doses of total RNA, could be safely achieved in mice by delivering multiple repRNAs with a localizing cationic nanocarrier formulation (LION). Intramuscular delivery of multivalent repRNA by LION resulted in localized biodistribution accompanied by significantly upregulated local innate immune responses and the induction of antigen-specific adaptive immune responses in the absence of systemic inflammatory responses. In contrast, repRNA delivered by lipid nanoparticles (LNPs) showed generalized biodistribution, a systemic inflammatory state, an increased body weight loss, and failed to induce neutralizing antibody responses in a multivalent composition. These findings suggest that in vivo delivery of repRNA by LION is a platform technology for safe and effective multivalent vaccination through mechanisms distinct from LNP-formulated repRNA vaccines.
Collapse
Affiliation(s)
- Taishi Kimura
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA.
| | - Joseph M Leal
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Adrian Simpson
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Nikole L Warner
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Bryan J Berube
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Jacob F Archer
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Stephanie Park
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Ryan Kurtz
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Troy Hinkley
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | | | - Shibbu Sharma
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | | | - Peter Berglund
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Steven G Reed
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Amit P Khandhar
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA
| | - Jesse H Erasmus
- HDT Bio, 1616 Eastlake Avenue E #280, Seattle, WA 98102, USA; Department of Microbiology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
23
|
Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev 2023; 199:114961. [PMID: 37321375 PMCID: PMC10264168 DOI: 10.1016/j.addr.2023.114961] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The accelerated progress and approval of two mRNA-based vaccines to address the SARS-CoV-2 virus were unprecedented. This record-setting feat was made possible through the solid foundation of research on in vitro transcribed mRNA (IVT mRNA) which could be utilized as a therapeutic modality. Through decades of thorough research to overcome barriers to implementation, mRNA-based vaccines or therapeutics offer many advantages to rapidly address a broad range of applications including infectious diseases, cancers, and gene editing. Here, we describe the advances that have supported the adoption of IVT mRNA in the clinics, including optimization of the IVT mRNA structural components, synthesis, and lastly concluding with different classes of IVT RNA. Continuing interest in driving IVT mRNA technology will enable a safer and more efficacious therapeutic modality to address emerging and existing diseases.
Collapse
Affiliation(s)
- Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Haoyuan Li
- Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
24
|
Liu Y, Li Y, Hu Q. Advances in saRNA Vaccine Research against Emerging/Re-Emerging Viruses. Vaccines (Basel) 2023; 11:1142. [PMID: 37514957 PMCID: PMC10383046 DOI: 10.3390/vaccines11071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Although conventional vaccine approaches have proven to be successful in preventing infectious diseases in past decades, for vaccine development against emerging/re-emerging viruses, one of the main challenges is rapid response in terms of design and manufacture. mRNA vaccines can be designed and produced within days, representing a powerful approach for developing vaccines. Furthermore, mRNA vaccines can be scaled up and may not have the risk of integration. mRNA vaccines are roughly divided into non-replicating mRNA vaccines and self-amplifying RNA (saRNA) vaccines. In this review, we provide an overview of saRNA vaccines, and discuss future directions and challenges in advancing this promising vaccine platform to combat emerging/re-emerging viruses.
