1
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
2
|
Russell AJ, Vincent M, Buerger AN, Dotson S, Lotter J, Maier A. Establishing short-term occupational exposure limits (STELs) for sensory irritants using predictive and in silico respiratory rate depression (RD 50) models. Inhal Toxicol 2024; 36:13-25. [PMID: 38252504 DOI: 10.1080/08958378.2023.2299867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Sensory irritation is a health endpoint that serves as the critical effect basis for many occupational exposure limits (OELs). Schaper 1993 described a significant relationship with high correlation between the measured exposure concentration producing a 50% respiratory rate decrease (RD50) in a standard rodent assay and the American Conference of Governmental Industrial Hygienists (ACGIH®) Threshold Limit Values (TLVs®) as time-weighted averages (TWAs) for airborne chemical irritants. The results demonstrated the potential use of the RD50 values for deriving full-shift TWA OELs protective of irritant responses. However, there remains a need to develop a similar predictive model for deriving workplace short-term exposure limits (STELs) for sensory irritants. The aim of our study was to establish a model capable of correlating the relationship between RD50 values and published STELs to prospectively derive short-term exposure OELs for sensory irritants. A National Toxicology Program (NTP) database that included chemicals with both an RD50 and established STELs was used to fit several linear regression models. A strong correlation between RD50s and STELs was identified, with a predictive equation of ln (STEL) (ppm) = 0.86 * ln (RD50) (ppm) - 2.42 and an R2 value of 0.75. This model supports the use of RD50s to derive STELs for chemicals without existing exposure recommendations. Further, for data-poor sensory irritants, predicted RD50 values from in silico quantitative structure activity relationship (QSAR) models can be used to derive STELs. Hence, in silico methods and statistical modeling can present a path forward for establishing reliable OELs and improving worker safety and health.
Collapse
Affiliation(s)
| | - Melissa Vincent
- Stantec (ChemRisk), Cincinnati, OH, USA
- Tox Strategies, Ashville, NC, USA
| | - Amanda N Buerger
- Stantec (ChemRisk), Cincinnati, OH, USA
- Tox Strategies, Ashville, NC, USA
| | - Scott Dotson
- Stantec (ChemRisk), Cincinnati, OH, USA
- Insight Exposure and Risk Sciences Group, Cincinnati, OH, USA
| | - Jason Lotter
- Insight Exposure and Risk Sciences Group, Cincinnati, OH, USA
- Stantec (ChemRisk), Chicago, IL, USA
| | - Andrew Maier
- Stantec (ChemRisk), Cincinnati, OH, USA
- Occupational Alliance for Risk Science, Cincinnati, OH, USA
| |
Collapse
|
3
|
Islam MS, Mathur L, Namgung Y, Singh B, Park JY, Song SJ. Tailoring the microstructure of BiVO 4 sensing electrode by nanoparticle decoration and its effect on hazardous NH 3 sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131588. [PMID: 37172388 DOI: 10.1016/j.jhazmat.2023.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/14/2023]
Abstract
Real-time monitoring and quantification of exhaust pollutants is crucial but is troublesome because of extremely harsh thermochemical conditions, and in this regard mixed-potential sensing technology can be a realistic solution. In this study, BiVO4 nanoparticles are decorated onto the preformed porous sensing electrode (SE) backbone by homogeneous infiltration process to improve the sensing performance in mixed-potential sensor. The influence of nanoparticle decoration on phase composition, microstructure and sensing performance are analyzed by physical and electrochemical techniques. Corresponding results indicate that the microstructure tailoring enhances the sensor performance, by extending the triple phase boundary (TPB) and surface area of SE itself. The sensitivity (-119.47 mV/decade) and response time (20 s) of i-BVO SE-based sensor at 600 ℃ are 20 % higher and 8 s faster than bare BiVO4 SE-based sensor (99.24 mV/decade and 28 s). Additionally, the i-BVOǀYSZǀPt cell exhibits good selectivity and cross-sensitivity toward NH3 without any dependency on oxygen partial pressure (pO2). The fabricated sensor is also found stable towards cyclic and long-term operations. Electrochemical Impendence Spectroscopy (EIS) and DC polarization studies were performed to confirm the mixed-potential behavior. Conclusively, the superior sensing performance of i-BVO SE compared to various oxide based SEs highlights its suitability for mixed-potential NH3 sensing.
Collapse
Affiliation(s)
- Md Shoriful Islam
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Lakshya Mathur
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Yeon Namgung
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Bhupendra Singh
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Jun-Young Park
- Faculty of Nano Technology and Advanced Materials Engineering, Sejong University, Seoul 143-747, the Republic of Korea.
| | - Sun-Ju Song
- Ionics Lab, School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, the Republic of Korea.
| |
Collapse
|
4
|
Richtwerte für Methansäure, Ethansäure und Propansäure in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:460-475. [PMID: 36995394 DOI: 10.1007/s00103-023-03672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
5
|
Aakash A, Nabi D. Reliable prediction of sensory irritation threshold values of organic compounds using new models based on linear free energy relationships and GC×GC retention parameters. CHEMOSPHERE 2023; 313:137339. [PMID: 36423720 DOI: 10.1016/j.chemosphere.2022.137339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The human sensory irritation threshold (SIT) is an important biochemical parameter for the exposure assessment of organic air pollutants. First, we recalibrated the Abraham solvation models (ASMs) for 9 SIT endpoints by curating 720 individual experimental SIT values to find an accurate and parsimonious ASM variant, which exhibited root mean square error (RMSE) = 0.174-0.473 log unit. Second, we report linear free energy relationships - henceforth called partition models (PMs) - which exploit the correlations of 9 SIT endpoints with the linear combinations of partition coefficients for octanol-water and air-water systems showing RMSE = 0.221-0.591 log unit. These PMs can easily be integrated into widely used EPI-Suite™ screening tool. The explanatory and predictive performance of PMs were like parameter-intensive ASMs. Third, we present GC × GC models that are based on the retention times of the nonpolar analytes on the comprehensive two-dimensional gas chromatography (GC × GC), which successfully described the SIT variance (R2=0.959-0.996) and depicted a strong predictive power (RMSE = 0.359-0.660 log unit) for an independent set of nonpolar analytes. Taken together, PMs allow easy SIT screening of organic chemicals compared to ASMs. Unlike ASMs, our GC × GC models can be applied to estimate SIT of complex nonpolar mixtures.
Collapse
Affiliation(s)
- Ahmad Aakash
- Institute of Environmental Science and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Environment and Agriculture Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Deedar Nabi
- Institute of Environmental Science and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Environment and Agriculture Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
6
|
Tsumura K, Nakaoka H, Suzuki N, Takaguchi K, Nakayama Y, Shimatani K, Mori C. Is indoor environment a risk factor of building-related symptoms? PLoS One 2023; 18:e0279757. [PMID: 36696431 PMCID: PMC9876365 DOI: 10.1371/journal.pone.0279757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
The indoor environment, particularly indoor air quality (IAQ), is significantly associated with building-related symptoms (BRSs) in humans. In our previous studies, we demonstrated a significant relationship between BRSs and indoor chemical concentrations. In Japan, the Ministry of Health, Labor, and Welfare (MHLW) guideline recommends an air quality target of 13 volatile organic compounds (VOCs) and a provisional target of 400 μg/m3 for total VOCs (TVOC). The objective of this study was to determine the relationship between TVOC levels and the risk of BRSs using the Japanese provisional target TVOC level of 400 μg/m3. The relationship between odor intensity and BRSs while the TVOC levels were under 400 μg/m3 was also examined. The study was conducted in a laboratory house (LH) on the campus of Chiba University from 2017-2019. The study included 149 participants who spent 60 minutes in the LH. The participants were asked to evaluate the IAQ of the LH. A significant relationship between the risk of BRSs and the provisional target TVOC level was observed (odds ratio: 2.94, 95% confidence interval: 1.18-7.35). Furthermore, a significant relationship between odor intensity and risk of BRSs in spaces with TVOC levels less than 400 μg/m3 was detected (odds ratio: 6.06, 95% confidence interval: 1.21-30.44). In conclusion, the risk of BRSs is significantly lower in spaces with low TVOC levels and low odor intensity. Reducing the concentration of airborne chemicals and odor intensity may improve IAQ and prevent BRSs.
