1
|
Karlbauer VN, Martins J, Rex-Haffner M, Sauer S, Roeh S, Dittrich K, Doerr P, Klawitter H, Entringer S, Buss C, Winter SM, Heim C, Czamara D, Binder EB. Prenatal exposures and cell type proportions are main drivers of FKBP5 DNA methylation in maltreated and non-maltreated children. Neurobiol Stress 2024; 33:100687. [PMID: 39640002 PMCID: PMC11617920 DOI: 10.1016/j.ynstr.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
DNA methylation in peripheral tissues may be a relevant biomarker of risk for developing mental disorders after exposure to early life adversity. Genes involved in HPA axis regulation, such as FKBP5, might play a key role. In this study, we aimed to identify the main drivers of salivary FKBP5 methylation in a cohort of 162 maltreated and non-maltreated children aged 3-5 years at two measurement timepoints. We combined data from a targeted bisulfite sequencing approach for fine-mapping 49 CpGs in regulatory regions of FKBP5 and epigenetic scores for exposure to alcohol, cigarette smoke, and glucocorticoids derived from the EPICv1 microarray. Most variability of methylation in the FKBP5 locus was explained by estimated cell type proportions as well as epigenetic exposure scores, most prominently by the glucocorticoid exposure score. While not surviving correction for multiple testing, we replicated previously reported associations of FKBP5 methylation with CM. We also detected synergistic effects of both rs1360780 genotype and the glucocorticoid exposure score on FKBP5 hypomethylation. These effects were identified in the 3'TAD, a distal regulatory region of FKBP5 which is not extensively covered in Illumina arrays, emphasizing the need for fine mapping approaches. Additionally, the epigenetic glucocorticoid exposure score was associated with childhood maltreatment, maternal mental disorders, and pregnancy complications, thereby highlighting the role of glucocorticoid signaling in the epigenetic consequences of early adversity. These results underscore the need to assess cell type heterogeneity in targeted assessments of DNA methylation and show the impact of exposures beyond just childhood maltreatment such as glucocorticoid exposure.
Collapse
Affiliation(s)
- Vera N. Karlbauer
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität Munich, Germany
| | - Jade Martins
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Monika Rex-Haffner
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Susann Sauer
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Simone Roeh
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peggy Doerr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heiko Klawitter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Sonja Entringer
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| | - Sibylle M. Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
| | - Christine Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Cluster of Excellence NeuroCure (EXC25), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Darina Czamara
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Elisabeth B. Binder
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
2
|
Hodge KM, Zhabotynsky V, Burt AA, Carter BS, Fry RC, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, DellaGrotta SA, Dansereau LM, Lester BM, Marsit CJ, O'Shea TM, Everson TM. Epigenetic associations in HPA axis genes related to bronchopulmonary dysplasia and antenatal steroids. Pediatr Res 2024; 96:510-518. [PMID: 38480856 DOI: 10.1038/s41390-024-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), a common morbidity among very preterm infants, is associated with chronic disease and neurodevelopmental impairments. A hypothesized mechanism for these outcomes lies in altered glucocorticoid (GC) activity. We hypothesized that BPD and its treatments may result in epigenetic differences in the hypothalamic-pituitary-adrenal (HPA) axis, which is modulated by GC, and could be ascertained using an established GC risk score and DNA methylation (DNAm) of HPA axis genes. METHODS DNAm was quantified from buccal tissue (ECHO-NOVI) and from neonatal blood spots (ELGAN ECHO) via the EPIC microarray. Prenatal maternal characteristics, pregnancy complication, and neonatal medical complication data were collected from medical record review and maternal interviews. RESULTS The GC score was not associated with steroid exposure or BPD. However, six HPA genes involved in stress response regulation demonstrated differential methylation with antenatal steroid exposure; two CpGs within FKBP5 and POMC were differentially methylated with BPD severity. These findings were sex-specific in both cohorts; males had greater magnitude of differential methylation within these genes. CONCLUSIONS These findings suggest that BPD severity and antenatal steroids are associated with DNAm at some HPA genes in very preterm infants and the effects appear to be sex-, tissue-, and age-specific. IMPACT This study addresses bronchopulmonary dysplasia (BPD), an important health outcome among preterm neonates, and interrogates a commonly studied pathway, the hypothalamic-pituitary-adrenal (HPA) axis. The combination of BPD, the HPA axis, and epigenetic markers has not been previously reported. In this study, we found that BPD itself was not associated with epigenetic responses in the HPA axis in infants born very preterm; however, antenatal treatment with steroids was associated with epigenetic responses.
