1
|
Borgert CJ, Burgoon LD, Matthews JC. The physiological and biochemical basis of potency thresholds modeled using human estrogen receptor alpha: implications for identifying endocrine disruptors. Arch Toxicol 2024; 98:1795-1807. [PMID: 38704805 PMCID: PMC11106131 DOI: 10.1007/s00204-024-03723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/29/2024] [Indexed: 05/07/2024]
Abstract
The endocrine system functions by interactions between ligands and receptors. Ligands exhibit potency for binding to and interacting with receptors. Potency is the product of affinity and efficacy. Potency and physiological concentration determine the ability of a ligand to produce physiological effects. The kinetic behavior of ligand-receptor interactions conforms to the laws of mass action. The laws of mass action define the relationship between the affinity of a ligand and the fraction of cognate receptors that it occupies at any physiological concentration. We previously identified the minimum ligand potency required to produce clinically observable estrogenic agonist effects via the human estrogen receptor-alpha (ERα). By examining data on botanical estrogens and dietary supplements, we demonstrated that ERα ligands with potency lower than one one-thousandth that of the primary endogenous hormone 17β-estradiol (E2) do not produce clinically observable estrogenic effects. This allowed us to propose a Human-Relevant Potency Threshold (HRPT) for ERα ligands of 1 × 10-4 relative to E2. Here, we test the hypothesis that the HRPT for ERα arises from the receptor occupancy by the normal metabolic milieu of endogenous ERα ligands. The metabolic milieu comprises precursors to hormones, metabolites of hormones, and other normal products of metabolism. We have calculated fractional receptor occupancies for ERα ligands with potencies below and above the previously established HRPT when normal circulating levels of some endogenous ERα ligands and E2 were also present. Fractional receptor occupancy calculations showed that individual ERα ligands with potencies more than tenfold higher than the HRPT can compete for occupancy at ERα against individual components of the endogenous metabolic milieu and against mixtures of those components at concentrations found naturally in human blood. Ligands with potencies less than tenfold higher than the HRPT were unable to compete successfully for ERα. These results show that the HRPT for ERα agonism (10-4 relative to E2) proposed previously is quite conservative and should be considered strong evidence against the potential for disruption of the estrogenic pathway. For chemicals with potency 10-3 of E2, the potential for estrogenic endocrine disruption must be considered equivocal and subject to the presence of corroborative evidence. Most importantly, this work demonstrates that the endogenous metabolic milieu is responsible for the observed ERα agonist HRPT, that this HRPT applies also to ERα antagonists, and it provides a compelling mechanistic explanation for the HRPT that is grounded in basic principles of molecular kinetics using well characterized properties and concentrations of endogenous components of normal metabolism.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | | | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| |
Collapse
|
2
|
Modica R, Benevento E, Colao A. Endocrine-disrupting chemicals (EDCs) and cancer: new perspectives on an old relationship. J Endocrinol Invest 2023; 46:667-677. [PMID: 36526827 DOI: 10.1007/s40618-022-01983-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Environmental endocrine-disrupting chemicals (EDCs) are a mixture of chemical compounds capable to interfere with endocrine axis at different levels and to which population is daily exposed. This paper aims to review the relationship between EDCs and breast, prostate, testicle, ovary, and thyroid cancer, discussing carcinogenic activity of known EDCs, while evaluating the impact on public health. METHODS A literature review regarding EDCs and cancer was carried out with particular interest on meta-analysis and human studies. RESULTS The definition of EDCs has been changed through years, and currently there are no common criteria to test new chemicals to clarify their possible carcinogenic activity. Moreover, it is difficult to assess the full impact of human exposure to EDCs because adverse effects develop latently and manifest at different ages, even if preclinical and clinical evidence suggest that developing fetus and neonates are most vulnerable to endocrine disruption. CONCLUSION EDCs represent a major environmental and health issue that has a role in cancer development. There are currently some EDCs that can be considered as carcinogenic, like dioxin and cadmium for breast and thyroid cancer; arsenic, asbestos, and dioxin for prostate cancer; and organochlorines/organohalogens for testicular cancer. New evidence supports the role of other EDCs as possible carcinogenic and pregnant women should avoid risk area and exposure. The relationship between EDCs and cancer supports the need for effective prevention policies increasing public awareness.
Collapse
Affiliation(s)
- R Modica
- Department of Clinical Medicine and Surgery, Endocrinology Unit of Federico, II University of Naples, Via Pansini N.5, 80131, Naples, Italy.
