1
|
Muda I, Mohammadi MJ, Sepahvad A, Farhadi A, Fadhel Obaid R, Taherian M, Alali N, Chowdhury S, Farhadi M. Associated health risk assessment due to exposure to BTEX compounds in fuel station workers. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:435-446. [PMID: 36917686 DOI: 10.1515/reveh-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The purpose of this review study was to assess the risk of exposure to BTEX compounds in gas station workers and operators. CONTENT The main components of BTEX compounds are Benzene, Toluene, Ethyl benzene and Xylene. Petroleum, coal large quantities in crude oil and its products are the most important sources of BTEX compounds. These compounds have both high solubility (found in surface and underground waters) and evaporate quickly. Gas stations are one of the most important sources of emission of these compounds in communities. Workers who work in these places have a lot of exposure to these compounds. Exposure to these dangerous compounds can cause many problems for workers. This study was a narrative review article. According to different databases: PubMed, Web of Science, Springer, Cochran and Science Direct, 451 articles were retrieved. 55 full-text articles entered into the analysis process. Finally, 32 articles were selected in this study. The search was restricted to English-language papers published between 1 February 1995 and 13 August 2022. The results of our study showed that the carcinogenic risk (ILCR) for gas station workers in Bangkok (1.82 ∗ 10-4 - 2.50 ∗ 10-4), Shiraz (6.49∗10-7 - 1.27 ∗ 10-5), Brazil (1.82 ∗ 10-4), Ardabil (390∗10-6 ± 1884 ∗ 10-6) and Johannesburg (3.78 ∗ 10-4) was high. The non-cancer risk for oil industry workers of Dilijan (Iran) who were exposed to toluene was also reported in the range of 10-6∗176. The health of gas station workers is affected by exposure to BTEX and gasoline vapor emissions. According to the result this study, BTEX compounds cause genotoxic changes, chromosomal and genetic abnormalities. SUMMARY AND OUTLOOK Genotoxicity at high levels in gas station workers can cause cancerous and non-cancerous risks. Improving the production process of diesel fuel and gasoline in refineries, using periodical examinations of workers and operators at gas and fuel stations, using Euro 4 and 5 fuels, and replacing worn out cars can play an important role in reducing the emission of BTEX compounds and thus reducing health risks and carcinogenic.
Collapse
Affiliation(s)
- Iskandar Muda
- Department of Doctoral Program, Faculty Economic and Business, Universitas Sumatera Utara, Medan, Indonesia
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arefeh Sepahvad
- Environmental Health Research Center, Lorestan University of Medical sciences, Khorramabad, Iran
| | - Ali Farhadi
- Environmental Health Research Center, Lorestan University of Medical sciences, Khorramabad, Iran
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Masoume Taherian
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najeh Alali
- College of Petroleum Engineering, AL-Ayen University, Thi-Qar, Iraq
| | - Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Majid Farhadi
- Student of Research Committee and Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Abouee-Mehrizi A, Soltanpour Z, Mohammadian Y, Sokouti A, Barzegar S. Health risk assessment of exposure to benzene, toluene, ethyl benzene, and xylene in shoe industry-related workplaces. Toxicol Ind Health 2024; 40:33-40. [PMID: 37936286 DOI: 10.1177/07482337231212693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Benzene, toluene, ethyl benzene, and xylene (BTEX) are prevalent pollutants in shoe industry-related workplaces. The aim of this study was to assess exposure to BTEX and their carcinogenic and non-carcinogenic risks in shoe-industry-related workplaces. This study was carried out at different shoe manufactures, small shoe workshop units, shoe markets, and shoe stores in Tabriz, Iran in 2021. Personal inhalation exposure to BTEX was measured using the National Institute for Occupational Safety and Health (NIOSH) 1501 method. Carcinogenic and non-carcinogenic risks due to inhalation exposure to BTEX were estimated by United States Environmental Protection Agency (U.S. EPA) method based on Mont Carlo simulation. Results showed that the concentrations of benzene and toluene were higher than the threshold limit value (TLV) in both gluing and non-gluing units of shoe manufactures. The total carcinogenic risk (TCR) due to exposure to benzene and ethyl benzene was considerable in all shoe industry-related workplaces. Also, the hazard index (HI) as a non-carcinogenic index was higher than standard levels in all shoe industry-related workplaces. Therefore, shoe industry-related workers are at cancer and non-cancer risks due to exposure to BTEX. Prevention measures need to be implemented to reduce the concentration of BTEX in shoe industry-related workplaces.