Collapse
Affiliation(s)
- Kayo Tsumura
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroko Nakaoka
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norimichi Suzuki
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kohki Takaguchi
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | | | - Keiichi Shimatani
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Hwang JY, Magnone E, Lee JI, Zhuang X, Shin MC, Park JH. S- and N-Co-Doped TiO 2-Coated Al 2O 3 Hollow Fiber Membrane for Photocatalytic Degradation of Gaseous Ammonia. MEMBRANES 2022; 12:1101. [PMID: 36363656 PMCID: PMC9696333 DOI: 10.3390/membranes12111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
This study successfully prepared and tested sulfur- and nitrogen-co-doped TiO2-coated α-Al2O3 (S,N-doped TiO2/Al2O3) hollow fiber (HF) membranes for efficient photocatalytic degradation of gaseous ammonia (NH3). Thiourea was used as a sulfur- and nitrogen-doping source to produce a S,N-doped TiO2 photocatalyst powder. For comparative purposes, undoped TiO2 powder was also synthesized. Through the application of a phase-inversion technique combined with high-temperature sintering, hollow fibers composed of α-Al2O3 were developed. Undoped TiO2 and S,N-doped TiO2 photocatalyst powders were coated on the α-Al2O3 HF surface to obtain undoped TiO2/Al2O3 and S,N-doped TiO2/Al2O3 HF membranes, respectively. All prepared samples were characterized using XRD, TEM, XPS, UV-Vis, SEM, BET, FT-IR, and EDS. S and N dopants were confirmed using XPS and UV-Vis spectra. The crystal phase of the undoped TiO2 and S,N-doped TiO2 photocatalysts was a pure anatase phase. A portable air purifier photocatalytic filter device was developed and tested for the first time to decrease the amount of indoor NH3 pollution under the limits of the lachrymatory threshold. The device, which was made up of 36 S,N-doped TiO2/Al2O3 HF membranes, took only 15-20 min to reduce the level of NH3 in a test chamber from 50 ppm to around 5 ppm, confirming the remarkable performance regarding the photocatalytic degradation of gaseous NH3.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung Hoon Park
- Correspondence: ; Tel.: +82-2-2260-8598; Fax: +82-2-2260-8729
| |
Collapse
|
8
|
Lemiere C, Lavoie G, Doyen V, Vandenplas O. Irritant-Induced Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2799-2806. [PMID: 35820617 DOI: 10.1016/j.jaip.2022.06.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Irritant-induced asthma (IIA) is a phenotype of asthma caused by the inhalation of irritant agents. Definite, probable, or possible IIA have been described, depending on the concentration of the inhaled irritants and the onset of respiratory symptoms respective to the time of exposure. Definite IIA represents approximately 4% to 14% of all cases of new-onset work-related asthma. Agents responsible for IIA can be encountered as fumes, gases, aerosols, or dusts. The most frequent are chlorine, nitrogen oxides, sulfur dioxide, ammonia, acetic acid, solvents, and cleaning materials. Although the diagnosis of definite IIA is based on a suggestive clinical history along with evidence of reversible airflow limitation and/or nonspecific bronchial hyperresponsiveness, possible IIA cannot be diagnosed with certainty because the relationship between exposure and the onset of symptoms is difficult to establish. This article reviews the epidemiology, pathophysiology, diagnostic approach, and management of IIA.
Collapse
Affiliation(s)
- Catherine Lemiere
- Department of Chest Medicine, CIUSSS du Nord de l' Île de Montréal, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.
| | - Gabriel Lavoie
- Department of Chest Medicine, CIUSSS du Nord de l' Île de Montréal, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Virginie Doyen
- Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium
| | - Olivier Vandenplas
- Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium
| |
Collapse
|
9
|
Das S, Saha A, Patowary P, Niri P, Goyary D, Karmakar S, Chattopadhyay P. Assessment of toxicological consequences upon acute inhalation exposure to chemically improvised nonlethal riot control combinational formulation (NCF) containing oleoresin capsicum and skatole. Toxicol Res (Camb) 2021; 10:1129-1143. [PMID: 34956616 DOI: 10.1093/toxres/tfab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/12/2022] Open
Abstract
Sensory irritation is an acute adverse effect leading to temporary disability posed by riot control agents in various deployable forms are utilized by defense personal in violent mob attacks but their irreversible toxic effects and risk assessment have been a matter of concern. These intimidating risks of available riot control agents have led to exploring the pulmonary toxicity profile of the oil in water emulsion formulation developed for vicious crowd controls containing an irritant oleoresin capsicum, a malodorant (skatole), and a commercial dye, followed by characterization using standard methods. Nonlethal riot control combinational formulation (NCF) has been aimed to be the best possible low-lethal alternative for riot control measures. In this study, 30 min of acute inhalation exposure of NCF was given to Wistar rats and various respiratory parameters like lung dynamics, bronchoalveolar lavage fluid (BALF) cytological assays, pro-inflammatory cytokines estimation, antioxidant activity, collagen accumulation, cytotoxicity, in vivo lung imaging, western blot, histology of lung tissue, etc. were investigated to validate its potentiality and rate of irritation reversibility as nonlethal agents. An exaggerated physiological change like sensory irritation, changes in lung functional variables, increased pro-inflammatory cytokines, etc. were noticed initially without airway obstruction as the expression of nociceptive TRPV1 protein did not alter the physiological regulation of protective proteins like Nrf2 and HO-1 and also no abnormality was found in lung tissue architecture. In conclusion, it can be stated that this formulation can be explored as a nonlethal riot control agent intending to generate discomfort but with early reversibility of sensory irritation and no recurrence of toxicity.
Collapse
Affiliation(s)
- Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Solmara, Tezpur, Assam 784001, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Solmara, Tezpur, Assam 784001, India
| | - Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory, Solmara, Tezpur, Assam 784001, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Solmara, Tezpur, Assam 784001, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Solmara, Tezpur, Assam 784001, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Solmara, Tezpur, Assam 784001, India
| |
Collapse
|
10
|
Thá EL, Canavez ADPM, Schuck DC, Gagosian VSC, Lorencini M, Leme DM. Beyond dermal exposure: The respiratory tract as a target organ in hazard assessments of cosmetic ingredients. Regul Toxicol Pharmacol 2021; 124:104976. [PMID: 34139277 DOI: 10.1016/j.yrtph.2021.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.
Collapse
Affiliation(s)
- Emanoela Lundgren Thá
- Graduate Program in Genetics, Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | | | | | - Márcio Lorencini
- Grupo Boticário, Product Safety Management- Q&PP, São José dos Pinhais, PR, Brazil
| | - Daniela Morais Leme
- Department of Genetics - Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
11
|
Mangelsdorf I, Schröder K, Escher SE, Kolossa-Gehring M, Debiak M. Risk assessment for irritating chemicals - Derivation of extrapolation factors. Int J Hyg Environ Health 2020; 232:113668. [PMID: 33333487 DOI: 10.1016/j.ijheh.2020.113668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Irritation of the eyes and the upper respiratory tract are important endpoints for setting guide values for chemicals. To optimize the use of the often-limited data, we analysed controlled human exposure studies (CHS) with 1-4 h inhalation of the test substance, repeated dose inhalation studies in rodents, and Alarie-Tests and derived extrapolation factors (EF) for exposure duration, inter- and intraspecies differences. For the endpoint irritating effects in the respiratory tract in rodents, geometric mean (GM) values of 1.9 were obtained for the EF for subacute→subchronic (n = 16), 2.1 for subchronic→chronic (n = 40), and 2.9 for subacute→chronic (n = 10) extrapolation. Based on these data we suggest an EF of 2 for subchronic→chronic and of 4 for subacute→chronic extrapolation. In CHS, exposure concentration determines the effects rather than exposure duration. Slight reversible effects during 4 h exposure indicate that an EF of 1 can be considered for assessing chronic exposures. To assess species extrapolation, 10 chemicals were identified with both, reliable rat inhalation studies and CHS. The GM of the ratio between the No Observed Adverse Effect Concentration (NOAEC) in rats and humans was 2.3 and increased to 3.6 when expanding the dataset to all available EF (n = 25). Based on these analyses, an EF of 3 is suggested to extrapolate from a NOAEC in a chronic rat study to a NOAEC in a CHS. The analysis of EFs for the extrapolation from a 50% decrease in respiratory frequency in the Alarie test in mice (RD50) to a NOAEC in a CHS resulted in a GM of 40, for both, the reliable (n = 11) and the overall dataset (n = 19). We propose to use the RD50 from the Alarie test for setting guide values and to use 40 as EF. Efs for intraspecies differences in the human population must account for susceptible persons, most importantly for persons with chemical intolerance (CI), who show subjective signs of irritation at low concentrations. The limited data available do not justify to deviate from an EF of 10 - 20 as currently used in different regulatory settings.
Collapse
Affiliation(s)
- Inge Mangelsdorf
- Toxicology Consulting, Hamburg, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | - Katrin Schröder
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | |
Collapse
|
12
|
Kim JH, Hwang MY, Kim YJ. A Potential Health Risk to Occupational User from Exposure to Biocidal Active Chemicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238770. [PMID: 33255824 PMCID: PMC7728309 DOI: 10.3390/ijerph17238770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 12/31/2022]
Abstract
Biocidal active chemicals have potential health risks associated with exposure to retail biocide products such as disinfectants for COVID-19. Reliable exposure assessment was investigated to understand the exposure pattern of biocidal products used by occupational workers in their place of occupation, multi-use facilities, and general facilities. The interview-survey approach was taken to obtain the database about several subcategories of twelve occupational groups, the use pattern, and the exposure information of non-human hygiene disinfectant and insecticide products in workplaces. Furthermore, we investigated valuable exposure factors, e.g., the patterns of use, exposure routes, and quantifying potential hazardous chemical intake, on biocidal active ingredients. We focused on biocidal active-ingredient exposure from products used by twelve occupational worker groups. The 685 non-human hygiene disinfectants and 763 insecticides identified contained 152 and 97 different active-ingredient chemicals, respectively. The toxicity values and clinical health effects of total twelve ingredient chemicals were determined through a brief overview of toxicity studies aimed at estimating human health risks. To estimate actual exposure amounts divided by twelve occupational groups, the time spent to apply the products was investigated from the beginning to end of the product use. This study investigated the exposure assessment of occupational exposure to biocidal products used in workplaces, multi-use facilities, and general facilities. Furthermore, this study provides valuable information on occupational exposure that may be useful to conduct accurate exposure assessment and to manage products used for quarantine in general facilities.