| | - E Benevento
- Department of Clinical Medicine and Surgery, Endocrinology Unit of Federico, II University of Naples, Via Pansini N.5, 80131, Naples, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit of Federico, II University of Naples, Via Pansini N.5, 80131, Naples, Italy
- UNESCO Chair On "Health Education and Sustainable Development", Federico II University of Naples, Via Pansini N.5, 80131, Naples, Italy
| |
Collapse
|
3
|
Alarcan J, de Sousa G, Katsanou ES, Spyropoulou A, Batakis P, Machera K, Rahmani R, Lampen A, Braeuning A, Lichtenstein D. Investigating the in vitro steatotic mixture effects of similarly and dissimilarly acting test compounds using an adverse outcome pathway-based approach. Arch Toxicol 2021; 96:211-229. [PMID: 34778935 PMCID: PMC8748329 DOI: 10.1007/s00204-021-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dissimilarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid (PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly acting compounds. We first determined relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumulation were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying the adverse outcome.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Georges de Sousa
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | | | | | | | | | - Roger Rahmani
- Institut Sophia Agrobiotech, Université Côte d'Azur-INRAE-CNRS, 06903, Sophia Antipolis, France
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
4
|
Vandenberg LN, Bugos J. Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades. Curr Environ Health Rep 2021; 8:54-70. [PMID: 33415721 DOI: 10.1007/s40572-020-00300-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Parabens are chemicals containing alkyl-esters of p-hydroxybenzoic acid, which give them antimicrobial, antifungal, and preservative properties. Propylparaben (PP) is one paraben that has been widely used in personal care products, cosmetics, pharmaceuticals, and food. In this review, we address the ongoing controversy over the safety of parabens, and PP specifically. These chemicals have received significant public attention after studies published almost 20 years ago suggested plausible associations between PP exposures and breast cancer. RECENT FINDINGS Here, we use key characteristics, a systematic approach to evaluate the endocrine disrupting properties of PP based on features of "known" endocrine disruptors, and consider whether its classification as a "weak" estrogen should alleviate public health concerns over human exposures. We also review the available evidence from rodent and human studies to illustrate how the large data gaps that exist in hazard assessments raise concerns about current evaluations by regulatory agencies that PP use is safe. Finally, we address the circular logic that is used to suggest that because PP has been used for several decades, it must be safe. We conclude that inadequate evidence has been provided for the safe use of PP in food, cosmetics, and consumer products.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA.
| | - Jennifer Bugos
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, Borgert CJ, Dekant W, Dietrich D, Domingo JL, Gori GB, Greim H, Hengstler J, Kacew S, Marquardt H, Pelkonen O, Savolainen K, Heslop-Harrison P, Vermeulen NP. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? Toxicol Lett 2020; 331:259-264. [PMID: 32360654 DOI: 10.1016/j.toxlet.2020.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Herman Autrup
- Institute of Public Health, University of Aarhus, Aarhus, Denmark
| | - Frank A Barile
- College of Pharmacy and Health Sciences, St John's University, Queens, NY, USA
| | | | - Bas J Blaauboer
- Division of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Alan Boobis
- National Heart & Lung Institute, Imperial College, London, UK
| | - Herrmann Bolt
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | | | - Wolfgang Dekant
- Department of Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Dietrich
- Human and Environmental Toxicology, University of Konstanz, Konstanz, Germany
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat 'Rovira i Virgili', Reus, Spain
| | | | - Helmut Greim
- Technical University of Munich, Hohenbachernstrasse 15-17, D-85350, Freising, Weihenstephan, Germany.
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Sam Kacew
- McLaughlin Centre for Risk Assessment, University of Ottawa, Ottawa, Canada
| | | | - Olavi Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Kai Savolainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nico P Vermeulen
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, Borgert CJ, Dekant W, Dietrich D, Domingo JL, Gori GB, Greim H, Hengstler J, Kacew S, Marquardt H, Pelkonen O, Savolainen K, Heslop-Harrison P, Vermeulen NP. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103396. [PMID: 32391796 DOI: 10.1016/j.etap.2020.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.
Collapse
Affiliation(s)
- Herman Autrup
- Institute of Public Health, University of Aarhus, Aarhus, Denmark
| | - Frank A Barile
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, USA
| | | | - Bas J Blaauboer
- Division of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alan Boobis
- National Heart & Lung Institute, Imperial College, London, UK
| | - Herrmann Bolt
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | | | - Wolfgang Dekant
- Department of Toxicology, University of Wuerzburg, Wuerzburg, Germany.
| | - Daniel Dietrich
- Human and Environmental Toxicology, University of Konstanz, Konstanz, Germany
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat 'Rovira i Virgili', Reus, Spain
| | | | - Helmut Greim
- Institute of Public Health, University of Aarhus, Aarhus, Denmark.
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Sam Kacew
- McLaughlin Centre for Risk Assessment, University of Ottawa, Ottawa, Canada
| | | | - Olavi Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Kai Savolainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology University of Leicester, Leicester, UK
| | - Nico P Vermeulen
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, Hengstler J, Borgert CJ, Dekant W, Dietrich D, Domingo JL, Gori GB, Greim H, Kacew S, Marquardt H, Pelkonen O, Savolainen K, Heslop-Harrison P, Vermeulen NP. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? Food Chem Toxicol 2020; 142:111349. [DOI: 10.1016/j.fct.2020.111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
|
8
|
Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, Borgert CJ, Dekant W, Dietrich D, Domingo JL, Gori GB, Greim H, Hengstler J, Kacew S, Marquardt H, Pelkonen O, Savolainen K, Heslop-Harrison P, Vermeulen NP. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? Chem Biol Interact 2020; 326:109099. [DOI: 10.1016/j.cbi.2020.109099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, Borgert CJ, Dekant W, Dietrich D, Domingo JL, Gori GB, Greim H, Hengstler J, Kacew S, Marquardt H, Pelkonen O, Savolainen K, Heslop-Harrison P, Vermeulen NP. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:485-494. [PMID: 32552445 DOI: 10.1080/15287394.2020.1756592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea, and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.