Collapse
Affiliation(s)
- Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| |
Collapse
|
25
|
Lundstrom K. Trans-amplifying RNA: Translational application in gene therapy. Mol Ther 2023; 31:1507-1508. [PMID: 37023758 PMCID: PMC10076252 DOI: 10.1016/j.ymthe.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
|
26
|
Perkovic M, Gawletta S, Hempel T, Brill S, Nett E, Sahin U, Beissert T. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol Ther 2023; 31:1636-1646. [PMID: 36694464 PMCID: PMC10277886 DOI: 10.1016/j.ymthe.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Trans-amplifying RNA (taRNA) is a split-vector derivative of self-amplifying RNA (saRNA) and a promising vaccine platform. taRNA combines a non-replicating mRNA encoding an alphaviral replicase and a transreplicon (TR) RNA coding for the antigen. Upon translation, the replicase amplifies the antigen-coding TR, thereby requiring minimal amounts of TR for immunization. TR amplification by the replicase follows a complex mechanism orchestrated by genomic and subgenomic promoters (SGPs) and generates genomic and subgenomic amplicons whereby only the latter are translated into therapeutic proteins. This complexity merits simplification to improve the platform. Here, we eliminated the SGP and redesigned the 5' untranslated region to shorten the TR (STR), thereby enabling translation of the remaining genomic amplicon. We then applied a directed evolution approach to select for faster replicating STRs. The resulting evolved STR (eSTR) had acquired A-rich 5' extensions, which improved taRNA expression thanks to accelerated replication. Consequently, we reduced the minimal required TR amount by more than 10-fold without losing taRNA expression in vitro. Accordingly, eSTR-immunized mice developed greater antibody titers to taRNA-encoded influenza HA than TR-immunized mice. In summary, this work points the way for further optimization of taRNA by combining rational design and directed evolution.
Collapse
Affiliation(s)
- Mario Perkovic
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Stefanie Gawletta
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Tina Hempel
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Silke Brill
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Evelin Nett
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany; BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany.
| | - Tim Beissert
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany.
| |
Collapse
|
27
|
Tregoning JS, Stirling DC, Wang Z, Flight KE, Brown JC, Blakney AK, McKay PF, Cunliffe RF, Murugaiah V, Fox CB, Beattie M, Tam YK, Johansson C, Shattock RJ. Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:29-42. [PMID: 36589712 PMCID: PMC9794906 DOI: 10.1016/j.omtn.2022.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.
Collapse
Affiliation(s)
- John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - David C. Stirling
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Katie E. Flight
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Anna K. Blakney
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Robert F. Cunliffe
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Valarmathy Murugaiah
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Christopher B. Fox
- IDRI, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mitchell Beattie
- Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
| | - Ying K. Tam
- Acuitas Therapeutics, 6190 Agronomy Road, Ste 405, Vancouver, BC, Canada
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, St. Mary’s Campus, London, UK
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| |
Collapse
|
28
|
Abstract
INTRODUCTION Prior to the emergence of SARS-CoV-2, the potential use of mRNA vaccines for a rapid pandemic response had been well described in the scientific literature, however during the SARS-CoV-2 outbreak we witnessed the large-scale deployment of the platform in a real pandemic setting. Of the three RNA platforms evaluated in clinical trials, including 1) conventional, non-amplifying mRNA (mRNA), 2) base-modified, non-amplifying mRNA (bmRNA), which incorporate chemically modified nucleotides, and 3) self-amplifying RNA (saRNA), the bmRNA technology emerged with superior clinical efficacy. AREAS COVERED This review describes the current state of these mRNA vaccine technologies, evaluates their strengths and limitations, and argues that saRNA may have significant advantages if the limitations of stability and complexities of manufacturing can be overcome. EXPERT OPINION The success of the SARS-CoV-2 mRNA vaccines has been remarkable. However, several challenges remain to be addressed before this technology can successfully be applied broadly to other disease targets. Innovation in the areas of mRNA engineering, novel delivery systems, antigen design, and high-quality manufacturing will be required to achieve the full potential of this disruptive technology.