Collapse
Affiliation(s)
- Kenyaita M Hodge
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Vasyl Zhabotynsky
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber A Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen Devos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sheri A DellaGrotta
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Barry M Lester
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Mckinnon K, Conole ELS, Vaher K, Hillary RF, Gadd DA, Binkowska J, Sullivan G, Stevenson AJ, Corrigan A, Murphy L, Whalley HC, Richardson H, Marioni RE, Cox SR, Boardman JP. Epigenetic scores derived in saliva are associated with gestational age at birth. Clin Epigenetics 2024; 16:84. [PMID: 38951914 PMCID: PMC11218140 DOI: 10.1186/s13148-024-01701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities of preterm birth in neonates. Social disadvantage can become embedded in child development through inflammation, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioeconomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins. RESULTS In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age (GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 × 10-3). These included EpiScores for chemokines, growth factors, proteins involved in neurogenesis and vascular development, cell membrane proteins and receptors, and other immune proteins. Three EpiScores were associated with SES, or the interaction between birth GA and SES: afamin, intercellular adhesion molecule 5, and hepatocyte growth factor-like protein (standardised estimates |0.06 to 0.13|, Bonferroni-adjusted p-value < 8.3 × 10-3). In a preterm subgroup (n = 217, median [range] GA 29.29 weeks [22.14 to 33.0 weeks]), SES-EpiScore associations did not remain statistically significant after adjustment for sepsis, bronchopulmonary dysplasia, necrotising enterocolitis, and histological chorioamnionitis. CONCLUSIONS Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiScores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embedded in the development of preterm infants in the neonatal period.
Collapse
Affiliation(s)
- Katie Mckinnon
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Eleanor L S Conole
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kadi Vaher
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Justyna Binkowska
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gemma Sullivan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Amy Corrigan
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Mooney MA, Hermosillo RJM, Feczko E, Miranda-Dominguez O, Moore LA, Perrone A, Byington N, Grimsrud G, Rueter A, Nousen E, Antovich D, Feldstein Ewing SW, Nagel BJ, Nigg JT, Fair DA. Cumulative Effects of Resting-State Connectivity Across All Brain Networks Significantly Correlate with Attention-Deficit Hyperactivity Disorder Symptoms. J Neurosci 2024; 44:e1202232023. [PMID: 38286629 PMCID: PMC10919250 DOI: 10.1523/jneurosci.1202-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated resting-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD, N = 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case-control cohort (N = 553, 37.4% female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates (p < 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS (Cohen's d = -0.318, robust p = 5.5 × 10-4) than those with persistent ADHD (age 7-19). The PNRS, however, did not mediate polygenic risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral disorders.
Collapse
Affiliation(s)
- Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon 97239
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
| | - Robert J M Hermosillo
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lucille A Moore
- Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Amanda Rueter
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Elizabeth Nousen
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
| | - Dylan Antovich
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
| | | | - Bonnie J Nagel
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Joel T Nigg
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
5
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Nigg JT. Considerations toward an epigenetic and common pathways theory of mental disorder. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:297-313. [PMID: 37126061 PMCID: PMC10153068 DOI: 10.1037/abn0000748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Psychopathology emerges from the dynamic interplay of physiological and mental processes and ecological context. It can be seen as a failure of recursive, homeostatic processes to achieve adaptive re-equilibrium. This general statement can be actualized with consideration of polygenic liability, early exposures, and multiunit (multi-"level") analysis of the psychological action and the associated physiological and neural operations, all in the context of the developmental exposome. This article begins by identifying key principles and clarifying key terms necessary to mental disorder theory. It then ventures a sketch of a model that highlights epigenetic dynamics and proposes a common pathways hypothesis toward psychopathology. An epigenetic perspective elevates the importance of developmental context and adaptive systems, particularly in early life, while opening the door to new mechanistic discovery. The key proposal is that a finite number of homeostatic biological and psychological mechanisms are shared across most risky environments (and possibly many genetic liabilities) for psychopathology. Perturbation of these mediating mechanisms leads to development of psychopathology. A focus on dynamic changes in these homeostatic mechanisms across multiple units of analysis and time points can render the problem of explaining psychopathology tractable. Key questions include the mapping of recursive processes over time, at adequate density, as mental disorders unfold across development. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University
| |
Collapse
|