Collapse
Affiliation(s)
- Herman Autrup
- Institute of Public Health, University of Aarhus , Aarhus, Denmark
| | - Frank A Barile
- College of Pharmacy and Health Sciences, St John's University , Queens, USA
| | | | - Bas J Blaauboer
- Division of Toxicology, Institute for Risk Assessment Sciences, Utrecht University , Utrecht, The Netherlands
| | - Alan Boobis
- National Heart & Lung Institute, Imperial College , London, UK
| | - Herrmann Bolt
- Leibniz Research Centre for Working Environment and Human Factors (Ifado), TU Dortmund , Dortmund, Germany
| | | | - Wolfgang Dekant
- Department of Toxicology, University of Wuerzburg , Wuerzburg, Germany
| | - Daniel Dietrich
- Human and Environmental Toxicology, University of Konstanz , Konstanz, Germany
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat 'Rovira I Virgili' , Reus, Spain
| | | | - Helmut Greim
- Technical University of Munich D-85350, Freising-Weihenstephan, Germany
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (Ifado), TU Dortmund , Dortmund, Germany
| | - Sam Kacew
- McLaughlin Centre for Risk Assessment, University of Ottawa , Ottawa, Canada
| | | | - Olavi Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu , Finland
| | - Kai Savolainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health , Helsinki, Finland
| | - Pat Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester , Leicester, UK
| | - Nico P Vermeulen
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit , Amsterdam, The Netherlands
| |
Collapse
|
10
|
Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity: how to evaluate the risk of the S-EDCs? Arch Toxicol 2020; 94:2549-2557. [PMID: 32514609 PMCID: PMC7367909 DOI: 10.1007/s00204-020-02800-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.
Collapse
|
11
|
Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? Toxicol In Vitro 2020; 67:104861. [PMID: 32360643 DOI: 10.1016/j.tiv.2020.104861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.
Collapse
|
12
|
Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg A, Rahmani R, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla SJ, Wollscheid B, Zucchini-Pascal N, Braeuning A, Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol 2020; 139:111283. [DOI: 10.1016/j.fct.2020.111283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
|
13
|
Webster F, Gagné M, Patlewicz G, Pradeep P, Trefiak N, Judson RS, Barton-Maclaren TS. Predicting estrogen receptor activation by a group of substituted phenols: An integrated approach to testing and assessment case study. Regul Toxicol Pharmacol 2019; 106:278-291. [PMID: 31121201 DOI: 10.1016/j.yrtph.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Traditional approaches for chemical risk assessment cannot keep pace with the number of substances requiring assessment. Thus, in a global effort to expedite and modernize chemical risk assessment, New Approach Methodologies (NAMs) are being explored and developed. Included in this effort is the OECD Integrated Approaches for Testing and Assessment (IATA) program, which provides a forum for OECD member countries to develop and present case studies illustrating the application of NAM in various risk assessment contexts. Here, we present an IATA case study for the prediction of estrogenic potential of three target phenols: 4-tert-butylphenol, 2,4-di-tert-butylphenol and octabenzone. Key features of this IATA include the use of two computational approaches for analogue selection for read-across, data collected from traditional and NAM sources, and a workflow to generate predictions regarding the targets' ability to bind the estrogen receptor (ER). Endocrine disruption can occur when a chemical substance mimics the activity of natural estrogen by binding to the ER and, if potency and exposure are sufficient, alters the function of the endocrine system to cause adverse effects. The data indicated that of the three target substances that were considered herein, 4-tert-butylphenol is a potential endocrine disruptor. Further, this IATA illustrates that the NAM approach explored is health protective when compared to in vivo endpoints traditionally used for human health risk assessment.
Collapse
|
14
|
Crépet A, Vanacker M, Sprong C, de Boer W, Blaznik U, Kennedy M, Anagnostopoulos C, Christodoulou DL, Ruprich J, Rehurkova I, Domingo JL, Hamborg Jensen B, Metruccio F, Moretto A, Jacxsens L, Spanoghe P, Senaeve D, van der Voet H, van Klaveren J. Selecting mixtures on the basis of dietary exposure and hazard data: application to pesticide exposure in the European population in relation to steatosis. Int J Hyg Environ Health 2019; 222:291-306. [DOI: 10.1016/j.ijheh.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022]
|
15
|
Zacharia LC. Permitted Daily Exposure of the Androgen Receptor Antagonist Flutamide. Toxicol Sci 2018; 159:279-289. [PMID: 28666357 DOI: 10.1093/toxsci/kfx135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This report aims to determine the permitted daily exposure (PDE) of flutamide, an androgen receptor blocker, as directed by guideline EMA/CHMP/CVPM/SWP/169430/2012 that came into effect on June 2015. A literature review was conducted to identify toxicity studies of flutamide. Hazards and sensitive endpoints were determined. Based on the no adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) reported from both reproductive, developmental, and 28-day toxicity studies the PDE was calculated. Most of the toxicity studies converge toward a NOAEL of 1 mg/kg/d that translates to a PDE of 0.1 mg/d. However, taking into consideration the worst case scenarios for additional safety a PDE of 0.025 mg/d (25 μg/d) was calculated based on a reported NOAEL of 0.25 mg/kg/d. A PDE of 0.05 mg/d (50 μg/d) was also calculated from reproductive/developmental toxicity studies, which is in close agreement with the PDE from the 28-day toxicity studies. Considering the lowest PDE of 0.025 mg/d, residual flutamide at this dose is unlikely to pose any risk to humans. Nonmonotonic dose response (NMDR) effects of flutamide were not supported by literature. Oral route of administration was considered.