Collapse
Affiliation(s)
| | - Zoltan Kis
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Chemical Engineering, Imperial College London, London, UK
| | - Jeffrey B Ulmer
- Immorna Biotherapeutics, Morrisville, North Carolina.,TechImmune LLC, Newport Beach, CA, USA
| |
Collapse
|
29
|
Targeting the alphavirus virus replication process for antiviral development. Antiviral Res 2023; 210:105494. [PMID: 36574906 DOI: 10.1016/j.antiviral.2022.105494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Many alphaviruses, including chikungunya virus (CHIKV) are known human pathogens that lack specific and effective antivirals or vaccines available. The upstream portion of the positive-sense single-stranded RNA genome of alphaviruses encodes four nonstructural proteins: nsP1 to nsP4. They are expressed and autoprocessed to nonstructural proteins which assemble into a replication complex (RC) playing multiple essential roles on viral RNA replication and communication with the host components. The assembly of alphavirus RC and its RNA genome initiates the membrane-derived ultrastructure known as spherule which facilitates viral RNA synthesis protected from host immune responses. Recent advances in the molecular understanding of the high-resolution CHIKV RC heteromeric ultrastructure have provided new insights into the viral replication process. Hence, alphavirus RC presents as an ideal multi-enzyme target for the development of structure-based antiviral drugs. Moreover, the alphavirus RC has therapeutic potential in the form of self-amplifying RNA technology against both infectious and non-infectious diseases.
Collapse
|
30
|
Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023; 12:138. [PMID: 36678486 PMCID: PMC9863218 DOI: 10.3390/pathogens12010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Collapse
Affiliation(s)
- Christin Schmidt
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Barbara S. Schnierle
- Section AIDS and Newly Emerging Pathogens, Department of Virology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
31
|
Liu GW, Guzman EB, Menon N, Langer RS. Lipid Nanoparticles for Nucleic Acid Delivery to Endothelial Cells. Pharm Res 2023; 40:3-25. [PMID: 36735106 PMCID: PMC9897626 DOI: 10.1007/s11095-023-03471-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated during health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strategies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how to surmount those challenges.
Collapse
Affiliation(s)
- Gary W Liu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Edward B Guzman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nandita Menon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Strand Therapeutics, MA, 02215, Boston, USA
| | - Robert S Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
32
|
Papukashvili D, Rcheulishvili N, Liu C, Ji Y, He Y, Wang PG. Self-Amplifying RNA Approach for Protein Replacement Therapy. Int J Mol Sci 2022; 23:12884. [PMID: 36361673 PMCID: PMC9655356 DOI: 10.3390/ijms232112884] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) technology has already been successfully tested preclinically and there are ongoing clinical trials for protein replacement purposes; however, more effort has been put into the development of prevention strategies against infectious diseases. Apparently, mRNA vaccine approval against coronavirus disease 2019 (COVID-19) is a landmark for opening new opportunities for managing diverse health disorders based on this approach. Indeed, apart from infectious diseases, it has also been widely tested in numerous directions including cancer prevention and the treatment of inherited disorders. Interestingly, self-amplifying RNA (saRNA)-based technology is believed to display more developed RNA therapy compared with conventional mRNA technique in terms of its lower dosage requirements, relatively fewer side effects, and possessing long-lasting effects. Nevertheless, some challenges still exist that need to be overcome in order to achieve saRNA-based drug approval in clinics. Hence, the current review discusses the feasibility of saRNA utility for protein replacement therapy on various health disorders including rare hereditary diseases and also provides a detailed overview of saRNA advantages, its molecular structure, mechanism of action, and relevant delivery platforms.