Collapse
Affiliation(s)
- Amirreza Abouee-Mehrizi
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Soltanpour
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sokouti
- Department of Health, Safety and Environment Management, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Barzegar
- Ms.c in Occupational Health Engineering, Sharif Safety Index Company, Tehran, Iran
| |
Collapse
|
3
|
Burgoon LD, Borgert CJ, Fuentes C, Klaunig JE. Kinetically-derived maximal dose (KMD) indicates lack of human carcinogenicity of ethylbenzene. Arch Toxicol 2024; 98:327-334. [PMID: 38059960 PMCID: PMC10761441 DOI: 10.1007/s00204-023-03629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The kinetically-derived maximal dose (KMD) is defined as the maximal external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated. Toxicity produced at doses above the KMD can be qualitatively different from toxicity produced at lower doses. Here, we test the hypothesis that neoplastic lesions reported in the National Toxicology Program's (NTP) rodent cancer bioassay with ethylbenzene are a high-dose phenomenon secondary to saturation of elimination kinetics. To test this, we applied Bayesian modeling on kinetic data for ethylbenzene from rats and humans to estimate the Vmax and Km for the Michaelis-Menten equation that governs the elimination kinetics. Analysis of the Michaelis-Menten elimination curve generated from those Vmax and Km values indicated KMD ranges for venous ethylbenzene of 8-17 mg/L in rats and 10-18 mg/L in humans. Those venous concentrations are produced by inhalation concentrations of around 200 ppm ethylbenzene, which is well above typical human exposures. These KMD estimates support the hypothesis that neoplastic lesions seen in the NTP rodent bioassay occur secondary to saturation of ethylbenzene elimination pathways and are not relevant for human risk assessment. Thus, ethylbenzene does not pose a credible cancer risk to humans under foreseeable exposure conditions. Cancer risk assessments focused on protecting human health should avoid endpoint data from rodents exposed to ethylbenzene above the KMD range and future toxicological testing should focus on doses below the KMD range.
Collapse
Affiliation(s)
| | - Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc., University of Florida College of Veterinary Medicine, Gainesville, FL, USA.
| | | | - James E Klaunig
- Indiana University School of Public Health, Bloomington, IN, USA
| |
Collapse
|
4
|
Wu X, Tan Z, Liu R, Liao Z, Ou H. Gaseous products generated from polyethylene and polyethylene terephthalate during ultraviolet irradiation: Mechanism, pathway and toxicological analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162717. [PMID: 36907426 DOI: 10.1016/j.scitotenv.2023.162717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The generation of various degradation products from microplastics (MPs) has been confirmed under ultraviolet (UV) irradiation. The gaseous products, primarily volatile organic compounds (VOCs), are usually overlooked, leading to potential unknown risks to humans and the environment. In this study, the generation of VOCs from polyethylene (PE) and polyethylene terephthalate (PET) under UV-A (365 nm) and UV-C (254 nm) irradiation in water matrixes were compared. More than 50 different VOCs were identified. For PE, UV-A-derived VOCs mainly included alkenes and alkanes. On this basis, UV-C-derived VOCs included various oxygen-containing organics, such as alcohols, aldehydes, ketones, carboxylic acid and even lactones. For PET, both UV-A and UV-C irradiation induced the generation of alkenes, alkanes, esters, phenols, etc., and the differences between these two reactions were insignificant. Toxicological prioritization prediction revealed that these VOCs have diverse toxicological profiles. The VOCs with the highest potential toxicity were dimethyl phthalate (CAS: 131-11-3) from PE and 4-acetylbenzoate (3609-53-8) from PET. Furthermore, some alkane and alcohol products also presented high potential toxicity. The quantitative results indicated that the yield of these toxic VOCs from PE could reach 102 μg g-1 under UV-C treatment. The degradation mechanisms of MPs included direct scission by UV irradiation and indirect oxidation induced by diverse activated radicals. The former mechanism was dominant in UV-A degradation, while UV-C included both mechanisms. Both mechanisms contributed to the generation of VOCs. Generally, MPs-derived VOCs can be released from water to the air after UV irradiation, posing a potential risk to ecosystems and human beings, especially for UV-C disinfection indoors in water treatments.