Collapse
|
13
|
Wastensson G, Eriksson K. Inorganic chloramines: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 2020; 50:219-271. [PMID: 32484073 DOI: 10.1080/10408444.2020.1744514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Inorganic chloramines are not commercially available, but monochloramine is produced in situ for disinfection or for use in chemical synthesis. Inorganic chloramines are also formed when free chlorine reacts with nitrogen containing substances, e.g. ammonia and urea, present in chlorinated water sources. Occupational exposure may, therefore, occur in e.g. swimming pool facilities and the food processing industry. Monochloramine is soluble and stable in water and the dominating inorganic chloramine in chlorinated water sources. No clinical effects were seen in healthy volunteers given monochloramine in drinking water during 4 or 12 weeks in doses of 0.043 or 0.034 mg/kg bw/day, respectively. Limited data indicate that monochloramine is weakly mutagenic in vitro but not genotoxic in vivo. One drinking water study indicated equivocal evidence of carcinogenicity in female rats but not in male rats and mice. No reproductive or developmental effects were shown in rodents in the few studies located. Dichloramine is soluble but unstable in water. In the only study located, mild histological effects in kidneys, thyroid and gastric cardia were observed in rats administered dichloramine in drinking water for 13 weeks. Trichloramine is immiscible with water and evaporates easily from water into air. Therefore, the primary exposure route of concern in the occupational setting is inhalation. Occupational exposure to trichloramine has been demonstrated in indoor swimming pool facilities and in the food processing industry where chlorinated water is used for disinfection. Exposure-response relationships between airborne levels and self-reported ocular and upper airway irritation have been shown in several studies. Exposure to trichloramine may aggravate asthma symptoms in individuals with existing asthma. The risk of developing asthma following long-term exposure to trichloramine cannot be evaluated at present. No data on genotoxic, carcinogenic, reproductive or developmental effects were located. The toxicological data for mono- and dichloramine are insufficient to recommend health-based occupational exposure limits (OELs).As regard trichloramine, the critical effect is judged to be irritation observed in several studies on pool workers, starting at approximately 0.4 mg/m3 (stationary sampling). Based on these data, a health-based OEL of 0.1 mg/m3 (8-h time-weighted average) is recommended. This corresponds to 0.2 mg/m3 for stationary measurements in swimming pool facilities. No short-term exposure limit (STEL) is recommended.
Collapse
Affiliation(s)
- Gunilla Wastensson
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kåre Eriksson
- Department of Sustainable Health, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Chemicals inhaled from spray cleaning and disinfection products and their respiratory effects. A comprehensive review. Int J Hyg Environ Health 2020; 229:113592. [PMID: 32810683 DOI: 10.1016/j.ijheh.2020.113592] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/20/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
Spray cleaning and disinfection products have been associated with adverse respiratory effects in professional cleaners and among residents doing domestic cleaning. This review combines information about use of spray products from epidemiological and clinical studies, in vivo and in vitro toxicological studies of cleaning chemicals, as well as human and field exposure studies. The most frequent chemicals in spray cleaning and disinfection products were compiled, based on registrations in the Danish Product Registry. The chemicals were divided into acids, bases, disinfectants, fragrances, organic solvents, propellants, and tensides. In addition, an assessment of selected cleaning and disinfectant chemicals in spray products was carried out. Chemicals of concern regarding respiratory effects (e.g. asthma) are corrosive chemicals such as strong acids and bases (including ammonia and hypochlorite) and quaternary ammonium compounds (QACs). However, the evidence for respiratory effects after inhalation of QACs is ambiguous. Common fragrances are generally not considered to be of concern following inhalation. Solvents including glycols and glycol ethers as well as propellants are generally weak airway irritants and not expected to induce sensitization in the airways. Mixing of certain cleaning products can produce corrosive airborne chemicals. We discuss different hypotheses for the mechanisms behind the development of respiratory effects of inhalation of chemicals in cleaning agents. An integrative assessment is needed to understand how these chemicals can cause the various respiratory effects.
Collapse
|
15
|
Risk mitigation for indoor air quality using the example of construction products - efforts towards a harmonization of the health-related evaluation in the EU. Int J Hyg Environ Health 2020; 229:113588. [PMID: 32784067 DOI: 10.1016/j.ijheh.2020.113588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 11/20/2022]
Abstract
In Europe, the Construction Products Regulation sets harmonized conditions for the marketing of construction products with the objective of protecting the building users' health. Until now only three European countries have implemented requirements for the assessment of VOC emissions from construction products. Therefore, the European Commission is planning the issue of a delegated act on the communication of VOC emissions from construction products in the form of VOC classes. A key prerequisite for defining the VOC classes is the completion of the EU-LCI list currently being carried out by a group of experts from ten European countries. This paper reports on the development of the VOC class concept, the progress of the EU-LCI harmonization framework and Germany's current efforts to ensure a high level of health protection for building users and avoid dangers from construction product emissions.
Collapse
|
16
|
Li M, Weschler CJ, Bekö G, Wargocki P, Lucic G, Williams J. Human Ammonia Emission Rates under Various Indoor Environmental Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5419-5428. [PMID: 32233434 DOI: 10.1021/acs.est.0c00094] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ammonia (NH3) is typically present at higher concentrations in indoor air (∼10-70 ppb) than in outdoor air (∼50 ppt to 5 ppb). It is the dominant neutralizer of acidic species in indoor environments, strongly influencing the partitioning of gaseous acidic and basic species to aerosols, surface films, and bulk water. We have measured NH3 emissions from humans in an environmentally controlled chamber. A series of experiments, each with four volunteers, quantified NH3 emissions as a function of temperature (25.1-32.6 °C), clothing (long-sleeved shirts/pants or T-shirts/shorts), age (teenagers, adults, and seniors), relative humidity (low or high), and ozone (<2 ppb or ∼35 ppb). Higher temperature and more skin exposure (T-shirts/shorts) significantly increased emission rates. For adults and seniors (long clothing), NH3 emissions are estimated to be 0.4 mg h-1 person-1 at 25 °C, 0.8 mg h-1 person-1 at 27 °C, and 1.4 mg h-1 person-1 at 29 °C, based on the temperature relationship observed in this study. Human NH3 emissions are sufficient to neutralize the acidifying impacts of human CO2 emissions. Results from this study can be used to more accurately model indoor and inner-city outdoor NH3 concentrations and associated chemistry.
Collapse
Affiliation(s)
- Mengze Li
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Gregor Lucic
- Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, California 95054, United States
| | - Jonathan Williams
- Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| |
Collapse
|
17
|
Kleinbeck S, Schäper M, Pacharra M, Lehmann ML, Golka K, Blaszkewicz M, Brüning T, van Thriel C. A short-term inhalation study to assess the reversibility of sensory irritation in human volunteers. Arch Toxicol 2020; 94:1687-1701. [PMID: 32185413 PMCID: PMC7261732 DOI: 10.1007/s00204-020-02703-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Sensory irritation is an acute adverse effect caused by chemicals that stimulate chemoreceptors of the upper respiratory tract or the mucous membranes of the outer eye. The avoidance of this end point is of uttermost importance in regulatory toxicology. In this study, repeated exposures to ethyl acrylate were analyzed to investigate possible carryover effects from day to day for different markers of sensory irritation. Thirty healthy subjects were exposed for 4 h on five subsequent days to ethyl acrylate at concentrations permitted by the German occupational exposure limit at the time of study. Ratings of eye irritation as well as eye blinking frequencies indicate the elicitation of sensory irritation. These markers of sensory irritation showed a distinct time course on every single day. However, cumulative carryover effects could not be identified across the week for any marker. The rhinological and biochemical markers could not reveal hints for more pronounced sensory irritation. Neither increased markers of neurogenic inflammation nor markers of immune response could be identified. Furthermore, the performance on neurobehavioral tests was not affected by ethyl acrylate and despite the strong odor of ethyl acrylate the participants improved their performances from day to day. While the affected physiological marker, the increased eye blinking frequency stays roughly on the same level across the week, subjective markers like perception of eye irritation decrease slightly from day to day though the temporal pattern of, i.e., eye irritation perception stays the same on each day. A hypothetical model of eye irritation time course derived from PK/PD modeling of the rabbit eye could explain the within-day time course of eye irritation ratings repeatedly found in this study more precisely.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Michael Schäper
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Marlene Pacharra
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Marie Louise Lehmann
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany.,Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus Golka
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Meinolf Blaszkewicz
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| | - Thomas Brüning
- Research Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle de la Camp-Platz 1, 44789, Bochum, Germany
| | - Christoph van Thriel
- Leibniz Research Center for Working Environment and Human Factors, TU Dortmund University, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
18
|
Potential Toxicity of the Essential Oil from Minthostachys mollis: A Medicinal Plant Commonly Used in the Traditional Andean Medicine in Peru. J Toxicol 2019; 2019:1987935. [PMID: 31929789 PMCID: PMC6942890 DOI: 10.1155/2019/1987935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants are used throughout the world and the World Health Organization supports its use by recommending quality, safety and efficacy. Minthostachys mollis is distributed in the Andes of South America and is used by the population for various diseases. While studies have shown their pharmacological properties, the information about their safety is very limited. Then, the goal of this research was to determine the acute oral toxicity and in repeated doses during 28 days of Minthostachys mollis essential oil (Mm-EO) in rats. For the acute toxicity test two groups of rats, of three animals each, were used. Each group received Mm-EO in a single dose of 2000 or 300 mg/kg of body weight. For the repeated dose toxicity test, four groups of 10 rats each were used. Doses of 100, 250 and 500 mg/kg/day were used, one group was control. With the single dose of Mm-EO of 2000 mg/kg of body weight, the three rats in the group showed immediate signs of toxicity and died between 36 and 72 hours. In the lung, inflammatory infiltrate was observed, predominantly lymphocytic with severe hemorrhage and presence of macrophages with hemosiderin. In the repeated dose study, male rats (5/5) and female rats (2/5) died at the dose of 500 mg/kg/day. The body weight of both male and female rats decreased significantly with doses of 250 and 500 mg/kg/day. The serum levels of AST and ALT increased significantly and the histopathological study revealed chronic and acute inflammatory infiltrate in the lung; while in the liver was observed in 80% of the cases (24/30) mild chronic inflammatory infiltrate and in some of those cases there was vascular congestion and in one case cytoplasmic vacuolization. The Mm-EO presented moderate acute oral toxicity, while with repeated doses for 28 days; there was evidence of toxicity, in a dose-dependent manner, mainly at the hepatic level.