Collapse
Affiliation(s)
| | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
33
|
Kairuz D, Samudh N, Ely A, Arbuthnot P, Bloom K. Advancing mRNA technologies for therapies and vaccines: An African context. Front Immunol 2022; 13:1018961. [PMID: 36353641 PMCID: PMC9637871 DOI: 10.3389/fimmu.2022.1018961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/10/2022] [Indexed: 09/26/2023] Open
Abstract
Synthetic mRNA technologies represent a versatile platform that can be used to develop advanced drug products. The remarkable speed with which vaccine development programs designed and manufactured safe and effective COVID-19 vaccines has rekindled interest in mRNA technology, particularly for future pandemic preparedness. Although recent R&D has focused largely on advancing mRNA vaccines and large-scale manufacturing capabilities, the technology has been used to develop various immunotherapies, gene editing strategies, and protein replacement therapies. Within the mRNA technologies toolbox lie several platforms, design principles, and components that can be adapted to modulate immunogenicity, stability, in situ expression, and delivery. For example, incorporating modified nucleotides into conventional mRNA transcripts can reduce innate immune responses and improve in situ translation. Alternatively, self-amplifying RNA may enhance vaccine-mediated immunity by increasing antigen expression. This review will highlight recent advances in the field of synthetic mRNA therapies and vaccines, and discuss the ongoing global efforts aimed at reducing vaccine inequity by establishing mRNA manufacturing capacity within Africa and other low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
Higuchi A, Sung TC, Wang T, Ling QD, Kumar SS, Hsu ST, Umezawa A. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| | - Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Wang
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
| | - S. Suresh Kumar
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, Pingjen City, Taiwan Taoyuan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| |
Collapse
|
35
|
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7:71. [PMID: 35764661 PMCID: PMC9239993 DOI: 10.1038/s41541-022-00485-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The mRNA vaccine platform has offered the greatest potential in fighting the COVID-19 pandemic owing to rapid development, effectiveness, and scalability to meet the global demand. There are many other mRNA vaccines currently being developed against different emerging viral diseases. As with the current COVID-19 vaccines, these mRNA-based vaccine candidates are being developed for parenteral administration via injections. However, most of the emerging viruses colonize the mucosal surfaces prior to systemic infection making it very crucial to target mucosal immunity. Although parenterally administered vaccines would induce a robust systemic immunity, they often provoke a weak mucosal immunity which may not be effective in preventing mucosal infection. In contrast, mucosal administration potentially offers the dual benefit of inducing potent mucosal and systemic immunity which would be more effective in offering protection against mucosal viral infection. There are however many challenges posed by the mucosal environment which impede successful mucosal vaccination. The development of an effective delivery system remains a major challenge to the successful exploitation of mucosal mRNA vaccination. Nonetheless, a number of delivery vehicles have been experimentally harnessed with different degrees of success in the mucosal delivery of mRNA vaccines. In this review, we provide a comprehensive overview of mRNA vaccines and summarise their application in the fight against emerging viral diseases with particular emphasis on COVID-19 mRNA platforms. Furthermore, we discuss the prospects and challenges of mucosal administration of mRNA-based vaccines, and we explore the existing experimental studies on mucosal mRNA vaccine delivery.
Collapse
Affiliation(s)
- Sodiq A. Hameed
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Stephane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Giann Kerwin Y. Dellosa
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Dolores Jaraquemada
- grid.7080.f0000 0001 2296 0625Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain
| | - Muhammad Bashir Bello
- grid.412771.60000 0001 2150 5428Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, 2346 Sokoto, Nigeria
| |
Collapse
|
36
|
McKay PF, Zhou J, Frise R, Blakney AK, Bouton CR, Wang Z, Hu K, Samnuan K, Brown JC, Kugathasan R, Yeow J, Stevens MM, Barclay WS, Tregoning JS, Shattock RJ. Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac004. [PMID: 35996628 PMCID: PMC9384352 DOI: 10.1093/oxfimm/iqac004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine.
Collapse
Affiliation(s)
- P F McKay
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J Zhou
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R Frise
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - A K Blakney
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - C R Bouton
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - Z Wang
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - K Hu
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - K Samnuan
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J C Brown
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R Kugathasan
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J Yeow
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London , London SW7 2AZ, UK
| | - M M Stevens
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London , London SW7 2AZ, UK
| | - W S Barclay
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J S Tregoning
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R J Shattock
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| |
Collapse
|
37
|
Ly HH, Daniel S, Soriano SKV, Kis Z, Blakney AK. Optimization of Lipid Nanoparticles for saRNA Expression and Cellular Activation Using a Design-of-Experiment Approach. Mol Pharm 2022; 19:1892-1905. [PMID: 35604765 DOI: 10.1021/acs.molpharmaceut.2c00032] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid nanoparticles (LNPs) are the leading technology for RNA delivery, given the success of the Pfizer/BioNTech and Moderna COVID-19 mRNA (mRNA) vaccines, and small interfering RNA (siRNA) therapies (patisiran). However, optimization of LNP process parameters and compositions for larger RNA payloads such as self-amplifying RNA (saRNA), which can have complex secondary structures, have not been carried out. Furthermore, the interactions between process parameters, critical quality attributes (CQAs), and function, such as protein expression and cellular activation, are not well understood. Here, we used two iterations of design of experiments (DoE) (definitive screening design and Box-Behnken design) to optimize saRNA formulations using the leading, FDA-approved ionizable lipids (MC3, ALC-0315, and SM-102). We observed that PEG is required to preserve the CQAs and that saRNA is more challenging to encapsulate and preserve than mRNA. We identified three formulations to minimize cellular activation, maximize cellular activation, or meet a CQA profile while maximizing protein expression. The significant parameters and design of the response surface modeling and multiple response optimization may be useful for designing formulations for a range of applications, such as vaccines or protein replacement therapies, for larger RNA cargoes.