Collapse
Affiliation(s)
- Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Ruijuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zhianqi Liao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
5
|
Colacci A, Corvi R, Ohmori K, Paparella M, Serra S, Da Rocha Carrico I, Vasseur P, Jacobs MN. The Cell Transformation Assay: A Historical Assessment of Current Knowledge of Applications in an Integrated Approach to Testing and Assessment for Non-Genotoxic Carcinogens. Int J Mol Sci 2023; 24:ijms24065659. [PMID: 36982734 PMCID: PMC10057754 DOI: 10.3390/ijms24065659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
The history of the development of the cell transformation assays (CTAs) is described, providing an overview of in vitro cell transformation from its origin to the new transcriptomic-based CTAs. Application of this knowledge is utilized to address how the different types of CTAs, variously addressing initiation and promotion, can be included on a mechanistic basis within the integrated approach to testing and assessment (IATA) for non-genotoxic carcinogens. Building upon assay assessments targeting the key events in the IATA, we identify how the different CTA models can appropriately fit, following preceding steps in the IATA. The preceding steps are the prescreening transcriptomic approaches, and assessment within the earlier key events of inflammation, immune disruption, mitotic signaling and cell injury. The CTA models address the later key events of (sustained) proliferation and change in morphology leading to tumor formation. The complementary key biomarkers with respect to the precursor key events and respective CTAs are mapped, providing a structured mechanistic approach to represent the complexity of the (non-genotoxic) carcinogenesis process, and specifically their capacity to identify non-genotoxic carcinogenic chemicals in a human relevant IATA.
Collapse
Affiliation(s)
- Annamaria Colacci
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
- Correspondence:
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy
| | - Kyomi Ohmori
- Chemical Division, Kanagawa Prefectural Institute of Public Health, Chigasaki 253-0087, Japan
- Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, A-6020 Innbruck, Austria
| | - Stefania Serra
- Agency for Prevention, Environment and Energy, Emilia-Romagna (Arpae), Via Po 5, I-40139 Bologna, Italy
| | | | - Paule Vasseur
- Universite de Lorraine, CNRS UMR 7360 LIEC, Laboratoire Interdisciplinaire des Environnements Continentaux, 57070 Metz, France
| | - Miriam Naomi Jacobs
- Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton OX11 0RQ, UK
| |
Collapse
|
6
|
Adegoke KA, Adu FA, Oyebamiji AK, Bamisaye A, Adigun RA, Olasoji SO, Ogunjinmi OE. Microplastics toxicity, detection, and removal from water/wastewater. MARINE POLLUTION BULLETIN 2023; 187:114546. [PMID: 36640497 DOI: 10.1016/j.marpolbul.2022.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The world has witnessed massive and preeminent microplastics (MPs) pollution in water bodies due to the inevitable continuous production of plastics for various advantageous chemical and mechanical features. Plastic pollution, particularly contamination by MPs (plastic particles having a diameter lesser than 5 mm), has been a rising environmental concern in recent years due to the inappropriate disposal of plastic trash. This study presents the recent advancements in different technologies for MPs removal in order to gain proper insight into their strengths and weaknesses, thereby orchestrating the preparation for innovation in the field. The production, origin, and global complexity of MPs were discussed. This study also reveals MPs' mode of transportation, its feedstock polymers, toxicities, detection techniques, and the conventional removal strategies of MPs from contaminated systems. Modification of conventional methods vis-à-vis new materials/techniques and other emerging technologies, such as magnetic extraction and sol-gel technique with detailed mechanistic information for the removal of MPs are presented in this study. Conclusively, some future research outlooks for advancing the MPs removal technologies/materials for practical realization are highlighted.
Collapse
Affiliation(s)
- Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria; Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Folasade Abimbola Adu
- Discipline of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria.
| | - Abayomi Bamisaye
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Rasheed Adewale Adigun
- Department of Chemical Sciences, Fountain University, P. M. B. 4491, Osogbo, Osun State, Nigeria.
| | | | | |
Collapse
|
7
|
Colas A, Baudet A, Le Cann P, Blanchard O, Gangneux JP, Baurès E, Florentin A. Quantitative Health Risk Assessment of the Chronic Inhalation of Chemical Compounds in Healthcare and Elderly Care Facilities. TOXICS 2022; 10:toxics10030141. [PMID: 35324766 PMCID: PMC8954219 DOI: 10.3390/toxics10030141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Previous studies have described the chemical pollution in indoor air of healthcare and care facilities. From these studies, the main objective of this work was to conduct a quantitative health risk assessment of the chronic inhalation of chemical compounds by workers in healthcare and elderly care facilities (hospitals, dental and general practitioner offices, pharmacies and nursing homes). The molecules of interest were 36 volatile and 13 semi-volatile organic compounds. Several professional exposure scenarios were developed in these facilities. The likelihood and severity of side effects that could occur were assessed by calculating the hazard quotient for deterministic effects, and the excess lifetime cancer risk for stochastic effects. No hazard quotient was greater than 1. Three compounds had a hazard quotient above 0.1: 2-ethyl-1-hexanol in dental and general practitioner offices, ethylbenzene and acetone in dental offices. Only formaldehyde presented an excess lifetime cancer risk greater than 1 × 10−5 in dental and general practitioner offices (maximum value of 3.8 × 10−5 for general practitioners). The health risk for chronic inhalation of most compounds investigated did not appear to be of concern. Some values tend to approach the acceptability thresholds justifying a reflection on the implementation of corrective actions such as the installation of ventilation systems.