Collapse
|
19
|
Jiménez Barbosa IA, Rodríguez Alvarez MF, Dussán Torres GA, Khuu SK. Ocular surface and tear film changes in workers exposed to organic solvents used in the dry-cleaning industry. PLoS One 2019; 14:e0226042. [PMID: 31815965 PMCID: PMC6901226 DOI: 10.1371/journal.pone.0226042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Workers in the dry-cleaning industry are exposed to organic solvents that may cause eye irritation and tear film changes. Objective To quantify changes in the ocular surface and tear film in dry cleaners exposed to organic solvents and associate these changes with ocular irritation as reported in a symptom questionnaire for dry eye diagnosis. Methods This was a case and control study in which the characteristics and eye-irritation symptoms were compared between two groups of 62 participants that were either exposed or not exposed to organic solvents. A general optometric examination and the following test were performed: lipid interferometry, Lissamine Green Stain, tear breakup time, Schirmer I, conjunctival impression cytology and the Donate dry eye symptoms questionnaire. Results Sixty-five percent of exposed workers obtained a higher score than 13 on the Donate dry eye symptoms questionnaire which indicated the presence of more irritation symptoms than those in the non- exposed group. A Chi-square analysis indicated the exposed group reported significantly higher incidences (P <0.005) for eye irritation symptoms of sandy sensation; tearing eyes sensation; foreign body sensation; tearing; dry eye; dryness; eyestrain and heavy eyelids. A Mann Whitney-U indicated greater severity only for symptoms relating to dry eye; sandy sensation; foreign body sensation, tearing; tearing eyes and dryness. There was a statistically significant difference (P <0.05) for Schirmer I; tear break up time; and the ocular surface assessed with Lissamine green staining and conjunctival impression cytology between groups. A reduction in the thickness of the lipid layer in the exposed group compared to the non-exposed group was observed. Surprisingly, clinical test outcomes were not significantly correlated with dry eye symptoms nor years of exposure. Conclusion Workers in the dry-cleaning industry exposed to organic solvents are associated with changes in ocular surface and tear film generating irritation symptoms commonly present in evaporative dry eye.
Collapse
Affiliation(s)
- Ingrid Astrid Jiménez Barbosa
- Health and Sciences Faculty, Optometry Program, University of La Salle, Bogotá, Colombia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | | | | | - Sieu K. Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
20
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Ethyl acrylate: influence of sex or atopy on perceptual ratings and eye blink frequency. Arch Toxicol 2019; 93:2913-2926. [DOI: 10.1007/s00204-019-02568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
|
22
|
Ampollini L, Katz EF, Bourne S, Tian Y, Novoselac A, Goldstein AH, Lucic G, Waring MS, DeCarlo PF. Observations and Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8591-8598. [PMID: 31283200 DOI: 10.1021/acs.est.9b02157] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although ammonia (NH3) is usually found at outdoor concentrations of 1-5 ppb, indoor ammonia concentrations can be much higher. Indoor ammonia is strongly emitted from cleaning products, tobacco smoke, building materials, and humans. Because of ammonia's high reactivity, solubility in water, and tendency to sorb to a variety of surfaces, it is difficult to measure, and thus a comprehensive evaluation of indoor ammonia concentrations remains an understudied topic. During HOMEChem, which was a comprehensive indoor chemistry study occurring in a test house during June 2018, the real-time concentration of ammonia indoors was measured using cavity ring-down spectroscopy. A mean unoccupied background concentration of 32 ppb was observed, with further enhancements of ammonia occurring during cooking, cleaning, and occupancy activities, reaching maximum concentrations during these activities of 130, 1592, and 99 ppb, respectively. Furthermore, ammonia concentrations were strongly influenced by indoor temperatures and heating, ventilation, and air conditioning (HVAC) operation. In the absence of activity-based sources, the HVAC operation was the main modulator of ammonia concentration indoors.
Collapse
Affiliation(s)
| | | | - Stephen Bourne
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 1 University Station C1752 , Austin , Texas 78712-1076 , United States
| | | | - Atila Novoselac
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 1 University Station C1752 , Austin , Texas 78712-1076 , United States
| | | | - Gregor Lucic
- Picarro Inc. , 3105 Patrick Henry Drive , Santa Clara , California 95054 , United States
| | | | | |
Collapse
|
23
|
Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. Neuroendocrine Regulation of Air Pollution Health Effects: Emerging Insights. Toxicol Sci 2019; 164:9-20. [PMID: 29846720 DOI: 10.1093/toxsci/kfy129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Air pollutant exposures are linked to cardiopulmonary diseases, diabetes, metabolic syndrome, neurobehavioral conditions, and reproductive abnormalities. Significant effort is invested in understanding how pollutants encountered by the lung might induce effects in distant organs. The role of circulating mediators has been predicted; however, their origin and identity have not been confirmed. New evidence has emerged which implicates the role of neuroendocrine sympathetic-adrenal-medullary (SAM) and hypothalamic-pituitary-adrenal (HPA) stress axes in mediating a wide array of systemic and pulmonary effects. Our recent studies using ozone exposure as a prototypical air pollutant demonstrate that increases in circulating adrenal-derived stress hormones (epinephrine and cortisol/corticosterone) contribute to lung injury/inflammation and metabolic effects in the liver, pancreas, adipose, and muscle tissues. When stress hormones are depleted by adrenalectomy in rats, most ozone effects including lung injury/inflammation are diminished. Animals treated with antagonists for adrenergic and glucocorticoid receptors show inhibition of the pulmonary and systemic effects of ozone, whereas treatment with agonists restore and exacerbate the ozone-induced injury/inflammation phenotype, implying the role of neuroendocrine activation. The neuroendocrine system is critical for normal homeostasis and allostatic activation; however, chronic exposure to stressors may lead to increases in allostatic load. The emerging mechanisms by which circulating mediators are released and are responsible for producing multiorgan effects of air pollutants insists upon a paradigm shift in the field of air pollution and health. Moreover, since these neuroendocrine responses are linked to both chemical and nonchemical stressors, the interactive influence of air pollutants, lifestyle, and environmental factors requires further study.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina, 27711
| | - Daniel L Costa
- Emeritus, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| |
Collapse
|
24
|
Kim JH, Lee D, Lim H, Kim T, Suk K, Seo J. Risk assessment to human health: Consumer exposure to ingredients in air fresheners. Regul Toxicol Pharmacol 2018; 98:31-40. [DOI: 10.1016/j.yrtph.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/06/2023]
|
25
|
Vo TDH, Lin C, Weng CE, Yuan CS, Lee CW, Hung CH, Bui XT, Lo KC, Lin JX. Vertical stratification of volatile organic compounds and their photochemical product formation potential in an industrial urban area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:327-336. [PMID: 29614481 DOI: 10.1016/j.jenvman.2018.03.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
High emissions of volatile organic compounds (VOCs) from the petrochemical industry and vehicle exhaust may contribute to high ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP). In this study, the vertical profiles of VOCs were created for the southern Taiwan industrial city of Kaohsiung. Vertical air samples were collected up to 1000 m using an unmanned aerial vehicle (UAV). In Renwu District, VOC distribution was affected by the inversion layer up to 200 m height. Total VOCs (36-327 ppbv), OFP (66-831 ppbv) and SOAFP (0.12-5.55 ppbv) stratified by height were the highest values at 300 m. The VOCs originated from both local and long-distance transport sources. These findings can be integrated into Kaohsiung's future air quality improvement plans and serve as a reference for other industrialized areas worldwide.
Collapse
Affiliation(s)
- Thi-Dieu-Hien Vo
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chien-Erh Weng
- Department of Electronic Communication Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chia-Wei Lee
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| | - Chung-Hsuang Hung
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University - Ho Chi Minh City, Viet Nam
| | - Kuo-Cheng Lo
- Department of Military Meteorology, Air Force Institute of Technology, Kaohsiung 82047, Taiwan
| | - Jun-Xian Lin
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
26
|
Chebekoue SF, Krishnan K. Derivation of Occupational Thresholds of Toxicological Concern for Systemically Acting Noncarcinogenic Organic Chemicals. Toxicol Sci 2018; 160:47-56. [PMID: 29036659 DOI: 10.1093/toxsci/kfx155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many substances in workplace do not have occupational exposure limits. The threshold of toxicological concern (TTC) principle is part of the hierarchy of approaches useful in occupational health risk assessment. The aim of this study was to derive occupational TTCs (OTTCs) reflecting the airborne concentrations below which no significant risk to workers would be anticipated. A reference dataset consisting of the 8-h threshold limit values-Time-Weighted Average for 280 organic substances was compiled. Each substance was classified into low (class I), intermediate (class II), or high (class III) hazard categories as per Cramer rules. For each chemical, n-octanol:water partition coefficient and vapor pressure along with the molecular weight were used to predict the blood:air partition coefficient. The blood:air partition coefficient along with data on water solubility and ventilation rate allowed the prediction of pulmonary retention factor and absorbed dose in workers. For each Cramer class, the distribution of the predicted doses was analyzed to identify the various percentile values corresponding to the OTTC. Accordingly, for Cramer classes I-III, the OTTCs derived in this study correspond to 0.15, 0.0085, and 0.006 mmol/d, respectively, at the 10th percentile level, while these values were 1.5, 0.09 and 0.03 mmol/d at the 25th percentile level. The proposed OTTCs are not meant to replace the traditional occupational exposure limits, but can be used in data-poor situations along with exposure estimates to support screening level risk assessment and prioritization.