Collapse
Affiliation(s)
- Han Han Ly
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Simon Daniel
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Shekinah K V Soriano
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zoltán Kis
- Department of Chemical Engineering, Imperial College London, London SW7 2BX, United Kingdom.,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
38
|
Wisitrasameewong W, Champaiboon C, Surisaeng T, Sa-Ard-Iam N, Freire M, Pardi N, Pichyangkul S, Mahanonda R. The Impact of mRNA Technology in Regenerative Therapy: Lessons for Oral Tissue Regeneration. J Dent Res 2022; 101:1015-1024. [PMID: 35319289 DOI: 10.1177/00220345221084205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral tissue regeneration following chronic diseases and injuries is limited by the natural endogenous wound-healing process. Current regenerative approaches implement exogenous systems, including stem cells, scaffolds, growth factors, and plasmid DNA/viral vectors, that induce variable clinical outcomes. An innovative approach that is safe, effective, and inexpensive is needed. The lipid nanoparticle-encapsulated nucleoside-modified messenger RNA (mRNA) platform has proven to be a successful vaccine modality against coronavirus disease 2019, demonstrating safety and high efficacy in humans. The same fundamental technology platform could be applied to facilitate the development of mRNA-based regenerative therapy. While the platform has not yet been studied in the field of oral tissue regeneration, mRNA therapeutics encoding growth factors have been evaluated and demonstrated promising findings in various models of soft and hard tissue regeneration such as myocardial infarction, diabetic wound healing, and calvarial and femoral bone defects. Because restoration of both soft and hard tissues is crucial to oral tissue physiology, this new therapeutic modality may help to overcome challenges associated with the reconstruction of the unique and complex architecture of oral tissues. This review discusses mRNA therapeutics with an emphasis on findings and lessons in different regenerative animal models, and it speculates how we can apply mRNA-based platforms for oral tissue regeneration.
Collapse
Affiliation(s)
- W Wisitrasameewong
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - C Champaiboon
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - T Surisaeng
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkhla University, Songkhla, Thailand
| | - N Sa-Ard-Iam
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - M Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
| | - N Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Pichyangkul
- Department of Bacterial and Parasitic Diseases, AFRIMS, Bangkok, Thailand
| | - R Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand.,Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
40
|
Hu K, McKay PF, Samnuan K, Najer A, Blakney AK, Che J, O'Driscoll G, Cihova M, Stevens MM, Shattock RJ. Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity. J Extracell Vesicles 2022; 11:e12199. [PMID: 35233930 PMCID: PMC8888812 DOI: 10.1002/jev2.12199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP-bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV-GFP-producing plasmids in mice demonstrated that antigen-specific IgG and IgA were significantly increased in EV-GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP-specific T cell response-related cytokines produced by antigen-stimulated splenocytes were also enhanced in mice immunized with EV-GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV-GFP in mice. In vitro uptake assays indicated that EV-GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV-bound antigen enhances both humoral and cell-mediated antigen-specific responses.