Collapse
Affiliation(s)
- Lefteris C Zacharia
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, 1700 Nicosia, Cyprus
| |
Collapse
|
16
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Fox MA, Brewer LE, Martin L. An Overview of Literature Topics Related to Current Concepts, Methods, Tools, and Applications for Cumulative Risk Assessment (2007-2016). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040389. [PMID: 28387705 PMCID: PMC5409590 DOI: 10.3390/ijerph14040389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 11/26/2022]
Abstract
Cumulative risk assessments (CRAs) address combined risks from exposures to multiple chemical and nonchemical stressors and may focus on vulnerable communities or populations. Significant contributions have been made to the development of concepts, methods, and applications for CRA over the past decade. Work in both human health and ecological cumulative risk has advanced in two different contexts. The first context is the effects of chemical mixtures that share common modes of action, or that cause common adverse outcomes. In this context two primary models are used for predicting mixture effects, dose addition or response addition. The second context is evaluating the combined effects of chemical and nonchemical (e.g., radiation, biological, nutritional, economic, psychological, habitat alteration, land-use change, global climate change, and natural disasters) stressors. CRA can be adapted to address risk in many contexts, and this adaptability is reflected in the range in disciplinary perspectives in the published literature. This article presents the results of a literature search and discusses a range of selected work with the intention to give a broad overview of relevant topics and provide a starting point for researchers interested in CRA applications.
Collapse
Affiliation(s)
- Mary A Fox
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - L Elizabeth Brewer
- Office of the Science Advisor, U.S. Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Washington, DC 20004, USA.
| | - Lawrence Martin
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC 20004, USA.
| |
Collapse
|
18
|
Trasande L, Vandenberg LN, Bourguignon JP, Myers JP, Slama R, Vom Saal F, Zoeller RT. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals. J Epidemiol Community Health 2016; 70:1051-1056. [PMID: 27417427 DOI: 10.1136/jech-2016-207841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, 'manufactured doubt' continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. 'Good laboratory practice' (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA Department of Environmental Medicine and Population Health, New York University School of Medicine, New York, New York, USA Department of Population Health, New York University School of Medicine, New York, New York, USA NYU Wagner School of Public Service, New York, New York, USA Department of Nutrition, Food & Public Health, NYU Steinhardt School of Culture, Education and Human Development, New York, New York, USA NYU Global Institute of Public Health, New York, New York, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Jean-Pierre Bourguignon
- Pediatric Endocrinology, CHU Liège and Neuroendocrinology Unit, GIGA Neurosciences, Universite de Liege, Liège, Belgium
| | | | - Remy Slama
- Inserm, CNRS and Univ. Grenoble Alpes joint research center (IAB), Team of Environmental Epidemiology, Grenoble, France
| | - Frederick Vom Saal
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
19
|
Comparing effect levels of regulatory studies with endpoints derived in targeted anti-androgenic studies: example prochloraz. Arch Toxicol 2016; 91:143-162. [DOI: 10.1007/s00204-016-1678-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
20
|
An exposure:activity profiling method for interpreting high-throughput screening data for estrogenic activity—Proof of concept. Regul Toxicol Pharmacol 2015; 71:398-408. [DOI: 10.1016/j.yrtph.2015.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
21
|
Zoeller RT, Bergman Å, Becher G, Bjerregaard P, Bornman R, Brandt I, Iguchi T, Jobling S, Kidd KA, Kortenkamp A, Skakkebaek NE, Toppari J, Vandenberg LN. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health 2014; 13:118. [PMID: 25533907 PMCID: PMC4298083 DOI: 10.1186/1476-069x-13-118] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/08/2014] [Indexed: 05/17/2023]
Abstract
Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system". The second is focused on elements of hormone action including "potency", "endpoints", "timing", "dose" and "thresholds". The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate.
Collapse
Affiliation(s)
| | - Åke Bergman
- />Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, SE-151 36 Sodertalje, Sweden
| | - Georg Becher
- />Norwegian Institute of Public Health, Oslo, Norway
| | | | - Riana Bornman
- />School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | | | - Taisen Iguchi
- />National Institute for Basic Biology, Okazaki, Japan
| | | | - Karen A Kidd
- />University of New Brunswick, Saint John, New Brunswick, Canada
| | | | | | | | | |
Collapse
|
22
|
Marx-Stoelting P, Niemann L, Ritz V, Ulbrich B, Gall A, Hirsch-Ernst KI, Pfeil R, Solecki R. Assessment of three approaches for regulatory decision making on pesticides with endocrine disrupting properties. Regul Toxicol Pharmacol 2014; 70:590-604. [PMID: 25239592 DOI: 10.1016/j.yrtph.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 12/30/2022]
Abstract
Recent EU legislation has introduced endocrine disrupting properties as a hazard-based "cut-off" criterion for the approval of active substances as pesticides and biocides. Currently, no specific science-based approach for the assessment of substances with endocrine disrupting properties has been agreed upon, although this new legislation provides interim criteria based on classification and labelling. Different proposals for decision making on potential endocrine disrupting properties in human health risk assessment have been developed by the German Federal Institute for Risk Assessment (BfR) and other regulatory bodies. All these frameworks, although differing with regard to hazard characterisation, include a toxicological assessment of adversity of the effects, the evaluation of underlying modes/mechanisms of action in animals and considerations concerning the relevance of effects to humans. Three options for regulatory decision making were tested upon 39 pesticides for their applicability and to analyze their potential impact on the regulatory status of active substances that are currently approved for use in Europe: Option 1, based purely on hazard identification (adversity, mode of action, and the plausibility that both are related); Option 2, based on hazard identification and additional elements of hazard characterisation (severity and potency); Option 3, based on the interim criteria laid down in the recent EU pesticides legislation. Additionally, the data analysed in this study were used to address the questions, which parts of the endocrine system were affected, which studies were the most sensitive and whether no observed adverse effect levels were observed for substance with ED properties. The results of this exercise represent preliminary categorisations and must not be used as a basis for definitive regulatory decisions. They demonstrate that a combination of criteria for hazard identification with additional criteria of hazard characterisation allows prioritising and differentiating between substances with regard to their regulatory concern. It is proposed to integrate these elements into a decision matrix to be used within a weight of evidence approach for the toxicological categorisation of relevant endocrine disruptors and to consider all parts of the endocrine system for regulatory decision making on endocrine disruption.