Collapse
Affiliation(s)
- Sandrine F Chebekoue
- Département de Santé Environnementale et Santé au Travail, École de Santé Publique de l'Université de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Kannan Krishnan
- Département de Santé Environnementale et Santé au Travail, École de Santé Publique de l'Université de Montréal, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
27
|
Kim JH, Kim T, Yoon H, Jo A, Lee D, Kim P, Seo J. Health risk assessment of dermal and inhalation exposure to deodorants in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1369-1379. [PMID: 29996434 DOI: 10.1016/j.scitotenv.2017.12.282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 05/26/2023]
Abstract
In Korea, humidifiers that include biocidal ingredients have caused serious lung injuries and deaths. After these incidents, public concern regarding the use of chemicals in products (i.e., chemical phobia) increased. Frequent health risk assessments and stringent management of consumer products are, therefore, of paramount importance to reduce these serious occurrences. In this study, the irritative and respiratory health effects of deodorants were assessed in relation to dermal and inhalation exposure. In total, 64 deodorants were divided into 5 groups by application type, and health risk assessments were conducted on each group. In total, 26 fragrance ingredients and 27 biocidal ingredients were analyzed and assessed according to their risk to human health. Exposure assessment was performed in two steps. In the tiered 1 assessment (screening), the 95th exposure factor values were used to estimate exposure to assume the worst-case scenario. The maximum concentration in the deodorants was used without considering the application type. In the tiered 2 assessment (detail assessment), the 75th exposure factor values were used to estimate the assumed reasonable exposure to ingredients. In these assessments, the maximum concentration used in the exposure models was determined by the product purpose and application type. The values input into the exposure algorithms were developed via the exposure route. Of the selected fragrance and biocidal active ingredients, 18 fragrance and 13 biocidal ingredients were detected in the deodorants that were assessed. From the results of the tiered 1 assessment, it was necessary for tiered 2 risk assessments to be conducted for 6 ingredients for the inhalation route, and 13 ingredients for the dermal route. The inhalation margin of exposure of ingredients in deodorants of gel/trigger/spray types for home/car and fabric/air usage was above the target margin of exposure. The health risk of 6 evaluated ingredients was relatively low for the inhalation route of exposure. This study showed that the assessed ingredients have no health risks at their maximum concentrations in deodorants. The approach discussed in this study should be used to establish improved guidelines for specific ingredients in consumer products, and for setting limits for newly developed raw materials that may pose dermal and inhalation hazard.
Collapse
Affiliation(s)
- Joo-Hyon Kim
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea
| | - Taksoo Kim
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea
| | - Hyojung Yoon
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea
| | - Areum Jo
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea
| | - Daeyeop Lee
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea
| | - Pilje Kim
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea
| | - Jungkwan Seo
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, South Korea.
| |
Collapse
|
28
|
Lee M, Kim JH, Lee D, Kim J, Lim H, Seo J, Park YK. Health Risk Assessment on Hazardous Ingredients in Household Deodorizing Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E744. [PMID: 29652814 PMCID: PMC5923786 DOI: 10.3390/ijerph15040744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/03/2023]
Abstract
The inhalation of a water aerosol from a humidifier containing disinfectants has led to serious lung injuries in Korea. To promote the safe use of products, the Korean government enacted regulations on the chemicals in various consumer products that could have adverse health effects. Given the concern over the potential health risks associated with the hazardous ingredients in deodorizing consumer products, 17 ingredients were analyzed and assessed according to their health risk on 3 groups by the application type in 47 deodorizing products. The risk assessment study followed a stepwise procedure (e.g., collecting toxicological information, hazard identification/exposure assessment, and screening and detailed assessment for inhalation and dermal routes). The worst-case scenario and maximum concentration determined by the product purpose and application type were used as the screening assessment. In a detailed assessment, the 75th exposure factor values were used to estimate the assumed reasonable exposure to ingredients. The exposed concentrations of seven ingredients were calculated. Due to limitation of toxicity information, butylated hydroxyl toluene for a consumer’s exposure via the dermal route only was conducted for a detailed assessment. This study showed that the assessed ingredients have no health risks at their maximum concentrations in deodorizing products. This approach can be used to establish guidelines for ingredients that may pose inhalation and dermal hazards.
Collapse
Affiliation(s)
- Minjin Lee
- School of Environmental Engineering, University of Seoul, Seoulsiripdaero 163, Dongdaemun-gu, Seoul 02504, Korea.
- Consumer Product & Environment Business Division, KOTITI Testing & Research Institute, 111 Sagimakgol-ro, Jungwon-gu, Seongnam-si, Gyeonggi-do 13202, Korea.
| | - Joo-Hyon Kim
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Korea.
| | - Daeyeop Lee
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Korea.
| | - Jaewoo Kim
- Consumer Product & Environment Business Division, KOTITI Testing & Research Institute, 111 Sagimakgol-ro, Jungwon-gu, Seongnam-si, Gyeonggi-do 13202, Korea.
| | - Hyunwoo Lim
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Korea.
| | - Jungkwan Seo
- Division of Risk Assessment, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Korea.
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoulsiripdaero 163, Dongdaemun-gu, Seoul 02504, Korea.
| |
Collapse
|
29
|
Upper respiratory tract nociceptor stimulation and stress response following acute and repeated Cyfluthrin inhalation in normal and pregnant rats: Physiological rat-specific adaptions can easily be misunderstood as adversities. Toxicol Lett 2018; 282:8-24. [DOI: 10.1016/j.toxlet.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 11/22/2022]
|
30
|
Johansson M, Gustafsson Å, Johanson G, Öberg M. Comparison of airway response in naïve and ovalbumin-sensitized mice during short-term inhalation exposure to chlorine. Inhal Toxicol 2017; 29:82-91. [PMID: 28330427 DOI: 10.1080/08958378.2017.1299260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE It has been suggested that asthmatics are more susceptible than healthy individuals to airborne irritating chemicals in general. However, there is limited human data available to support this hypothesis due to ethical and practical difficulties. We explored a murine model of ovalbumin (OVA)-induced airway inflammation to study susceptibility during acute exposure to chemicals with chlorine as a model substance. METHODS Naïve and OVA sensitized female BALB/c mice were exposed to chlorine at four different concentrations (0, 5, 30 and 80 ppm) for 15 minutes with online recording of the respiratory function by plethysmography. The specific effects on respiratory mechanics, inflammatory cells and inflammatory mediators (cytokines and chemokines) of the airways were measured 24 hours after the chlorine exposure as well as histopathological examination of the lungs. RESULTS Similar concentration-dependent reductions in respiratory frequency were seen in the two groups, with a 50% reduction (RD50) slightly above 5 ppm. Decreased body weight 24 hours after exposure to 80 ppm was also observed in both groups. Naïve, but not OVA-sensitized, mice showed increased bronchial reactivity and higher number of neutrophils in bronchoalveolar lavage fluid at 80 ppm. CONCLUSIONS The results do not support an increased susceptibility to chlorine among OVA-sensitized mice. This animal model, which represents a phenotype of eosinophilic airway inflammation, seems unsuitable to study susceptibility to inhalation of irritants in relation to asthma.
Collapse
Affiliation(s)
- Mia Johansson
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Åsa Gustafsson
- b Swedish Defense Research Agency (FOI) , Umeå , Sweden.,c Swedish Toxicology Sciences Research Center (Swetox) , Södertälje , Sweden
| | - Gunnar Johanson
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Mattias Öberg
- a Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden.,c Swedish Toxicology Sciences Research Center (Swetox) , Södertälje , Sweden
| |
Collapse
|
31
|
Nielsen GD, Wolkoff P. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach. Regul Toxicol Pharmacol 2017; 90:308-317. [DOI: 10.1016/j.yrtph.2017.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
|
32
|
Deproteinised natural rubber latex grafted poly(dimethylaminoethyl methacrylate) - poly(vinyl alcohol) blend membranes: Synthesis, properties and application. Int J Biol Macromol 2017; 107:1821-1834. [PMID: 29032213 DOI: 10.1016/j.ijbiomac.2017.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 01/20/2023]
Abstract
Natural rubber latex was initially deproteinised (DNRL) and then subjected to physicochemical modifications to make high functional membranes for drug delivery applications. Initially, DNRL was prepared by incubating with urea, sodiumdodecylsulphate and acetone followed by centrifugation. The deproteinisation was confirmed by CHN analysis. The DNRL was then chemically modified by grafting (dimethylaminoethyl methacrylate) onto NR particles by using a redox initiator system viz; cumene hydroperoxide/tetraethylenepentamine, followed by dialysis for purification. The grafting was confirmed by dynamic light scattering, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The grafted system was blended with a hydrophilic adhesive polymer PVA and casted into membranes. The membranes after blending showed enhanced mechanical properties with a threshold concentration of PVA. The moisture uptake, swelling and water contact angle experiments indicated an increased hydrophilicity with an increased PVA content in the blend membranes. The grafted DNRL possessed significant antibacterial property which has been found to be retained in the blended form. A notable decrease in cytotoxicity was observed for the modified DNRL membranes than the bare DNRL membranes. The in-vitro drug release studies using rhodamine B as a model drug, confirmed the utility of the prepared membranes to function as a drug delivery matrix.