Collapse
Affiliation(s)
- Kai Hu
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Paul F. McKay
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Karnyart Samnuan
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Anna K. Blakney
- Department of Infectious DiseasesImperial College LondonLondonUK
| | - Junyi Che
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Gwen O'Driscoll
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK,Division of Radiotherapy and ImagingThe Institute of Cancer ResearchLondonUK
| | - Martina Cihova
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonUK
| | | |
Collapse
|
41
|
Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022; 14:401. [PMID: 35215994 PMCID: PMC8877136 DOI: 10.3390/v14020401] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine's potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field.
Collapse
Affiliation(s)
- Ting Le
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Jitao Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Guijie Zhang
- Departments of Animal Science, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| |
Collapse
|
42
|
Pollock KM, Cheeseman HM, Szubert AJ, Libri V, Boffito M, Owen D, Bern H, O'Hara J, McFarlane LR, Lemm NM, McKay PF, Rampling T, Yim YTN, Milinkovic A, Kingsley C, Cole T, Fagerbrink S, Aban M, Tanaka M, Mehdipour S, Robbins A, Budd W, Faust SN, Hassanin H, Cosgrove CA, Winston A, Fidler S, Dunn DT, McCormack S, Shattock RJ. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine 2022; 44:101262. [PMID: 35043093 PMCID: PMC8759012 DOI: 10.1016/j.eclinm.2021.101262] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is a novel technology formulated as a low dose vaccine against COVID-19. METHODS A phase I first-in-human dose-ranging trial of a saRNA COVID-19 vaccine candidate LNP-nCoVsaRNA, was conducted at Imperial Clinical Research Facility, and participating centres in London, UK, between 19th June to 28th October 2020. Participants received two intramuscular (IM) injections of LNP-nCoVsaRNA at six different dose levels, 0.1-10.0μg, given four weeks apart. An open-label dose escalation was followed by a dose evaluation. Solicited adverse events (AEs) were collected for one week from enrolment, with follow-up at regular intervals (1-8 weeks). The binding and neutralisation capacity of anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, immunoblot, SARS-CoV-2 pseudoneutralisation and wild type neutralisation assays. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). FINDINGS 192 healthy individuals with no history or serological evidence of COVID-19, aged 18-45 years were enrolled. The vaccine was well tolerated with no serious adverse events related to vaccination. Seroconversion at week six whether measured by ELISA or immunoblot was related to dose (both p<0.001), ranging from 8% (3/39; 0.1μg) to 61% (14/23; 10.0μg) in ELISA and 46% (18/39; 0.3μg) to 87% (20/23; 5.0μg and 10.0μg) in a post-hoc immunoblot assay. Geometric mean (GM) anti-S IgG concentrations ranged from 74 (95% CI, 45-119) at 0.1μg to 1023 (468-2236) ng/mL at 5.0μg (p<0.001) and was not higher at 10.0μg. Neutralisation of SARS-CoV-2 by participant sera was measurable in 15% (6/39; 0.1μg) to 48% (11/23; 5.0μg) depending on dose level received. INTERPRETATION Encapsulated saRNA is safe for clinical development, is immunogenic at low dose levels but failed to induce 100% seroconversion. Modifications to optimise humoral responses are required to realise its potential as an effective vaccine against SARS-CoV-2. FUNDING This study was co-funded by grants and gifts from the Medical Research Council UKRI (MC_PC_19076), and the National Institute Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, Restore the Earth.