Collapse
Affiliation(s)
- P Marx-Stoelting
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - L Niemann
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| | - V Ritz
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| | - B Ulbrich
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| | - A Gall
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| | - K I Hirsch-Ernst
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| | - R Pfeil
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| | - R Solecki
- Bundesinstitut für Risikobewertung (Federal Institute for Risk Assessment), Max-Dohrn-Str 8-10, 10589 Berlin, Germany
| |
Collapse
|
23
|
Galli CL, Sensi C, Fumagalli A, Parravicini C, Marinovich M, Eberini I. A computational approach to evaluate the androgenic affinity of iprodione, procymidone, vinclozolin and their metabolites. PLoS One 2014; 9:e104822. [PMID: 25111804 PMCID: PMC4128724 DOI: 10.1371/journal.pone.0104822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
Our research is aimed at devising and assessing a computational approach to evaluate the affinity of endocrine active substances (EASs) and their metabolites towards the ligand binding domain (LBD) of the androgen receptor (AR) in three distantly related species: human, rat, and zebrafish. We computed the affinity for all the selected molecules following a computational approach based on molecular modelling and docking. Three different classes of molecules with well-known endocrine activity (iprodione, procymidone, vinclozolin, and a selection of their metabolites) were evaluated. Our approach was demonstrated useful as the first step of chemical safety evaluation since ligand-target interaction is a necessary condition for exerting any biological effect. Moreover, a different sensitivity concerning AR LBD was computed for the tested species (rat being the least sensitive of the three). This evidence suggests that, in order not to over-/under-estimate the risks connected with the use of a chemical entity, further in vitro and/or in vivo tests should be carried out only after an accurate evaluation of the most suitable cellular system or animal species. The introduction of in silico approaches to evaluate hazard can accelerate discovery and innovation with a lower economic effort than with a fully wet strategy.
Collapse
Affiliation(s)
- Corrado Lodovico Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Cristina Sensi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Amos Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Marina Marinovich
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia
| |
Collapse
|
24
|
Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Fenner-Crisp PA, McMullin TS, McQueen CA, Rowlands JC. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 2014; 44 Suppl 3:17-43. [DOI: 10.3109/10408444.2014.931925] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Horm Res Paediatr 2014; 80:305-8. [PMID: 24107550 DOI: 10.1159/000355668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- A C Gore
- Division of Pharmacology and Toxicology, The University of Texas, Austin, Tex., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Relevance Weighting of Tier 1 Endocrine Screening Endpoints by Rank Order. ACTA ACUST UNITED AC 2014; 101:90-113. [DOI: 10.1002/bdrb.21096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
|
27
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Reprint of: policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Horm Behav 2014; 65:190-3. [PMID: 24289987 DOI: 10.1016/j.yhbeh.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A C Gore
- Division of Pharmacology and Toxicology, The University of Texas, Austin, TX 78712, USA.
| | - J Balthazart
- University of Liège, GIGA Neurosciences, B-4000 Liège, Belgium
| | - D Bikle
- VA Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - D O Carpenter
- Institute for Health and the Environment, University at Albany, State University of New York, Albany, NY 12222, USA
| | - D Crews
- Section of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | | | | | - R M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - D Grattan
- Department of Anatomy, University of Otago, North Dunedin 9016, New Zealand
| | - P R Hof
- Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - A N Hollenberg
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - C Lange
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - A V Lee
- University of Pittsburgh Cancer Institute, Magee Women's Research Institute, Pittsburgh, PA 15213, USA
| | - J E Levine
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - R P Millar
- UCT/MRC Receptor Biology Unit, University of Cape Town, Cape Town, South Africa
| | - R J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - M Porta
- Hospital del Mar Institute of Medical Research, School of Medicine, Universitat Autònoma de Barcelona, 080041 Barcelona, Spain
| | - M Poth
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - D M Power
- Department of Biosciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - G S Prins
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, USA
| | - E C Ridgway
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80208, USA
| | - E F Rissman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - J A Romijn
- Division of Medicine, Academic Medical Center, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - P E Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute, La Jolla, CA 92037, USA
| | - P D Sly
- Queensland Children's Medical Institute, University of Queensland, Royal Children's Hospital, Brisbane, Queensland 4000, Australia
| | - O Söder
- Karolinska Institutet at Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - H S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - M Tena-Sempere
- Department of Cell Biology and Physiology, University of Córdoba, 14071 Córdoba, Spain