Collapse
Affiliation(s)
- Anaïs Colas
- Faculté de Médecine, Université de Lorraine, F-54505 Vandoeuvre-les-Nancy, France;
- CHRU-Nancy, F-54505 Vandoeuvre-les-Nancy, France;
- Correspondence:
| | - Alexandre Baudet
- CHRU-Nancy, F-54505 Vandoeuvre-les-Nancy, France;
- Faculté D’odontologie, Université de Lorraine, F-54505 Vandoeuvre-les-Nancy, France
- APEMAC, Université de Lorraine, F-54505 Vandoeuvre-les-Nancy, France
| | - Pierre Le Cann
- EHESP School of Public Health, Inserm, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, Université de Rennes, F-35000 Rennes, France; (P.L.C.); (O.B.); (J.-P.G.); (E.B.)
| | - Olivier Blanchard
- EHESP School of Public Health, Inserm, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, Université de Rennes, F-35000 Rennes, France; (P.L.C.); (O.B.); (J.-P.G.); (E.B.)
| | - Jean-Pierre Gangneux
- EHESP School of Public Health, Inserm, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, Université de Rennes, F-35000 Rennes, France; (P.L.C.); (O.B.); (J.-P.G.); (E.B.)
- Laboratoire de Parasitologie-Mycologie, CHU-Rennes, F-35000 Rennes, France
| | - Estelle Baurès
- EHESP School of Public Health, Inserm, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, Université de Rennes, F-35000 Rennes, France; (P.L.C.); (O.B.); (J.-P.G.); (E.B.)
| | - Arnaud Florentin
- Faculté de Médecine, Université de Lorraine, F-54505 Vandoeuvre-les-Nancy, France;
- CHRU-Nancy, F-54505 Vandoeuvre-les-Nancy, France;
- APEMAC, Université de Lorraine, F-54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
8
|
Park YK, Shim WG, Jung SC, Jung HY, Kim SC. Catalytic removal of volatile organic compounds using black mass from spent batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Kim SC, Kim MK, Jung SC, Jung HY, Kim H, Park YK. Effect of palladium on the black mass-based catalyst prepared from spent Zn/Mn alkaline batteries for catalytic combustion of volatile organic compounds. CHEMOSPHERE 2021; 276:130209. [PMID: 34088094 DOI: 10.1016/j.chemosphere.2021.130209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
A large amount of spent batteries is produced annually. When spente batteries are buried, their harmful components may contaminate soil and water. Therefore, recycling of spent batteries is essential for environmental reasons. We evaluated the BM (black mass) of spent Zn/Mn alkaline batteries as a catalyst substance for the catalytic combustion of volatile organic compounds (VOCs: benzene, toluene, and o-xylene). The SBM catalyst (black mass-based catalyst) was prepared by treating BM with 0.1 N of sulfuric acid solution. Major elements of the SBM catalyst were manganese, zinc, iron, aluminum, potassium, and sodium except for carbon. In addition, to find out the additive effect of palladium on the SBM catalyst, we prepared the Pd/SBM catalysts using a conventional impregnation method. We investigated the physicochemical properties of the SBM and Pd/SBM catalysts by instrumental analysis. Benzene, toluene, and o-xylene (BTX) were oxidized completely over the SBM catalyst at reaction temperatures less than 410, 340, and 410 °C, respectively (gas hourly space velocity: 40,000 h-1). As expected, for the Pd/SBM catalysts, increasing the palladium loading on the SBM from 0.1 wt% to 1.0 wt% increased the conversions of BTX. In the 1.0 wt% Pd/SBM catalyst, the reaction temperatures for catalytic combustion of BTX were greatly reduced to 310, 260, and 250 °C, respectively (gas hourly space velocity: 40,000 h-1). Instrumental analysis indicated that the increase in activity by adding palladium resulted from the active ingredient (palladium oxide: PdO) and better redox properties.