Collapse
|
33
|
Lei T, Chen F, Liu H, Sun H, Kang Y, Li D, Li Y, Hou T. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Mol Pharm 2017; 14:2407-2421. [PMID: 28595388 DOI: 10.1021/acs.molpharmaceut.7b00317] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a dangerous end point, respiratory toxicity can cause serious adverse health effects and even death. Meanwhile, it is a common and traditional issue in occupational and environmental protection. Pharmaceutical and chemical industries have a strong urge to develop precise and convenient computational tools to evaluate the respiratory toxicity of compounds as early as possible. Most of the reported theoretical models were developed based on the respiratory toxicity data sets with one single symptom, such as respiratory sensitization, and therefore these models may not afford reliable predictions for toxic compounds with other respiratory symptoms, such as pneumonia or rhinitis. Here, based on a diverse data set of mouse intraperitoneal respiratory toxicity characterized by multiple symptoms, a number of quantitative and qualitative predictions models with high reliability were developed by machine learning approaches. First, a four-tier dimension reduction strategy was employed to find an optimal set of 20 molecular descriptors for model building. Then, six machine learning approaches were used to develop the prediction models, including relevance vector machine (RVM), support vector machine (SVM), regularized random forest (RRF), extreme gradient boosting (XGBoost), naïve Bayes (NB), and linear discriminant analysis (LDA). Among all of the models, the SVM regression model shows the most accurate quantitative predictions for the test set (q2ext = 0.707), and the XGBoost classification model achieves the most accurate qualitative predictions for the test set (MCC of 0.644, AUC of 0.893, and global accuracy of 82.62%). The application domains were analyzed, and all of the tested compounds fall within the application domain coverage. We also examined the structural features of the compounds and important fragments with large prediction errors. In conclusion, the SVM regression model and the XGBoost classification model can be employed as accurate prediction tools for respiratory toxicity.
Collapse
Affiliation(s)
- Tailong Lei
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Fu Chen
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Huiyong Sun
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou, Jiangsu 215123, P. R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China.,State Key Lab of CAD&CG, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
34
|
Wolkoff P, Nielsen GD. Effects by inhalation of abundant fragrances in indoor air - An overview. ENVIRONMENT INTERNATIONAL 2017; 101:96-107. [PMID: 28126407 DOI: 10.1016/j.envint.2017.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/30/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Odorous compounds (odors) like fragrances may cause adverse health effects. To assess their importance by inhalation, we have reviewed how the four major abundant and common airborne fragrances (α-pinene (APN), limonene (LIM), linalool (LIL), and eugenol (EUG)) impact the perceived indoor air quality as odor annoyance, sensory irritation and sensitization in the airways. Breathing and cardiovascular effects, and work performance, and the impact in the airways of ozone-initiated gas- and particle phase reactions products have also been assessed. Measured maximum indoor concentrations for APN, LIM and LIL are close to or above their odor thresholds, but far below their thresholds for sensory irritation in the eyes and upper airways; no information could be traced for EUG. Likewise, reported risk values for long-term effects are far above reported indoor concentrations. Human exposure studies with mixtures of APN and LIM and supported by animal inhalation models do not support sensitization of the airways at indoor levels by inhalation that include other selected fragrances. Human exposure studies, in general, indicate that reported lung function effects are likely due to the perception rather than toxic effects of the fragrances. In general, effects on the breathing rate and mood by exposure to the fragrances are inconclusive. The fragrances may increase the high-frequency heart rate variability, but aerosol exposure during cleaning activities may result in a reduction. Distractive effects influencing the work performance by fragrance/odor exposure are consistently reported, but their persistence over time is unknown. Mice inhalation studies indicate that LIM or its reaction mixture may possess anti-inflammatory properties. There is insufficient information that ozone-initiated reactions with APN or LIM at typical indoor levels cause airway effects in humans. Limited experimental information is available on long-term effects of ozone-initiated reaction products of APN and LIM at typical indoor levels.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| | - Gunnar D Nielsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| |
Collapse
|
35
|
Wolkoff P. External eye symptoms in indoor environments. INDOOR AIR 2017; 27:246-260. [PMID: 27444579 DOI: 10.1111/ina.12322] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 05/22/2023]
Abstract
Eye irritation, for example dry or irritated eyes, is generally among top three reported symptoms in office-like environments, in particular among workplaces with cognitive demanding visual display unit (VDU) work. The symptoms are especially among middle and advanced ages and particularly among women more than men. The symptoms are also among the most commonly reported complaints in the eye clinic. To be in a position to interpret the high prevalence of eye symptoms, a multidisciplinary and integrated approach is necessary that involves the external eye physiology (separate from internal eye effects), eye diseases (evaporative dry eye (DE), aqueous-deficient DE, and gland dysfunctions), and risk factors that aggravate the stability of precorneal tear film (PTF) resulting in hyperosmolarity and initiation of inflammatory reactions. Indoor environmental, occupational and personal risk factors may aggravate the PTF stability; factors such as age, contact lenses, cosmetics, diet, draft, gender, low humidity and high temperature, medication, outdoor and combustion pollutants, and VDU work. Psychological stressors may further influence the reporting behavior of eye symptoms. The impact of the risk factors may occur in a combined and exacerbating manner.
Collapse
Affiliation(s)
- P Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
36
|
Wolkoff P, Crump DR, Harrison PTC. Pollutant exposures and health symptoms in aircrew and office workers: Is there a link? ENVIRONMENT INTERNATIONAL 2016; 87:74-84. [PMID: 26641522 DOI: 10.1016/j.envint.2015.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Sensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed. Data for tricresyl phosphates, in particular tri-ortho-cresyl phosphate (ToCP), were also compiled, as well as information on other risk factors such as low relative humidity. A conservative health risk assessment for eye, airway and neurological effects was undertaken based on a "worst-case scenario" which assumed a simultaneous constant exposure for 8h to identified maximum concentrations in aircraft and offices. This used guidelines and reference values for sensory irritation for eyes and upper airways and airflow limitation; a tolerable daily intake value was used for ToCP. The assessment involved the use of hazard quotients or indexes, defined as the summed ratio(s) (%) of compound concentration(s) divided by their guideline value(s). The concentration data suggest that, under the assumption of a conservative "worst-case scenario", aircraft air and office concentrations of the compounds in question are not likely to be associated with sensory symptoms in eyes and airways. This is supported by the fact that maximum concentrations are, in general, associated with infrequent incidents and brief exposures. Sensory symptoms, in particular in eyes, appear to be exacerbated by environmental and occupational conditions that differ in aircraft and offices, e.g., ozone incidents, low relative humidity, low cabin pressure, and visual display unit work. The data do not support airflow limitation effects. For ToCP, in view of the conservative approach adopted here and the rareness of reported incidents, the health risk of exposure to this compound in aircraft is considered negligible.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Denmark.
| | | | | |
Collapse
|
37
|
Abraham MH, Gola JMR, Cometto-Muñiz JE. An assessment of air quality reflecting the chemosensory irritation impact of mixtures of volatile organic compounds. ENVIRONMENT INTERNATIONAL 2016; 86:84-91. [PMID: 26550706 DOI: 10.1016/j.envint.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
We present a method to assess the air quality of an environment based on the chemosensory irritation impact of mixtures of volatile organic compounds (VOCs) present in such environment. We begin by approximating the sigmoid function that characterizes psychometric plots of probability of irritation detection (Q) versus VOC vapor concentration to a linear function. First, we apply an established equation that correlates and predicts human sensory irritation thresholds (SIT) (i.e., nasal and eye irritation) based on the transfer of the VOC from the gas phase to biophases, e.g., nasal mucus and tear film. Second, we expand the equation to include other biological data (e.g., odor detection thresholds) and to include further VOCs that act mainly by "specific" effects rather than by transfer (i.e., "physical") effects as defined in the article. Then we show that, for 72 VOCs in common, Q values based on our calculated SITs are consistent with the Threshold Limit Values (TLVs) listed for those same VOCs on the basis of sensory irritation by the American Conference of Governmental Industrial Hygienists (ACGIH). Third, we set two equations to calculate the probability (Qmix) that a given air sample containing a number of VOCs could elicit chemosensory irritation: one equation based on response addition (Qmix scale: 0.00 to 1.00) and the other based on dose addition (1000*Qmix scale: 0 to 2000). We further validate the applicability of our air quality assessment method by showing that both Qmix scales provide values consistent with the expected sensory irritation burden from VOC mixtures present in a wide variety of indoor and outdoor environments as reported on field studies in the literature. These scales take into account both the concentration of VOCs at a particular site and the propensity of the VOCs to evoke sensory irritation.