| | - H Vaudry
- Institut National de la Santé et de la Recherche Médicale U982, University of Rouen, 76821 Rouen, France
| | - K Wallen
- Department of Psychology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Z Wang
- Department of Psychology and Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - L Wartofsky
- Department of Medicine, Washington Hospital Center, Washington, DC 20010, USA
| | - C S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
28
|
Becker RA, Hays SM, Kirman CR, Aylward LL, Wise K. Interpreting Estrogen Screening Assays in the Context of Potency and Human Exposure Relative to Natural Exposures to Phytoestrogens. ACTA ACUST UNITED AC 2014; 101:114-24. [DOI: 10.1002/bdrb.21085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/08/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | - Kimberly Wise
- American Chemistry Council Washington District of Columbia
| |
Collapse
|
29
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Reprint of: policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich, et al. Front Neuroendocrinol 2014; 35:2-5. [PMID: 24268499 DOI: 10.1016/j.yfrne.2013.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022]
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - J Balthazart
- University of Liège, GIGA Neurosciences, B-4000 Liège, Belgium
| | - D Bikle
- VA Medical Center and University of California, San Francisco, San Francisco, CA 94143, United States
| | - D O Carpenter
- Institute for Health and the Environment, University at Albany, State University of New York, Albany, NY 12222, United States
| | - D Crews
- Section of Integrative Biology, The University of Texas, Austin, TX 78712, United States
| | - P Czernichow
- Professor Emeritus of Pediatrics, University of Paris, 75006 Paris, France
| | | | - R M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, United States
| | - D Grattan
- Department of Anatomy, University of Otago, North Dunedin 9016, New Zealand
| | - P R Hof
- Icahn School of Medicine at Mt Sinai, New York, NY 10029, United States
| | | | - C Lange
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, United States
| | - A V Lee
- University of Pittsburgh Cancer Institute and Magee Women's Research Institute, Pittsburgh, PA 15213, United States
| | - J E Levine
- Wisconsin National Primate Research Center, Madison, WI 53715, United States
| | - R P Millar
- UCT/MRC Receptor Biology Unit, University of Cape Town, Cape Town, South Africa
| | - R J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - M Porta
- Hospital del Mar Institute of Medical Research and School of Medicine, Universitat Autònoma de Barcelona, 080041 Barcelona, Spain
| | - M Poth
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - D M Power
- Department of Biosciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - G S Prins
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL 60612, United States
| | - E C Ridgway
- Department of Medicine, University of Colorado School of Medicine, Denver, CO 80208, United States
| | - E F Rissman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - J A Romijn
- Division of Medicine, Academic Medical Center, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - P E Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute, La Jolla, CA 92037, United States
| | - P D Sly
- Queensland Children's Medical Institute, University of Queensland, Royal Children's Hospital, Brisbane, Queensland 4000, Australia
| | - O Söder
- Karolinska Institutet at Karolinska University Hospital Solna, 171 76 Stockholm, Sweden
| | - H S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, United States
| | - M Tena-Sempere
- Department of Cell Biology and Physiology, University of Córdoba, 14071 Córdoba, Spain
| | - H Vaudry
- Institut National de la Santé et de la Recherche Médicale U982, University of Rouen, 76821 Rouen, France
| | - K Wallen
- Department of Psychology and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, United States
| | - Z Wang
- Department of Psychology and Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - L Wartofsky
- Department of Medicine, Washington Hospital Center, Washington, DC 20010, United States
| | - C S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
30
|
Kranich SK, Frederiksen H, Andersson AM, Jørgensen N. Estimated daily intake and hazard quotients and indices of phthtalate diesters for young danish men. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:706-712. [PMID: 24228837 DOI: 10.1021/es402569k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Because of wide exposure to phthalates, we investigated whether simultaneous exposure to several phthalates reached levels that might cause adverse antiandrogenic effects. Thirty three healthy young Danish men each delivered three 24-h urine samples during a three months period. The daily intakes of the sum of di-n-butyl and di-iso-butyl phthalate, di(2-ethylhexyl) phthalate, di-iso-nonyl phthalate, and butylbenzyl phthalate were estimated based on urinary excretion of the metabolites. Based on a hazard quotient (HQ) of the individual phthalate (i.e., the ratio between the daily intake and an acceptable level of exposure), a hazard index (HI) for each man was calculated as the sum of HQs for the individual phthalates. All men were exposed to all phthalates during the urine collection periods. Median HIs were all below 1 (i.e., below an acceptable cumulative threshold) ranging from 0.11 to 0.17 over the three different sample collections. Of the 33 men, 2 men had HIs above 1 in one of their three samples, indicating that occasionally the combined exposure to the investigated phthalates reached a level that may not be considered safe. Besides the phthalates investigated here, humans are exposed to numerous other chemicals that also may contribute to a cumulative antiandrogenic exposure.