Collapse
Affiliation(s)
- Sang Chai Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea
| | - Min Ki Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon, 57975, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyunook Kim
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
10
|
Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes. ENERGIES 2021. [DOI: 10.3390/en14134061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The properties and the applications of the main monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene, styrene, and the three xylene isomers) and the industrial processes for their manufacture from fossil raw materials are summarized. Potential ways for their production from renewable sources with thermo-catalytic processes are described and discussed in detail. The perspectives of the future industrial organic chemistry in relation to the production of high-octane bio-gasolines and monocyclic aromatic hydrocarbons as renewable chemical intermediates are discussed.
Collapse
|
11
|
|
12
|
Rajabi H, Hadi Mosleh M, Mandal P, Lea-Langton A, Sedighi M. Emissions of volatile organic compounds from crude oil processing - Global emission inventory and environmental release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138654. [PMID: 32498184 DOI: 10.1016/j.scitotenv.2020.138654] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Airborne Volatile organic compounds (VOCs) are known to have strong and adverse impacts on human health and the environment by contributing to the formation of tropospheric ozone. VOCs can escape during various stages of crude oil processing, from extraction to refinery, hence the crude oil industry is recognised as one of the major sources of VOC release into the environment. In the last few decades, volatile emissions from crude oil have been investigated either directly by means of laboratory and field-based analyses, or indirectly via emission inventories (EIs) which have been used to develop regulatory and controlling measures in the petroleum industry. There is a vast amount of scattered data in the literature for both regional emissions from crude oil processing and scientific measurements of VOC releases. This paper aims to provide a critical analysis of the overall scale of global emissions of VOCs from all stages of oil processing based on data reported in the literature. The volatile compounds, identified via EIs of the crude oil industry or through direct emissions from oil mass, are collected and analysed to present a global-scale evaluation of type, average concentration and detection frequency of the most prevalent VOCs. We provide a critical analysis on the total averages of VOCs and key pieces of evidence which highlights the necessity of implementing control measures to regulate crude oil volatile emissions (CVEs) in primary steps of extraction-to-refinery pathways of crude oil processing. We have identified knowledge gaps in this field which are of importance to control the release of VOCs from crude oil, independent of oil type, location, operating conditions and metrological parameters.
Collapse
Affiliation(s)
- Hamid Rajabi
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| | - Mojgan Hadi Mosleh
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK.
| | - Parthasarathi Mandal
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| | - Amanda Lea-Langton
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, the University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Nowakowicz-Dębek B, Petkowicz J, Buszewicz G, Wlazło Ł, Ossowski M. Technical note: Residues of gaseous air pollutants in rabbit (Oryctolagus cuniculus) tissues. WORLD RABBIT SCIENCE 2020. [DOI: 10.4995/wrs.2020.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The modern consumer is concerned not only for meat quality, but also about animal welfare and the environment. Studies were conducted to determine the concentration of gaseous residues in the tissues of rabbits. For this purpose, gaseous air pollutants were measured at the height of rabbit cages. Immediately after slaughter, samples were taken for analysis to determine the level of residual pollutants in the tissues (blood, perirenal fat and lung). Headspace gas chromatography was performed on the tissue samples to test for volatile toxic substances. Gas residues of 11 compounds were determined in the samples of blood, perirenal fat and lungs. The same chemicals were present in the air of the farm and the animal tissues, which may indicate their capacity for bioaccumulation. We recommend that the results should be used to develop guidelines regarding the welfare of meat rabbits and requirements for laboratory rabbits.
Collapse
|
14
|
Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:179-199. [PMID: 29035713 DOI: 10.1016/j.jhazmat.2017.10.014] [Citation(s) in RCA: 1473] [Impact Index Per Article: 210.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 05/18/2023]
Abstract
Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times.
Collapse
Affiliation(s)
- John N Hahladakis
- School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom.
| | - Costas A Velis
- School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom.
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststr. 23, D.73527, Schwäbisch Gmünd, Germany
| | - Eleni Iacovidou
- School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom
| | - Phil Purnell
- School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom
| |
Collapse
|
15
|
He Z, Li G, Chen J, Huang Y, An T, Zhang C. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. ENVIRONMENT INTERNATIONAL 2015; 77:85-94. [PMID: 25667057 DOI: 10.1016/j.envint.2015.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops.
Collapse
Affiliation(s)
- Zhigui He
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiying Li
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiangyao Chen
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong Huang
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taicheng An
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Chaosheng Zhang
- GIS Centre, Ryan Institute and School of Geography and Archaeology, National University of Ireland, Galway, Ireland
| |
Collapse
|
16
|
Saghir SA, Zhang F, Rick DL, Kan L, Bus JS, Bartels MJ. Authors response to Huff et al., “Clarifying carcinogenicity of ethylbenzene”. Regul Toxicol Pharmacol 2010. [DOI: 10.1016/j.yrtph.2010.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|