Collapse
Affiliation(s)
- Michael H Abraham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK.
| | - Joelle M R Gola
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | | |
Collapse
|
38
|
Trantallidi M, Dimitroulopoulou C, Wolkoff P, Kephalopoulos S, Carrer P. EPHECT III: Health risk assessment of exposure to household consumer products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:903-913. [PMID: 26277440 DOI: 10.1016/j.scitotenv.2015.05.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
In the framework of the EU EPHECT project (Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU), irritative and respiratory effects were assessed in relation to acute (30-min) and long-term (24-h) inhalation exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. A detailed Health Risk Assessment (HRA) was performed for five selected pollutants of respiratory health relevance, namely acrolein, formaldehyde, naphthalene, d-limonene and α-pinene. For each pollutant, the Critical Exposure Limit (CEL) was compared to indoor air concentrations and exposure estimates for the use of 15 selected consumer products by two population groups (housekeepers and retired people) in the four geographical regions of Europe (North, West, South, East), which were derived previously based on microenvironmental modelling. For the present HRA, health-based CELs were derived for certain compounds in case indoor air quality guidelines were not available by the World Health Organization for end-points relevant to the current study. For each pollutant, the highest indoor air concentrations in each microenvironment and exposure estimates across home microenvironments during the day were lower than the corresponding acute and long-term CELs. However, considerable contributions, especially to acute exposures, were obtained in some cases, such as formaldehyde emissions resulting from single product use of a floor cleaning agent (82% CEL), a candle (10% CEL) and an electric air freshener (17% CEL). Regarding multiple product use, the case of 30-min formaldehyde exposure reaching 34% CEL when eight product classes were used across home microenvironments, i.e. all-purpose/kitchen/floor cleaning agents, furniture/floor polish, combustible/electric air fresheners, and perfume, needs to be highlighted. Such estimated values should be evaluated with caution, as these may be attributed to the exposure scenarios specifically constructed for the present study, following a 'most-representative worst-case scenario' approach for exposure and health risk assessment.
Collapse
Affiliation(s)
- M Trantallidi
- Dept. of Biomedical and Clinical Sciences - Hospital L. Sacco, University of Milan, 20157 Milan, Italy.
| | - C Dimitroulopoulou
- Dept. of Mechanical Engineering, University of West Macedonia, 50100 Kozani, Greece; Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Science and Innovation Campus, OX11 0RQ, UK
| | - P Wolkoff
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - S Kephalopoulos
- Institute for Health and Consumer Protection, Joint Research Centre, European Commission, 21027 Ispra, VA, Italy
| | - P Carrer
- Dept. of Biomedical and Clinical Sciences - Hospital L. Sacco, University of Milan, 20157 Milan, Italy
| |
Collapse
|
39
|
Johansson MKV, Johanson G, Öberg M. Evaluation of the experimental basis for assessment factors to protect individuals with asthma from health effects during short-term exposure to airborne chemicals. Crit Rev Toxicol 2015; 46:241-60. [PMID: 26515429 PMCID: PMC4819830 DOI: 10.3109/10408444.2015.1092498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022]
Abstract
BACKGROUND Asthmatic individuals constitute a large sub-population that is often considered particularly susceptible to the deleterious effects of inhalation of airborne chemicals. However, for most such chemicals information on asthmatics is lacking and inter-individual assessment factors (AFs) of 3-25 have been proposed for use in the derivation of health-based guideline values. OBJECTIVE To evaluate available information in attempt to determine whether a general difference in airway response during short-term exposure between healthy and asthmatic individuals can be identified, and whether current AFs for inter-individual variability provide sufficient protection for asthmatics. METHODS After performing systematic review of relevant documents and the scientific literature estimated differential response factors (EDRF) were derived as the ratio between the lowest observed adverse effect levels for healthy and asthmatic subjects based on studies in which both groups were tested under the same conditions. Thereafter, the concentration-response relationships for healthy and asthmatic subjects exposed separately to four extensively tested chemicals (nitrogen dioxide, ozone, sulfuric acid, sulfur dioxide) were compared on the basis of combined data. Finally, a Benchmark Concentration (BMC) analysis was performed for sulfur dioxide. RESULTS We found evidence of higher sensitivity among asthmatics (EDRF > 1) to 8 of 19 tested chemicals, and to 3 of 11 mixtures. Thereafter, we confirmed the higher sensitivity of asthmatics to sulfuric acid and sulfur dioxide. No difference was observed in the case of ozone and nitrogen dioxide. Finally, our BMC analysis of sulfur dioxide indicated a ninefold higher sensitivity among asthmatics. CONCLUSION Although experimental data are often inconclusive, our analyses suggest that an AF of 10 is adequate to protect asthmatics from the deleterious respiratory effects of airborne chemicals.
Collapse
Affiliation(s)
- Mia K. V. Johansson
- Unit of Work Environment Toxicology, Karolinska Institutet, Institute of Environmental Medicine,
Stockholm,
Sweden
| | - Gunnar Johanson
- Unit of Work Environment Toxicology, Karolinska Institutet, Institute of Environmental Medicine,
Stockholm,
Sweden
| | - Mattias Öberg
- Unit of Work Environment Toxicology, Karolinska Institutet, Institute of Environmental Medicine,
Stockholm,
Sweden
- Swedish Toxicology Sciences Research Center,
Södertälje,
Sweden
| |
Collapse
|
40
|
Nørgaard AW, Kofoed-Sørensen V, Mandin C, Ventura G, Mabilia R, Perreca E, Cattaneo A, Spinazzè A, Mihucz VG, Szigeti T, de Kluizenaar Y, Cornelissen HJM, Trantallidi M, Carrer P, Sakellaris I, Bartzis J, Wolkoff P. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13331-13339. [PMID: 25299176 DOI: 10.1021/es504106j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.
Collapse
Affiliation(s)
- A W Nørgaard
- National Research Centre for the Working Environment, 2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vandenplas O, Wiszniewska M, Raulf M, de Blay F, Gerth van Wijk R, Moscato G, Nemery B, Pala G, Quirce S, Sastre J, Schlünssen V, Sigsgaard T, Siracusa A, Tarlo SM, van Kampen V, Zock JP, Walusiak-Skorupa J. EAACI position paper: irritant-induced asthma. Allergy 2014; 69:1141-53. [PMID: 24854136 DOI: 10.1111/all.12448] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 01/18/2023]
Abstract
The term irritant-induced (occupational) asthma (IIA) has been used to denote various clinical forms of asthma related to irritant exposure at work. The causal relationship between irritant exposure(s) and the development of asthma can be substantiated by the temporal association between the onset of asthma symptoms and a single or multiple high-level exposure(s) to irritants, whereas this relationship can only be inferred from epidemiological data for workers chronically exposed to moderate levels of irritants. Accordingly, the following clinical phenotypes should be distinguished within the wide spectrum of irritant-related asthma: (i) definite IIA, that is acute-onset IIA characterized by the rapid onset of asthma within a few hours after a single exposure to very high levels of irritant substances; (ii) probable IIA, that is asthma that develops in workers with multiple symptomatic high-level exposures to irritants; and (iii) possible IIA, that is asthma occurring with a delayed-onset after chronic exposure to moderate levels of irritants. This document prepared by a panel of experts summarizes our current knowledge on the diagnostic approach, epidemiology, pathophysiology, and management of the various phenotypes of IIA.
Collapse
Affiliation(s)
- O. Vandenplas
- Department of Chest Medicine; Centre Hospitalier Universitaire de Mont-Godinne; Université Catholique de Louvain; Yvoir Belgium
| | - M. Wiszniewska
- Department of Occupational Diseases and Clinical Toxicology; Nofer Institute of Occupational Medicine; Lodz Poland
| | - M. Raulf
- IPA Institute for Prevention and Occupational Medicine of the German Social Accident Insurance; Institute of the Ruhr-Universität Bochum; Bochum Germany
| | - F. de Blay
- Division of Asthma and Allergy; Department of Chest Diseases; University Hospital; Fédération de Médecine Translationnelle de Strasbourg; Strasbourg University; Strasbourg France
| | - R. Gerth van Wijk
- Section of Allergology; Department of Internal Medicine; Erasmus MC; Rotterdam The Netherlands
| | - G. Moscato
- Department of Public Health; Experimental and Forensic Medicine of the University of Pavia; Pavia Italy
| | - B. Nemery
- Department of Public Health and Primary Care; KU Leuven; Leuven Belgium
| | - G. Pala
- Occupational Physician's Division; Local Health Authority of Sassari; Sassari Italy
| | - S. Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research (IdiPAZ); CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - J. Sastre
- Department of Allergy; Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - V. Schlünssen
- Section of Environment, Occupation and Health; Department of Public Health; University of Aarhus; Aarhus Denmark
| | - T. Sigsgaard
- Section of Environment, Occupation and Health; Department of Public Health; University of Aarhus; Aarhus Denmark
| | - A. Siracusa
- Formerly Department of Clinical and Experimental Medicine; University of Perugia; Perugia Italy
| | - S. M. Tarlo
- Department of Medicine and Dalla Lana School of Public Health; University of Toronto; Toronto ON Canada
- Respiratory Division; Toronto Western Hospital; Toronto ON Canada
- Gage Occupational and Environmental Health Unit; St Michael's Hospital; Toronto ON Canada
| | - V. van Kampen
- IPA Institute for Prevention and Occupational Medicine of the German Social Accident Insurance; Institute of the Ruhr-Universität Bochum; Bochum Germany
| | - J.-P. Zock
- Centre for Research in Environmental Epidemiology (CREAL); Barcelona Spain
- Universitat Pompeu Fabra (UPF); Barcelona Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP); Madrid Spain
- Netherlands Institute of Health Services Research (NIVEL); Utrecht the Netherlands
| | - J. Walusiak-Skorupa
- Department of Occupational Diseases and Clinical Toxicology; Nofer Institute of Occupational Medicine; Lodz Poland
| | | |
Collapse
|
42
|
Nørgaard AW, Kudal JD, Kofoed-Sørensen V, Koponen IK, Wolkoff P. Ozone-initiated VOC and particle emissions from a cleaning agent and an air freshener: risk assessment of acute airway effects. ENVIRONMENT INTERNATIONAL 2014; 68:209-18. [PMID: 24769411 DOI: 10.1016/j.envint.2014.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 05/27/2023]
Abstract
Emissions of volatile organic compounds and ultrafine particles from a kitchen cleaning agent (cream) and plug-in air freshener were investigated in a 20 m(3) walk-in climate chamber at low (~5 ppb) and high ozone (~50 ppb) test concentrations and 0.6 air exchange rate. The products emitted terpenes, inter alia limonene, dihydromyrcenol, geraniol, linalool, and glycol ethers. The ozone-initiated reaction products of these compounds were measured by air sampling on Tenax TA followed by thermal desorption GC-MS and air sampling on DNPH cartridges followed by liquid extraction and HPLC-UV analysis. Particle formation was monitored simultaneously. A number of oxygenated and poly-oxygenated reaction products were identified and risk assessed for acute airway effects: formaldehyde, acetaldehyde, acetone, 4-acetyl-1-methylcyclohexene, 6-methyl-5-heptene-2-one, 3-isopropenyl-6-oxo-heptanal, and 4-oxo-pentanal. These compounds generally increased initially at the high ozone concentration, while the terpenes decayed, concurrent with their consumption of ozone. At high ozone concentration, the plug-in air freshener resulted in concentrations of formaldehyde and 4-oxopentanal that may give rise to concern about sensory irritation and airflow limitation, respectively. At high ozone concentration, the kitchen cleaning agent and air freshener resulted in peak particle mass concentrations at 81 μg/m(3) (8.5×10(5) #/cm(3)) and 24 μg/m(3) (2.3×10(4) #/cm(3)), respectively. At low ozone concentration, the particle concentration peaked at 4 μg/m(3) (1.0×10(5) #/cm(3)) after the application of the kitchen cleaning agent, while no increase was observed for the air freshener. The particles, in view of their organic composition and concentration, are not considered to cause acute airway effects. Testing under realistic conditions that mimic user pattern behavior is warranted to obtain acute and longer-term exposure data at realistic indoor ozone concentrations.