Collapse
Affiliation(s)
- Selma K Kranich
- University Department of Growth and Reproduction , Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Eur J Endocrinol 2013; 169:E1-4. [PMID: 24057478 DOI: 10.1530/eje-13-0763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A C Gore
- Division of Pharmacology and Toxicology, The University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Toxicon 2013; 76:A1-A2. [DOI: 10.1016/j.toxicon.2013.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
|
34
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrich et al. Endocrinology 2013; 154:3957-60. [PMID: 24048095 PMCID: PMC5398595 DOI: 10.1210/en.2013-1854] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A C Gore
- PhD, Editor-in-Chief, Endocrinology, Gustavus, Louise Pfeiffer Professor of Pharmacology, Toxicology, The University of Texas at Austin, Austin, Texas 78712.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nohynek GJ, Borgert CJ, Dietrich D, Rozman KK. Endocrine disruption: fact or urban legend? Toxicol Lett 2013; 223:295-305. [PMID: 24177261 DOI: 10.1016/j.toxlet.2013.10.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Endocrine disruptors (EDs) are substances that cause adverse health effects via endocrine-mediated mechanisms in an intact organism or its progeny or (sub) populations. Purported EDCs in personal care products include 4-MBC (UV filter) or parabens that showed oestrogenic activity in screening tests, although regulatory toxicity studies showed no adverse effects on reproductive endpoints. Hormonal potency is the key issue of the safety of EDCs. Oestrogen-based drugs, e.g. the contraceptive pill or the synthetic oestrogen DES, possess potencies up to 7 orders of magnitude higher than those of PCP ingredients; yet, in utero exposure to these drugs did not adversely affect fertility or sexual organ development of offspring unless exposed to extreme doses. Additive effects of EDs are unlikely due to the multitude of mechanisms how substances may produce a hormone-like activity; even after uptake of different substances with a similar mode of action, the possibility of additive effects is reduced by different absorption, metabolism and kinetics. This is supported by a number of studies on mixtures of chemical EDCs. Overall, despite of 20 years of research a human health risk from exposure to low concentrations of exogenous chemical substances with weak hormone-like activities remains an unproven and unlikely hypothesis.
Collapse
|
36
|
Gore AC, Balthazart J, Bikle D, Carpenter DO, Crews D, Czernichow P, Diamanti-Kandarakis E, Dores RM, Grattan D, Hof PR, Hollenberg AN, Lange C, Lee AV, Levine JE, Millar RP, Nelson RJ, Porta M, Poth M, Power DM, Prins GS, Ridgway EC, Rissman EF, Romijn JA, Sawchenko PE, Sly PD, Söder O, Taylor HS, Tena-Sempere M, Vaudry H, Wallen K, Wang Z, Wartofsky L, Watson CS. Policy decisions on endocrine disruptors should be based on science across disciplines: a response to Dietrichet al. Andrology 2013; 1:802-5. [DOI: 10.1111/j.2047-2927.2013.00151.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A. C. Gore
- Division of Pharmacology and Toxicology; The University of Texas; Austin TX USA
| | - J. Balthazart
- University of Liège; GIGA Neurosciences; Liège Belgium
| | - D. Bikle
- VA Medical Center and University of California, San Francisco; San Francisco CA USA
| | - D. O. Carpenter
- Institute for Health and the Environment; University at Albany; State University of New York; Albany NY USA
| | - D. Crews
- Section of Integrative Biology; The University of Texas; Austin TX USA
| | | | | | - R. M. Dores
- Department of Biological Sciences; University of Denver; Denver CO USA
| | - D. Grattan
- Department of Anatomy; University of Otago; North Dunedin New Zealand
| | - P. R. Hof
- Icahn School of Medicine at Mt Sinai; New York NY USA
| | - A. N. Hollenberg
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston MA USA
| | - C. Lange
- University of Minnesota Masonic Cancer Center; Minneapolis MN USA
| | - A. V. Lee
- University of Pittsburgh Cancer Institute and Magee Women's Research Institute; Pittsburgh PA USA
| | - J. E. Levine
- Wisconsin National Primate Research Center; Madison WI USA
| | - R. P. Millar
- UCT/MRC Receptor Biology Unit; University of Cape Town; Cape Town South Africa
| | - R. J. Nelson
- Department of Neuroscience; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - M. Porta
- Hospital del Mar Institute of Medical Research and School of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - M. Poth
- Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - D. M. Power
- Department of Biosciences; Universidade do Algarve; Faro Portugal
| | - G. S. Prins
- Department of Physiology and Biophysics; University of Illinois; Chicago IL USA
| | - E. C. Ridgway
- Department of Medicine; University of Colorado School of Medicine; Denver CO USA
| | - E. F. Rissman
- Department of Biochemistry and Molecular Genetics; School of Medicine; University of Virginia; Charlottesville VA USA
| | - J. A. Romijn
- Division of Medicine; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - P. E. Sawchenko
- Laboratory of Neuronal Structure and Function; The Salk Institute; La Jolla CA USA
| | - P. D. Sly
- Queensland Children's Medical Institute; University of Queensland; Royal Children's Hospital; Brisbane Qld Australia
| | - O. Söder
- Karolinska Institutet at Karolinska University Hospital Solna; Stockholm Sweden
| | - H. S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences; Yale School of Medicine; New Haven CT USA
| | - M. Tena-Sempere
- Department of Cell Biology and Physiology; University of Córdoba; Córdoba Spain
| | - H. Vaudry
- Institut National de la Santé et de la Recherche Médicale U982; University of Rouen; Rouen France
| | - K. Wallen
- Department of Psychology and Yerkes National Primate Research Center; Emory University; Atlanta GA USA
| | - Z. Wang
- Department of Psychology and Neuroscience; Florida State University; Tallahassee FL USA
| | - L. Wartofsky
- Department of Medicine; Washington Hospital Center; Washington DC USA
| | - C. S. Watson
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
37
|