Collapse
Affiliation(s)
- Katrina M. Pollock
- Department of Infectious Disease, Imperial College London
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | | | | | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, London, UK
| | - Marta Boffito
- Department of Infectious Disease, Imperial College London
- Chelsea & Westminster Hospital, London
| | - David Owen
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Henry Bern
- MRC Clinical Trials Unit at UCL, London, UK
| | - Jessica O'Hara
- Department of Infectious Disease, Imperial College London
| | | | | | - Paul F. McKay
- Department of Infectious Disease, Imperial College London
| | - Tommy Rampling
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, London, UK
| | - Yee Ting N. Yim
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, London, UK
| | | | | | - Tom Cole
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Susanne Fagerbrink
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Marites Aban
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Maniola Tanaka
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Savviz Mehdipour
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Alexander Robbins
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - William Budd
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, UK
| | - Saul N. Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hana Hassanin
- Surrey Clinical Research Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Alan Winston
- Department of Infectious Disease, Imperial College London
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London
| | | | | | | |
Collapse
|
43
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
44
|
Rouf NZ, Biswas S, Tarannum N, Oishee LM, Muna MM. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol 2021; 19:386-410. [PMID: 35354425 PMCID: PMC8973339 DOI: 10.1080/15476286.2022.2055923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have been studied for decades, but only recently, during the COVID-19 pandemic, has the technology garnered noteworthy attention. In contrast to traditional vaccines, mRNA vaccines elicit a more balanced immune response, triggering both humoral and cellular components of the adaptive immune system. However, some inherent hurdles associated with stability, immunogenicity, in vivo delivery, along with the novelty of the technology, have generated scepticism in the adoption of mRNA vaccines. Recent developments have pushed to bypass these issues and the approval of mRNA-based vaccines to combat COVID-19 has further highlighted the feasibility, safety, efficacy, and rapid development potential of this platform, thereby pushing it to the forefront of emerging therapeutics. This review aims to demystify mRNA vaccines, delineating the evolution of the technology which has emerged as a timely solution to COVID-19 and exploring the immense potential it offers as a prophylactic option for other cryptic diseases.
Collapse
Affiliation(s)
- Nusrat Zahan Rouf
- School of Biological Sciences, Faculty of Biology, Medicine, & Health, University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Sumit Biswas
- Department of Neurophysiology, Retinal Physiology and Gene Therapy, Institute of Physiology and Pathophysiology, University of Marburg, Deutschhausstrasse. 2D-35037, Marburg, Germany
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, & Health, University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Labiba Mustabina Oishee
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LoughboroughLE12 5RD, UK
| | - Mutia Masuka Muna
- Department of Biological Sciences, University at Buffalo, Buffalo14260, New York, USA
| |
Collapse
|
45
|
Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, Sanders NN, Remaut K. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev 2021; 176:113900. [PMID: 34324884 PMCID: PMC8325057 DOI: 10.1016/j.addr.2021.113900] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The recent approval of messenger RNA (mRNA)-based vaccines to combat the SARS-CoV-2 pandemic highlights the potential of both conventional mRNA and self-amplifying mRNA (saRNA) as a flexible immunotherapy platform to treat infectious diseases. Besides the antigen it encodes, mRNA itself has an immune-stimulating activity that can contribute to vaccine efficacy. This self-adjuvant effect, however, will interfere with mRNA translation and may influence the desired therapeutic outcome. To further exploit its potential as a versatile therapeutic platform, it will be crucial to control mRNA's innate immune-stimulating properties. In this regard, we describe the mechanisms behind the innate immune recognition of mRNA and provide an extensive overview of strategies to control its innate immune-stimulating activity. These strategies range from modifications to the mRNA backbone itself, optimization of production and purification processes to the combination with innate immune inhibitors. Furthermore, we discuss the delicate balance of the self-adjuvant effect in mRNA vaccination strategies, which can be both beneficial and detrimental to the therapeutic outcome.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
46
|
Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021; 13:644. [PMID: 34062771 PMCID: PMC8147386 DOI: 10.3390/pharmaceutics13050644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
47
|
Blakney AK, Ip S, Geall AJ. An Update on Self-Amplifying mRNA Vaccine Development. Vaccines (Basel) 2021; 9:97. [PMID: 33525396 PMCID: PMC7911542 DOI: 10.3390/vaccines9020097] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects.
Collapse
Affiliation(s)
- Anna K. Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shell Ip
- Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; (S.I.); (A.J.G.)
| | - Andrew J. Geall
- Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; (S.I.); (A.J.G.)
| |
Collapse
|