Collapse
Affiliation(s)
- A W Nørgaard
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - J D Kudal
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - V Kofoed-Sørensen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - I K Koponen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - P Wolkoff
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| |
Collapse
|
43
|
Maier A, Vincent M, Hack E, Nance P, Ball W. Derivation of an occupational exposure limit for inorganic borates using a weight of evidence approach. Regul Toxicol Pharmacol 2014; 68:424-37. [DOI: 10.1016/j.yrtph.2014.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
|
44
|
Wang J, Li B, Yang Q, Yu W, Wang H, Norback D, Sundell J. Odors and sensations of humidity and dryness in relation to sick building syndrome and home environment in Chongqing, China. PLoS One 2013; 8:e72385. [PMID: 23991107 PMCID: PMC3753273 DOI: 10.1371/journal.pone.0072385] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
The prevalence of perceptions of odors and sensations of air humidity and sick building syndrome symptoms in domestic environments were studied using responses to a questionnaire on the home environment. Parents of 4530 1–8 year old children from randomly selected kindergartens in Chongqing, China participated. Stuffy odor, unpleasant odor, pungent odor, mold odor, tobacco smoke odor, humid air and dry air in the last three month (weekly or sometimes) was reported by 31.4%, 26.5%, 16.1%, 10.6%, 33.0%, 32.1% and 37.2% of the parents, respectively. The prevalence of parents’ SBS symptoms (weekly or sometimes) were: 78.7% for general symptoms, 74.3% for mucosal symptoms and 47.5% for skin symptoms. Multi-nominal regression analyses for associations between odors/sensations of air humidity and SBS symptoms showed that the odds ratio for “weekly” SBS symptoms were consistently higher than for “sometimes” SBS symptoms. Living near a main road or highway, redecoration, and new furniture were risk factors for perceptions of odors and sensations of humid air and dry air. Dampness related problems (mold spots, damp stains, water damage and condensation) were all risk factors for perceptions of odors and sensations of humid air and dry air, as was the presence of cockroaches, rats, and mosquitoes/flies, use of mosquito-repellent incense and incense. Protective factors included cleaning the child’s bedroom every day and frequently exposing bedding to sunshine. In conclusion, adults’ perceptions of odors and sensations of humid air and dry air are related to factors of the home environment and SBS symptoms are related to odor perceptions.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
- Department of Medical Science, Uppsala University and University Hospital, Uppsala, Sweden
| | - Baizhan Li
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
- * E-mail:
| | - Qin Yang
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Wei Yu
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Han Wang
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Dan Norback
- Department of Medical Science, Uppsala University and University Hospital, Uppsala, Sweden
| | - Jan Sundell
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
- Department of Building Science, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Human reference values for acute airway effects of five common ozone-initiated terpene reaction products in indoor air. Toxicol Lett 2012; 216:54-64. [PMID: 23164675 DOI: 10.1016/j.toxlet.2012.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 11/23/2022]
Abstract
Ozone-initiated monoterpene reaction products have been hypothesized to cause eye and airway complaints in office environments and some have been proposed to cause skin irritation and sensitization. The respiratory effects of 60 min exposures to five common oxidation products from abundant terpenoids (e.g. limonene), used as solvent and fragrance in common household products or present in skin lipids (e.g. squalene), were studied in a head out mouse bioassay. This allowed determination of acute upper airway (sensory) irritation, airflow limitation in the conducting airways, and pulmonary irritation in the alveolar region. Derived human reference values (RFs) for sensory irritation were 1.3, 0.16 and 0.3 ppm, respectively, for 4-acetyl-1-methylcyclohexene ( 0.2 ppm) [corrected], 3-isopropenyl-6-oxo-heptanal (IPOH), and 6-methyl-5-heptene-2-one (6-MHO). Derived RFs for airflow limitation were 0.8, 0.45, 0.03, and 0.5 ppm, respectively, for dihydrocarvone (DHC), 0.2 ppm [corrected], 4-oxo-pentanal (0.3 ppm) [corrected], and 6-MHO. Pulmonary irritation was unobserved as a critical effect. The RFs indicate that the oxidation products would not contribute substantially to sensory irritation in eyes and upper airways in office environments. Reported concentrations in offices of 6-MHO and 0.3 ppm [corrected]would not result in airflow limitation. However, based upon the RFs for IPOH and 0.3 ppm [corrected], precautionary actions should be considered that disfavor their formation in excess.
Collapse
|
46
|
Willis DN, Morris JB. Modulation of Sensory Irritation Responsiveness by Adenosine and Malodorants. Chem Senses 2012; 38:91-100. [DOI: 10.1093/chemse/bjs085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC. Preparation of Deproteinized Natural Rubber Latex and Properties of Films Formed by Itself and Several Adhesive Polymer Blends. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301985y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Garnpimol C. Ritthidej
- Department of Pharmaceutics and
Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
48
|
Wolkoff P. Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int J Hyg Environ Health 2012; 216:371-94. [PMID: 22954455 DOI: 10.1016/j.ijheh.2012.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/28/2012] [Accepted: 08/05/2012] [Indexed: 02/06/2023]
Abstract
Concentrations of volatile organic compounds (VOCs) in office environments are generally too low to cause sensory irritation in the eyes and airways on the basis of estimated thresholds for sensory irritation. Furthermore, effects in the lungs, e.g. inflammatory effects, have not been substantiated at indoor relevant concentrations. Some VOCs, including formaldehyde, in combination may under certain environmental and occupational conditions result in reported sensory irritation. The odour thresholds of several VOCs are low enough to influence the perceived air quality that result in a number of acute effects from reported sensory irritation in eyes and airways and deterioration of performance. The odour perception (air quality) depends on a number of factors that may influence the odour impact. There is neither clear indication that office dust particles may cause sensory effects, even not particles spiked with glucans, aldehydes or phthalates, nor lung effects; some inflammatory effects may be observed among asthmatics. Ozone-initiated terpene reaction products may be of concern in ozone-enriched environments (≥0.1mg/m(3)) and elevated limonene concentrations, partly due to the production of formaldehyde. Ambient particles may cause cardio-pulmonary effects, especially in susceptible people (e.g. elderly and sick people); even, short-term effects, e.g. from traffic emission and candle smoke may possibly have modulating and delayed effects on the heart, but otherwise adverse effects in the airways and lung functions have not been observed. Secondary organic aerosols generated in indoor ozone-initiated terpene reactions appear not to cause adverse effects in the airways; rather the gaseous products are relevant. Combined exposure to particles and ozone may evoke effects in subgroups of asthmatics. Based on an analysis of thresholds for odour and sensory irritation selected compounds are recommended for measurements to assess the indoor air quality and to minimize reports of irritation symptoms, deteriorated performance, and cardiovascular and pulmonary effects.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
49
|
|
50
|
Wolkoff P, Clausen PA, Larsen ST, Hammer M, Nielsen GD. Airway effects of repeated exposures to ozone-initiated limonene oxidation products as model of indoor air mixtures. Toxicol Lett 2012; 209:166-72. [DOI: 10.1016/j.toxlet.2011.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 02/03/2023]
|