Dietrich D, von Aulock S, Marquardt HWJ, Blaauboer BJ, Dekant W, Kehrer J, Hengstler JG, Collier AC, Gori GB, Pelkonen O, Lang F, Nijkamp FP, Stemmer K, Li A, Savolainen K, Hayes AW, Gooderham N, Harvey A. Open letter to the European Commission: scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science, and risk assessment principles. Arch Toxicol 2013; 87:1739-41. [PMID: 23979651 DOI: 10.1007/s00204-013-1117-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/25/2022]
|
38
|
Dietrich DR, von Aulock S, Marquardt H, Blaauboer B, Dekant W, Kehrer J, Hengstler J, Collier A, Gori GB, Pelkonen OP, Lang F, Nijkamp FP, Stemmer K, Li A, Savolainen K, Hayes AW, Gooderham N, Harvey A. Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Toxicol In Vitro 2013; 27:2110-4. [PMID: 23850741 DOI: 10.1016/j.tiv.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Borgert CJ, Baker SP, Matthews JC. Potency matters: thresholds govern endocrine activity. Regul Toxicol Pharmacol 2013; 67:83-8. [PMID: 23838262 DOI: 10.1016/j.yrtph.2013.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/17/2023]
Abstract
Whether thresholds exist for endocrine active substances and for endocrine disrupting effects of exogenous chemicals has been posed as a question for regulatory policy by the European Union. This question arises from a concern that the endocrine system is too complex to allow estimations of safe levels of exposure to any chemical with potential endocrine activity, and a belief that any such chemical can augment, retard, or disrupt the normal background activity of endogenous hormones. However, vital signaling functions of the endocrine system require it to continuously discriminate the biological information conveyed by potent endogenous hormones from a more concentrated background of structurally similar, endogenous molecules with low hormonal potential. This obligatory ability to discriminate important hormonal signals from background noise can be used to define thresholds for induction of hormonal effects, without which normal physiological functions would be impossible. From such thresholds, safe levels of exposure can be estimated. This brief review highlights how the fundamental principles governing hormonal effects - affinity, efficacy, potency, and mass action - dictate the existence of thresholds and why these principles also define the potential that exogenous chemicals might have to interfere with normal endocrine functioning.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology & Toxicology, Inc., C.E.H.T, University of Florida, Department of Physiological Sciences, 2250 NW 24th Ave., Gainesville, Fl 32605, United States.
| | | | | |
Collapse
|
40
|
Dietrich DR, von Aulock S, Marquardt H, Blaauboer B, Dekant W, Kehrer J, Hengstler J, Collier A, Gori GB, Pelkonen O, Lang F, Nijkamp FP, Stemmer K, Li A, Savolainen K, Hayes AW, Gooderham N, Harvey A. Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Food Chem Toxicol 2013; 62:A1-4. [PMID: 23835284 DOI: 10.1016/j.fct.2013.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Dietrich DR, Aulock SV, Marquardt H, Blaauboer B, Dekant W, Kehrer J, Hengstler J, Collier A, Gori GB, Pelkonen O, Lang F, Barile FA, Nijkamp FP, Stemmer K, Li A, Savolainen K, Hayes AW, Gooderham N, Harvey A. Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Chem Biol Interact 2013; 205:A1-5. [PMID: 23832050 DOI: 10.1016/j.cbi.2013.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Dourson M, Becker RA, Haber LT, Pottenger LH, Bredfeldt T, Fenner-Crisp PA. Advancing human health risk assessment: integrating recent advisory committee recommendations. Crit Rev Toxicol 2013; 43:467-92. [PMID: 23844697 PMCID: PMC3725687 DOI: 10.3109/10408444.2013.807223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 11/13/2022]
Abstract
Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose-response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose-response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches.
Collapse
Affiliation(s)
- Michael Dourson
- Toxicology Excellence for Risk Assessment, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Scientifically unfounded precaution drives European Commission's recommendations on EDC regulation, while defying common sense, well-established science and risk assessment principles. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx90013d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Model validation in aquatic toxicity testing: Implications for regulatory practice. Regul Toxicol Pharmacol 2012; 63:353-62. [DOI: 10.1016/j.yrtph.2012.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 11/22/2022]
|
45
|
Rhomberg LR, Goodman JE, Foster WG, Borgert CJ, Van Der Kraak G. A critique of the European Commission document, "State of the Art Assessment of Endocrine Disrupters". Crit Rev Toxicol 2012; 42:465-73. [PMID: 22630047 PMCID: PMC3408894 DOI: 10.3109/10408444.2012.690367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/05/2023]
Abstract
In this commentary, we critique a recently finalized document titled "State of the Art Assessment of Endocrine Disrupters" (SOA Assessment). The SOA Assessment was commissioned by the European Union Directorate-General for the Environment to provide a basis for developing scientific criteria for identifying endocrine disruptors and reviewing and possibly revising the European Community Strategy on Endocrine Disrupters. In our view, the SOA Assessment takes an anecdotal approach rather than attempting a comprehensive assessment of the state of the art or synthesis of current knowledge. To do the latter, the document would have had to (i) distinguish between apparent associations of outcomes with exposure and the inference of an endocrine-disruption (ED) basis for those outcomes; (ii) constitute a complete and unbiased survey of new literature since 2002 (when the WHO/IPCS document, "Global Assessment of the State-of-the-Science of Endocrine Disruptors" was published); (iii) consider strengths and weaknesses and issues in interpretation of the cited literature; (iv) follow a weight-of-evidence methodology to evaluate evidence of ED; (v) document the evidence for its conclusions or the reasoning behind them; and (vi) present the evidence for or reasoning behind why conclusions that differ from those drawn in the 2002 WHO/IPCS document need to be changed. In its present form, the SOA Assessment fails to provide a balanced and critical assessment or synthesis of literature relevant to ED. We urge further evidence-based evaluations to develop the needed scientific basis to support future policy decisions.
Collapse
|